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Electric dipole response of 6He: Halo-neutron and core excitations
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Electric dipole (E1) response of 6He is studied with a fully microscopic six-body calculation. The wave
functions for the ground and excited states are expressed as a superposition of explicitly correlated Gaussians. Final
state interactions of three-body decay channels are explicitly taken into account. The ground state properties and
the low-energy E1 strength are obtained consistently with observations. Two main peaks as well as several small
peaks are found in the E1 strength function. The peak at the high-energy region indicates a typical macroscopic
picture of the giant dipole resonance, the out-of-phase proton-neutron motion. The transition densities of the
lower-lying peaks exhibit in-phase proton-neutron motion in the internal region, out-of-phase motion near the
surface region, and spatially extended neutron oscillation, indicating a soft-dipole mode and its vibrationally
excited mode. The compressional dipole strength is also examined in relation to the soft-dipole mode.
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I. INTRODUCTION

Exploring new phenomena in unstable nuclei has become
possible due to intense radioactive beams produced by new fa-
cilities. A neutron halo is one of the most attractive phenomena
found in some unstable nuclei near the neutron dripline, and
has attracted much attention since the discovery of the large
matter radius of 11Li [1]. Typical two-neutron halo nuclei are,
e.g., 6He [2], 11Li, 14Be [3], and the recently observed 22C [4].
A common feature of these nuclei is a small two-neutron
separation energy (S2n) that leads to a large matter radius.

It is known that such weakly bound systems exhibit large
E1 strength at the low-energy region as often studied through
Coulomb breakup reactions [5–7]. As a unique phenomenon in
the neutron rich nuclei, the possibility of the soft-dipole mode
(SDM) has for a long time been discussed as a vibration of the
halo neutrons against the core [8–10], which is a variant of the
macroscopic picture of the giant dipole resonance (GDR) such
as Goldhaber-Teller [11] and Steinwedel-Jensen [12] models.

These days low-lying E1 strength in medium- and heavy-
mass nuclei has been studied extensively in its relationship
to neutron-skin thickness and neutron matter in a neutron
star [13,14]. The low-lying strength is observed in neutron-
proton unbalanced nuclei and it is often called a pygmy dipole
resonance (PDR) because its strength is much smaller than
that of the GDR. However, its excitation mechanism is still
controversial concerning whether the mode is SDM, collective,
or single-particle excitation.

In this paper, we study the E1 response of 6He up to the
GDR region, focusing on the possibility of the SDM as well as
other E1 excitation modes. The low-lying E1 strength of 6He
was observed by the Coulomb breakup experiment of 6He [5],
which found a broad peak in the low-energy region just a
few MeV above the α + n + n threshold. An indication of the
low-lying peak is also reported in a 6Li(7Li,7Be)6He charge-
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exchange reaction [15]. Theoretically the E1 response of 6He
is often studied with a macroscopic α + n + n three-body
model [16–21]. However, some theoretical uncertainty exists
when the α particle is treated as a point particle. Even if the α +
n + n three-body problem is solved accurately, two phase-shift
equivalent α − n potentials give different E1 strength as shown
in Refs. [18,19,21]. To avoid such uncertainties, we study the
6He nucleus in a fully microscopic six-nucleon calculation.
The six-body model has another important advantage that
the distortion of the α core is naturally taken into account.
The distortion or core polarization effect is known to play an
important role in binding the halo neutrons of 6He [22]. Bacca
et al. presented six-body calculations for 6He with the effective
interaction hyperspherical harmonics (EIHH) combined with a
Lorentz integral transform [23,24]. They obtain two peaks for
6He and speculate the existence of the SDM at the low-lying
peak as well as the GDR at the higher peak.

The paper is organized as follows. In Sec. II, our six-body
model is formulated. The Hamiltonian, basis functions, and
model space adopted in the present work are explained here.
We perform a variational calculation to obtain the ground state
wave function. Those configurations that are accessible by the
E1 operator are carefully prepared to take account of all the
E1 strength of 6He. Results and discussions are presented
in Sec. III. First, we show the ground state properties of
6He and discuss its structure in Sec. III A. Next we present
the E1 strength and analyze important configurations for
describing the E1 excitation in Sec. III B. A comparison with
experimental data is made in Sec. III C. The low-lying E1
excitation mode as well as the one in the GDR region are
discussed in detail in Sec. III D. Section III E discusses the
extent to which the α + n + n three-body picture is validated
for 6He. The result on compressional E1 strength is shown in
Sec. III F. Conclusions are drawn in Sec. IV.

II. METHOD

A. Hamiltonian

The Hamiltonian of an N -particle system is specified by a
kinetic energy and an effective two-body interaction between
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nucleons:

H =
N∑

i=1

Ti − Tcm +
∑
i<j

vij . (1)

The proton-neutron mass difference is ignored in the kinetic
energy. The center-of-mass (c.m.) motion of the total system,
Tcm, is excluded, and no spurious c.m. motion appears in
the calculation. As the two-body interaction, we employ
the central Minnesota (MN) potential [25] that fairly well
reproduces the binding energies of N = 2−6 systems [26].
No three-body force is included. A spin-orbit interaction
is often employed, in addition to the central MN force, to
reproduce the splitting of p3/2 and p1/2 phase shifts of the
4He+n system [27]. That interaction was applied to describe
the neutron-halo structure of 6,8He in a microscopic three-body
and five-body model [28]. We use, however, only the central
MN force because the effective spin-orbit force gives ill
behavior as shown in a four-body calculation for 4He [29].
Instead we adjust the strength of odd partial waves by changing
one free parameter, u, of the MN potential. The u parameter
does not affect the binding energies of N < 5 systems that are
mainly composed of S state. A choice of u will be discussed
later. The Coulomb potential is included. The nucleon mass
mN and the charge constant e used in what follows are
�2/mN = 41.47 MeV fm2 and e2 = 1.440 MeV fm.

B. Basis functions for bound states

In this work, we solve a many-body Schrödinger equation
using a variational method. A bound-state solution of the N -
nucleon system with spin parity Jπ is expressed in terms of a
linear combination of the LS coupled basis functions,

�
(N)π
(LS)JMJ MT

= A{[
φ

(N)π
L χ

(N)
S

]
JMJ

ηMT

}
, (2)

whereA is the antisymmetrizer, and the square brackets denote
the tensor product of angular momentum coupling. The spin
function χS is given in a successive coupling as

χ
(N)
S12,S123,...,SMS

= [
. . .

[[
χ 1

2
(1)χ 1

2
(2)

]
S12

χ 1
2
(3)

]
S123 . . .

]
SMS

. (3)

Note that the above spin function forms a complete set
provided all possible intermediate spins (S12,S123, . . . ) are
included for a given S. The isospin function ηMT

is expressed
with a product of single-particle isospin functions. The
function ηMT

can also be expressed by a linear combination of
Eq. (3), e.g., with total isospin T = 0, 1, 2 for 4He and T = 1,
2, 3 for 6He.

A choice of the variational trial functions is essential to
determine the accuracy of the calculation. We employ the
correlated Gaussian (CG) basis [30,31], which is flexible
to treat few-body dynamics, e.g., to describe a tail in
the asymptotic region as well as clustering [32,33]. Also
see a recent review [34] for various powerful applications
of the CG. Denoting the nucleon coordinate by r i , we use
a set of the Jacobi coordinates, xi = r i+1 − ∑i

j=1 rj /i (i =
1, . . . ,N − 1) but other sets of relative coordinates may be
used as well. We introduce a shorthand notation x that is an
(N − 1)-dimensional column vector or an (N − 1) × 1 matrix
whose ith element is the three-dimensional vector xi . The

spatial part φ
(N)π
L of Eq. (2) generally takes the form [26,35]

FLML
(v,A,x) = exp

(− 1
2 x̃Ax

)YLML
(ṽx) (4)

with a solid harmonic

Y�m(r) = r�Y�m(r̂), (5)

where A is an (N − 1) × (N − 1) positive-definite, symmetric
matrix and x̃Ax stands for

∑N−1
i,j=1 Aij xi · xj . The tilde

indicates the transpose of a matrix. The parameter v is an
(N − 1)-dimensional column vector that defines a global
vector (GV), ṽx(=∑N−1

i=1 vi xi), which is responsible for
describing the angular motion of the system. For 6He with
the central MN potential, we only need to consider the lowest
L because no channel coupling occurs between states with
different L: L = 0 for the ground states and L = 1 for the E1
excited states.

The CG-GV basis (4) explicitly describes correlated motion
among the particles through the off-diagonal elements of A and
the rotational motion of the system is conveniently described
by the GV. Both bound and excited states are expressed by
the same functional form. For the bound states, the variational
parameters are determined by the stochastic variational method
(SVM) [26,35,36]. The wave functions for the excited states
are constructed on the basis of single-particle (sp) or cluster
excitations as explained in Sec. II C. Most noticeable among
several advantages of the CG-GV basis functions is that
the functional form of Eq. (4) remains unchanged under an
arbitrary linear transformation of the coordinate x. Another
advantage is that the matrix elements for most operators can
be evaluated analytically, which allows us to obtain the matrix
elements accurately with a low computational cost. Useful
formulas for evaluating matrix elements with the CG-GV basis
are collected in appendices of Refs. [37,38].

C. Basis functions for electric dipole excitation

We construct basis functions for the final states with Jπ =
1− that are excited by the E1 operator

M1μ = e
∑
i∈p

(r i − x6)μ =
√

4π

3
e
∑
i∈p

Y1μ(r i − x6), (6)

where the summation runs over protons, and x6 is the c.m.
coordinate of 6He. We apply the same prescription as that
of Refs. [39,40] adopted for the study of E1 and spin-dipole
strength in N = 4 system to the six-body calculation of E1
strength. In that study four-body continuum-discretized states
are constructed by taking into account both sum rules and
final state interactions, and thereby the model reproduces
experimental data satisfactorily and in addition leads to some
predictions. The configurations that we include here are (i)
the sp excitation built with Y1μ(r1 − x6), (ii) the α + n + n
three-body decay channel, and (iii) the t + d + n three-body
decay channel. Figure 1 illustrates schematic diagrams of
the above three configurations for the E1 excitation of 6He.
Because of a Borromean nature of 6He, an explicit inclusion
of the three-body final states is important. The basis (i) is vital
to satisfy the sum rule, and the bases (ii) and (iii) take care
of final state interactions in the three-body decay asymptotics.
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FIG. 1. (Color online) Schematic diagrams of three patterns for
the E1 excitations of 6He. Small circles and shaded ones denote
neutron and proton, respectively. Thick solid lines denote the
coordinates on which the E1 operator acts.

The detail of each configuration is given below. It should be
noted, however, that the three classes of configurations are not
orthogonal to each other but have considerable overlap among
others.

1. Single-particle excitation

We define the sp basis by

	
sp
f = A[

�
(6)
0,iY1(r1 − x6)

]
1μ

, (7)

where �
(6)
0,i is the ith component of the ground state wave

function of 6He. The basis state describes a sp excitation from
the ground state by the E1 operator and plays an important role
in accounting for the E1 sum rule. If �

(6)
0,i is replaced with the

ground state wave function of 6He, 	sp
f reduces to the coherent

state that exhausts all the E1 strength reached from the ground
state. Since all the components are included independently
in the present calculation, the set of the basis functions
takes into account the effect of the pseudoexcited 0+ states
of 6He.

2. α + n + n three-body decay channel

The α + n + n channel is the lowest threshold of 6He and
is expected to be important to describe the SDM. We explicitly
include the α + n + n configurations in the form

	αnn
f = A[

�
(4)
0,i exp

(− 1
2 ỹB y

)[Y1(w̃ y)χ (2)
S56

]
1

]
1μ

, (8)

where �
(4)
0,i is the ith basis state of the ground state wave

function of 4He, and ỹ = ( y1 y2) where the coordinates y1

and y2 specify the three-body character of α + n + n and
so-called Y- and T-type coordinates are both employed. Further
detail is given in the next paragraph [see Fig. 1(ii)]. A 2 × 2
positive-definite, symmetric matrix B that characterizes a
spatial configuration of the two valence neutrons is chosen
to cover the physically important region for describing weakly
bound two neutrons. A choice of w is also explained below.

The spin of the two neutrons, S56, can be 0 and 1, and both are
included independently in the basis set. The isospin functions
are not written explicitly in Eq. (8) for the sake of simplicity. In
order to reduce a computational cost, we prepare a truncated
4He wave function with 15 basis states, which leads to an
energy loss of 0.3 MeV. We also calculate the E1 strength with
20 and 25 basis states and confirm that no qualitative difference
is obtained in the E1 strength below 20 MeV excitation
energy where the α core remains in its ground state. Since the
basis state �

(4)
0,i is included independently, the two neutrons

are allowed to move against the α core in its pseudoexcited
state.

Both Y- and T-type coordinates are defined by

y(Y) : y(Y)
1 = r5 − x(4)

cm, y(Y)
2 = r6 − r5 + 4x(4)

cm

5
,

(9)

y(T) : y(T)
1 = r6 − r5, y(T)

2 = r5 + r6

2
− x(4)

cm,

where x(N)
cm denotes the c.m. coordinate of an N -particle

system. Since the main neutron configuration in the ground
state of 6He is (0s)2(0p)2, the E1 operator acting on the
halo neutron changes one of the P orbits to an extended S
orbit in the continuum. In the case of Y type that describes
a valence-neutron excitation the S wave is assigned to y(Y)

1

and the remaining P wave to y(Y)
2 . In the case of T type

that is very important to describe the SDM-like excitation
the S wave is assigned to y(T)

1 while the P wave to y(T)
2 . The

above assignment of the partial waves can be made possible
by choosing w̃ = (0 1) and B to be diagonal.

In practical calculations, first we generate the diagonal
matrix elements of B, and then transform the coordinates y(Y)

or y(T) together with three coordinates used to describe �
(4)
0,i

to the x coordinate. This transformation is carried out by an
appropriate matrix T . Substitution of y = T x into Eq. (8)
reduces the α + n + n configurations to the standard CG-GV
basis function of Eq. (2). The diagonal elements, B11 and B22,
are taken by a geometrical progression with different Gaussian
falloff parameters ranging from 0.1 to 22 fm: More explicitly,
they are chosen as B11 = (0.13 × 1.35(n−1))−2 (n = 1, . . . 18)
and B22 = (0.2 × 1.4(m−1))−2 (m = 1, . . . 15) in both Y and T
types.

3. t + d + n three-body decay channel

We here treat the t + d + n three-body decay channel. This
channel is important to describe the E1 strength especially
in the GDR region because it involves the excitation of the
α core. The channel is the third lowest threshold of 6He and
makes it possible to describe those configurations in which
two protons, excited by the E1 operator, are apart from each
other. With the coordinate sets appropriate for describing the
three-body system,

z(Y) : z(Y)
1 = x(2)

cm − x(3)
cm, z(Y)

2 = r6 − 2x(2)
cm + 3x(3)

cm

5
,

(10)

z(T) : z(T)
1 = r6 + 2x(2)

cm

3
− x(3)

cm, z(T)
2 = r6 − x(2)

cm,
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the basis functions are expressed as

	tdn
f = A[[

�
(3)
1/2,i�

(2)
1,j

]
J12

× exp
(− 1

2 z̃B z
)[Y1(w̃z)�(1)

1/2

]
J34

]
1μ

, (11)

where z̃ = (z1 z2), and �
(3)
1/2,i and �

(2)
1,j are ith and j th basis

functions of 3H and 2H, respectively. They are approximated
by 7 for 3H and 3 basis states for 2H. The �

(1)
1/2 represents

the single neutron spin and isospin function. The intermediate
spins, J12 and J34, take 1/2 and 3/2, and they are included
independently. The partial wave of the first relative coordinate
in each coordinate set is chosen to be a P wave that is excited
by the E1 operator. The basis states take into account the
asymptotics of the three-body decay due to the E1 excitation
as well as a coupling with the pseudostates of 3H and 2H.
Similarly to the construction of α + n + n basis states, we
set w̃ = (1 0) and choose the diagonal matrix element of B
as B11 = (0.7 × 2.0(n−1))−2 (n = 1, . . . ,5) and B22 = (0.7 ×
2.0(m−1))−2 (m = 1, . . . ,5).

Note that the t + t two-body decay channel, the second
lowest threshold of 6He, does not contribute to the E1 strength
in the present model. The t + t channel with the relative P -
wave motion has to have S = 1 and T = 1. Since the ground
state of 6He is described with the S = 0 configurations and the
E1 operator does not change the spin, any t + t configurations
with S = 1 cannot be excited by E1. If a realistic nuclear force
is used, both S = 0 and S = 1 configurations couple and the
t + t channel gives some contribution to the E1 strength.

The number of basis functions in each diagram is 600 for
sp, 4050 × 2 for α + n + n, and 2625 × 2 for t + d + n. The
calculation is performed not only in each basis set but also in a
“full” model space that combines all of them. The total number
of basis functions in the full calculation is 13 950. Since all E1
strength of 6He exists in the continuum above the α + n + n
threshold, our calculation is practically an approximation with
the continuum discretization. Because of the extensive basis
states, however, the number of discretized states is so dense that
on average ten states appear per 1 MeV below the excitation
energy of 50 MeV.

III. RESULTS AND DISCUSSIONS

A. Ground state properties

The CG-GV basis with the SVM optimization gives an
efficient description of the ground state of 6He. Figure 2
displays the convergent curve of the ground state energy of
6He calculated with u = 1.0 of the MN potential. We increase
the number of basis functions competitively according to the
algorithm of the SVM [26,35]. A sudden decrease of the energy
at the 300th basis state is due to the SVM refinement procedure
in which the basis dimension is fixed but each basis function
is compared with the best one among randomly generated
candidates. The converged energy is obtained only with 600
basis states, which is surprisingly small if one recalls that each
basis function has 15 variational parameters for the orbital
part (4). No decrease of the energy is obtained when we
make the refinement of the 600 basis states. The calculated
ground state energy of 6He with u = 1.0 is consistent with

FIG. 2. (Color online) Energy convergence of 6He as a function
of basis dimension. The parameter u of the MN potential is set to be
unity.

that obtained by the calculation of the 600 dimension in
Ref. [26]. In fact it is 0.25 MeV lower than that because of
the improvement of the asymptotics of the wave function. The
root mean square (rms) matter radius, rm, is found to be larger
by 0.08 fm than that of Ref. [26].

Calculated physical quantities are summarized in Table I
for different u values. Our results on binding energies are also
consistent with those by EIHH [42] for all u values. Since the
u parameter controls the strength of the odd-partial waves, the
binding energy and radius of 4He, which has almost (0s1/2)4

configuration, do not depend on u. Some dependence on u
appears for 6He, however, because the two valence neutrons
move in the P orbit according to the simplest shell model. A
larger u value gives a more attractive P -wave interaction. It
is found that the experimental S2n value is reproduced with
u = 1.05, so that we use u = 1.05 in what follows unless
otherwise mentioned.

Our wave function for 4He underestimates its point proton
rms radius rp by 0.05 fm [43], and partly because of this the
calculated rp of 6He is slightly smaller than the experimental
values, 1.938(23) [44] and 1.912(18) [45], extracted from
charge radius measurements. The experimental matter radius

TABLE I. Energy, two-neutron separation energy, and rms radii
of of 4He and 6He. See text for details. Energy and length are given in
units of MeV and fm, respectively. Experimental data are taken from
Ref. [41].

u Expt.

1.00 1.05 1.10 1.20 1.30

E 6He −30.32 −30.98 −31.71 −33.45 −35.53 −29.27
S2n

6He 0.39 1.01 1.72 3.39 5.41 0.972
rm

6He 2.52 2.41 2.32 2.16 2.05
4He 1.41 1.41 1.41 1.41 1.41

rp
6He 1.90 1.83 1.78 1.68 1.61
4He 1.41 1.41 1.41 1.41 1.41

rn
6He 2.78 2.65 2.54 2.37 2.23
4He 1.41 1.41 1.41 1.41 1.41

rpp
6He 2.50 2.49 2.48 2.44 2.39
4He 2.37 2.37 2.37 2.37 2.37
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of 6He is not as precise as the proton radius and is somewhat
scattered: The empirical values are 2.48(3) [3], 2.30(7) [46],
2.33(4) [47], and 2.37(5) [48]. The averaged empirical matter
radius, 2.37(10) fm, is consistent with the calculated matter
radius. Many theoretical works have been devoted to under-
standing the rms radii of 6He with different methods and
interactions. See, e.g., Ref. [44,49] and references therein.

The rp value of 6He is not necessarily the same as that
of 4He due to a recoil effect of the core. Even though the
α + n + n three-body model is quite good for the ground
state of 6He, the rp value of 6He becomes larger than that
of 4He because the c.m. of the α core moves around the
c.m. of 6He, and the difference between them depends on
the extent to which the c.m. of the α core fluctuates. Denoting
the relative distance vector between the core and the c.m.
of the two valence neutrons by R = y(T)

2 , in general we obtain
the following relation between the rp values of A and A − 2
systems [16,50],

〈
r2
p(A)

〉 = 〈
r2
p(A − 2)

〉 + 4

A2
〈R2〉. (12)

The second term on the right-hand side of the above equation
expresses the recoil effect. With Eq. (12), the expectation value
of the relative distance,

√
〈R2〉, is estimated as 3.50 fm, which

is consistent with 3.89 fm obtained by an α + n + n three-body
calculation [50].

The rms distance of the two protons, rpp, serves as a
measure of whether the 4He core is frozen or not in 6He. If the
two-proton configuration of 6He is the same as that of 4He,
their rpp values are expected to be the same. The rpp of 6He is
found to be 5% larger than that of 4He, which indicates a core
swelling. This effect becomes larger as the valence neutron
binding energy decreases. As pointed out in Ref. [22], the pro-
ton tail of the α core plays a vital role in binding the two valence
neutrons. A proton tends to be closer to neutrons rather than to
the other proton because the pn interaction is stronger than the
pp interaction. In the case that the valence neutrons are weakly
bound, the proton in the α core is attracted by the valence neu-
trons moving far from the core, and thus rpp of 6He becomes
larger than that of the free α particle. The effect is never taken
into account in a macroscopic three-body model of α + n + n
but is realized in a fully microscopic six-body model.

Figure 3 displays the density distributions of 4,6He defined
by

ρp/n(r) = 〈	0|
∑

i∈p/n

δ
(∣∣r i − x(N)

cm

∣∣ − r
)|	0〉, (13)

where 	0 is the ground state wave function. The density is
normalized to the number of protons or neutrons. The density
distributions for both proton and neutron are the same in 4He
and their peak position is 1.1 fm, whereas the neutron density
of 6He, peaked at 1.7 fm, is very much extended showing a
two-neutron halo feature. The peak of the proton density of
6He is shifted to 1.3 fm due to the recoil effect, and the density
exhibits more extended distribution than that of 4He.

FIG. 3. (Color online) Proton and neutron density distributions
of 4,6He.

B. Electric dipole strength

We show continuum-discretized E1 strength. The Hamil-
tonian is diagonalized in the basis states that are defined in
Sec. II C, and the reduced transition probability for the E1
operator is calculated by

B(E1,ν) =
∑
Mμ

|〈 	1M (Eν)|M1μ|	0 〉|2 , (14)

where 	1M (Eν) is νth final state wave function with excitation
energy Eν .

Figure 4 displays the E1 strength calculated with each
model space as well as with the full space. The sp model space
produces two prominent and concentrated peaks at 6.91 and
13.20 MeV and fragmented strength at the excitation energy of
30–40 MeV. The two prominent peaks may correspond to the
observed levels at 5.6 and 14.6 MeV with large decay widths,
12.1 and 7.4 MeV, respectively [51], though their Jπ values
are not identified as 1−. The fragmented strength at the higher
energy region appears to correspond to the GDR. Compared
to the sp result, the α + n + n model space presents many
much smaller and fragmented peaks due to the weak binding
nature of the valence neutrons. Small peaks are concentrated
at the low-energy region around 4 MeV. These peaks in the
low-lying E1 strength may correspond to the SDM. The
t + d + n model space presents several concentrated peaks
below 24 MeV as well as many fragmented strength beyond
that energy. As discussed before, this model space explicitly
includes the configurations in which two protons can be apart
from each other, and we will confirm later that this class of
model space plays a decisive role in describing the GDR due
to the core excitations.

We study the mechanism of the appearance of the low-lying
E1 strength and note that the SDM discussed here does not
necessarily mean a narrow resonance. A microscopic α + n +
n cluster model calculation was performed in Ref. [52] to find
low-lying 1− resonances with the complex scaling method,
and no such resonant state appeared in the low-energy region.
As seen in Fig. 4(a), the strength distribution in the low-energy
region is densely obtained but no such peak is found that is
sufficiently stable against the increase of the model space.
It is unlikely to obtain a narrow low-lying 1− resonance
consistently with the result of Ref. [52].
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FIG. 4. (Color online) Electric dipole strength of 6He calculated with each basis set of the excitation diagram. Full indicates the result of
calculation including all the basis sets. Note the different scale of the sp B(E1) value.

As noted already, each model space has significant overlap,
and in the calculation of the full model space almost all
the prominent peaks are fragmented into small strength.
Roughly speaking, the strength distribution can be divided
into two groups: broad and strong low-lying strength centered
around 3 MeV and extending to 20 MeV and higher peaks at
33 MeV. It is apparent that the α + n + n configurations are
of vital importance in describing the low-lying E1 strength
because the low-lying peaks show up only with the α + n + n
configurations. It should be noted, however, that the full model
enhances the low-lying E1 strength below about 5 MeV
more strongly than the α + n + n model. The strength at
around 33 MeV corresponds to the GDR and apparently
appears when the core excited configurations are explicitly
included.

What is the possible structure of the GDR in 6He? Since
the GDR regions already exceed the breakup threshold of
4He, the breaking of the α core should play an essential role.
Figure 5 displays the E1 strength for 4He. The excited 1−
states are constructed as in Ref. [39]. Differently from 6He, no
strength appears at the low-energy region because the threshold
of 3H + p is fairly high. Four prominent peaks are found
at 25.0, 27.5, 31.8, and 39.9 MeV, and we see that several
peaks in 6He appear at the positions similar to those energies.
We will confirm in Sec. III E that the peaks in the region
between 33 and 41 MeV are due to the excitation of the α
core.

The E1 sum rule is useful as a qualitative measure of
judging the extent to which the model space is extensive to
describe the E1 excitation. If 	1M (Eν) of Eq. (14) forms
a complete set for configurations with 1−, a well-known
non-energy-weighted sum rule for the E1 operator reads

∑
ν

B(E1,ν) = e2

(
Z2

〈
r2
p

〉 − Z(Z − 1)

2

〈
r2
pp

〉)
, (15)

where Z is the number of protons. The right-hand side of the
above equation depends only on the ground state properties,
which turns out to be 7.21 e2 fm2. We obtain 99.8, 90.4, and

FIG. 5. (Color online) Electric dipole strength of 4He.
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65.8% of the sum rule for the sp, α + n + n, and t + d + n
configurations, respectively. The full space exhausts 99.9% of
the sum rule. This confirms that our model space is extensive
enough to account for the configurations excited by the E1
operator. It should be noted, however, that the sp model space
alone accounts for the sum rule but the fragmentation of the E1
strength is possible only with the coupling to the α + n + n
and t + d + n model space.

C. Comparison with experiment

The E1 strength function is approximately obtained by a
convolution of B(E1) with the Lorentzian function as follows:

dB(E1,E)

dE
=

∑
ν

N (Eν,)L(E,Eν,)B(E1,ν) (16)

with

L(E,Eν,) = 

2π

1

(E − Eν)2 + (/2)2
, (17)

N (Eν,) = 1

1 − ∫ Eth

−∞ L(E′,Eν,)dE′
, (18)

where N (Eν,) is introduced to renormalize the strength
near the two-neutron threshold of 6He, Eth, satisfying
N (Eν,)

∫ ∞
Eth

L(E,Eν,)dE = 1. Figure 6 compares the cal-
culated E1 strength function with that extracted from the
Coulomb breakup measurement [5]. The hatched band indi-
cates the variation of theoretical strength functions for different
width parameters,  = 0.75 to 2.0 MeV. The range of  is
chosen referring to Ref. [21]. An oscillatory behavior of the
E1 strength is observed with the small  but the  dependence
becomes small for  > 1 MeV. In view of large error bars of
the data we conclude that the calculated E1 strength function
fairly well agrees with experiment.

Figure 7 displays the E1 strength function in wider energy
range. The width  is taken as 2.0 MeV. The peak at the

FIG. 6. (Color online) Electric dipole strength functions of 6He
measured from the threshold energy Eth. A hatched area denotes
theoretical uncertainly due to a choice of the smearing width ranging
from 0.75 to 2.0 MeV in the Lorentzian function (18). Experimental
data taken from Ref. [5] are multiplied by 4π

3 to be consistently with
the E1 operator of Eq. (6).

FIG. 7. (Color online) The same as Fig. 6 but for a wider energy
region. The results with different u parameters of the MN potential
are also plotted. The smearing width of the Lorentzian function is set
to be 2.0 MeV.

lower energy is expected to have the SDM structure while
the other has the GDR structure as implied by Ref. [23]. We
examine the sensitivity of the E1 strength function to the
u parameter. The peak position at the low excitation energy
shifts drastically to higher energy and its strength becomes
much smaller with increasing u. This is easily understood
because the valence neutrons get more binding and are not
easily excited (see Table I). No drastic change of the peak
position and strength is found in the GDR region around
33 MeV where the α breaking is dominant. As confirmed
above, the large enhancement of the E1 strength at low energy
is due to the weakly bound neutrons, and therefore reproducing
the experimental two-neutron separation energy is essential to
account for the low-lying E1 strength. We obtain some other
peaks at 10 and 18 MeV as seen in Fig. 7. We will discuss their
structure in Sec. III D.

D. Soft and giant dipole excitation modes

To discuss how the protons and neutrons respond in the E1
excitation, we calculate the E1 transition density,

ρ tr
p/n(Eν,r) = 〈	1(Eν)‖

∑
i∈p/n

Y1(r i − x6)

× δ(|r i − x6| − r)‖	0〉. (19)

As defined in Eq. (6), the E1 transition matrix element is given
by the proton transition density as

〈	1(Eν)‖M1‖	0〉 = e

√
4π

3

∫ ∞

0
ρ tr

p (Eν,r)dr. (20)

If the α + n + n three-body model is assumed and no excita-
tion of the α core is allowed, the neutron transition density is
related to the proton transition density by

ρ tr
n (Eν,r) = ρ tr

p (Eν,r) + ρ tr
2n(Eν,r), (21)

where ρ tr
2n(Eν,r) stands for a contribution from the halo

neutrons and it is entirely determined by the two-neutron wave
function.

Figure 8 plots the proton and neutron transition densities of
the most prominent peaks at about 3, 7, 18, and 33 MeV. In
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FIG. 8. (Color online) Electric dipole transition densities for
proton and neutron of the states with the excitation energy of
(a) 3.0, (b) 7.2, (c) 17.7, and (d) 32.9 MeV, respectively.

the lowest prominent peak at 3.0 MeV, the transition densities
of proton and neutron coincide up to about 1.7 fm, which
corresponds to the peak of the ground state neutron density (see
Fig. 3). The neutron transition density deviates from the proton
one beyond 1.7 fm, showing in-phase oscillation in the interior
region, r � 3 fm, and out-of-phase oscillation in the external
region r � 3 fm. Furthermore, the neutron transition density is
very much extended beyond 10 fm. These observations agree
with what we expect from the relationship (21) for an ideal
SDM and are consistent with the classical interpretation of the
SDM discussed in Ref. [10]. As the energy increases up to
18 MeV, the proton transition density gradually shrinks but its
basic pattern is still kept. This shrinkage is due to the fact that
the ρ tr

2n(Eν,r) of the neutron transition density vibrates more
and more rapidly with an increase of the number of nodes
of oscillation. Though the penetration of the valence neutrons
into the internal region grows gradually, the internal structure
characteristic of the SDM does not change so much as shown
in Figs. 8(b) and 8(c). The oscillatory behavior becomes even
stronger at 17.7 MeV, showing little distortion of the core. The
neutron transition density reaches a maximum at 3.4 fm. The
protons follow the motion of the neutrons, and the resulting

FIG. 9. (Color online) Electric dipole transition densities for
proton and neutron of 4He at the excitation energy of 31.8 MeV.

proton transition density exhibits a destructive pattern. Such
neutron oscillation leads to the smaller E1 strength than that
of the lowest-lying peak.

At the higher peak with 33 MeV, the transition densities
clearly show the out-of-phase oscillation in the whole region,
which is typical of the GDR. The proton transition density
shows somewhat broader distribution than those of the
low-lying states. This suggests the strong distortion of the
core due to the dipole field, which can never be described
by α + n + n three-body models with an inert core. As an
example of the ideal GDR, we plot in Fig. 9 the transition
densities of the most prominent strength of 4He at 31.8 MeV
(see Fig. 5). Both the proton and neutron transition densities
show the identical distribution with opposite phases. They are
peaked at 1.9 fm, which is further inside than those of the GDR
of 6He.

We also investigate the excited modes of 6He at about
40 MeV and find that their transition densities are similar
to that of the GDR but have more oscillations and smaller
amplitudes.

E. Validity of α + n + n three-body picture

To examine how good the three-body model of α + n + n
is for 6He, we study the cluster sum rule [53] as a qualitative
measure. We rewrite the E1 operator (6) as

M1μ = e

⎛
⎝∑

i∈p

(
r i − x(A−2)

cm

)
μ

− 2Z

A
Rμ

⎞
⎠ . (22)

If the system has a core plus two-nucleon structure and the
first term on the right-hand side of the above equation does
not contribute to the E1 strength, we obtain the non-energy-
weighted cluster sum rule [54,55]:

B(E1; NEWCSR) = e2

(
2Z

A

)2

〈R2〉. (23)

We calculate a cumulative sum of the E1 strength,∑νmax
ν=1 B(E1,ν), and find that the cumulative sum exceeds the

B(E1; NEWCSR) value of 5.44 e2 fm2 at Eνmax = 26.8 MeV.
Therefore the cluster sum rule occupies about 75% of the
non-energy-weighted sum rule (15) and its strength appears
below the excitation energy of 25 MeV. Since the GDR appears
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FIG. 10. Ratio of the proton-proton (pp) distance of 6He to
that of the ground state of 4He as a function of E1 excitation
energy.

above 30 MeV, we conclude that the SDM and GDR are well
separated and the low-lying strength is understood with the
α + n + n three-body structure.

The above conclusion is further confirmed by calculating
the proton-proton rms distance, rpp, of the state 	1M (Eν)
because rpp can be a measure of whether or not the α core
exists in 6He. By selecting those states that have 1/1000 of the
E1 sum rule value, we plot in Fig. 10 the ratio of rpp of 6He
to that of 4He. The ratio is unity up to the excitation energy
of about 20 MeV that corresponds to the excitation energy
of the first excited 0+ state of 4He (20.21 MeV [56]). This
indicates that the core is not virtually excited, and thus the
three-body picture holds very well in the low-energy region
below 20 MeV. As discussed in Sec. III A, the ground state of
6He has 5% larger rpp than that of 4He. No such core swelling
effect is found, however, in the low-lying 1− states. In the
1− states the valence neutrons are further away from the core
and receive essentially no interaction from the core. Beyond
the excitation energy of 20 MeV, the ratio suddenly increases
and reaches a maximum at the GDR region, indicating a large
distortion of the core.

In Ref. [23] the two-peak structure of the E1 strength
function of 6He is discussed from the isospin decomposition
to T = 1 and 2 states. The low-lying peak is dominated by
the total isospin T = 1 state, and above ∼20 MeV the T = 2
component contributes as well. Since the three-body structure
of α + n + n consists of T = 1, our finding in the rpp analysis
is consistent with the result of Ref. [23].

The core excitation often plays an important role in
enhancing the low-lying E1 strength of two-neutron halo
nuclei. For example, in the case of 11Li, core excitations
produce a large admixture of the (1s1/2)2 component in the
ground state [57–59]. Such very extended S orbitals enhance
the matter radius as well as the low-lying E1 strength [59,60].
In Ref. [61], the E1 strength function of 22C is discussed
with the Skyrme-Hartree-Fock method on a three-dimensional
coordinate space and the core (20C) excitation is found to play
an important role to account for the E1 strength. The transition
densities for the PDR and GDR regions shown in the paper are
similar to those obtained in the present work. There is however
a clear difference between 22C and 6He. In the case of 22C the

single-particle energies of the 0d5/2 and 1s1/2 orbitals are very
close, and the nucleons in the 0d5/2 orbits can easily be excited
to continuum by the E1 operator, which is a dominant process
of the core excitation in the low-energy region. In the case of
6He, however, the α core is not easily excited and the energy
gap between the 0s1/2 and 0p3/2 orbitals is fairly large. As a re-
sult of both effects the motion of the core and valence neutrons
decouples approximately in the low-lying E1 excitation.

The large enhancement of the low-lying E1 transition in
the two-neutron halo nuclei is mainly due to the weak binding
feature of the valence nucleons, but a special care about the
structure of the core is needed for understanding its origin.

F. Compressional E1 mode

We examine another E1 mode, the so-called compressional
E1 (cE1) mode [62]. The operator for the mode is defined as

Mcomp.
1μ = e

∑
i∈p

|r i − x6|3Y1μ(r̂ i − x6). (24)

According to a simple harmonic-oscillator shell model, the
cE1 mode appears at the high-energy region because it
requires at least 3�ω excitations from the 0�ω ground state.
However, if the ground state contains some amount of
correlated components, the mode may appear at the low-energy
region by coupling with higher oscillator shells that are already
incorporated in the ground state wave function. The matrix
element of Mcomp.

1μ is given by the proton transition density
as

〈	1(Eν)‖Mcomp.
1 ‖	0〉 = e

∫ ∞

0
r2ρ tr

p (Eν,r)dr. (25)

The matrix element for the isoscalar (IS) compressional dipole
(c1) mode is calculated as∫ ∞

0
r2

(
ρ tr

p (Eν,r) + ρ tr
n (Eν,r)

)
dr. (26)

Since the transition is not necessarily induced by the electro-
magnetic interaction but the nuclear one, we omit e from the
matrix element.

Figure 11 displays the cE1 strengths as a function of the
excitation energy. Similarly to the normal E1 operator, the
two-peak structure is found but the low-lying peaks are more

FIG. 11. (Color online) Compressional electric dipole strength of
6He as a function of the excitation energy.
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FIG. 12. (Color online) Isoscalar compressional dipole strength
of 6He as a function of the excitation energy.

concentrated and enhanced. The SDM is more characterized
by the cE1 mode rather than the E1 one by the additional r2

factor of the operator. As Eq. (26) suggests, the IS c1 mode
disappears at the GDR region because of the cancellation of the
proton and neutron transition densities. As shown in Fig. 12,
the IS c1 strength shows up only in the low-energy region
and has a strong peak at 2.4 MeV. A measurement of the IS
c1 mode is of particular interest in relation to the SDM. One
possible way to excite the IS c1 mode is inelastic α scatterings,
6He(α,α′)6He(1−).

IV. CONCLUSIONS

We have performed a fully microscopic six-body calcula-
tion to explore the electric dipole excitation mode in 6He. The
ground state wave function is expressed with the explicitly
correlated Gaussians. The model space responsible for the E1
excitation is also expressed as a combination of the correlated
Gaussians with the global vector. The model space explicitly
incorporates the configurations for describing the single-

particle excitation as well as the final state correlations of
α + n + n and t + d + n decay channels.

The ground state properties of the two-neutron separation
energy and matter and proton radii and the low-lying E1
strength are all reproduced consistently with the observations.
The ground state structure is well understood with the α +
n + n three-body model though a few-percent core swelling is
produced by the halo neutrons.

It is found that the E1 non-energy-weighted sum rule is
fully accounted for by our model space. The E1 strength
function exhibits two-peak structure at around 3 and 33 MeV
excitation energy. The lower peak is well understood in
the framework of the α + n + n structure and its excitation
mechanism is consistent with the classical interpretation of
the soft dipole mode (SDM), in which in-phase proton-neutron
oscillation occurs in the internal region whereas out-of-phase
oscillation occurs in the surface region. Beyond the surface
region the neutron transition density extends to large distances.
The higher peak is the typical giant dipole resonance that
exhibits out-of-phase proton-neutron oscillation in the whole
region. Just a few MeV above the SDM peak, some new modes
are found that can be regarded as a vibrational excitation of
the SDM. A measurement for such mode is interesting. We
find out that the SDM may be more apparently disclosed by
the isoscalar compressional dipole transition rather than the
E1 transition, and point out the possibility of observing it by
inelastic α scatterings.

In this study, we have succeeded to describe, in a single
scheme, the E1 excitation in a wide energy region from pigmy
to giant dipole resonance. It is interesting to extend it to other
multipoles or systems to explore other new modes.
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