
PHYSICAL REVIEW C 89, 064006 (2014)

Statistical error analysis for phenomenological nucleon-nucleon potentials
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Nucleon-nucleon potentials are common in nuclear physics and are determined from a finite number of
experimental data with limited precision sampling the scattering process. We study the statistical assumptions
implicit in the standard least-squares χ 2 fitting procedure and apply, along with more conventional tests, a
tail-sensitive quantile-quantile test as a simple and confident tool to verify the normality of residuals. We show
that the fulfillment of normality tests is linked to a judicious and consistent selection of a nucleon-nucleon
database. These considerations prove crucial to a proper statistical error analysis and uncertainty propagation.
We illustrate these issues by analyzing about 8000 proton-proton and neutron-proton scattering published data.
This enables the construction of potentials meeting all statistical requirements necessary for statistical uncertainty
estimates in nuclear structure calculations.
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I. INTRODUCTION

Nucleon-nucleon potentials are the starting point for many
nuclear physics applications [1]. Most of the current informa-
tion is obtained from np- and pp-scattering data below the
pion production threshold and deuteron properties for which
abundant experimental data exist. The NN scattering amplitude
reads

M = a + m(σ1 · n)(σ2 · n) + (g − h)(σ1 · m)(σ2 · m)

+ (g + h)(σ1 · l)(σ2 · l) + c(σ1 + σ2) · n, (1)

where a, m, g, h, and c depend on energy and angle; σ1 and
σ2 are the single-nucleon Pauli matrices; l, m, and n are three
unitary orthogonal vectors along the directions of kf + ki ,
kf − ki , and ki ∧ kf , respectively; and (kf , ki) are the final
and initial relative nucleon momenta. From these five complex
energy- and angle-dependent quantities 24 measurable cross
sections and polarization asymmetries can be deduced [2].
Conversely, a complete set of experiments can be designed
to reconstruct the amplitude at a given energy [3]. The finite
amount, precision, and limited energy range of the data, as well
as the many different observables, call for a standard statistical
χ2-fit analysis [4,5]. This approach is subjected to assump-
tions and applicability conditions that can only be checked
a posteriori in order to guarantee the self-consistency of the
analysis. Indeed, scattering experiments deal with counting
Poissonian statistics and for a moderately large number of
counts a normal distribution is expected. Thus, one hopes
that a satisfactory theoretical description O th

i can predict a
set of N -independent observed data Oi given an experimental
uncertainty �Oi as

Oi = O th
i + ξi�Oi (2)
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with i = 1, . . . ,N and where ξi are independent random
normal variables with vanishing mean value 〈ξi〉 = 0 and unit
variance 〈ξiξj 〉 = δij , implying that 〈Oi〉 = O th

i . Establishing
the validity of Eq. (2) is of utmost importance since it provides
a basis for the statistical interpretation of the error analysis.
In this work we will study to what extent this normality
assumption underlying the validity of the full χ2 approach
is justified. This will be done by looking at the statistical dis-
tribution of the fit residuals of about 8000 np and pp published
scattering data collected since 1950. Using the normality test
as a necessary requirement, we show that it is possible to
fulfill Eq. (2) with a high confidence level and high statistics.
Furthermore, we discuss the consequences and requirements
regarding the evaluation, design, and statistical uncertainties of
phenomenological nuclear forces. We illustrate our points by
determining for the first time a smooth nuclear potential with
error bands directly inferred from experiment. We hope that
these estimates will be useful for NN potential users interested
in quantifying a definite source of error in nuclear structure
calculations.1

The history of χ2 statistical analyzes of NN-scattering data
around pion production threshold started in the mid-1950s [7]
(an account up to 1966 can be traced from Ref. [8]). A modified
χ2 method was introduced [9] in order to include data without
absolute normalization. The steady increase along the years
in the number of scattering data and their precision generated
mutually incompatible data and hence a rejection criterion was
introduced [10–12], allowing us to discard inconsistent data.
Upgrading an ever-increasing consistent database poses the
question of normality, Eq. (2), of a large number of selected
data. The normality of the absolute value of residuals in pp
scattering was scrutinized and satisfactorily fulfilled [13,14] as
a necessary consistency condition. The Nijmegen group made
an important breakthrough 20 years ago by performing the

1We note that in a Physical Review A editorial [6] the importance of
including error estimates in papers involving theoretical evaluations
has been stressed.
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very first partial-wave analysis (PWA) fit with χ2/DOF ∼ 1
and applying a 3σ -rejection criterion. This was possible after
including em corrections, vacuum polarization, magnetic-
moment interactions, and a charge-dependent (CD) one pion
exchange (OPE) potential. With this fixed database, further
high-quality potentials have been steadily generated [15–18]
and applied to nuclear structure calculations. However, high-
quality potentials, i.e., those whose discrepancies with the
data are confidently attributable to statistical fluctuations in
the experimental data, have been built and used as if they
were errorless. As a natural consequence, the computational
accuracy to a relative small percentage level has been a goal
per se in the solution of the few and many body problem
regardless on the absolute accuracy implied by the input
of the calculation. While this sets high standards on the
numerical methods there is no a priori reason to assume the
computational accuracy reflects the realistic physical accuracy
and, in fact, it would be extremely useful to determine and
identify the main source of uncertainty; one could thus tune
the remaining uncertainties to this less demanding level.

It should be noted that the χ2 fitting procedure, when
applied to limited upper energies, fixes most efficiently the
long-range piece of the potential which is known to be
mainly described by OPE for distances r � 3 fm. However,
weaker constraints are put in the midrange r ∼ 1.5–2.5 fm
region, which is precisely the relevant interparticle distance
operating in the nuclear binding. To date and to the best of
our knowledge, the estimation of errors in the nuclear force
stemming from the experimental scattering data uncertainties
and its consequences for nuclear structure calculations has not
been seriously confronted. With this goal in mind we have
upgraded the NN database to include all published np- and
pp-scattering data in the period 1950–2013, determining in
passing the error in the interaction [19,20].

The present paper represents an effort towards filling this
gap by providing statistical error bands in the NN interaction
based directly on the experimental data uncertainties. In order
to do so, the specific form of the potential needs to be fixed.2

As such, this choice represents a certain bias and hence
corresponds to a likely source of systematic error. Based on the
previous high-quality fits which achieved χ2/ν � 1 [15–18]
we have recently raised suspicions on the dominance of
such errors with intriguing consequences for the quantitative
predictive power of nuclear theory [22–24]; a rough estimate
suggested that NN uncertainties propagate into an unpleasantly
large uncertainty of �B/A ∼ 0.1–0.5 MeV, a figure which
has not yet been disputed by an alternative estimate. In view
of this surprising finding, there is a pressing need to pin down
the input uncertainties more accurately based on a variety of

2This is also the case in the quantum mechanical inverse scattering
problem, which has only unique solutions for specific assumptions
on the form of the potential [21] and with the additional requirement
that some interpolation of scattering data at nonmeasured energies is
needed. One needs then the information on the bound state energies
and their residues in the scattering amplitude. We will likewise impose
that the only bound state is the deuteron and reject fits with spurious
bound states.

sources.3 This work faces the evaluation of statistical errors
after checking that the necessary normality conditions of
residuals and hence Eq. (2) are confidently fulfilled. From this
point of view, the present investigation represents an initial
step, postponing a more complete discussion on systematic
uncertainties for a future investigation.

The PWA analysis carried out previously by us [22–24] was
computationally inexpensive due to the use of the simplified
δ-shell potential suggested many years ago by Avilés [29].
This form of potential effectively coarse grains the interaction
and drastically reduces the number of integration points in
the numerical solution of the Schrödinger equation (see, e.g.,
Ref. [30]). However, it is not directly applicable to some of
the many numerical methods available on the market to solve
the few and many body problem where a smooth potential is
required. Therefore, we will analyze the 3σ self-consistent
database in terms of a more conventional potential form
containing the same 21 operators extending the AV18 as we
did in Refs. [22–24]. Testing for normality of residuals within
a given confidence level for a phenomenological potential is
an issue of direct significance to any statistical error analysis
and propagation. Actually, we will show that for the fitted
observables to the 3σ self-consistent experimental database
O

exp
i , with quoted uncertainty �O

exp
i , i = 1, . . . ,N = 6713

(total number of pp and np scattering data), our theoretical
fits indeed satisfy that the residuals

Ri = O
exp
i − O th

i

�O
exp
i

(3)

follow a normal distribution within a large confidence level. In
order to establish this we will use a variety of classical statis-
tical tests [4,5], such as the Pearson, Kolmogorov-Smirnov
(KS), the moments method (MM), and, most importantly,
the recently proposed tail-sensitive (TS) quantile-quantile test
with confidence bands [31]. By comparing with others, the
TS test turns out to be the most demanding with regard
to the confidence bands. Surprisingly, normality tests have
only seldom been applied within the present context, so our
presentation is intended to be at a comprehensive level. A
notable exception is given in Refs. [13,14] where the moments
method in a pp analysis up to TLAB = 30 and 350 MeV is
used for N = 389 and 1787 data, respectively, to test that the
squared residuals R2

i in Eq. (3) follow a χ2 distribution with
one degree of freedom. Note that this is insensitive to the sign
of Ri and thus blind to asymmetries in a normal distribution.
Here we test normality of Ri for a total of N = 6713 np and
pp data up to TLAB = 350 MeV.

The paper is organized as follows. In Sec. II we review
the assumptions and the rejecting and fitting processes used in
our previous works to build the 3σ self-consistent database
and expose the main motivation to carry out a normality

3There is a growing concern on the theoretical determination of
nuclear masses from nuclear mean-field models with uncertainty eval-
uation [25] (for a comprehensive discussion see, e.g., Refs. [26,27]),
echoing the need for uncertainty estimates in a Physical Review A
editorial [6] and the Saltelli-Funtowicz seven rules checklist [28].
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test of the fit residuals. In Sec. III we review some of the
classical normality tests and a recently proposed tail-sensitive
test, which we apply comparatively to the complete as well as
the 3σ self-consistent database, providing a raison d’être for
the rejection procedure. After that, in Sec. IV we analyze a fit
of a potential whose short-distance contribution is constructed
by a sum of Gaussian functions, with particular attention to
the error bar estimation, a viable task since the residuals pass
satisfactorily the normality test. Finally, in Sec. V, we come to
our conclusions and provide an outlook for further work.

II. STATISTICAL CONSIDERATIONS

There is a plethora of references on data and error analysis
(see, e.g., Refs. [4,5]). We will review the fitting approach in
such a way that our points can be more easily stated for the
general reader.

A. Data uncertainties

Scattering experiments are based on counting Poissonian
statistics and, for a moderately large number of counts, a
normal distribution sets in. In what follows Oi will represent
some scattering observable. For a set of N -independent
measurements of different scattering observables O

exp
i exper-

imentalists quote an estimate of the uncertainty �O
exp
i so the

true value O true
i is contained in the interval O

exp
i ± �O

exp
i

with a 68% confidence level. In what follows we assume
for simplicity that there are no sources of systematic errors.
Actually, when only the pair (Oexp

i ,�O
exp
i ) is provided without

specifying the distribution, we will assume an underlying
normal distribution,4 so

P
(
O

exp
i

) =
exp

[
− 1

2

(
O true

i −O
exp
i

�Oexp

)2]
√

2π�O
exp
i

(4)

is the probability density of finding measurement O
exp
i .

B. Data modeling

The problem of data modeling is to find a theoretical
description characterized by some parameters Fi(λ1, . . . ,λP )
which contain the true value O true

i = Fi(λtrue
1 , . . . ,λtrue

P ) with
a given confidence level characterized by a bounded p-
dimensional manifold in the space of parameters (λ1, . . . ,λP ).
For a normal distribution the probability of finding any of the
(independent) measurements O

exp
i , assuming that (λ1, . . . ,λP )

4This may not be the most efficient unbiased estimator (see, e.g.,
Refs. [4,5] for a more thorough discussion). Quite generally, the
theory for the noise on the specific measurement would involve
many considerations on the different experimental setups. In our case
the many different experiments makes such an approach unfeasible.
There is a possibility that some isolated systematic errors in particular
experiments are randomized when considered globally. However,
the larger the set the more stringent the corresponding statistical
normality test. From this point of view the verification of the normality
assumption underlying Eq. (2) proves highly nontrivial.

are the true parameters, is given by

P
(
O

exp
i

∣∣λ1 . . . λP

) =
exp

[
− 1

2

(
Fi (λ1,...,λP )−O

exp
i

�Oexp

)2]
√

2π�O
exp
i

. (5)

Thus the joined probability density is

P
(
O

exp
1 . . . O

exp
N

∣∣λ1 . . . λP

) =
N∏

i=1

P
(
O

exp
i

∣∣λ1 . . . λP

)
= CNe−χ2(λ1,...,λP )/2, (6)

where 1/CN = ∏N
i=1(

√
2π�O

exp
i ). In such a case the maxi-

mum likelihood method [4,5] corresponds to take the χ2 as a
figure of merit given by

χ2(λ1, . . . ,λP ) =
N∑

i=1

(
O

exp
i − Fi(λ1, . . . ,λP )

�O
exp
i

)2

(7)

and look for the minimum in the fitting parameters
(λ1, . . . ,λP ),

χ2
min = min

λi

χ2(λ1, . . . ,λP ) = χ2(λ1,0, . . . ,λP,0). (8)

Our theoretical estimate of O true
i after the fit is given by

O th
i = Fi(λ1,0, . . . ,λP,0). (9)

Expanding around the minimum one has

χ2 = χ2
min +

P∑
ij=1

(λi − λi,0)(λj − λj,0)E−1
ij + · · · , (10)

where the P×P error matrix is defined as the inverse of the
Hessian matrix evaluated at the minimum

E−1
ij = 1

2

∂2χ2

∂λi∂λj

(λ1,0, . . . ,λP,0). (11)

Finally, the correlation matrix between two fitting parameters
λi and λj is given by

Cij = Eij√EiiEjj

. (12)

We compute the error of the parameter λi as

�λi ≡
√
E ii . (13)

Error propagation of an observable G = G(λ1, . . . ,λP ) is
computed as

(�G)2 =
∑
ij

∂G

∂λi

∂G

∂λj

∣∣∣∣
λk=λk,0

Eij . (14)

The resulting residuals of the fit are defined as

Ri = O
exp
i − Fi(λ1,0, . . . ,λP,0)

�O
exp
i

, i = 1, . . . ,N. (15)

Assuming normality of residuals is now crucial for an
statistical interpretation of the confidence level, since then∑

i R
2
i follows a χ2 distribution. One useful application of

the previous result is that we can replicate the experimental
data by using Eq. (2) and in such a case 〈χ2〉 = N . For a
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R. NAVARRO PÉREZ, J. E. AMARO, AND E. RUIZ ARRIOLA PHYSICAL REVIEW C 89, 064006 (2014)

large number of data N with P parameters one has, with a 1σ
or 68% confidence level, the mean value and most likely the
values nearly coincide, so one has 〈χ2

min〉 = N − P and thus
as a random variable we have

χ2
min

ν
≡

∑
i ξ

2
i

ν
= 1 ±

√
2

ν
, (16)

where ν = N − P is the number of degrees of freedom. The
goodness of fit is defined in terms of this confidence interval.
However, the χ2 test has a sign ambiguity for every single
residual given that Ri → −Ri is a symmetry of the test. From
this point of view, the verification of normality is a more
demanding requirement.5

Thus a necessary condition for a least-squares fit with mean-
ingful results is the residuals to follow a normal distribution
with mean zero and variance 1, i.e., Ri ∼ N (0,1). It should
be noted that a model for the noise need not be normal, but it
must be a known distribution P (z) such that the residuals Ri

do indeed follow such distribution.6

C. Data selection

The first and most relevant problem one has to confront
in the phenomenological approach to the nucleon-nucleon
interaction is that the database is not consistent; there appear
to be incompatible measurements. This may not necessarily
mean genuinely wrong experiments but rather unrealistic error
estimates or an incorrect interpretation of the quoted error as
a purely statistical uncertainty.7 Note that the main purpose of
a fit is to estimate the true values of certain parameters with
a given and admissible confidence level. Therefore one has to
make a decision on which are the subset of data which will
finally be used to determine the NN potential. However, once
the choice has been made the requirement of having normal
residuals, Eq. (3), must be checked if error estimates on the
fitting parameters are truly based on a random distribution.

The situation we encounter in practice is of a large number
of data, ∼8000 vs the small number of potential parameters
∼40, which are expected to successfully account for the
description of the data [33]. Thus, naively there seems to be a
large redundancy in the database. However, there is a crucial
issue on what errors have been quoted by the experimentalists.
If a conservative estimate of the error is made, there is a risk of
making the experiment useless, from the point of view that any
other experiment in a similar kinematical region will dominate

5One can easily see that for a set of normally distributed data Ri ,
while |Ri | does not follow that distribution, |Ri |2 = R2

i would pass a
χ 2 test.

6In this case the merit figure to minimize would be

S(λ1, . . . ,λP ) = − ∑
i log P

[O
exp
i −Fi (λ1,...,λP )

�O
exp
i

]
.

For instance, in Ref. [32], dealing with πN scattering a Lorentz
distribution arose as a self-consistent assumption.

7Indeed any measurement could become right provided a suffi-
ciently large or conservative error is quoted.

the analysis.8 If, on the contrary, errors are daringly too small,
they may generate a large penalty as compared to the rest of
the database. This viewpoint seems to favor more accurate
measurements whenever they are compatible but less accurate
ones when some measurements appear as incompatible with
the rest. In addition, there may be an abundance bias, i.e.,
too many accurate measurements in some specific kinematical
region and a lack of measurements in another regions. Thus, the
working assumption in order to start any constructive analysis
is that most data have realistic quoted errors and that those
experiments with unrealistically too small or too large errors
can be discerned from the bulk with appropriate statistical
tools. This means that these unrealistic uncertainties can be
used to reject the corresponding data.9 If a consistent and
maximal database is obtained by an iterative application of a
rejection criterium, the discrepancy between theory and data
has to obey a statistical distribution, see Eq. (2).

D. Data representation

For two given data with exactly the same kinematical
conditions, i.e., same observable, scattering angle, and energy,
the decision on whether they are compatible may be easily
made by looking at nonoverlapping error bands.10 This is
frequently not the case; one has instead a set of neighboring
data in the (θ,E) plane for a given observable or different
observables at the same (θ,E) point. The situation is depicted
in Fig. 1 (left panels) where every point represents a single pp
or np measurement (for an illustrative plot on the situation by
1983 up to 1 GeV see Ref. [37]). The total number of 8124
fitting data includes 7709 experimental measurements and 415
normalizations provided by the experimentalists. Thus, the
decision intertwines all available data and observables. As a
consequence, the comparison requires a certain extrapolation,
which is viable under a smoothness assumption of the energy
dependence of the partial-wave-scattering amplitude. Fortu-
nately, the meson exchange picture foresees a well-defined
analytical branch cut structure in the complex energy plane
which is determined solely from the long-distance properties
of the interaction. A rather efficient way to incorporate this de-
sirable features from the start is by using a quantum mechanical
potential. More specifically, if one has nπ exchange, then at
long distances V (r) ∼ e−nmπ r guarantees the appearance of
a left-hand branch cut at center-of-mass (c.m.) momentum

8See, e.g., the recommendations of the Guide to the Expression
of Uncertainty in Measurement by the BIPM [34] where (often
generously) conservative error estimates are undesirable, while
realistic error estimates are preferable. Of course, optimal error
estimates could only arise when there is a competition between
independent measurements and a bonus for accuracy.

9From this point of view, the small and the large errors are not
symmetric; the small χ 2 (conservative errors) indicate that the fitting
parameters are indifferent to these data, whereas the large χ2 (daring
errors) indicate an inconsistency with the rest of the data.

10For several measurements the Birge test [35] is the appropriate
tool. The classical and Bayesian interpretation of this test has been
discussed recently [36].
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FIG. 1. (Color online) Abundance plots for pp- (top panel) and np- (bottom panel) scattering data. Full database (left panel). Standard
3σ criterion (middle panel). Self-consistent 3σ criterion (right panel). We show accepted data (blue), rejected data (red), and recovered data
(green).

p = imπn/2. Using this meson exchange picture at long
distances the data world can be mapped onto a, hopefully
complete, set of fitting parameters.

In order to analyze this in more detail we assume, as we
did in Refs. [22–24], that the NN interaction interaction can be
decomposed as

V (	r) = Vshort(r)θ (rc − r) + Vlong(r)θ (r − rc), (17)

where the short component can be written as

Vshort(	r) =
21∑

n=1

Ôn

[
N∑

i=1

Vi,nFi,n(r)

]
, (18)

where Ôn are the set of operators in the extended AV18
basis [16,22–24], Vi,n are unknown coefficients to be deter-
mined from data, and Fi,n(r) are some given radial functions.
Vlong(	r) contains a CD OPE (with a common f 2 = 0.075
[22–24]) and electromagnetic (EM) corrections which are kept
fixed throughout. This corresponds to

Vlong(	r) = VOPE(	r) + Vem(	r) . (19)

Although the form of the complete potential is expressed in
the operator basis the statistical analysis is carried out more
effectively in terms of some low and independent partial-waves

contributions to the potential from which all other higher
partial waves are consistently deduced (see Refs. [38,39]).

E. Fitting data

In our previous PWA we used the δ-shell interaction
already proposed by Avilés [29] and which proved extremely
convenient for fast minimization and error evaluation11 and
corresponds to the choice

Fi,n(r) = �riδ(r − ri), (20)

where ri � rc are a discrete set of radii and �ri = ri+1 − ri .
The minimal resolution �rmin is determined by the shortest
de Broglie wavelength corresponding to a pion production
threshold which we estimate as �rπ ∼ 0.6 fm [30,33] so
the needed number of parameters can be estimated a priori.
Obviously, if �rmin 
 �rπ , the number of parameters in-
creases as well as the correlations among the different fitting
coefficients, Vi,n, so some parameters become redundant
or an overcomplete representation of the data, and the χ2

value will not decrease substantially. In the opposite situation

11We use the Levenberg-Marquardt method where an approximation
to the Hessian is computed explicitly [40] which we keep throughout.
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TABLE I. Standardized moments μ′
r of the residuals obtained by fitting the complete database with the δ-shell potential and 3σ -consistent

database with the OPE-δ shell, χTPE-δ shell, and OPE-Gaussian potentials. The expected values for a normal distributions are included ±1σ

confidence level of a Monte Carlo simulation with 5000 random samples of size N .

r Complete database 3σ OPE-δ shell 3σ χTPE-δ shell 3σ OPE-Gaussian
N = 8125 N = 6713 N = 6712 N = 6711

Expected Empirical Expected Empirical Expected Empirical Expected Empirical

3 0 ± 0.027 −0.176 0 ± 0.030 0.007 0 ± 0.030 −0.011 0 ± 0.030 −0.020
4 3 ± 0.053 4.305 3 ± 0.059 2.975 3 ± 0.059 3.014 3 ± 0.059 3.017
5 0 ± 0.301 −3.550 0 ± 0.330 0.059 0 ± 0.327 −0.066 0 ± 0.329 0.020
6 15 ± 0.852 42.839 15 ± 0.939 14.405 15 ± 0.948 15.110 15 ± 0.941 15.052
7 0 ± 3.923 −78.766 0 ± 4.324 0.658 0 ± 4.288 0.054 0 ± 4.300 3.077
8 105 ± 14.070 671.864 105 ± 15.591 98.687 105 ± 15.727 107.839 105 ± 15.577 106.745

�rmin � �rπ the coefficients Vi,n do not represent the
database and hence are incomplete. Our fit with an uniform
�r ≡ �rπ was satisfactory, as expected.

F. The 3σ self-consistent database

After the fitting process we get the desired 3σ self-
consistent database using the idea proposed by Gross and
Stadler [18] and worked at full length in our previous
work [39]. This allows to rescue data which would otherwise
have been discarded using the standard 3σ criterion contem-
plated in all previous analyzes [15–18,41]. The situation is
illustrated in Fig. 1 (middle and right panels).

By using the rejection criterion at the 3σ level we cut off
the long tails and, as a result, a fair comparison could, in
principle, be made to this truncated Gaussian distribution.
The Nijmegen group found that the moments method test
(see below for more details) largely improved by using this
truncated distribution [13]. It should be reminded, however,
that the rejection criterion is applied to groups of data sets,
and not to individual measurements, and in this way gets
coupled with the floating of normalization. One could possibly
improve on this by trying to determine individual outliers
in a self-consistent way, which could make a more flexible
data selection. Preliminary runs show that the number of
iterations grows and the convergence may be slowed down
or nonconverging by marginal decisions with some individual
data flowing in and out the acceptance domain. Note also
that rejection may also occur because data are themselves
non normal or the disentanglement between statistical and
systematic errors was not explicitly exploited. In both cases
these data are useless to propagate uncertainties invoking the
standard statistical interpretation, see Eq. (14).

G. Distribution of residuals

In Fig. 2 we present the resulting residuals, Eq. (3), in a
normalized histogram for illustration purposes, in the cases
of the original full database and the 3σ -consistent database,
and compare them with a normal distribution function with
the binning resolution �R = 0.2. The complete database
histogram shows an asymmetry or skewness as well as
higher tails and clearly deviates from the normal distribution;
meanwhile the 3σ consistent database residuals exhibit a
closer agreement with the Gaussian distribution. Note that

this perception from the figure somewhat depends on eyeball
comparison of the three situations. We will discuss more
preferable tests in the next section which are independent on
this binning choice.

A handy way of checking for the normality of the residuals
is looking into the standardized moments [4]. These are defined
as

μ′
r = 1

N

N∑
i=1

(
Xi − μ

σ

)r

, (21)

where μ is the arithmetic mean and σ the standard deviation;
the r = 1 and r = 2 standardized moments are zero and 1,
respectively. Due to the finite size of any random sample
an intrinsic uncertainty �μ′

r (N ) exists. This uncertainty can
be estimated using Monte Carlo simulations with M random
samples of size N and calculating the standard deviation of μ′

r .
The result of such simulations are shown in Table I along with
the moments of the residuals of the complete database with
N = 8125 data and the 3σ self-consistent database with N =
6713. Clearly, the complete database shows discrepancies
at 68% confidence level and hence cannot be attributed to

3σ consistent data. N = 6713

Complete database. N = 8125

420-2-4

0.5

0.4

0.3

0.2

0.1

0

FIG. 2. (Color online) Normalized histogram of the resulting
residuals after fitting the potential parameters to the complete pp

and np database (blue boxes with solid borders) and to the 3σ

consistent database (red boxes with dashed borders). The N (0,1)
standard normal probability distribution function (green solid line) is
plotted for comparison.
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the finite size of the sample. On the other hand,for the 3σ
self-consistent database the moments fall in the expected
interval. This is a first indication on the validity of Eq. (2)
for our fit to this database.

The moments method was already used by the Nijmegen
group [13] for the available at the time pp (about 400) data up
to TLAB = 30 MeV. However, they tested the squared residuals
R2

i in Eq. (3) with a χ2 distribution with one degree of freedom
which corresponds to testing only even moments of the normal
distribution. As we have already pointed out, this is insensitive
to the sign of Ri and hence may overlook relevant skewness.

H. Rescaling of errors

The usefulness of the normality test goes beyond checking
the assumptions of the χ2 fit since it allows to extend the
validity of the method to naively unfavorable situations.

Indeed, if the actual value for χ2
min/ν comes out outside

the interval 1 ± √
2/ν, one can still rescale the errors by the

so-called Birge factor [35] namely �O
exp
i → √

χ2
min/ν�O

exp
i

so the new figure of merit is

χ̄2 = (
χ2

/
χ2

min

)
ν, (22)

which by definition fulfills χ̄2
min/ν = 1. There is a common

belief that this rescaling of χ2 restores normality, when it
only normalizes the resulting distribution.12 If this was the
case, there is no point in rejecting any single datum from
the original database. Of course, it may turn out that one
finds that residuals are nonstandardized normals. That means
that they would correspond to a scaled Gaussian distribution.
We will show that while this rescaling procedure works once
the residuals obey a statistical distribution, the converse is
not true; rescaling does not make residuals obey a statistical
distribution.

In the case at hand we find that rescaling only works for
the 3σ self-consistent database because residuals turn out to
be normal. We stress that this is not the case for the full
database. Of course, there remains the question on how much
can errors be globally changed by a Birge factor. Note that
errors quoted by experimentalists are in fact estimates and
hence are subjected to their own uncertainties which ideally
should be reflected in the number of figures provided in �O

exp
i .

For N � P one has ν ∼ N and one has χ2/ν = 1 ± √
2/N =

1 ± 0.016 for N = 8000. Our fit to the complete database
yields χ2/ν = 1.4, which is well beyond the confidence level.
Rescaling in this case would correspond to globally enlarge the
errors by

√
1.4 ∼ 1.2 which is a 20% correction to the error in

all measurements. Note that while this may seem reasonable,
the rescaled residuals do not follow a Gaussian distribution.
Thus, the noise on Eq. (2) remains unknown and cannot be
statistically interpreted.

12This rescaling is a common practice when errors on the fitted
quantities are not provided; uncertainties are invented with the
condition that indeed χ 2

min/ν ∼ 1. The literature on phase-shift
analyzes provides plenty of such examples. It is also a recommended
practice in the Particle Data Group booklet when incompatible data
are detected among different sets of measurements [42,43]).

For instance, if we obtain χ2/ν = 1.2 one would globally
enlarge the errors by

√
1.1 ∼ 1.1 which is a mere 10% correc-

tion on the error estimate, a perfectly tolerable modification
which corresponds to quoting just one significant figure on the
error.13 Thus, while χ2

min/ν = 1 ± √
2/ν looks as a sufficient

condition for goodness of fit, it actually comes from the
assumption of normality of residuals. However, one should
not overlook the possibility that the need for rescaling might
in fact suggest the presence of unforeseen systematic errors.

III. NORMALITY TESTS FOR RESIDUALS

There is a large body of statistical tests to quantitatively
assess deviations from an specific probability distribution
(see, e.g., Ref. [44]). In these procedures the distribution of
empirical data Xi is compared with a theoretical distribution
F0 to test the null hypothesis, H0 : Xi ∼ F0. If statistically
significant differences are found between the empirical and
theoretical distributions, the null hypothesis is rejected and
its negation, the alternative hypothesis, H1 : Xi ∼ F1, is
considered valid, where F1 is an unknown distribution that
differs from F0. The comparison is made by a test statistic T
whose probability distribution is known when calculated for
random samples of F0; different methods use different test
statistics. A decision rule to reject (or fail to reject) H0 is
made based on possible values of T ; for example, if the
observed value of the test statistic Tobs is greater (or smaller
depending on the distribution of T ) than a certain critical value
Tc, the null hypothesis is rejected. Tc is determined by the
probability distribution of T and the desired significance level
α, which is the maximum probability of rejecting a true null
hypothesis. Typical values of α are 0.05 and 0.01. Another
relevant and meaningful quantity in hypothesis testing is the
p value, which is defined as the smallest significance level at
which the null hypothesis would be rejected. Therefore a small
p value indicates clear discrepancies between the empirical
distribution and F0. A large p value, on the contrary, means
that the test could not find significant discrepancies.

In our particular case H0, the residuals follow a standard
normal distribution, and the p value would be the probability
that denying the assumption of true normality would be an
erroneous decision.

A. Pearson test

A simple way of testing the goodness of fit is by using the
Pearson test by computing the test statistic

T =
Nb∑
i=1

(
nfit

i − nnormal
i

)2

nth
i

, (23)

where nfit
i are the number of residuals on each bin and nnormal

i

are the number of expected residuals for the normal distribution
in the same bin. T follows a χ2 distribution with Nb − 1 DOF.

13For instance, quoting 12.23(4) ≡ 12.23 ± 0.04 means that the
error could be between 0.035 and 0.044, which is almost 25%
uncertainty in the error. Quoting instead 12.230(12) corresponds to a
10% uncertainty in the error.

064006-7
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TABLE II. Results of the Pearson normality test of the residuals
obtained by fitting the complete database with a δ-shell potential and
the 3σ consistent database with the δ shell and the OPE-Gaussian
potentials. The results of the test of the scaled residuals for every
case is shown below the corresponding line. The critical value Tc

corresponds to a significance level of α = 0.05.

Database Potential N Tc Tobs p value

Complete OPE-DS 8125 93.945 598.84 1.36×10−83

190.16 2.18×10−12

3σ OPE-DS 6713 87.108 82.67 0.09
69.08 0.40

3σ χTPE-DS 6712 87.108 100.70 0.004
74.40 0.25

3σ OPE-G 6711 87.108 84.17 0.08
68.38 0.43

The decision on how close a given histogram is to the expected
distribution depends on the specific choice of binning, which
is the standard objection to this test. To perform the test we use
a equiprobable binning so �Ri is such that nnormal

i is constant
for all i, instead of the equidistant binning shown in Fig. 2
(see, e.g., Ref. [5] for more details on binning strategies). The
results of the test are given in Table II and, as we see, again
the complete database fails the test even when residuals are
scaled.

B. Kolmogorov-Smirnov test

A simple and commonly used test is the Kolmogorov-
Smirnov test [45,46]. The KS test uses the empirical distri-
bution function S(x), defined as the fraction of Xis that are
less or equal to x and expressed by

S(x) = 1

N

N∑
i=1

θ (x − Xi), (24)

where N is the number of empirical data. The test statistic in
this procedure is defined as the greatest difference between
S(x) and F0(x), that is

TKS = sup
x

|F0(x) − S(x)|. (25)

Some of the advantages of using TKS as a test statistic come
from its distribution under the null hypothesis; since it is
independent of F0, it can be calculated analytically and a fairly

TABLE III. Same as Table II for the Kolmogorov-Smirnov test.

Database Potential N Tc Tobs p value

Complete OPE-DS 8125 0.015 0.037 4.93×10−10

0.035 6.24×10−9

3σ OPE-DS 6713 0.017 0.011 0.43
0.012 0.26

3σ χTPE-DS 6712 0.017 0.010 0.47
0.010 0.47

3σ OPE-G 6711 0.017 0.013 0.22
0.014 0.18
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FIG. 3. (Color online) Quantile-quantile plot of different random
samples against the standard normal distribution. Blue crosses are
sampled from the N (0,1) distribution, red diagonal crosses from
N (0,1.5), green asterisks from N (−1,1) and yellow squares from the
exponential distribution E(1.5).

good approximation exists for the case of large N . Given
that large values of TKS indicate large deviations from the
theoretical distribution the decision rule will be to reject the

3σ consistent data
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FIG. 4. (Color online) Quantile-quantile plot of the residuals
obtained from fitting the 3σ consistent database against the standard
normal distribution. The deviations at the tails, which are not detected
using the Kolmogorov-Smirnov test, are clearly visible with this
graphical tool.
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TABLE IV. Same as Table II for the tail-sensitive test.

Database Potential N Tc Tobs p value

Complete OPE-DS 8125 0.00070 0.0000 <0.0002
3.54×10−25 <0.0002

3σ OPE-DS 6713 0.00072 0.0010 0.07
0.0076 0.32

3σ χTPE-DS 6712 0.00072 0.0005 0.03
0.0156 0.50

3σ OPE-G 6711 0.00072 0.0001 0.01
0.0082 0.33

null hypothesis if the observed value Tobs,KS is larger than a
certain critical value Tc,KS. The critical value depends on α
and N ; for large numbers of data and a significance level of
0.05Tc,KS = 1.36/

√
N . Also, a good approximation for the

corresponding p value has been given [47],

PKS(Tobs) = 2
∞∑

j=1

(−1)j−1e−2[(
√

N+0.12+0.11/
√

N)jTobs]2
. (26)

The results of the KS normality test to the residuals obtained
by fitting the potential parameters to the complete and 3σ
consistent databases are shown in Table III. For the case
of the complete database the observed test statistic is much

larger than the critical value at the 0.05 significance level,
which indicates that with a 95% confidence level the null
hypothesis H0 : Xi ∼ N (0,1) can be rejected; the extremely
low p value gives an even greater confidence level to the
rejection of H0 very close to100%. In contrast, the observed
test statistic using the 3σ -consistent data is smaller than the
corresponding critical value, this indicates that there is no
statistically significant evidence to reject H0.

A shortcoming of the KS test is that the sensitivity to
deviations from F0(x) is not independent from x. In fact, the
KS test is most sensitive to deviations around the median value
of F0 and therefore is a good test for detecting shifts on the
probability distribution, which in practice are unlikely to occur
in the residuals of a least-squares fit. But, in turn, discrepancies
away from the median such as spreads, compressions, or
outliers on the tails, which are not that uncommon on residuals,
may go unnoticed by the KS test.

C. Quantile-quantile plot

A graphical tool to easily detect the previously mentioned
discrepancies is the quantile-quantile (QQ) plot, which maps
two distributions quantiles against each other. The q quantiles
of a probability distribution are obtained by taking q − 1
equidistant points on the (0,1) interval and finding the values
whose cumulative distribution function correspond to each

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Q
E
m

p
−

Q
T

h

QTh

(a)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

Q
E
m

p
−

Q
T

h

QTh

(b)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

Q
E
m

p
−

Q
T

h

QTh

(c)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

Q
E
m

p
−

Q
T

h

QTh

(d)

Complete OPE-DS residuals
Tail Sensitive

Kolmogorov-Smirnov

3σ OPE-DS residuals
Tail Sensitive

Kolmogorov-Smirnov

3σ χTPE-DS scaled residuals
Tail Sensitive

Kolmogorov-Smirnov

3σ OPE-Gaussian scaled residuals
Tail Sensitive

Kolmogorov-Smirnov

FIG. 5. (Color online) Rotated quantile-quantile plot of the residuals obtained (blue points) from fitting the complete database with
the OPE-δ-shell potential (upper left panel), the 3σ self-consistent database fitted with the OPE-δ-shell potential (upper right panel), the
χTPE-δ-shell potential (lower left panel), and the OPE-Gaussian potential (lower right panel). 95% confidence bands of the TS (red dashed
lines) and KS (green dotted lines) tests are included.
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FIG. 6. (Color online) Correlation matrix Cij for the short dis-
tance parameters in the partial wave basis (Vi)LSJ

l,l′ , see Eq. (18). We
show the OPE-DS (upper panel) and the χTPE-DS (middle panel)
potentials. The points ri = �rπ (i + 1) are grouped within every
partial wave. The ordering of parameters is as in the parameter tables
in Refs. [38,39] and [48] for OPE-DS 46 parameters and the χTPE
30+3 parameters (the last three are the chiral constants c1,c3,c4)
respectively. The OPE-Gaussian case (lower panel) also contains the
parameter a. We grade gradually from 100% correlation, Cij = 1
(red), 0% correlation, Cij = 0 (yellow) and 100% anti-correlation,
Cij = −1 (blue).

TABLE V. Fitting partial-wave parameters (Vi)JS
l,l′ (in MeV) with

their errors for all states in the JS channel. The dash indicates that
the corresponding fitting (Vi)JS

l,l′ = 0. The parameters marked with an
asterisk are set to have the tensor components vanish at the origin. The
parameter a, which determines the width of each Gaussian, is also
used as a fitting parameter and the value 2.3035 ± 0.0133 fm is found.

Wave V1 V2 V3 V4

1S0np −67.3773 598.4930 −2844.7118 3364.9823
±4.8885 ±64.8759 ±245.3275 ±268.9192

1S0pp −52.0676 408.7926 −2263.1470 2891.2494
±1.1057 ±12.9206 ±57.0254 ±76.3709

3P0 −60.3589 – 520.5645 –
±1.2182 ±17.4210

1P1 22.8758 – 256.2909 –
±0.9182 ±8.1078

3P1 35.6383 −229.1500 928.1717 –
±0.9194 ±9.0104 ±28.8275

3S1 −42.4005 273.1651 −1487.4693 2064.7996
±2.1344 ±24.1462 ±91.3195 ±105.4383

ε1 −121.8301 262.7957 −1359.3473 1218.3817*

±3.2650 ±19.0432 ±50.9369 ±34.8398
3D1 56.6746 – – –

±1.3187
1D2 −44.4366 220.5642 −617.6914 –

±1.2064 ±10.8326 ±27.1533
3D2 −107.3859 74.8901 – –

±2.9384 ±7.1627
3P2 −10.4319 – −170.3098 132.4249

±0.3052 ±7.3280 ±13.2310
ε2 50.0324 −177.7386 748.5717 −620.8659*

±0.8985 ±8.2027 ±34.7849 ±27.2518
3F2 6.3917 −659.4308 3903.1138 –

±2.6615 ±41.3707 ±187.9877
1F3 28.5198 42.9715 – –

±3.0801 ±19.5127
3D3 −9.6022 65.9632 – –

±0.8870 ±4.3677

point. For example, to find the 4-quantiles of the normal
distribution with zero mean and unit variance we take the
points 0.25, 0.5, and 0.75 and look for values of x satisfying

1√
2π

∫ x

−∞
e− −x̃

2 dx̃ = 0.25, 0.5, 0.75. (27)

In this case, the 4-quantiles are −0.6745, 0, and 0.6745. For
a set of ranked empirical data the easiest way to find the
q-quantiles is to divide it into q essentially equal-sized subsets
and take the q − 1 boundaries as the quantiles.

To compare empirical data with a theoretical distribution
function using a QQ plot the N + 1-quantiles are used. In this
way each datum can be graphed against the corresponding the-
oretical distribution’s quantile; if the empirical and theoretical
distributions are similar, the QQ plot points should lie close
to the y = x line. In Fig. 3 different random samples of size
N = 50 are compared with a normal distribution. The first
sample corresponds to the N (0,1) distribution, and the second
to the N (0,1.5), and the larger spread of the data can be seen
as a shift on the tails towards the bottom left and top right
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TABLE VI. Operator coefficients Vi,n (in MeV) with their errors
for the OPE-Gaussian potential. The operators tT , τz, and στz are
set to zero.

Operator V1 V2 V3 V4

c −19.2829 126.2986 −648.6244 694.4340
±0.6723 ±7.7913 ±33.1067 ±36.8638

τ 2.3602 −25.4755 130.0301 −284.7219
±0.4287 ±5.4291 ±20.0608 ±19.8417

σ 6.0528 −75.1908 372.4133 −530.8121
±0.4311 ±5.2742 ±19.5580 ±22.4309

τσ 7.3632 −48.5435 273.7226 −349.0040
±0.1794 ±1.9523 ±8.5410 ±10.1673

t 1.9977 −22.1227 70.8515 −50.7264
±0.2293 ±2.6777 ±10.1475 ±7.8130

tτ 15.0237 −38.3450 183.8178 −160.4965
±0.3419 ±1.8260 ±5.2644 ±3.7129

ls −2.6164 39.4240 −217.0569 −109.6725
±0.1947 ±3.3849 ±17.5511 ±10.2746

lsτ 0.0069 2.5897 −26.5807 −77.5825
±0.0944 ±1.1685 ±5.5782 ±3.3168

l2 1.4358 −23.5937 67.8942 144.1521
±0.1809 ±3.5108 ±18.4785 ±16.7585

l2τ −0.4106 8.3379 −82.9823 175.1091
±0.0950 ±1.4331 ±6.2147 ±5.7715

l2σ −0.0990 2.2549 −51.8708 175.0991
±0.1040 ±1.5679 ±6.6876 ±6.2497

l2στ −0.2667 6.6299 −55.3425 100.7191
±0.0343 ±0.5087 ±2.1657 ±2.3042

ls2 0.4583 −11.6586 150.5353 −302.1105
±0.2816 ±4.9506 ±22.8210 ±17.1765

ls2τ 0.7156 −18.8891 141.7216 −182.7536
±0.1273 ±1.8340 ±7.5529 ±5.7410

T 0.6379 −7.9042 24.2319 −19.7389
±0.1996 ±2.6738 ±9.9460 ±10.6364

σT −0.6379 7.9042 −24.2319 19.7389
±0.1996 ±2.6738 ±9.9460 ±10.6364

l2T −0.1063 1.3174 −4.0386 3.2898
±0.0333 ±0.4456 ±1.6577 ±1.7727

l2σT 0.1063 −1.3174 4.0386 −3.2898
±0.0333 ±0.4456 ±1.6577 ±1.7727

parts of the graph. A third samples comes from the N (−1,1)
distribution and this can be seen as an downward shift of the
points. A last sample is taken from the exponential distribution
E(1.5) which is asymmetric and positive.

Figure 4 shows the QQ plot of the residuals from the fit
to the 3σ consistent database against the N (0,1) distribution;
deviations around the tails, which cannot be seen with the
histogram in Fig. 2 and are not detected by the Pearson and
KS tests, are clearly visible at the bottom left and top right
corners of the plot.

D. Tail-sensitive test

Even though the QQ plot is a convenient and easy-to-use
tool to detect deviations from a theoretical distribution,
graphical methods often depend on subjective impressions
and no quantitative description of the deviations visible in
Fig. 4 can given by the QQ plot alone. A recent method
by Aldor-Noiman et al. [31] provides (1 − α) confidence
bands to the QQ plot to quantitatively test deviations from
the normal distribution. This new test, called tail sensitive,
has a higher sensitivity on the tails than the KS test. In fact,
the TS test rejection rate is uniformly distributed over the x
variable. Although no analytic expression is given for the TS
test statistic distribution, it can be easily simulated via Monte
Carlo techniques. The details of such simulation are explained
in Ref. [31]. We will restrict ourselves to point out that a small
value of TTS indicates discrepancies between the empirical and
normal distribution and therefore the rejection criterion for the
null hypothesis is Tobs,TS < Tc,TS.14

We applied the TS normality test to both sets of residuals,
the complete database and the 3σ consistent one, and show
the results on Table IV. For each test the Monte Carlo
simulation consisted on taking 5000 random samples of size
N with a standard normal distribution and calculating T MC

obs,TS
for each sample to obtain the distribution of TTS under the
null hypothesis. The critical value for a significance level
α = 0.05 corresponds to the T MC

obs,TS that is greater than 5%
of all the values calculated. Finally, the test statistic for the
empirical data T

emp
obs,TS can be calculated and compared to

the simulated distribution to obtain the p value. In this case the
p value is the proportion of T MC

obs,TS that are smaller than T
emp

obs,TS.
Since the observed TTS for the complete database residuals is
numerically equal to zero and smaller than all of the simulated

14It should also be noted that a typo in Ref. [31] is made in their
steps 1c and 1e where �−1 and B−1

(i,n+1−i) are printed instead of �

and B(i,n+1−i); the latter are consistent with the rest of the text and the
results presented there.

TABLE VII. Deuteron static properties compared with empirical/recommended values and high-quality potentials calculations. We list
binding energy Ed , asymptotic D/S ratio η, asymptotic S-wave amplitude AS , mean-squared matter radius rm, quadrupole moment QD , and
D-wave probability PD .

This work Emp./Rec. [55–60] δ-shell [38] Nijm I [15] Nijm II [15] Reid93 [15] AV18 [16] CD-Bonn [17]

Ed (MeV) Input 2.224575(9) Input Input Input Input Input Input
η 0.02448(5) 0.0256(5) 0.02493(8) 0.02534 0.02521 0.02514 0.0250 0.0256
AS (fm1/2) 0.8885(3) 0.8845(8) 0.8829(4) 0.8841 0.8845 0.8853 0.8850 0.8846
rm (fm) 1.9744(6) 1.971(6) 1.9645(9) 1.9666 1.9675 1.9686 1.967 1.966
QD (fm2) 0.2645(7) 0.2859(3) 0.2679(9) 0.2719 0.2707 0.2703 0.270 0.270
PD 5.30(4) 5.67(4) 5.62(5) 5.664 5.635 5.699 5.76 4.85
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R. NAVARRO PÉREZ, J. E. AMARO, AND E. RUIZ ARRIOLA PHYSICAL REVIEW C 89, 064006 (2014)

-120

-60

0

60

120 (a)

1S0 np

(b)

1S0 pp

(c)

3P0

(d)

1P1

(e)

3P1

-210

-140

-70

0

70

V
S

,J

l,
l′

(M
eV

) (f)

3S1

(g)

1

(h)

3D1

(i)

1D2

(j)

3D2

-80

-40

0

40

80

0 0.5 1 1.5 2 2.5

(k)

3P2

0 0.5 1 1.5 2 2.5

(l)

2

0 0.5 1 1.5 2 2.5

r (fm)

(m)

3F2

0 0.5 1 1.5 2 2.5

(n)

3F3

0 0.5 1 1.5 2 2.5

(o)

3D3

FIG. 7. (Color online) Lowest np and pp partial-wave potentials (in MeV) and their errors (solid band) as a function of the internucleon
separation (in fm) for the present OPE+Gaussian analysis (blue band), Reid93 [15] (red dashed), NijmII [15] (green dotted), and AV18 [16]
(light-blue dashed-dotted) as a function of the internucleon distance r (in fm).

-58

-34

-10

14

38

V
c

(M
eV

) (a)

-5.3

-3.9

-2.5

-1.1

0.3

V
τ

(M
eV

)

(b) -0.1

1.7

3.5

5.3

7.1

V
σ

(M
eV

) (c)

-33

-19

-5

9

23

V
τ

σ
(M

eV
) (d)

-1.3

0.1

1.5

2.9

4.3

V
t

(M
eV

)

(e)

3

9

15

21

27

V
tτ

(M
eV

) (f)

-3.1

-2.3

-1.5

-0.7

0.1

V
ls

(M
eV

)

(g) -0.35

-0.25

-0.15

-0.05

0.05

V
ls

τ
(M

eV
)

(h) -0.65

-0.35

-0.05

0.25

0.55

V
l2

(M
eV

) (i)

-1.6

-0.8

0

0.8

1.6

V
l2

τ
(M

eV
) (j)

-0.7

-0.1

0.5

1.1

1.7

V
l2

σ
(M

eV
) (k)

-1.22

-0.86

-0.5

-0.14

0.22

V
l2

σ
τ

(M
eV

)

(l)

-1.3

0.1

1.5

2.9

4.3

0 0.5 1 1.5 2 2.5

V
ls

2
(M

eV
)

r (fm)

(m)

-0.65

1.05

2.75

4.45

6.15

0 0.5 1 1.5 2 2.5

V
ls

2
τ

(M
eV

)

r (fm)

(n)

-2.1

-1.3

-0.5

0.3

1.1

0 0.5 1 1.5 2 2.5

V
T

(M
eV

)

r (fm)

(o)

FIG. 8. (Color online) NN potentials (in MeV) in the operator basis with errors (solid band) as a function of the internucleon separation
(in fm) for the present OPE+Gaussian analysis (blue band), Reid93 [15] (red dashed), NijmII [15] (green dotted), and AV18 [16] (light-blue
dashed-dotted) as a function of the internucleon distance r (in fm).

064006-12



STATISTICAL ERROR ANALYSIS FOR . . . PHYSICAL REVIEW C 89, 064006 (2014)

(u)

3D3

350250150500

5.4

4.2

3

1.8

0.6

(t)

3F2

TLAB [MeV]

35025015050

(s)

3F2

350250150500

1.53

1.19

0.85

0.51

0.17

(r)

3D1

-3

-9

-15

-21

-27

(q)
2

(p)
2

-0.35

-1.05

-1.75

-2.45

-3.15

(o)1

5.4

4.2

3

1.8

0.6(n)

3P2

(m)

3P2

18

14

10

6

2

(l)
3S1

144

112

80

48

16

(k)

3P1

(j)

3P1

P
h
a
se

sh
if
t

[d
eg

]

-3.5

-10.5

-17.5

-24.5

-31.5

(i)

3D2
27

21

15

9

3

(h)

3P0

(g)

3P0

11

4

-3

-10

-17

(f)

1F3

-0.7

-2.1

-3.5

-4.9

-6.3(e)

1D2

(d)

1D2

10.8

8.4

6

3.6

1.2

(c)

1P1

np

-3.5

-10.5

-17.5

-24.5

-31.5

(b)

1S0

np

(a)

1S0

pp

63

45

27

9

-9

FIG. 9. (Color online) Lowest np and pp phase shifts (in degrees) and their errors for the present OPE+Gaussian analysis (blue
band), Reid93 [15] (red dashed), NijmII [15] (green dotted), and AV18 [16] (light-blue dashed-dotted) as a function of the LAB energy
(in MeV).

values, we can only give an upper bound to the p value.
The graphical results of the TS test are presented in Fig. 5
with the 95% confidence level bands; the same bands for the
KS test are drawn for comparison reasons. Since for such

a large value of N the confidence bands are very narrow, a
45◦-clockwise rotated QQ plot is used to visually enhance the
possible deviations from a normal distribution. The complete
database residuals (upper left panel) show obvious deviations
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TABLE VIII. pp isovector phase shifts.

ELAB
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ε2

3F2
3F4 ε4

3H4

1 32.666 0.001 0.000 0.133 −0.080 −0.000 0.013 −0.001 0.000 0.000 −0.000 0.000
±0.003 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

5 54.834 0.042 0.000 1.578 −0.899 -0.004 0.205 −0.052 0.002 0.000 −0.000 0.000
±0.006 ±0.000 ±0.000 ±0.002 ±0.001 ±0.000 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

10 55.223 0.163 0.003 3.729 −2.053 −0.031 0.628 −0.201 0.013 0.001 −0.004 0.000
±0.010 ±0.000 ±0.000 ±0.005 ±0.002 ±0.000 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

25 48.694 0.688 0.040 8.616 −4.892 −0.233 2.440 −0.815 0.103 0.018 −0.049 0.004
±0.014 ±0.001 ±0.000 ±0.016 ±0.007 ±0.000 ±0.005 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

50 39.040 1.701 0.152 11.601 −8.186 −0.704 5.823 −1.735 0.328 0.099 −0.197 0.026
±0.018 ±0.003 ±0.000 ±0.030 ±0.013 ±0.001 ±0.009 ±0.003 ±0.001 ±0.001 ±0.000 ±0.000

100 25.452 3.820 0.414 9.567 −13.010 −1.546 11.074 −2.727 0.774 0.444 −0.553 0.107
±0.034 ±0.008 ±0.001 ±0.052 ±0.017 ±0.008 ±0.013 ±0.007 ±0.007 ±0.004 ±0.001 ±0.000

150 15.567 5.642 0.702 4.732 −17.296 −2.070 14.058 −2.980 1.132 0.991 −0.881 0.201
±0.050 ±0.014 ±0.005 ±0.064 ±0.026 ±0.019 ±0.020 ±0.010 ±0.015 ±0.009 ±0.002 ±0.002

200 7.490 7.058 1.032 −0.388 −21.412 −2.308 15.663 −2.875 1.337 1.642 −1.158 0.292
±0.064 ±0.022 ±0.011 ±0.064 ±0.037 ±0.031 ±0.025 ±0.017 ±0.024 ±0.014 ±0.004 ±0.005

250 0.500 8.276 1.385 −5.174 −25.335 −2.371 16.506 −2.603 1.289 2.272 −1.381 0.380
±0.080 ±0.026 ±0.017 ±0.066 ±0.052 ±0.044 ±0.032 ±0.023 ±0.032 ±0.019 ±0.005 ±0.011

300 −5.699 9.537 1.713 −9.460 −29.016 −2.385 16.892 −2.253 0.891 2.768 −1.556 0.478
±0.102 ±0.032 ±0.022 ±0.087 ±0.073 ±0.061 ±0.044 ±0.031 ±0.041 ±0.026 ±0.006 ±0.018

350 −11.239 10.974 1.959 −13.221 −32.431 −2.461 16.977 −1.875 0.091 3.056 −1.691 0.608
±0.130 ±0.059 ±0.027 ±0.124 ±0.101 ±0.084 ±0.060 ±0.042 ±0.054 ±0.045 ±0.006 ±0.025

from the normal distribution which is reflected on the
extremely low p values. The 3σ consistent data residuals (up-
per right panel) show deviations from the normal distribution
that are always within the TS confidence bands and therefore to
a confidence level α = 0.05 there are no statistically significant
differences to reject the null hypothesis.

E. Discussion

We haveshown in the previous discussion evidence support-
ing the validity of Eq. (2) for the 3σ self-consistent database
recently built from all published np- and pp-scattering data
from 1950 to 2013 [30,33]. The numerics can be a costly
procedure since multiple optimizations must be carried out

TABLE IX. np isovector phase shifts.

ELAB
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ε2

3F2
3F4 ε4

3H4

1 62.074 0.001 0.000 0.180 −0.108 −0.000 0.021 −0.001 0.000 0.000 −0.000 0.000
±0.018 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

5 63.652 0.040 0.000 1.653 −0.940 −0.004 0.248 −0.048 0.002 0.000 −0.000 0.000
±0.045 ±0.000 ±0.000 ±0.002 ±0.001 ±0.000 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

10 60.004 0.154 0.002 3.747 −2.073 −0.026 0.705 −0.185 0.011 0.001 −0.003 0.000
±0.065 ±0.000 ±0.000 ±0.006 ±0.003 ±0.000 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

25 51.043 0.669 0.032 8.506 −4.896 −0.201 2.586 −0.768 0.089 0.015 −0.039 0.003
±0.107 ±0.001 ±0.000 ±0.017 ±0.007 ±0.000 ±0.005 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

50 40.920 1.701 0.131 11.433 −8.251 −0.634 6.025 −1.688 0.295 0.089 −0.169 0.020
±0.167 ±0.003 ±0.001 ±0.031 ±0.013 ±0.001 ±0.009 ±0.003 ±0.001 ±0.001 ±0.000 ±0.000

100 27.691 3.863 0.365 9.314 −13.211 −1.447 11.261 −2.747 0.724 0.428 −0.505 0.090
±0.268 ±0.008 ±0.007 ±0.053 ±0.018 ±0.008 ±0.014 ±0.007 ±0.007 ±0.004 ±0.001 ±0.000

150 18.146 5.697 0.594 4.380 −17.569 −1.977 14.170 −3.042 1.083 0.981 −0.834 0.176
±0.313 ±0.014 ±0.027 ±0.064 ±0.027 ±0.020 ±0.020 ±0.010 ±0.016 ±0.009 ±0.002 ±0.002

200 10.161 7.111 0.838 −0.809 −21.717 −2.236 15.705 −2.938 1.295 1.643 −1.124 0.261
±0.309 ±0.022 ±0.056 ±0.064 ±0.038 ±0.032 ±0.025 ±0.017 ±0.024 ±0.014 ±0.004 ±0.005

250 3.068 8.331 1.118 −5.626 −25.658 −2.322 16.495 −2.644 1.248 2.280 −1.369 0.347
±0.304 ±0.026 ±0.085 ±0.067 ±0.053 ±0.045 ±0.032 ±0.024 ±0.032 ±0.019 ±0.005 ±0.011

300 −3.345 9.601 1.434 −9.916 −29.352 −2.356 16.840 −2.271 0.841 2.775 −1.566 0.448
±0.345 ±0.033 ±0.102 ±0.089 ±0.074 ±0.062 ±0.045 ±0.031 ±0.042 ±0.026 ±0.006 ±0.018

350 −9.144 11.052 1.763 −13.666 −32.782 −2.447 16.891 −1.879 0.022 3.053 −1.720 0.583
±0.441 ±0.062 ±0.105 ±0.127 ±0.103 ±0.085 ±0.061 ±0.043 ±0.055 ±0.047 ±0.006 ±0.025
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TABLE X. np isoscalar phase shifts.

ELAB
1P1

1F3
3D2

3G4
3S1 ε1

3D1
3D3 ε3

3G3

1 −0.186 −0.000 0.006 0.000 147.624 0.102 −0.005 0.000 0.000 −0.000
±0.000 ±0.000 ±0.000 ±0.000 ±0.009 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

5 −1.493 −0.010 0.218 0.001 117.905 0.638 −0.177 0.002 0.012 −0.000
±0.004 ±0.000 ±0.000 ±0.000 ±0.020 ±0.003 ±0.000 ±0.000 ±0.000 ±0.000

10 −3.058 −0.064 0.843 0.012 102.230 1.086 −0.661 0.007 0.080 −0.003
±0.010 ±0.000 ±0.001 ±0.000 ±0.028 ±0.007 ±0.001 ±0.000 ±0.000 ±0.000

25 −6.337 −0.421 3.698 0.170 80.068 1.653 −2.735 0.058 0.552 −0.053
±0.034 ±0.000 ±0.005 ±0.000 ±0.041 ±0.018 ±0.005 ±0.003 ±0.000 ±0.000

50 −9.603 −1.143 8.951 0.722 62.105 1.955 −6.276 0.376 1.609 −0.264
±0.071 ±0.003 ±0.020 ±0.000 ±0.053 ±0.035 ±0.013 ±0.013 ±0.002 ±0.000

100 −14.089 −2.291 17.299 2.181 42.633 2.428 −11.922 1.599 3.451 −0.989
±0.113 ±0.022 ±0.049 ±0.005 ±0.065 ±0.066 ±0.030 ±0.038 ±0.011 ±0.004

150 −17.844 −3.102 22.164 3.665 30.269 2.980 −16.143 2.830 4.700 −1.898
±0.129 ±0.052 ±0.060 ±0.019 ±0.066 ±0.085 ±0.045 ±0.054 ±0.024 ±0.013

200 −21.036 −3.775 24.449 5.065 20.890 3.517 −19.526 3.690 5.536 −2.851
±0.148 ±0.080 ±0.073 ±0.041 ±0.067 ±0.093 ±0.059 ±0.061 ±0.034 ±0.029

250 −23.623 −4.421 25.137 6.379 13.208 4.007 −22.339 4.222 6.150 −3.787
±0.181 ±0.100 ±0.096 ±0.066 ±0.088 ±0.099 ±0.072 ±0.074 ±0.039 ±0.048

300 −25.653 −5.078 24.920 7.604 6.681 4.476 −24.681 4.578 6.648 −4.692
±0.222 ±0.116 ±0.121 ±0.086 ±0.131 ±0.114 ±0.088 ±0.099 ±0.047 ±0.067

350 −27.236 −5.734 24.242 8.712 1.036 4.956 −26.586 4.876 7.067 −5.568
±0.266 ±0.145 ±0.147 ±0.097 ±0.183 ±0.137 ±0.107 ±0.130 ±0.065 ±0.082
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FIG. 10. (Color online) np (left) and pp (right) Wolfenstein parameters (in fm) as a function of the center-of-mass angle (in degrees) and
for ELAB = 50 MeV. We compare our fit (blue band) with Reid93 [15] (red dashed), NijmII [15] (green dotted), and AV18 [16] (light-blue
dashed-dotted).
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FIG. 11. (Color online) Same as in Fig. 10 but for ELAB = 100 MeV.

and different subsets of data of the complete database must
be tested and confronted. As outlined above, our analysis
was carried out using a physically motivated coarse-grained
potential and, more specifically, a δ-shells interaction already
proposed by Avilés [29]. This scheme proved extremely
convenient for fast minimization and error evaluation.

As a first application, with the currently fixed database,
we have also addressed the calculation of the chiral con-
stants which appear in the χTPE potential [48] (which
also passes the normality test, as can be seen from Fig. 5
and Tables I–IV). We note that the small rescaling by
the Birge factor

√
1.07 is requested to pass the Pearson

and TS tests. As we have mentioned, this form of δ-shell
potentials cannot be directly implemented in some of the
many powerful computational approaches to nuclear structure
calculations.15

The necessary conditions for a sensible interpretation of
the χ2 fit according to Eq. (2) requires testing for normality
of residuals of a fit to a consistent database. In all, the

15The δ-shell potential cannot even be plotted, which may
naively seem a disadvantage. However, its Fourier transformation
is smooth [30] in the relevant center-of-mass momentum region of
pc.m. � 2 fm−1, complying to the idea that coarse graining down to
�rπ ∼ 0.6 fm resolutions lacks information on shorter length scales.

present situation regarding both the selection of data with
the self-consistent 3σ criterion and the normality of residuals
turns out to be highly satisfactory. In our view, this combined
consistency of the statistical assumptions and the theory used
to analyze it provides a good starting point to proceed further
in the design of theory-friendly smooth NN interactions as well
as a sound estimate of their statistical uncertainties.

Of course, the normality of residuals applies to any fit
aiming at representing the data. Thus, any potential which
pretends to represent the data ought to pass the test. In the
next section we propose a potential whose short-distance part
is made of a superposition of Gaussian functions and, unlike
the δ-shell potential, can be plotted. We will check that our
proposed potential does in fact pass the normality test.

There is an issue concerning the statistical approach on
what would be the “true” potential since the concept of true
parameters of a given model is invoked (see the discussion in
Sec. II B). On the one hand, the very definition of potential
is subject to ambiguities because the scattering information
only determines an interaction once its specific form has been
chosen [21]. This reflects the well-known off-shell ambiguities
which by definition are inaccessible to experiment [49]. On the
other hand, nuclear structure calculations are carried out with
potentials statistically representing the scattering data. This
is a source for a systematic uncertainty which was unveiled
in Refs. [22–24] for the previously developed high-quality
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FIG. 12. (Color online) Same as in Fig. 10 but for ELAB = 200 MeV.

interactions. The upgrade of this systematic uncertainty study
using the present statistical analysis is left for future research.

Ultimately, QCD is the theory to validate Eq. (2) versus
the large body of data, O th

i = O
QCD
i , with just two parameters

in the (u,d) sector, �QCD, and the quark masses (mu,md ), or,
equivalently, with the pion weak decay constant fπ and the
pion masses (mπ0 ,mπ± ). Remarkably, nuclear potentials have
been evaluated on the lattice recently [50–52]. The HAL QCD
Collaboration [53] finds a local potential for the unphysical
pion mass mπ = 701 MeV with a shape similar to our OPE-
Gaussian potential (see Sec. IV) but a depth of −30 MeV in
the central component Vc and �Vc ∼ 5 MeV for r � 1 fm,
and, consequently, the 1S0 phase-shift obtained by directly
solving the Schrödinger equation is smaller as compared to
ours with much larger errors. This potential approach uses
the Nambu-Bethe-Salpeter wave function which ultimately
depends on the choice of the interpolating composite nucleon
fields (for a recent overview of the pros and cons of the
potential approach to lattice QCD see, e.g., Ref. [54]). Of
course, since the lattice NN potential depends ultimately in
just two parameters, �QCD and mq the different r values
in the potential functions Vn(r) must be correlated. In the
phenomenological approach correlations among the fitting
parameters are indeed found or built in. Some of them are
the trivial ones due to the OPE potential which just depends
on the pion masses (mπ0 ,mπ± ), but others correspond to the

inner short-distance parameters, suggesting that the number of
parameters can de reduced solely from the phenomenological
potential analysis of the data. In Fig. 6 we represent pictorially
the resulting correlation matrix both for the OPE-DS fit [38,39]
as well as for χTPE-DS [48] short-distance parameters in the
partial-wave basis (Vi)LSJ

l,l′ , see Eq. (18). The listing ordering
is the same as the one in the parameter tables in Refs. [38,39]
and [48] for OPE-DS and χTPE-DS, respectively. Note the
isolated pattern of correlations for the OPE-DS case, however,
as we see there are substantial correlations among different
(Vi)LSJ

l,l′ within a given partial wave, suggesting the possibility
of reducing the number of parameters. Indeed, we observe that
this parameter reduction takes place from 46 to 33 when going
from the OPE-DS case to the χTPE-DS potential [48], which
incorporates specific QCD features such as chiral symmetry.
The resulting correlation pattern becomes now more spread
over the full short-distance parameter space.

IV. THE OPE-GAUSSIAN POTENTIAL

In the present section we provide a rather simple local form
of the potential Eqs. (17) and (18) based on Gaussian functions

Fi,n(r) = e−r2/(2a2
i ), (28)

where we have taken the parameters as ai = a/(1 + i). The
parameter a is used as a fitting variable. With this potential
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FIG. 13. (Color online) Same as in Fig. 10 but for ELAB = 350 MeV.

we get χ2/ν = 1.06. The resulting 42 fitting parameters
(41 independent partial-wave coefficients (Vi)JS

l,l′ and the
Gaussian width a are listed with their uncertainties in Table V.
The Vi,n operator coefficients are given in Table VI.16 The
linear transformation from partial-wave coefficients (Vi)JS

l,l′
to the Vi,n operator coefficients has been given explicitly
in Ref. [39]. In Fig. 6 we depict the correlation matrix,
Eq. (12), for the partial-wave parameters listed in Table V,
where a similar correlation pattern to the OPE-DS one is
observed. Deuteron properties for this potential compared
with calculations using other potentials and empirical or
recommended values can be looked up in Table VII.

The rotated QQ plot of the scaled residuals for the OPE-
Gaussian fit to the 3σ self-consistent database can be seen in
Fig. 5. As we can see the TS test is passed satisfactorily. On
a more quantitative level we show on Table I the moments
test. The resulting p value of the different normality tests
are given in Tables II, III, and IV for the Pearson, KS, and
TS tests, respectively. As we see all tests are satisfactorily
passed except for the TS where a tiny scaling of the residuals
by a Birge factor of

√
χ2/ν = 1.03, corresponding to a global

16The many digits are provided to guarantee numerical reproducibil-
ity of results, since we find strong correlations among the parameters.
We thank Eduardo Garrido numerical checks.

enlargement of the provided experimental errors by 3%, allows
to restore normality. Thus, we are entitled to propagate the
uncertainties of the data to derived quantities through the
determined parameters Vi,n with errors and their corresponding
correlations, see Eq. (14).

In Figs. 7 and 8 we show the OPE-Gaussian potential
in partial wave and operator basis, respectively, with the
error bands propagated with the corresponding correlation
matrix from the fit to the experimental data. As we see,
these error bands are smaller than the discrepancy with
Reid93 [15], NijmII [15], and AV18 [16]. This may be a hint
that systematic errors induced by the bias involved in the choice
of the several potentials, as first noted in Refs. [22–24], may
indeed play a relevant role in the total evaluation of nuclear
uncertainties.

In Fig. 9 we present the lowest np and pp phase shifts
and their errors based on the OPE-Gaussian potential and
compared with the Reid93 [15], NijmII [15], and AV18 [16]
potential phases. In Tables VIII, IX, and X the low-angular-
momentum phases as a function of the LAB energy with their
errors propagated from the fit are listed.

The resulting Wolfenstein parameters, Eq. (1), for the
OPE-Gaussian potential are depicted in Figs. 10, 11, 12,
and 13 for LAB energies 50,100,200, and 350 MeV, re-
spectively, with their corresponding errors. For compari-
son we also show the same quantities calculated with the
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1993 high-quality Reid93 [15], NijmII [15], and AV18 [16]
potentials.

V. CONCLUSIONS AND OUTLOOK

We summarize our main points. The determination of
uncertainties in theoretical nuclear physics is one of the most
urgent issues to be solved in order to establish the predictive
power of ab initio nuclear structure calculations. One certain
source for these uncertainties is the errors of the phenomeno-
logical NN interaction stemming from the finite accuracy of
experimental scattering data as well as local scarcity in certain
regions of the (θ,E) plane and an abundance bias in some other
regions. Any statistical analysis of this sort assumes a model
both for the signal and the noise which can only be checked
a posteriori. In order to carry out such an analysis the lack of
bias in the data and the model has to be established with a given
confidence level. If normal errors on the data are assumed, the
check can be made by applying normality tests to the residuals
between the fitted model and the experimental data. We have
used some classical tests and the highly demanding recently
proposed tail-sensitive quantile-quantile test with a confidence
level of 95%. Based on the outcome there is no serious reason
to doubt on the normality of residuals of the 3σ self-consistent
database obtained in our PWA of np- and pp-scattering data
below pion production threshold.

We note that this normality test actually checks for the
assumption, underlying any least-squares χ2 fit, that the

data themselves follow a normal distribution. With this fixed
database one then can look for different representations of
the potential which facilitate a straightforward implementation
in any of the many available powerful methods which are
currently available for solving the multinucleon problem.

We provide a user-friendly potential which consists of
a short-range local part with 21-operators multiplying a
linear superposition of Gaussian functions. The resulting fitted
potential passes the normality tests satisfactorily and, hence,
can be used to estimate statistical uncertainties stemming from
NN-scattering data.

Our findings here seem to confirm a previous study of us
when we compare the current OPE-Gauss potential including
statistical error bands with previous potentials such as NijmII,
Red93, or AV18 (without statistical bands); errors in the
potential are dominated by the form of the potential rather
than by the experimental data. Nonetheless, a thorough study
of these kind of errors requires repeating the present analysis
with an identical database with the most general potentials and
functional forms and looking for discrepancies in the nuclear
structure calculations outcome.
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