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Systematic law for half-lives of double-β decay with two neutrinos
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Nuclear double-β decay with two neutrinos is a rare and important process for natural radioactivity of unstable
nuclei. The experimental data of nuclear double-β− decay with two neutrinos are analyzed and a systematic
law to calculate the half-lives of this rare process is proposed. It is the first analytical and simple formula for
double-β-decay half-lives where the leading effects from both the Coulomb potential and the nuclear structure are
included. The systematic law shows that the logarithms of the half-lives are inversely proportional to the decay
energies for the ground-state transitions between parent nuclei and daughter nuclei. The calculated half-lives are
in agreement with the experimental data of ground-state transitions of all known 11 nuclei with an average factor
of 3.06. The half-lives of other possible double-β-decay candidates with two neutrinos are predicted and these
can be useful for future experiments. The law, without introducing any extra adjustment, is also generalized to
the calculations of double-β-decay half-lives from the ground states of parent nuclei to the first 0+ excited states
of daughter nuclei, and the calculated half-lives agree very well with the available data. The calculated half-lives
from the ground states of parent nuclei 48Ca and 150Nd to the first 0+ excited states of daughter nuclei are the
first theoretical results as far as we know. The similarity and difference between the law of α decay and that of
double-β− decay are also analyzed and discussed.
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I. INTRODUCTION

The discovery of natural radioactivity by Becquerel
changed our views on the structure of matter and promoted
the development of modern physics and modern chemistry.
Rutherford identified that there are three kinds of natural
radioactivity and named them α, β, and γ rays [1–4]. The struc-
ture of an atom is clear when Rutherford proposed the existence
of a nucleus in an atom based on α-scattering experiments with
α particles from natural radioactivity. Research on the problem
of energy conservation in a β-decay process led to Pauli’s
suggestion of the existence of a new particle, the neutrino.
Based on this idea, Fermi proposed the basic formulation of the
weak interaction for the description of β decay of a nucleus. In
1956, Lee and Yang proposed that parity cannot be conserved
for a weak process such as β decay [5]. Wu and collaborators
carried out the β-decay experiment with polarized 60Co nuclei
and observed that parity symmetry was broken [6]. The vector
and axial-vector theory (V-A) of the weak interaction for four
fermions was founded in 1958 [7,8] and is still widely used
for the calculation of β-decay half-lives and double-β-decay
half-lives [9–11]. The unification of weak and electromagnetic
interactions was reached with the discovery of intermediate
bosons, and the standard model is well founded with the
experimental confirmation of the Higgs particle. Currently
new progress on physics processes with neutrinos or without
neutrinos is being made. Some important processes with
neutrinos are the measurement of θ13 in neutrino oscillations
and the weak processes such as the neutrino-induced reaction
and the double-β decay with neutrinos. An important process
without neutrinos is the search of the nuclear double-β decay

*Corresponding author: zren@nju.edu.cn

without emission of neutrinos. In this article we focus on the
research of half-lives of double-β decay with two neutrinos.

There are many experimental and theoretical studies on
double-β decay with two neutrinos and without neutrinos [10–
29]. A list of available experimental data on decay energies
and half-lives can be found in recent review articles [15,16]
and in nuclear data tables [17,18]. Some recent experimental
results on the half-lives of 130Te are published in Ref. [14] and
those of 136Xe are published in Refs. [12,13]. Very recent data
for 76Ge are reported in Ref. [22]. As experimental data are
accumulated for 11 double-β-decay nuclei with neutrinos, to
make a systematic analysis on them and to find a systematic
law of data are useful for future research.

II. SYSTEMATIC LAW FOR HALF-LIVES
OF DOUBLE-β DECAY

Theoretically there are two kinds of calculations on double-
β-decay half-lives and nuclear matrix elements [10,21,23].
One is based on the nuclear shell model with an effective in-
teraction from a renormalized g matrix obtained with the Bonn
potential [10,21,23,25]. Another is based on the quasi-particle
random-phase approximation (QRPA) or self-consistent renor-
malized random-phase approximation (RQRPA) [10,21,23]
where the collective particle-hole excitation of nuclei is
included and the intermediate-nucleus states are represented as
a set of phonon states [10,21,23]. A recent review can be found
in Ref. [21]. These calculations have been very successful in
describing double-β-decay half-lives and nuclear matrix ele-
ments thanks to the efforts of many theoretical physicists. They
are in general very complicated and require both sophisticated
computer codes and experiences in the specific problem to
generate results which can be compared with those obtained
in the laboratory. And in many cases different models generate
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TABLE I. Experimental data of double-β-decay half-lives T1/2(expt) and decay energies Q2β of 11 even-even nuclei. To analyze the law of
the data we also list the logarithm of double-β-decay half-lives and the square root of the multiplication between the logarithm of experimental
half-life and the decay energy in columns 3 and 5, respectively. The units of the half-lives are Ey (1018 years). The experimental half-lives and
decay energies are from Refs. [16] and [18], respectively.

Nuclei T1/2(expt)(Ey) log10 T1/2(expt) Q2β (MeV)
√

log10 T1/2(expt)
√

Q2β (expt)

48Ca 44+6
−5 1.643 4.267 2.649

76Ge 1840+140
−100 3.265 2.039 2.580

82Se 92+7
−7 1.964 2.996 2.424

96Zr 23.5 ± 0.21 1.371 3.349 2.143
100Mo 7.1 ± 0.4 0.851 3.034 1.606
116Cd 28 ± 2 1.447 2.813 2.017
128Te (1.9 ± 0.4) × 106 6.279 0.8665 2.333
130Te 700 ± 140 2.845 2.528 2.682
136Xe 2300 ± 120 3.362 2.458 2.876
150Nd 9.11 ± 0.68 0.960 3.371 1.799
238U 2000 ± 600 3.301 1.144 1.944

different predictions which can be not easily reconciled. In the
cases of the two neutrino double-β-decay, after decades of
research there are plenty of theoretical half-lives for many
possible candidates based on the calculations with the nuclear
shell model or with the various quasi-particle random-phase
approximations. Although plenty of theoretical half-lives have
been reported for many nuclei, some recent experimental data
are not covered by the calculations [16]. For example, it is
observed that there is double-β decay from the ground state of
150Nd to the first excited 0+ state of its daughter nucleus and
there is no theoretical half-life on this [16]. Therefore further
calculation on double-β-decay half-lives is needed. Because
there are plenty of calculations based on the the nuclear
shell model and the various quasi-particle random-phase
approximations, we will not carry out calculations similar to
those, but instead we will try a different way to investigate
the double-β-decay half-lives in this article. It is believed
that the different approach to double-β decay is useful for
future development of the field and is also useful for future
experimental research. It is widely accepted that experimental
data themselves can test the reliability of the prediction of the
different approaches in physics.

At first we make a systematic analysis on the available data
of double-β decay to the ground state of daughter nuclei. Up
to now there are 11 nuclei which have been observed to have
double-β decay with two neutrinos, and their decay energies
and half-lives are listed in Table I. In Table I, the first column
denotes the parent nucleus and the second column represents
the experimental double-β-decay half-life for the ground-state
transition between the parent nucleus and the daughter nu-
cleus. The experimental double-β-decay half-lives are mainly
presented in Refs. [15–17] and here the data are from Ref. [16].
We also list the logarithm of the half-life in column 3. Column
4 is the experimental double-β decay energy of the nucleus
from the ground state of the parent nucleus to the ground state
of the daughter nucleus where the data are from the nuclear
mass table by Audi et al. and Wang et al. [17,18]. The units
of half-lives are Ey (1018 years). The fifth column represents
the square root of the multiplication between the logarithm of
experimental half-life and the decay energy.

It is seen from Table I that the shortest half-life is 7.1 Ey for
100Mo and the longest is 1.9 × 106 Ey for 128Te. The half-lives
vary from 7.1 Ey (100Mo) to 1.9 × 106 Ey (128Te) although
the change of the decay energies is less than four times (from
3.034 MeV for 100Mo to 0.8665 MeV for 128Te). This shows
that the half-life is very sensitive to the decay energy and the
relationship between them may be very complex by a glance of
the data. To describe quantitatively the sensitivity and to find a
law among the data, we introduce the logarithm of the half-life
and also make a square root for the multiplication between the
logarithm of the half-life and the decay energy. The square
root of the multiplication is listed in the last column of Table I.
It is clearly seen from the last column that the variation of the
square root of the multiplication is in a very narrow range from
the minimum 1.606 to the maximum 2.876. This fact strongly
suggests that a constant value can be a good approximation for
the multiplication of the logarithm of the half-lives and decay
energies. The physics behind this will be discussed later in this
article. This is the starting point of our research and we simply
write it in the following mathematical equation between the
logarithm of half-life and the decay energy,

log10 T1/2 (Ey) = a /Q2β (MeV). (1)

Here a is a constant and its value is to be determined. We will
discuss the meaning of this constant later and will point out
that the constant a is from the universal properties of the weak
interaction for the decay process of different nuclei.

For a better description of the double-β-decay half-lives, the
effects from the Coulomb potential and from nuclear structure
should be taken into account. It is well known from β-decay
theory [2–4] that the effect from the Coulomb potential can
be derived from quantum mechanics and its expression in the
nonrelativistic case is given in some textbooks [2–4] as

ρ(Z,ε) = 2 πη/(1 − e−2 πη), (2)

where η = (Z/137) (ε/cp) and ε is the energy of the electron
and p is the magnitude of the electron momentum.

Usually the correction of the Coulomb potential should
multiply the square of the matrix element to obtain the
probability of β decay [2–4]. This correction factor is close
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to unity for light nuclei but it has an evident effect for heavy
nuclei. In the usual β decay or the double-β decay of this
article, the speed of an electron is very close to the speed of
light (ve ≈ 0.86–0.95 c) and therefore (ε/cp) is close to unity.
For the denominator of Eq. (2) it is also a good approximation
to choose it to be unity for heavy nuclei. Therefore we only
keep the leading term of Eq. (2) for simplicity, and a correction
of the Coulomb potential for double-β-decay half-lives is
approximately −2 log10[(2πZ)/137] to the numerator of
Eq. (1) where Z is chosen to be the charge number of the parent
nuclei and this is also for the convenience of calculations.
This correction is approximately zero for light double-β-decay
nuclei such as 48Ca and it can make a significant contribution
for heavy nuclei such as 238U.

Now let us take the nuclear structure effect into account to
some extent. We keep with the same spirit as for the correction
of the Coulomb potential and only include the leading effect
from the strong interaction. For nuclear structure, the most
important effect from the strong interaction of nucleons is
the existence of magic numbers and this corresponds to the
appearance of a nuclear shell structure in nuclei. The nuclei
with magic numbers are more stable than nonmagic nuclei.
For the numerical calculations of both the shell model and
mean-field model, the first step is the choice of the number
of valence nucleons. This choice is with reference to magic
numbers: The number of valence neutrons of a nucleus is zero
if its neutron number corresponds to a magic number; and it is
not zero if the neutron number does not correspond to a magic
number. The parameters of the effective mean-field potential
in a self-consistent mean-field model are often obtained with
the fitting of ground-state properties of several magic nuclei
such as 16O, 40,48Ca, and 208Pb, and the residual interaction
such as the pairing force is included for valence nucleons
when it is used for research of open shell nuclei. For the
double-β-decay process it involves a change of two neutrons
into two protons for nuclei with the same nucleon number
(A). It can be observed if other decay modes such as a single
β decay are forbidden in energy. Based on this we simulate
the leading effect of nuclear structure (i.e., the shell effect) by
introducing an addition quantity S to the numerator of Eq. (1).
S = 2 when the neutron number of a parent nucleus is a magic
number and S = 0 when the neutron number is nonmagic.
Whether this choice is suitable can be tested by the numerical
results of this article. In this way we do not touch the details
of the complex nuclear potential and we also avoid solving
the very complicated nuclear many-body problem. So a new
systematic law of double-β-decay half-lives is proposed to be

log10 T1/2(Ey) = [a − 2 log10(2πZ/137) + S]/Q2β (MeV),

(3)

where the constant a is obtained by fitting the experimental
data of Table I and its value is a = 5.843. We will point out later
that the physical meaning of a is related to the square of the
strength of the weak interaction which leads to the instability
of a nucleus. Z is the charge number of the parent nucleus.
S = 2 when the neutron number of parent nuclei is a magic
number and S = 0 when it is not a magic number. The number
of parameters of Eq. (3) is two if both a and S are considered to
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FIG. 1. (Color online) Logarithms of the experimental double-β-
decay half-lives and theoretical ones for ground-state transitions of 11
even-even nuclei from 48Ca to 238U. The calculated half-lives are in
agreement with the experimental data of all known 11 nuclei with an
average factor of 3.06. The maximum deviation between theoretical
half-life and experimental one is a factor of 7.709 and this corresponds
to the case of 100Mo.

be adjusting parameters. The number of parameters of Eq. (3)
is one if only a is considered to be an adjusting parameter
and if S is accepted to be from the shell effect (in the shell
model and in the mean-field model people naturally choose
the valence number with reference to the magic numbers). In a
word, the number of adjusting parameters in Eq. (3) is the least
as compared to a model with an effective potential because
one needs two parameters (depth and force range) to define a
central potential and a third parameter to define the strength
of the spin-orbit potential. Because Eq. (3) is very clear and
simple, any physicist including experimental physicists can
use it to calculate the half-lives of double-β decay with inputs
of the decay energies. A pocket calculator with a logarithm
function is enough to get numerical results.

The numerical results from Eq. (3) are drawn in Fig. 1 and
also listed in Table II, together with experimental half-lives and
decay energies. In Fig. 1, the x axis is the nucleon number and
the y axis is the logarithm of the double-β-decay half-lives.
Experimental data and calculated results with Eq. (3) are
denoted with different symbols in the figure. It is seen that the
calculated results are close to experimental data and reasonable
agreement is achieved for the 11 nuclei which have been
observed to have double-β decay with two neutrinos. We make
a detailed discussion on the calculated results of Table II. In
Table II columns 1–4 are experimental data and they have
the same meaning as columns 1–4 of Table I. Column 5 is
the logarithm of the calculated double-β-decay half-lives with
Eq. (3). The last column is the logarithm of the ratio between
experimental double-β-decay half-lives and calculated ones
and it shows the deviation between experimental half-lives
and calculated ones. When the deviation is less than 0.301,
the agreement between the experimental half-life and the
calculated one is within a factor of 2 (log10 2 = 0.301) and
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TABLE II. Logarithms of double-β-decay half-lives of even-even isotopes calculated with new law [log10 T (theor)] and the corresponding
experimental ones [log10 T (expt)]. The units of the half-lives are Ey (1018 years). The experimental decay energies of nuclei [Q2β (MeV)] are
also listed where the decay energies are from the nuclear mass table [18]. The calculated half-lives are in agreement with the experimental data
of all known 11 nuclei with an average factor of 3.06. The maximum deviation between theoretical half-life and experimental one is a factor
of 7.709 and this corresponds to the case of 100Mo.

Nuclei T1/2(expt)(Ey) log10 T1/2(expt) Q2β (MeV) log10 T1/2(theor) log10[T1/2(expt)/T1/2(theor)]

48Ca 44+6
−5 1.643 4.267 1.856 −0.213

76Ge 1840+140
−100 3.265 2.039 2.702 +0.563

82Se 92+7
−7 1.964 2.996 1.822 +0.142

96Zr 23.5 ± 0.21 1.371 3.349 1.587 −0.216
100Mo 7.1 ± 0.4 0.851 3.034 1.738 −0.887
116Cd 28 ± 2 1.447 2.813 1.834 −0.378
128Te (1.9 ± 0.4) × 106 6.279 0.8665 5.872 0.407
130Te 700 ± 140 2.845 2.528 2.013 0.832
136Xe 2300 ± 120 3.362 2.458 2.871 0.491
150Nd 9.11 ± 0.68 0.960 3.371 1.473 −0.513
238U 2000 ± 600 3.301 1.144 4.015 −0.714

this corresponds to the cases for 48Ca, 82Se, 96Zr. When
the deviation is less than 0.477, the agreement between the
experimental half-life and the calculated one is within a factor
of 3 (log10 3 = 0.477) and this is the case for 116Cd and
128Te. It is seen from Table II that experimental half-lives
can be reproduced by calculations within a factor of 4 for
eight nuclei (log10 4 = 0.602) (such as the case of 76Ge, 136Xe,
and 150Nd). The deviation between experimental half-lives and
the calculated results is beyond a factor of 4 for three nuclei
100Mo,130Te, and 238U. For 238U the agreement for half-lives is
approximately a factor of 5.2 (log10 5.2 = 0.716). For 100Mo
the calculation can reproduce its experimental half-life within
a factor of 8 (log10 8 = 0.903) and for 130Te the calculation
can reproduce that within a factor of 7 (log10 7 = 0.845). To
see the total agreement for the 11 nuclei, we define an average
deviation 
 = {�i=11

i=1 | log10[T1/2(expt)/T1/2(theor)]|}/11 =
0.486. This corresponds to a factor of 3.06 between experimen-
tal half-lives and calculated ones (log10 3.06 = 0.486). This
agreement between double-β-decay half-lives and calculations
with Eq. (3) is good compared with the calculations of single
β-decay half-lives [30–34] and α-decay half-lives of unstable
nuclei [35–38]. Especially the calculations of this article are
with the minimum number of adjusting parameters and cover
a wide range of nuclear mass from A = 48 (48Ca) to A = 238
(238U). This means it can be used to predict the double-β-decay
half-lives of other nuclei in nuclide charts.

In Table III we predict the double-β-decay half-lives with
two neutrinos for 11 nuclei. This corresponds to the decays
between the ground states of parent and daughter nuclei, and
their mass numbers lie in a very wide range from 46Ca to
244Pu. They are good candidates for observing double-β decay
with two neutrinos. In Table III, the first column denotes the
parent nuclei and the second column is the experimental decay
energies where the experimental data are from the nuclear
mass tables [17,18]. The third column corresponds to the
logarithm of calculated half-lives with Eq. (3). We also list
the double-β-decay half-lives in the last column and this
is convenient for making a direct comparison with future
double-β-decay experiments. The decay energies of these

nuclei vary approximately from 1 to 2 MeV and their half-lives
range approximately from 102 to 106 Ey. These will be tested
by future measurements.

Recently it has been also observed that double-β decay with
two neutrinos can occur from the ground state of parent nuclei
to the first 0+ excited state of daughter nuclei [16]. There are
two experimental results on the decay half-lives of 100Mo and
150Nd to the first 0+ excited state of the daughter nuclei [16].
Previous theoretical calculations only cover the decay of 100Mo
to the first 0+ excited state of its daughter nucleus [16]. This
clearly shows that more theoretical calculations are needed
for the decays to the first 0+ excited state of the daughter
nuclei. Based on the successful description of the double-β-
decay half-lives of ground-state transitions with Eq. (3), we
now generalize Eq. (3) to the calculation of double-β-decay
half-lives to the first 0+ excited state of daughter nuclei. We list
our numerical results in column 4 of Table IV, together with
experimental decay energies and two experimental half-lives

TABLE III. Double-β-decay half-lives [T1/2(theor)] of even-even
isotopes calculated with the new systematic law and the correspond-
ing logarithms [log10 T1/2(theor)]. The units of the half-lives are Ey
(1018 years). The experimental decay energies of nuclei [Q2β (MeV)]
are also listed where the decay energies are from the nuclear mass
table [18].

Nuclei Q2β (MeV) log10 T1/2(theor) T1/2(theor)(Ey)

46Ca 0.989 5.984 9.64 × 105

86Kr 1.258 5.889 7.74 × 105

94Zr 1.142 4.655 4.52 × 104

104Ru 1.301 4.023 1.05 × 104

110Pd 2.017 2.576 3.77 × 102

148Nd 1.928 2.575 3.76 × 102

154Sm 1.251 3.945 8.81 × 103

160Gd 1.731 2.835 6.84 × 102

198Pt 1.049 4.515 3.27 × 104

124Sn 2.291 2.236 1.72 × 102

244Pu 1.35 3.388 2.44 × 103
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TABLE IV. Double β-decay from the ground state of parent nuclei to the first 0+ excited state of daughter nuclei (denoted with a symbol
∗). Column 1 represents the parent nuclei and column 2 denotes the experimental double-β-decay half-lives [16]. Our calculated half-lives
from the systematic law are listed in column 4. The units of the calculated half-lives in column 4 are Ey (1018 years). The experimental decay
energies of nuclei [Q∗

2β (MeV)] are also listed where the experimental data are from Ref. [16]. The calculated results of 48Ca and 150Nd are the
first theoretical results according to Table III of the newest review article [16]. The calculated results (Ey) from other groups are also listed in
the last two columns for comparison and these are also taken from Table III of the review article [16].

Nuclei T ∗
1/2(expt)(Ey) Q∗

2β (MeV) T ∗
1/2(theor)(Ey) T ∗

1/2(other 1)(Ey) T ∗
1/2(other 2)(Ey)

48Ca 1.275 1.63 × 106

76Ge 0.917 1.02 × 106 (7.5–310) × 103 [39,40] 4.5 × 103 [41]
82Se 1.506 4.21 × 103 (1.5–3.3) × 103 [39,40]
96Zr 2.203 2.59 × 102 (24–27) × 102 [39,40] 38 × 102 [41]
100Mo 5.9+0.8

−0.6 × 102 1.904 5.89 × 102 16 × 102 [42] 21 × 102 [41]
116Cd 1.048 8.36 × 104 1.1 × 104 [39,40] 0.11 × 104 [41]
130Te 0.735 8.38 × 106 (5.1–14) × 104 [39,40,43]
150Nd 1.33+0.45

−0.26 × 102 2.627 0.776 × 102

from the decay of 100Mo and 150Nd to the first 0+ excited
state of the daughter nuclei [16]. The calculated results
from other groups are listed in the last two columns for
comparison [16]. For the half-life from 100Mo, the calculated
result is approximately the same as the experimental one. For
that of 150Nd, the calculated result agrees with the experimental
one within a factor of 2. It is seen without introducing any
extra adjustment in the law that very perfect agreement is
reached for the available data when the law is extended to
the decay to the first 0+ excited state of daughter nuclei.
This confirms the validity of the law. According to the newest
review article of the double-β decay with two neutrinos [16],
no theoretical half-life is reported for the decay from 150Nd to
the first 0+ excited state of the daughter nucleus. Therefore the
calculated half-life of 150Nd in Table IV is the first theoretical
result. For the decay of 48Ca to the first 0+ excited state of
its daughter nucleus, there is no other theoretical result and
our result is the first prediction. Besides the experimental
half-lives of 100Mo and 150Nd, there are no definite half-lives
from the measurement of other nuclei in Table IV [16]. Our
calculated results are above the low limit of the half-lives
for other nuclei [16]. It is also interesting to note from the
last two columns that that the differences of half-lives from
different groups is large. The differences of half-lives of 76Ge
from different groups have a factor ranging approximately
from 2 to 70. For the case of 116Cd, the difference of
theoretical results from different groups is 10 times. This
clearly shows again that further research on this kind of decay
is strongly needed from both experimental and theoretical
sides.

After presenting the numerical results for double-β decay
both to the ground state and to the first 0+ excited state of
daughter nuclei, it is useful to discuss the physics behind the
new law. For this purpose we compare the differences and
common points between α decay and double-β decay because
they are two important decay modes of unstable nuclei. Both α
decay and double-β decay are natural phenomena and they also
obey the same exponential decay law: N = N0e

−λt . They often
occur for ground-state transitions of even-even nuclei and they
obey the laws of quantum mechanics and quantum field theory.
For both decays among the ground states of even-even nuclei,

the changes of quantum numbers between parent nuclei and
daughter nuclei are very similar, δl = 0 and δP = + for the
transition from 0+ to 0+. The long-range Coulomb repulsive
potential among protons leads to the appearance of α decay
and the very short-range weak interaction among nucleons
leads to double-β decay.

It is known that the half-lives of α decay can be calculated by
the Geiger-Nuttall law or the Viola-Seaborg formula with a few
parameters [35,37,38]. A new version of the Geiger-Nuttall law
is proposed [37] and it can well reproduce the experimental
half-lives of both α decay and cluster radioactivity [35,37,38].
The new Geiger-Nuttall law between α-decay half-lives (in
seconds) and α-decay energies (in MeV) of ground-state
transitions of even-even nuclei is [37]

log10 T α
1/2(seconds)

= a
√

μZcZd/
√

Qα + b
√

μ
√

ZcZd + c + S. (4)

In this equation the values of the three parameters are a =
0.399 61, b = −1.310 08, and ce−e = −17.006 98 for even-
even (e-e) nuclei [37]. T α

1/2 (seconds) is the half-life of α
decay and Qα (MeV) is the corresponding decay energy. Zc

and Zd are the charge numbers of the cluster and the daughter
nucleus, respectively. μ = Ac Ad/(Ac + Ad ) is the reduced
mass and Ac, Ad are the mass numbers of the cluster and
daughter nucleus, respectively. For α decay, Zc = 2 and Ac =
4. The three parameters, a,b,c, are obtained by fitting the data
of even-even nuclei with Z � 84 and N � 128 [35]. S is a new
quantum number to mock up the shell effect of N = 126 on
α-decay half-lives. The value of S for ground-state transitions
of even-even nuclei is S = 0 for N � 128 and S = 1 for N �
126 [37].

When we compare the new Geiger-Nuttall law of α-decay
half-lives [Eq. (4)] with the new systematic law of double-
β-decay half-lives [Eq. (3)], we find they are very similar
although they are governed by different interactions. For a
clear comparison, one can keep the first term of both laws
temporarily because it is the leading term and the last two
terms are the corrections to the leading term (the constant c in
the new Geiger-Nuttall law can be approximately eliminated
if we change the units of the half-life from seconds to 1017
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seconds). A common point between α decay and double-β
decay is that their half-lives are very sensitive to the decay
energy and the equations on their half-lives look alike. The
first term in the new Geiger-Nuttall law [Eq. (4)] is dependent
on both charge numbers and decay energies because the
Coulomb repulsive potential leads to the appearance of α
decay (a quantum tunneling effect) and the total effect from the
Coulomb potential is related to the charge numbers (similarly
the total effect of the strong interaction is also directly related
to the nucleon number of a nucleus). For the systematic law
of double-β-decay half-lives [Eq. (3)], the first term is only
dependent on the decay energy because the weak interaction
is universal for natural decay processes and the total effect
from the weak interaction is not very sensitive to the change of
nucleon numbers (such as proton numbers). This agrees with
our knowledge of the weak interaction that the strength of the
weak interaction of a free-neutron β decay is approximately
the same as that of a μ decay although two decay systems
are very different and the difference of their decay energies
is approximately 100 times (of course the strength of a weak
interaction can be different if different generation of quarks
or different generation of leptons in standard models are
involved.) It is due to the difference of this total effect between
the weak interaction and the Coulomb interaction that β decay
occurs for the ground state of many unstable nuclei from very
light ones (such as a decay from a neutron or from a triton) to
heavy ones and α decay occurs for ground states of medium
and heavy nuclei.

Another important difference between the new systematic
law and the Geiger-Nuttall law is from the difference of the
perturbation approximation in quantum mechanics. Double-β
decay is a second-order process of the weak interaction
with the V-A four-fermion theory where a single-β de-
cay is forbidden in many double-β decay nuclei. For the
Geiger-Nuttall law, α decay is a first-order process of the
electromagnetic interaction and there are significant influences
from the strong interaction. Before ending the discussion,
we would like to point out that the right side of Eq. (3)
can be dimensionless if one would like to replace the decay
energy Q2β by Q2β/(2mec

2). In this case the accuracy of
calculated half-lives with the systematic law is almost kept
due to 2mec

2 = 1.022 ≈ 1 MeV.

III. CONCLUSIONS

In summary, a systematic law for the calculation of
double-β-decay half-lives is proposed where the leading
effects of the decay energy, the Coulomb potential and the
nuclear structure, are naturally taken into account. This is
the first analytical formula for the half-lives of the complex
double β-decay with two neutrinos where only two parameters
are used in the formula. By including these leading effects,
the available data of double-β-decay half-lives of ground-state
transitions in even-even nuclei are reasonably reproduced.
Without introducing extra adjustment on the two parameters of
the law, the law is generalized to the double-β decay between
the ground state of parent nuclei and the first 0+ excited
state of daughter nuclei and perfect agreement between the
calculated half-lives and the data is reached. The calculated
decay half-lives from the ground states of parent nuclei 48Ca
and 150Nd to the first 0+ excited states of daughter nuclei are
the first theoretical results as far as we know. The existence
of these terms in the systematic law is based on the available
data and on the quantum description of the double-β-decay
process. Because it is very difficult to derive this simple law
from theory, this law is an empirical law with justification. To
derive this law will be very interesting and it is beyond the
scope of this article. We will try to derive this law in the future.
The universal behavior of the weak interaction manifests itself
in the formula of double-β-decay half-lives by comparing
the similarity and difference between the systematic law of
double-β-decay half-lives and the famous Geiger-Nuttall law
of α decay. The half-lives of the two-neutrino double-β-decay
candidates are predicted and they will be useful in future
experiments.
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