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Neutron skin thickness of heavy nuclei with α-particle correlations
and the slope of the nuclear symmetry energy
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The formation of α-particle clusters on the surface of heavy nuclei is described in a generalized relativistic
mean-field model with explicit cluster degrees of freedom. The effects on the size of the neutron skin of Sn
nuclei and 208Pb are investigated as a function of the mass number and the isospin-dependent part of the effective
interaction, respectively. The correlation of the neutron skin thickness with the difference of the neutron and
proton numbers and with the slope of the nuclear symmetry energy is modified as compared to the mean-field
calculation without α-cluster correlations.
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I. INTRODUCTION

Correlations are an essential feature in interacting many-
body systems, which can have a strong impact on particular
observables. In dilute nuclear matter, the strong interaction
leads to the appearance of clusters, i.e., correlated states of nu-
cleons, below the nuclear saturation density nsat ≈ 0.15 fm−3.
Such conditions are found in the debris of heavy-ion collisions
when the hot compressed baryonic matter expands, cools, and
fragments of different sizes emerge; see, e.g., Refs. [1–3].
In the postbounce evolution of core-collapse supernovae
large abundancies of light clusters might affect the neutrino
absorption and heating of the low-density matter behind the
shock front [4–6]. On the surface of nuclei, the formation
of clusters is a prerequisite for cluster radioactivity [7] and
in particular the α-decay of heavy nuclei [8]. Here, the
tunneling through the Coulomb barrier is well understood but
the preformation of the α particle is a challenge for theoretical
model descriptions. Clustering phenomena are expected to
affect the density dependence of the symmetry energy of
nuclear matter [9] and the structure of nuclei, in particular
skin and halo phenomena; see, e.g., the review article [10].
The natural emergence of clusters is still a difficult task in
many nuclear structure models.

In this work, the effect of α clustering on the neutron
skin thickness of heavy nuclei is investigated. This quantity
is defined as the difference rskin = rn − rp of the root-mean-
square (rms) radii of neutrons, rn, and protons, rp. A strong
correlation of the neutron skin thickness with the density
dependence of the neutron-matter equation of state [11,12]
and that of the symmetry energy of nuclear matter (see,
e.g., Refs. [13,14]) was found in mean-field calculations. At
present, the density dependence of the symmetry energy is
intensively studied in theory and experiment by using different
approaches (see the articles in the topical issue [15]). It can be
quantified with the so-called slope coefficient L that appears in
the expansion of the energy per baryon in nuclear matter (see,
e.g., Ref. [9]). A precise knowledge of the relation between
rskin and L and consequently the density dependence of the
symmetry energy is essential for predicting the structure of
neutron stars, in particular their radii [16]. Hence, there are
a large number of experimental attempts in recent years in

order to determine either the neutron skin thickness rskin

directly, e.g., by parity violation in electron scattering on
Pb nuclei in the PREX experiment [17,18], or the slope
coefficient L by indirect methods (see, e.g., Refs. [14,19,20]
and references therein). Until now, the quantitative correlation
between rskin and L relies on the description of nuclei in
self-consistent mean-field approaches [21] such as nonrel-
ativistic Skyrme Hartree–Fock and relativistic mean-field
(RMF) calculations. These models are based on the picture
of independent nucleonic quasiparticles. They do not consider
residual cluster correlations beyond pairing in the most simple
applications.

II. THEORETICAL DESCRIPTION
OF CLUSTER CORRELATIONS

In the external region of a nucleus low-density nuclear
matter properties are tested. Such dilute matter at finite
temperature is described by models for the equation of state
that are designated for astrophysical applications [22]. Many-
body correlations have to be taken into account in order to
describe correctly the thermodynamic properties and chemical
composition of the system; most notably the formation of light
clusters, such as deuterons or α particles. Therefore, similar
effects can be anticipated in the vicinity of the nuclear surface.

In Refs. [9,23,24] an extended RMF model with density-
dependent couplings was developed that treats few-body
correlations as explicit degrees of freedom. The formation
and dissolution of clusters are a result of medium-dependent
mass shifts, which are taken from a quantum statistical
approach to describe clusters in dilute matter. These shifts
originate mainly from the action of the Pauli exclusion
principle that prohibits the formation of few-body bound
and resonant states with increasing density of the medium.
The model was applied to the description of finite nuclei in
warm matter by applying fully self-consistent calculations in
an extended relativistic Thomas–Fermi (RTF) approximation
within spherical Wigner–Seitz cells [25]. It was found that
a heavy nucleus is formed in the center of the cell, which is
surrounded by a low-density gas of nucleons and light clusters.
A particular observation was the enhanced probability of
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finding clusters on the nuclear surface (see Fig. 11 in Ref. [25]).
This behavior is caused by an attractive pocket in the effective
cluster potentials at the nuclear surface due to a finite range
of the interaction. The attractive scalar potential Si extends
further out than the repulsive vector potential Vi of a cluster
i. Typical values of 1–2 fm and 10–20 MeV for the width and
the depth, respectively, of the potential pocket are obtained in
the present calculations. In contrast, the appearance of clusters
inside the heavy nucleus is strongly suppressed because of the
large positive mass shift in the scalar potential.

A similar approach can be used to describe heavy nuclei
in the vacuum at zero temperature in order to study the
significance of few-body correlations at the nuclear surface.
However, a few modifications have to be taken into account.
The α particle with the highest binding energy of the light
clusters emerges as the only relevant correlation. In contrast
to nucleons, which are fermions and can be treated in
the Thomas–Fermi approximation, α particles are bosons.
They populate only the ground-state wave function, which
has to be determined explicitly. This “condensation” is one
foundation of the very successful THSR description of dilute
excited nuclei [26], e.g., the Hoyle state in 12C, where the
many-body wave function is constructed from α particles
occupying the same quantum state. In the present calculation,
a Wentzel–Kramers–Brillouin (WKB) approximation is used
to obtain the α-particle wave function self-consistently with
the nucleon distributions. The resulting density distribution
of 4He has a maximum at the position of the pocket in the
effective potential (see below). The amount of α clustering
is determined such that the effective position-dependent α
energy Eα(�r ) = mα + Vα(�r ) − Sα(�r ) does not exceed the
α-particle chemical potential μα = 2μn + 2μp (including rest
masses). The latter is given by the neutron and proton chemical
potentials μn and μp that are found from the extended RTF
description of the nucleon distributions. The number of α
particles is a result of the self-consistent solution of the
coupled equations with nucleon, α particles, and meson fields
as degrees of freedom. The radial distribution nα(r) is given by
the modulus square nα = |ψα|2 of the α-particle wave function
ψα(�r ) and the absolute number is found in a variational
calculation.

The density-dependent DD2 parametrization was intro-
duced in the extended RMF model of Ref. [23]. It was obtained
by fitting the parameters to properties of finite nuclei by
using the usual mean-field Hartree approximation. It can be
directly applied to the description of homogeneous matter
with clusters as in Refs. [23,24]; however, the calculation of
nuclear properties in the extended RTF approximation will
give slightly different results for energies and radii. In order to
compensate, at least partly, for these differences, in the present
calculations the mass of the σ meson was increased from
the original value m

(orig)
σ to m(mod)

σ = 577.9 MeV and the σ

meson coupling �σ was multiplied by the factor m(mod)
σ /m

(orig)
σ .

This rescaling does not affect the results for uniform matter
but it improves the description of finite nuclei. Although
the extended TF calculations will give smaller neutron skin
thicknesses than the full Hartree calculations (see below), the
general trends due to the α-particle correlations can be studied
in such an approach.
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FIG. 1. (Color online) Radial density distribution of α particles
(full lines) and neutrons (dashed lines) for a selected set of isotopes of
the Sn chain from 108Sn (leftmost curve) to 132Sn (rightmost curve).

III. α-PARTICLE CORRELATIONS ON
THE SURFACE OF Sn NUCLEI

The radial distributions of α particles for seven isotopes of
the Sn chain is shown in Fig. 1 by full lines. The corresponding
distributions for neutrons are indicated by dashed lines with
a very steep decrease with increasing radius. It is obvious
that the α-particle densities are much smaller than those of
the nucleons. The position of the maximum in the α-particle
density nα(r) moves to larger radii in accordance with the
extension of the neutron distribution when the neutron excess
of the Sn nuclei increases. At the same time, the height of the
maximum decreases significantly such that the total amount of
α particles at the surface becomes smaller.

In Fig. 2 the evolution of the neutron and proton rms
radii in the chain of Sn isopotes is depicted when the mass
number A increases. At mass numbers A ≈ 107 the neutron
and proton distributions of a nucleus have almost identical
rms radii without forming a neutron skin. At even lower
mass numbers a proton skin develops with a size that could
also be affected by α clustering. However, for lower A the
α particle becomes unbound in the present model and the
α-particle dripline is crossed. With increasing neutron number,
the neutron rms radius rises stronger than the proton rms
radius and a neutron skin appears. With α-particle correlations,
however, the rms radii are smaller for a given nucleus than in
the model without α correlations. This is a consequence of
the larger diffuseness of the total neutron and proton density
distribution. It requires smaller rms radii to keep the total
number of neutrons and protons for a given nucleus constant.
For A ≈ 133 the differences between the rms radii in the
model calculations without and with α particles practically
vanish.
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FIG. 2. (Color online) Dependence of the rms radii of neutrons
(circles) and protons (squares) on the mass number A of Sn nuclei in
the extended RTF calculation with the modified DD2 parametrization.
Full red (open blue) symbols denote the results with (without)
α-particle correlations.

The dependence of the resulting neutron skin thicknesses
rskin on A for the same chain of Sn nuclei is shown in Fig. 3.
Without α correlations, rskin increases almost linearly with the
mass number A. The values of the present calculation and
their mass-number dependence are comparable to the results
of the Hartree–Fock-Bogoliubov calculations with the models
BSk24, BSk25, and BSk26 in Ref. [27]. However, the
consideration of α-cluster correlations leads to a substantial
reduction of the neutron skin, in particular in the middle of
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FIG. 3. Dependence of neutron skin thickness on mass number
A of Sn nuclei in the extended RTF calculation with the rescaled
DD2 parametrization. Full (open) symbols denote the results with
(without) α-particle correlations.
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FIG. 4. Dependence of the number of α particles Nα on the mass
number A of Sn nuclei in the extended RTF calculation with the
rescaled DD2 parametrization.

the chain. This can be well understood because the appearance
of α particles on the nuclear surface pushes the abundancies
of neutrons and protons (including those bound in clusters)
towards a more symmetric distribution. For small A with
almost the same neutron and proton numbers in the nucleus,
there is no effect and no neutron skin develops. For a large
neutron excess, α particles cannot be formed efficiently in the
neutron-rich low-density matter on the nuclear surface and the
effect vanishes again.

The effects observed in Figs. 2 and 3 correlate with the
amount of α particles that appear on the surface of the nucleus.
The effective number Nα of α particles in the nuclei of the Sn
chain is illustrated in Fig. 4. Since the present approach is
based on a statistical description, Nα is not an integer number.
For small A the effective α-particle number is largest. With
decreasing A, the binding energy of an α cluster reduces and
finally the α-particle drip line will be reached, indicating the
possibility of α decay. By increasing the mass number A in
the chain of Sn nuclei, the effective number of α particles
at the nuclear surface decreases continuously until it finally
vanishes for large A. Here, a sizable neutron skin develops
but the four-nucleon correlations have no effect on its size
since α particles do not form in a significant amount in such a
neutron-rich environment.

IV. CORRELATION OF THE NEUTRON SKIN THICKNESS
WITH THE SYMMETRY ENERGY SLOPE COEFFICIENT

The formation of α-particle correlations at the nuclear
surface will modify the universal relation between the neutron
skin thickness rskin and the symmetry energy slope coefficient
L that was established in mean-field descriptions of nuclei and
nuclear matter. The size of the neutron skin of heavy nuclei is
strongly affected by the density dependence of the symmetry
energy that reflects the isospin dependence of the nuclear
interaction. In RMF models the isovector ρ meson usually
represents the only contribution to the isospin dependence
of the interaction. Earlier versions with nonlinear meson
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TABLE I. Isovector parameters for the variations of the DD2
parametrization of the RMF model with density-dependent meson-
nucleon couplings.

Parametrization Symmetry Slope ρ-meson ρ-meson
energy coefficient coupling parameter

J [MeV] L [MeV] �ρ(nref ) aρ

DD2+++ 35.34 100.00 4.109251 0.063577
DD2++ 34.12 85.00 3.966652 0.193151
DD2+ 32.98 70.00 3.806504 0.342181
DD2 31.67 55.04 3.626940 0.518903
DD2− 30.09 40.00 3.398486 0.742082
DD2−− 28.22 25.00 3.105994 1.053251

self-interactions considered only a single parameter, the ρ
meson coupling strength �ρ . In the RMF approach with density
dependent meson-nucleon couplings and parametrizations
such as TW99 [28], DD2 [23], . . . , the ρ meson coupling

�ρ(n) = �ρ(nref) exp

[
−aρ

(
n

nref
− 1

)]
(1)

depends on the total baryon density n with three parameters:
the coupling �ρ(nref) at a reference density nref (usually taken
as the saturation density nsat) and a parameter aρ that regulates
the strength of the density dependence. A variation of �ρ(nref)
and aρ modifies the symmetry energy at saturation density J
and in particular the density dependence characterized by the
slope coefficient L.

In order to study the correlation between the neutron skin
thickness and the slope coefficient, variations of the original
DD2 parametrization were created by fixing L to particular
values and refitting J to properties of finite nuclei. In this
process the isoscalar part of the effective interaction, i.e.,
the σ - and ω-meson couplings and their density dependence
were not touched. In Table I, the parameters of these new
effective interactions are given. Parametrizations with L values
larger than the original DD2 value are denoted by DD2+++,
DD2++, and DD2+. In contrast, the parametrizations DD2−
and DD2−− have smaller values for L. The correlation of J
and L is obvious. Larger slope coefficients are accompanied by
larger symmetry energies at saturation. It has to be mentioned
that the quality of the description of finite nuclei deteriorates
when L deviates strongly from the value of the original DD2
parametrization, but the variation covers the range of typical
mean-field model calculations.

The correlation between the neutron skin thickness rskin of
the 208Pb lead nucleus and the slope coefficient L of the nuclear
symmetry energy is depicted in Fig. 5 for the six different
parametrizations of Table I. A distinct correlation between
rskin and L is observed that is well known from previous
mean-field calculations. The green open squares show the
correlation in the original mean-field Hartree calculation that
was used to fit the parameters of the interactions. The neutron
skin thickness rises with increasing L. Since the parameter
sets with L values departing from that of the original DD2
parametrization are not optimal fits to all considered properties
of finite nuclei and the isoscalar part of the effective interaction
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FIG. 5. (Color online) Dependence of the neutron skin thickness
of 208Pb on the slope parameter L. Squares denote the results of the
RMF calculation with the original DD2 parametrization in the Hartree
approximation and full (open) circles are those of the relativistic
TF model with the rescaled DD2 parametrization with (without) α-
particle correlations.

is not modified, a curvature of the correlation is found in
contrast to the almost linear correlation that is observed for
models with best fit parameters. The results of the extended
RTF model with the rescaled σ -meson mass and coupling
are given by the open blue circles. Because this calculation
cannot describe sufficiently well the extended neutron density
distribution at large radii, the neutron skin thicknesses are
systematically smaller than the mean-field Hartree results with
the same isovector interaction. However, the general trend is
the same. Including the α-particle correlation leads to a further
reduction of the neutron skin thickness in the order of 0.02 fm,
which can be a substantial fraction of the total neutron skin
thickness. Thus, the correlation between rskin and L is modified
when α-cluster formation is taken into account.

V. SUMMARY

In conclusion, it was shown that an extended RTF model
with explicit α-cluster degrees of freedom predicts an ap-
pearance of α particles on the surface of heavy nuclei and
a reduction of the neutron skin thickness depending on the
neutron excess of the nucleus. This behavior affects the
rskin-L correlation observed in conventional mean-field mod-
els. Therefore, the extraction of the parameter L from mea-
suring rskin needs some caution and the clusterization effect
increases the systematic error. Obviously, for more precise
quantitative results on the amount of α clustering on the nuclear
surface and the change of the neutron skin thickness due
to α-particle correlations, improved calculations beyond the
extended RTF approximation, which also take pairing and shell
effects into account, have to be performed in the future. The
systematic variation of α-particles abundancies on the nuclear
surface should be studied experimentally, e.g., by quasifree
(p,pα) reactions [29].
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