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The β−-decay rates of neutron-rich Zr and Mo isotopes are investigated within the deformed quasiparticle
random-phase approximation with realistic nucleon-nucleon interactions. Axially symmetric deformations are
considered in the calculations from a mean-field description of a quasiparticle picture and of both particle-hole
and particle-particle excitations. The Brückner G matrix obtained with charge-dependent Bonn nucleon-nucleon
forces is employed for residual particle-particle and particle-hole interactions. Contributions from both allowed
Gammow-Teller and first-forbidden transitions are calculated and the sensitivity of the calculated results to the
particle-particle strength is discussed. The calculated β-decay half-lives show a good agreement with the available
experimental data. Moreover, predictions of β-decay half-lives are made for some extremely neutron-rich isotopes,
which could be useful for future experiments.
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I. INTRODUCTION

Over the last decade, considerable attention has been
paid to both experimental and theoretical investigations of
neutron-rich Zr and Mo isotopes due to their importance in
understanding nuclear structure and astrophysics. From the
viewpoint of nuclear structure, the available experimental
studies on structural evolution [1,2] have shown that the
quadrupole deformation reaches a maximum at N = 64 and
gradually decreases with increasing neutron number up to
N = 68 for Zr and Mo isotopes, confirming the existence of
the deformed subshell closure N = 64. But the evolution of the
deformation beyond N = 68 is still unknown because experi-
mental spectroscopic measurements at the present facilities are
unavailable. Theoretically, predictions of shape transitions are
made for more exotic isotopes with N � 70, such as the finite-
range droplet model (FRDM) [3], deformed Woods-Saxon
model [4], relativistic mean-field (RMF) model [5], Hartree-
Fock plus BCS method [6], and Hartree-Fock-Bogoliubov
model [7].

From the viewpoint of nuclear astrophysics, very neutron-
rich Zr and Mo isotopes are involved in the rapid neutron-
capture process (r process), which proceeds through a chain
of very neutron-rich nuclei and creates approximately half
of the nuclei heavier than iron in nature. Their β-decay
information is required to determine not only the nuclear r-
process time scale but also the abundances of elements [8–10].
Consequently, efforts have been devoted to measure β-decay
properties of very neutron-rich Zr and Mo isotopes. Some
new data have been measured with improved accuracy and
some have even been observed for the first time [11,12].
Very impressively, the β-decay half-lives of 38 neutron-rich
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isotopes in the A ≈ 100 region have been measured at RIKEN,
suggesting a more rapid matter flow of the r process through
this region than previously predicted [12]. In spite of these
achievements, experimental measurements for more exotic
nuclei near the neutron drip line are still unavailable at present.
For these exotic nuclei, one has to resort to reliable theoretical
predictions. As neutron-rich Zr and Mo isotopes are generally
deformed, and furthermore, β-decay rates of neutron-rich
nuclei as well as matrix elements of double β decay are affected
by nuclear deformations [13,14], it is of utmost importance for
theoretical calculations to take the deformations into account.
Several deformed calculations based on the quasiparticle
random-phase approximation (QRPA) have been established.
For example, there are deformed QRPA calculations with
schematic separable Gamow-Teller (GT) forces, where differ-
ent ground-state descriptions are employed such as the FRDM
plus folded-Yukawa single-particle (s.p.) potential [10], de-
formed Woods-Saxon potential [13,14], deformed Nilsson
s.p. levels [15], and deformed Skyrme-Hartree-Fock (SHF)
calculations [13,16]. Based on the deformed SHF model, the
deformed QRPA with consistent residual interactions was
developed for GT strengths in Ref. [17]. The authors of
Ref. [18] developed the self-consistent deformed QRPA with
finite-range Gogny interactions on top of deformed Hartree-
Fock-Bogoliubov calculations. Also, the deformed QRPA with
realistic nucleon-nucleon interactions has been developed for
both two-neutrino and neutrinoless double β decays [19,20],
and it has been extended to investigate β decay [21].

All these efforts by and interest from both the experimental
and the theoretical sides encourage us to take into account the
deformations and investigate the β-decay rates of neutron-rich
Zr and Mo isotopes. Recently, we have investigated β− decays
of r-process waiting-point nuclei around the neutron magic
numbers within the extended QRPA with neutron-proton
pairing [22]. Within this model, two-body interaction matrices
are obtained with realistic nucleon-nucleon interactions and
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calculations are performed on the spherical s.p. basis. As a
further improvement, the present study reports on the deformed
QRPA with realistic nucleon-nucleon interactions constructed
on the deformed s.p. basis. Progress has been made in two
ways: On the one hand, nuclear deformations are taken into
account, following the path from a deformed s.p. description,
to a deformed quasiparticle picture, and to deformed QRPA
calculations. On the other hand, first-forbidden (FF) transitions
are considered in the response functions, besides allowed GT
transitions. Numerically, good stability is required for program
codes and computation time increases greatly when nuclear
deformations are considered. The reasons for this are that the
highly degenerate spherical s.p. basis is transformed into the
doubly degenerate deformed s.p. basis, leading to an obvious
increase in the dimension of QRPA matrix equations, and it is
not the total angular momentum but the projection of the total
angular momentum on the symmetric axis that serves as a good
quantum number. Efforts have been made from the theoretical
and numerical sides.

This article is organized in the following way. Section II
briefly shows the key points of β-decay calculations and the
framework of the deformed QRPA. In Sec. III, the dependence
of our calculations on model parameters is discussed in detail,
and the theoretical results of our calculations are compared
with the experimental data and other theoretical results. A
summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

The process of β decay generally occurs from an initial
ground state i in a parent nucleus to some final states in the
daughter nucleus. The partial half-life t for a β− transition i →
f is obtained using the expression f (Z,R,W0) × t = 6170 s,
with [23,24]

f (Z,R,W0) =
∫ W0

1
dWC(W )F (Z,R,W )(W0 − W )2

×W
√

W 2 − 1. (1)

In Eq. (1), W0 and W are the maximum energy and the
total energy (including the rest energy) of the β particle;
Z and R are separately the atomic number and the nuclear
radius of the daughter nucleus; C(W ) is the so-called shape
factor, which describes the reduced transition probability; and
F (Z,R,W ) is the Fermi function, which accounts for the
Coulomb interaction between the charged β particle and the
residual daughter nucleus [25,26]. Note that expression (1) is
written in natural units (� = me = c = 1) so that the units of
energy and length are given by mec

2 and �/mec, respectively.
The β maximum energy W0 for β− decay is given by W0 =
(Qβ − Eex)/mec

2 + 1, where Eex is the excitation energy of
the final state with respect to the ground state of the daughter
nucleus. The occurrence of β− decay requires W0 > 1. That is,
the final states of β− transitions have to exhibit the excitation
energies Eex < Qβ . Hence, the β-decay half-life is calculated
by summing all allowed f values for GT and FF transitions,

T1/2 = 6170 s∑
Eex<Qβ

[fGT(Z,R,Eex) + fFF(Z,R,Eex)]
. (2)

For GT transitions, the shape factor is not dependent on the
β energy W and has the form [27–34]

C(W ) = B(GT ) =
(

gA

gV

)2 1

2Ji + 1
|〈f ‖�σ �τ+‖i〉|2, (3)

where �τ+ is the isospin raising operator, �τ+|n〉 = |p〉, and �σ is
the Pauli spin matrix.

In the case of FF transitions, the shape factor depends on
the β energy W . If only dominant terms are considered, it can
be written as

C(W ) = k(1 + aW + b/W + cW 2). (4)

According to the treatment by Behrens and Bühring [25,26],
the detailed expressions of k, ka, kb, and kc are

k = [
ζ 2

0 + 1
9ω2

] + [
ζ 2

1 + 1
9 (x + u)2 − 4

9μ1γ1u(x + u)

+ 1
18W 2

0 (2x + u)2 − 1
18λ2(2x − u)2

] + 1
12z2

(
W 2

0 − λ2
)
,

(5a)

ka = − 4
3uY − 1

9W0(4x2 + 5u2) − 1
6z2W0, (5b)

kb = 2
3μ1γ1[ − ζ0ω + ζ1(x + u)], (5c)

kc = 1
18 [8u2 + (2x + u)2 + λ2(2x − u)2] + 1

12z2(1 + λ2),

(5d)

with

γ1 =
√

1 − (αZ)2, V = ξ ′v + ξw′, ζ0 = V + ωW0/3,

Y = ξ ′y − ξ (u′ + x ′), ζ1 = Y + (u − x)W0/3, (6)

where ξ = αZ/2R, α is the fine-structure constant and R is
the radius of a uniformly charged sphere approximating the
nuclear charge distribution. The quantities μ1 and λ2 are asso-
ciated with electron wave functions and momentum [25,26].
Their values are approximated as μ1 ≈ 1 and λ2 ≈ 1 [24].
The nuclear matrix elements can be expressed in terms of
form-factor coefficients A,V FK�s defined by Behrens and
Bühring [25,26]. In the Biedenharn-Rose phase convention,
the nonrelativistic matrix elements are given by [23,35]

ω = −RAF 0
011 = −η

√
3〈f ‖ir[C1 × �σ ]0 �τ+‖i〉C, (7a)

x = −RV F 0
110/

√
3 = −〈f ‖irC1 �τ+‖i〉C, (7b)

u = −
√

2/3RAF 0
111 = −η

√
2〈f ‖ir[C1 × �σ ]1 �τ+‖i〉C,

(7c)

z =
√

4/3RAF 0
211 = η2〈f ‖ir[C1 × �σ ]2 �τ+‖i〉C, (7d)

ξ ′v = AF 0
000 = η

√
3〈f ‖ i

M
[�σ × �∇]0 �τ+‖i〉C, (7e)

ξ ′y = VF 0
101 = −〈f ‖ i

M
�∇�τ+‖i〉C, (7f)

where η = gA/gV , C = 1/
√

2Ji + 1, and C�m =√
4π/(2� + 1)Y�m, and M is the nucleon mass. The

matrix elements ω′, x ′, and u′ take into account the nuclear
charge distribution. They can be obtained from the definitions
of ω, x, and u by including in the radial integral an extra
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factor [26]:

I (1,1,1,1,r) = 3/2[1 − (r/R)2/5], 0 � r � R,

= 3/2[R/r − (R/r)3/5], r � R. (8)

In order to evaluate the nuclear matrix elements, we need to
know the wave functions of the initial and final nuclear states,
|i〉 and |f 〉. Here, they are calculated within the deformed
QRPA with realistic nucleon-nucleon interactions. The picture
we consider here is that of an axially symmetric deformed
system with the set of deformation parameters (β2,β4,β6). It
is convenient to use an intrinsic coordinate frame to describe
such a system [36,37]. In this frame, the projection K of the
angular momentum on the symmetric axis and the parity π are
good quantum numbers. So one can separately perform both
mean-field and QRPA calculations in each Kπ block. The
intrinsic excitations are defined by QRPA phonon excitation
operators [27–33],

Q
†
m,Kπ =

∑
pn

[
Xm

pn,Kπ α
†
pα

†
n̄ − Ym

pn,Kπ ap̄an

]
, (9)

where Xm
pn,Kπ and Ym

pn,Kπ are, respectively, the forward-
and backward-going amplitudes of the mth QRPA phonon
characterized by Kπ , α†

τ (ατ ) are quasiparticle creation (an-
nihilation) operators, τ = p,n denotes the proton and neutron
quasiparticle states, and α

†
τ̄ (ατ̄ ) are the time-reversed operators

of α†
τ (ατ ). The sum runs over the quasiparticle pairs pn̄ which

satisfy the rules �p − �n = K and πpπn = π , where �τ is
the projection of the total angular momentum on the nuclear
symmetric axis and πτ is the parity. The QRPA excited states
|mKπ 〉 are generated by the QRPA phonon excitation operator
acting on the QRPA ground state |0̃〉, i.e., |mKπ 〉 = Q

†
m,Kπ |0̃〉.

The usual QRPA matrix equations have the form [27–33](
A(Kπ ) B(Kπ )

−B(Kπ ) −A(Kπ )

) (
Xm

Kπ

Ym
Kπ

)
= ωm

Kπ

(
Xm

Kπ

Ym
Kπ

)
, (10)

where ωm
Kπ are the energy eigenvalues characterizing the

energies of the mth QRPA phonon state. The submatrices A
and B are given by

Apn,p′n′ (Kπ ) = (Ep + En)δpn,p′n′

+ gpp(upunup′un′ + vpvnvp′vn′)V (pn̄p′n̄′)

+ gph(upvnup′vn′ + vpunvp′un′)Ṽ (pn′p′n),

(11)

Bpn,p′n′ (Kπ ) = −gpp(upunvp′vn′ + vpvnup′un′ )V (pn̄p′n̄′)

+ gph(upvnvp′un′ + vpunup′vn′)Ṽ (pn′p′n),

(12)

where Ep and En are, respectively, the proton and neutron
quasiparticle energies; v and u are, respectively, the occupation
and unoccupation amplitudes for one s.p. state, v2 + u2 =
1; and Ṽ and V separately denote the particle-hole (ph)
and particle-particle (pp) interaction matrices of the residual
proton-neutron interaction. The amplitude for β− transitions
from the ground state |0̃〉 of an even-even nucleus to the mth
phonon state |mKπ 〉 of the neighboring odd-odd nucleus is

expressed in the intrinsic frame by [19,20]

β− ≡ 〈mKπ |β−
JK |0̃〉

=
∑
pn

〈p|TJK |n〉[upvnX
m
pn,K + vpunY

m
pn,K

]
, (13)

where the operators TJK denote the GT transition operator,
Eq. (3), and the FF transition operators, Eq. (7). To obtain
the transition amplitude in the laboratory frame, one needs to
express the initial and final states in the laboratory frame in
terms of the intrinsic states and employ the transformation
of the operators. The details for the transformation from
the intrinsic frame to the laboratory frame can be found in
Refs. [36] and [37]. Besides, in the case of an even-even
nucleus, the excitation energy Eex of the final state can be
simply obtained by subtracting a reference energy E0 from
the QRPA energy ωm

Kπ , i.e., Eex = ωm
Kπ − E0, where E0 is the

lowest two-quasiparticle energy associated with the ground
state of the odd-odd daughter nucleus [16,18,22].

The deformed s.p. states |p〉 and |n〉 are computed by
solving the Schrödinger equation in an axially deformed
Woods-Saxon potential [38]. The deformed s.p. wave func-
tions |τ�τ 〉 are decomposed as [19,20]

|τ�τ 〉 =
∑
Nnz�

bNnz�|Nnz�τ = �τ − �〉|�〉, (14)

where |Nnz�〉 is the deformed harmonic oscillator s.p.
wave function with the principal quantum numbers (Nnz�),
|� = ±1/2〉 is the spin wave function, and � and � are
the projections of the orbital and spin angular momentum
onto the nuclear symmetry axis z, respectively. The wave
functions |Nnz�〉 can be further expanded into a sum of the
spherical harmonic oscillator s.p. wave functions |nr��〉. Then
expression (14) can be rewritten as [19,20]

|τ�τ 〉 =
∑
χ

Bτ
χ |χ�τ 〉, (15a)

|χ�τ 〉 =
∑
�

C
j�τ

��τ
1
2 �

|nr��τ = �τ − �〉|�〉, (15b)

Bτ
χ =

∑
Nnz�

C
j�τ

��τ
1
2 �

bNnz�A
nr�
Nnz�τ

, (15c)

where χ ≡ (nr�j ) labels the quantum numbers of the
spherical harmonic oscillator wave function, A

nr�
Nnz�τ

=
〈nr��τ |Nnz�τ 〉 is the spatial overlap integral between the
spherical and the deformed harmonic oscillator wave func-
tions, and C

j�τ

��τ
1
2 �

is the Clebsch-Gordan coefficient. Using

Eq. (15), the matrix elements of TJK in Eq. (13) are given
by [19,20]

〈p|TJK |n〉 =
∑
χp

∑
χn

F JK
pχpnχn

〈χp‖TJ ‖χn〉/
√

2J + 1, (16a)

FJK
pχpnχn

= Bp
χp

Bn
χn

(−1)jn−�nCJK
jp�pjn−�n

. (16b)

Also, the two-body deformed wave function for
a proton-neutron pair characterized by Kπ is given
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by [19,20]

|pn̄〉 =
∑

χpχnJ

F JK
pχpnχn

|χpχn,JK〉, (17a)

|χpχn,JK〉 =
∑
�p�n

CJK
jp�pjn−�n

|χp�p〉|χn − �n〉, (17b)

with πpπn = π .
Next, we transfer our attention to the two-body interaction

matrix elements V (pn̄p′n̄′) and Ṽ (pn′p′n) in the deformed
Woods-Saxon s.p. basis, which are considered to deal with the
pp and ph excitations in the deformed QRPA equations. First,
the two-body interaction matrix elements G(χpχnχp′χn′ ,J )
in a spherical harmonic oscillator s.p. basis are evaluated
based on the Brückner G matrix with the charge-dependent
Bonn nucleon-nucleon force. The details of the calculations
are described in Refs. [39–41] as well as the parameters used
in the calculations. Then, using Eq. (17), one can obtain [19,20]

V (pn̄p′n̄′) = −2
∑

J

∑
χpχn

∑
χp′χn′

FJK
pχpnχn

F JK
p′χp′n′χn′

×G(χpχnχp′χn′ ,J ), (18a)

Ṽ (pn′p′n) = 2
∑

J

∑
χpχn′

∑
χp′χn

F JK ′
pχpn̄′χn′ F

JK ′
p′χp′ n̄χn

×G(χpχn′χp′χn,J ), (18b)

where K = �p − �n = �p′ − �n′ and K ′ = �p + �n′ =
�p′ + �n.

III. NUMERICAL RESULTS AND DISCUSSION

Before we present the numerical results for deformed
neutron-rich Zr and Mo isotopes, we would like to discuss
the practical aspects of our calculations. First, the s.p.
energies ετ and wave functions |τ�τ 〉 of the axially deformed
Woods-Saxon potential are computed in the axially deformed
harmonic oscillator basis, where the deformed Woods-Saxon
potential is generated by the “universal” parametrization [38].
The heights of effective barriers for the positive-energy states
are also evaluated in order to exclude spurious positive-energy
solutions. In our calculations, the model space is defined
by all the s.p. states with energies up to 10 MeV for
protons and neutrons. This means that some quasibound states
with energies 0 < ετ < 10 MeV are included, in addition
to negative-energy bound states. Second, the wave functions
|τ�τ 〉 are decomposed within eight major spherical harmonic
oscillator shells, as shown in Eq. (15). Third, the quasiparticle
energies Eτ and pairing amplitudes (vτ ,uτ ) for protons and
neutrons are separately obtained by solving the BCS equations
with constant pairing gaps [37,42,43]:

2(εi − λ)uivi + �
(
v2

i − u2
i

) = 0, (19a)

� = −G
∑

i

uivi, Ei =
√

(εi − λ)2 + �2. (19b)

The empirical pairing gaps �τ are extracted from the nucleon
separation energies [44]. They are taken either from the

FIG. 1. Dependence of the calculated β-decay rates on the
gpp value for the β− decay of 112Mo: (a) ratio of the calculated
half-life to the experimental data versus particle-particle strength
gpp’ (b) branching ratio for FF transitions versus particle-particle
strength gpp .

AME2012 atomic mass evaluation, when available [44], or
from the KUTY mass formula [45].

Finally, the different intrinsic excitations are considered for
β transitions using the QRPA matrix equations. The response
function of GT transitions contains three components, Kπ =
0+, ± 1+, and the response function of FF transitions contains
five components, Kπ = 0−, ± 1−, ± 2−. In expressions (11)
and (12) of submatrices A and B, the ph and pp interaction
elements are renormalized by the strength parameters gph and
gpp. Here, we use the same gph and gpp for all components
Kπ . This makes the calculation straightforward and maintains
the relative strength of different components. It is known that
the ph channel mainly determines the energy position of GT
giant resonances (GTGRs) at a high excitation energy [46],
which is observed by (p,n) charge-exchange reactions. As
there is no available information on the GTGR energy for
the nuclei under investigation, the gph strength is adjusted to
reproduce the empirical GTGR energy position [46]. It has a
value of approximately gph = 1.00. Unfortunately, one cannot
obtain explicit information on the gpp strength from (p,n)
reactions like the gph strength. The feasible way is to use the
experimental β−-decay half-lives to fix the gpp strength. We
now discuss the sensitivity of the calculated β-decay properties
to the gpp strength. For concreteness, we take the β− decay
of 112Mo as an example. All other β emitters show similar
sensitivities. Figure 1(a) shows the ratio of the calculated half-
life to the experimental data as a function of the gpp value
for the β− decay of 112Mo, where the quenching is taken
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TABLE I. Spin parities, excitation energies, and logf t values of
several important decay branches for the GT and FF transitions of
112Mo. These decay branches make a relatively large contribution to
the decay width. Calculations are separately performed with gpp =
0.0, 0.8, and 1.2. The unit of the excitation energies is MeV.

gpp = 0.0 gpp = 0.8 gpp = 1.2

Kπ Eex logf t Kπ Eex logf t Kπ Eex logf t

GT 1+ 1.238 5.86 0+ 0.354 5.99 0+ 0.159 4.87
1+ 1.502 5.11 0+ 1.268 4.64 0+ 0.383 5.49
1+ 1.635 4.55 1+ 1.289 5.35 0+ 0.957 4.43
0+ 1.694 5.67 1+ 1.396 4.78 1+ 1.180 4.83
0+ 1.709 5.74 0+ 1.464 5.51 0+ 1.313 5.33
1+ 2.330 5.39 1+ 2.068 5.24 1+ 1.718 5.19

FF 0− 0.482 6.18 0− 0.321 5.82 0− 0.010 5.93
0− 0.763 5.56 0− 0.410 6.29 1− 0.031 6.83
0− 1.116 6.13 0− 0.720 5.83 1− 0.733 6.60
1− 1.109 6.36 1− 1.003 6.07 1− 0.875 6.07
1− 1.172 6.19 0− 1.996 6.11 0− 1.735 6.35
0− 2.311 6.09 0− 2.026 6.22 0− 1.841 6.01
0− 2.633 5.88 0− 2.581 5.71 0− 2.523 5.80

into account using (gA/gV )eff = 0.77(gA/gV )free [16]. If the
gpp value is varied from 0.4 to 1.2, the half-life decreases
by more than 50%. This effect can be easily understood in
terms of the general Sargent law T1/2 ∝ 1/(Qβ − Ef )5 or the
new exponential law for β-decay half-lives [47,48], because
increasing the pp interaction would cause a lowering of the
excitation energies Ef [49]. Here, we adopt a gpp strength of
gpp = 1.10 for all nuclei under investigation.

One important aspect of the present calculation is that both
GT and FF transitions are taken into account to calculate
β-decay rates. This provides a good opportunity to investigate
the contribution of FF transitions to half-lives. It is found
that the contribution of FF transitions is correlated with the
gpp strength as well. Figure 1(b) illustrates the branching
ratio for FF transitions as a function of the gpp value for
the β− decay of 112Mo. As the gpp value is increased from
0.4 to 1.2, the calculated branching ratio for FF transitions
is decreased from 18% to 9%. To be specific, the decay
width of GT transitions is increased by a factor of roughly
2.6, while the decay width of FF transitions is increased by a
factor of about 1.2. Obviously, the effect of the gpp strength
is more considerable on GT transitions than on FF transitions.
Nowadays there is rare information on the contribution of
FF transitions in experiments. The correlation between the
gpp strength and the competition of GT and FF transitions is
worth further investigations from both the experimental and
the theoretical sides. Moreover, in order to gain insight into
the effect of the gpp strength on the nuclear matrix element, we
also list in Table I the spin parities Kπ , excitation energies Eex,
and logf t values for some important GT and FF transitions
in the β− decay of 112Mo. These transitions make a relatively
large contribution to the decay width. Note that calculations are
separately performed with different gpp strengths, gpp = 0.0,
0.8, and 1.2.

FIG. 2. (Color online) Low-lying average shape factors for GT
and FF transitions as a function of the excitation energy Eex for the
β− decay of 106Zr. (a) Average shape factors for GT and FF transitions
calculated in the prolate shape with β2 = 0.373, which is suggested
by the FRDM in Ref. [3]; (b) results calculated in the spherical
shape with β2 = 0.0; (c) results calculated in the oblate shape with
β2 = −0.373. The shape factor for GT transitions is denoted by black
lines and the average shape factor for FF transitions is denoted by
lighter (red) lines.

To illustrate the strength of FF transitions, one usually
employs the average shape factor C(W ) instead of the shape
factor C(W ), since the shape factor C(W ) of FF transitions
depends on the β energy W as shown in Eq. (4). The average
shape factor is defined as [24]

C(W ) = f (Z,R,W0)/f0(Z,R,W0), (20)

where f (Z,R,W0) is defined in Eq. (1) and f0(Z,R,W0) is
given by

f0(Z,R,W0) =
∫ W0

1
dWF (Z,R,W )(W0 − W )2

×W
√

W 2 − 1. (21)

We show the low-lying average shape factors for the β−
decay of 106Zr as an example. In order to discern the effect
of nuclear deformations, prolate, spherical, and oblate shapes
are considered. Figure 2 illustrates the average shape factors
for GT and FF transitions as a function of the excitation
energy Eex. It is clearly shown that the deformation leads
to fragmentation of the dominant peak into several weaker
peaks and transfer of part of the strength from the lower
excitation energy region to the higher excitation energy region.
Moreover, the peaks shown in Fig. 2(a)–2(c) are located at
various positions. Consequently, calculations with the different
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FIG. 3. (Color online) Low-lying average shape factors for dif-
ferent components 0−, 1−, and 2− of FF transitions as a function of
the excitation energy Eex for the β− decay of 106Zr. Calculations are
performed in the prolate shape with β2 = 0.373, which is suggested
by the FRDM in Ref. [3].

shapes yield different half-lives: T1/2 = 246 ms for the prolate
shape, T1/2 = 105 ms for the spherical shape, and T1/2 = 148
ms for the oblate shape. The tendency of the calculated half-life
with the nuclear shape is consistent with the results in Ref. [16].
To gain more insight into the average shape factor for FF
transitions, we display in Fig. 3 the average shape factor within
the Qβ window, which is calculated with the prolate shape
suggested by the FRDM [3]. As shown in Fig. 3, the average
shape factor is divided into three components, which separately

correspond to 0−, 1−, and 2− transitions. One can see that the
components of 0− and 1− transitions significantly contribute to
FF transitions. The component of 1− transitions is preferred in
the lower energy region, while the component of 0− transitions
takes a dominant place in the higher energy region. It should
be particularly noted that the average shape factor with the
lower excitation energy makes more of a contribution to the
decay width, owing to larger f0 values. As a consequence, the
contribution of 1− transitions is dominant and the next one
is that of 0− transitions, even though the component of 0−
transitions is relatively larger than that of 1− transitions.

Using the formalism described above, we have performed
a detailed calculation of the β−-decay half-lives of even-even
Zr and Mo isotopes. In our calculations, the set of deformation
parameters (β2,β4,β6) is taken from the results of Möller
et al. [3] unless otherwise stated. The experimental β-decay
half-lives are taken from Ref. [50], and some new data obtained
with improved accuracy or measured for the first time are
taken from Ref. [12]. In Fig. 4, we present a comparison of
the present results with the available data for the neutron-rich
Zr and Mo isotopes. For comparison, the theoretical results
of Möller et al. are also shown, where GT transitions are
considered within the FRDM plus QRPA using ph terms of
separable residual interactions and FF transitions are taken into
account by the gross theory [10]. Circles, squares, and triangles
represent the available experimental data, the results of this
work, and the results in Ref. [10], respectively. Three regions
are distinguished in Fig. 4, according to the source of Qβ

values: region I, where experimental Qβ values [44] are used;
region II, where Qβ values obtained from systematics [44]
are used; and region III, where theoretical Qβ values obtained

FIG. 4. (Color online) Comparison of the calculated half-lives [denoted GT + FF] with the available experimental data (labeled Expt)
for neutron-rich Zr and Mo isotopes. The theoretical results of Möller et al. (denoted FRDM + QRPA) are also shown for comparison [10],
including the calculations for both GT and FF transitions. For 106−112Mo, calculations are also performed with the deformation parameters
predicted by the RMF [5], where negative values for the quadrupole deformation parameter β2 are suggested, in contrast to the FRDM
predictions, and the corresponding results [denoted GT + FF (RMF)] are displayed in (b). Three regions (I–III) are distinguished, according to
the source of the Qβ values used in the calculations: (I) experimental Qβ values [44], (II) Qβ values obtained from systematics [44], and (III)
theoretical Qβ values obtained from the KUTY mass formula [45].
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from the KUTY mass formula [45] are used. The uncertainty
of experimental Qβ values is about 10 keV in region I, while
the uncertainty of Qβ values is more than 200 keV in region
II. Specifically, the experimental Qβ value for 104Zr (in region
I) is known to be 6095(10) keV. The uncertainty of 10 keV
brings in an uncertainty in the calculated half-life of ±8 ms,
corresponding to an effect of about ±0.9%. For 112Mo (in
region II), the uncertainty of Qβ = 7790(200) keV leads to
an uncertainty in the calculated half-life of −21/+25 ms,
corresponding to an effect of roughly −13.4/+15.8%.

In Fig. 4(a), the FRDM + QRPA calculations generally
overestimate the experimental half-lives to some extent. The
reason for this may be that the pp interaction is not included in
the QRPA calculation [10], resulting in an overestimation of
the excitation energy of the daughter states. By contrast, the
present calculations yield shorter half-lives and show a good
agreement with the experimental data. For 108,110Zr, there are
slightly large deviations from the experimental data, by a factor
of about 2. This may be attributed to the large uncertainties in
the Qβ values, as mentioned above. One can also note that there
is a strong decrease in the experimental half-life at the neutron
number across N = 64, which gives an active response to the
deformed subshell closure N = 64. The present calculations
reproduce this feature well. For 106−112Mo, the FRDM suggests
positive values for the quadrupole deformation parameter
β2 [3], while the RMF yields negative values [5]. With this
in mind, we also evaluate the half-lives of 106−112Mo using
the deformation parameters predicted by RMF calculations,
which are represented as stars in Fig. 4(b). One can see
that the half-lives calculated with the FRDM deformation
parameters are always larger than those calculated with the
RMF deformation parameters and the discrepancy between
them becomes smaller with increasing neutron number. This
agrees well with the results in Ref. [16]. The standard
deviation of the calculated β-decay half-lives for 13 nuclei
is obtained as σ = {∑13

i=1[log10(T i
expt/T i

calc)]2/12}1/2 = 0.20,
which corresponds to a factor of less than 1.60. As additional
information, the standard deviation of the FRDM + QRPA
results is evaluated as well, σ = 0.51 corresponding to a factor
of about 3.21. In addition, the present calculations are extended
to some other neutron-rich isotopes, including 112−120Zr and
116−122Mo. As one would expect, the calculated half-lives

show a decreasing trend with increasing neutron number.
More importantly, the discrepancy between the FRDM +
QRPA results and the present calculations becomes smaller
with increasing neutron number. This demonstrates a good
convergence of the theoretical predictions.

IV. SUMMARY

In summary, we have presented in this paper the deformed
QRPA with realistic nucleon-nucleon interactions to calculate
the β-decay half-lives of neutron-rich Zr and Mo isotopes.
Within the deformed QRPA, the deformed s.p. basis is
computed by solving the Schrödinger equation with the axially
deformed Woods-Saxon potential, and the residual particle-
particle and particle-hole interaction matrix elements in the
deformed s.p. basis are obtained in terms of the Brückner
G matrix with the charge-dependent Bonn nucleon-nucleon
force. The contributions from allowed GT and FF transitions
are considered using the different response functions. The
sensitivity of the calculated β-decay properties to the particle-
particle strength is discussed, and the parameters used in the
calculations are explained in detail. The calculated results
shown in Fig. 4 are in good agreement with the available
experimental data and consistent with the theoretical results of
FRDM + QRPA. Moreover, predictions of β-decay half-lives
are made for more neutron-rich Zr and Mo isotopes, which
could be useful for future experiments.
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