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New insight into the nd →3Hγ process at thermal energy with pionless effective field theory
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We take a new look at the neutron radiative capture by a deuteron at thermal energy with the pionless
effective field theory [EFT(/π)] approach. We present in detail the calculation of nd → 3Hγ amplitudes for
incoming doublet and quartet channels leading to the formation of a triton fully in the projection method
based on the cluster-configuration space approach. In the present work, we consider all possible one-body and
two-body photon interaction diagrams. In fact, additional diagrams that make significant changes in the results
of the calculation of the total cross section in the nd → 3Hγ process are included in this study. The properly
normalized triton wave function is calculated and taken into consideration. We compare the cross section of the
dominant magnetic M1 transition of nd →3Hγ up to next-to-next-to-leading order (N2LO) with the results of
the previous model-dependent theoretical calculations and experimental data. The more acceptable results for
cross section σ

(2)
tot = 0.297 (LO) + 0.124 (NLO) + 0.048 (N2LO) = [0.469 ± 0.033] mb show order by order

convergence and cutoff independence. No three-body currents are needed to renormalize observables up to N2LO
in this process.
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I. INTRODUCTION

Studies of the radiative capture reactions on numerous light
atomic nuclei have been continued at thermal and astrophysical
energies with the model-independent pionless effective field
theory [EFT(/π )] approach in the recent years [1–6]. The
calculation of radiative capture amplitude and cross section
of nd → 3Hγ and pd → 3He γ are an essential input in
the calculation of the parity-violating radiative capture of the
above processes at the thermal energy [7–9].

In the present paper, we study the nd → 3Hγ process fully
with the projection operator method based on the cluster-
configuration space which is introduced by [10]. We also
consider the calculation of observables with M1 transition
up to next-to-next-to-leading order (N2LO) with the following
significant changes in comparison with the previous EFT(/π )
calculation [3]: a) including the diagrams with radiation from
external nucleon leg, external deuteron leg, and on-shell two-
body bubble (see the diagrams “a0”, “a1”, and “a3” in Fig. 1), b)
considering both contributions corresponding to two nucleon
poles before and after photon creation in the first diagram of
the second row in Fig. 1, c) inserting the diagram with the
radiation directly from the exchanged nucleon, d) adding the
contribution of the 3S1 → 3S1 M1 transition, and e) introducing
and using the properly normalized triton wave function.

The triton or helium-three wave functions consist of two
parts, one is the nucleon and dibaryon cluster wave function
and the other is the two nucleon structure of the dibaryon
cluster. We follow the Bethe-Salpeter (BS) equation in [11,12]
and we use the normalization condition of the relativistic
two-body vertex function and work out the nonrelativistic one
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which is suitable for neutron-deuteron (nd) scattering leading
to the formation of a triton.

The theoretical calculations of the observables in the
nd →3Hγ process were previously performed based on
model-dependent approaches [13]. The cross section and
polarization observables were studied theoretically for ra-
diative capture reactions 2H(n,γ )3H and 2H(p,γ )3He at low
energies [14]. The cross section for thermal neutron radiative
capture on the deuteron was measured to be σ

exp
tot = 0.508 ±

0.015 mb [15], in agreement with the results of earlier
experiments [16,17].

In the present work, the calculation of all M1 diagrams are
calculated for the incoming doublet and quartet nd channels
fully in the cluster-configuration space up to N2LO in Sec. II.
The calculation of the cross section for nd → 3Hγ is presented
in Sec. III. In Sec. IV numerical aspects of the calculation of
M1 amplitudes are discussed. The results and comparison
with other theoretical and experimental works are explained
in Sec. V. Finally, we summarize the paper and discuss future
investigations in Sec. VI.

II. nd → 3Hγ SYSTEM

In this section, we focus on the introduction of the EFT(/π )
amplitude for the nd → 3Hγ process up to N2LO. We con-
centrate on the zero-energy regime and try to calculate the am-
plitude of the neutron radiative capture by deuteron at thermal
energy (2.5 × 10−8 MeV) in the center-of-mass (c.m.) frame.

In the EFT(/π ) method, the electromagnetic (EM) interac-
tions in the three-body systems can be inserted principally by
considering the one-, two-, and three-body currents. However,
we show that the cutoff independence is achieved up to N2LO
with one- and two-body currents and therefore there is no need
for additional three-body currents up to N2LO calculations. In
the very-low-energy regime the M1 transition has a dominant
piece in the amplitude of nd → 3Hγ . The E2 transition also
contributes to the nd → 3Hγ reaction but comparing with the
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FIG. 1. The M1 nd → 3Hγ diagrams at NnLO (n � 2). The “(n)” superscript denotes the contribution up to NnLO. All possible diagrams
in the M1 transition of the nd → 3Hγ process up to NnLO are shown in the first and second lines. The diagrams in the third line are the
expanded version of the first diagram in second line. The solid, wavy, and double lines represent a nucleon, a photon, and a dibaryon field,
respectively. The nucleon-nucleon-photon (NNγ ) and dibaryon-dibaryon-photon (ddγ ) vertices show the one- and two-body M1 interactions.
D(n) is the 2 × 2 propagator matrix of the dibaryon auxiliary fields and the three-body force is indicated by H. The dashed oval and dashed
half oval denote the Nd scattering amplitude and the normalized triton wave function up to NnLO, respectively.

M1 interaction, it has a negligible contribution. In the follow-
ing, we evaluate the EFT(/π ) amplitude of the neutron radiative
capture by deuteron reaction by considering the dominant M1
transitions using one- and two-body currents up to N2LO.

Note that the convection current of the proton (E1 transi-
tion) has odd parity (due to one power of nucleon momentum),

so this mixes an incoming P -wave state to the final S-wave
triton. Capture from the P wave introduces the factor of the
external nucleon momentum forcing the amplitude to vanish
at threshold.

The Lagrangian of the S-wave strong interactions using a
dibaryon auxiliary field are given by [10,18]

LS = N †
(

iD0 +
�D2

2mN

)
N + dA†

s

[
�s − c0s

(
iD0 +

�D2

4mN

+ γ 2
s

mN

)]
dA

s + di†
t

[
�t − c0t

(
iD0 +

�D2

4mN

+ γ 2
t

mN

)]
di

t

− y
(
dA†

s (N †P AN ) + di†
t (N †P iN ) + H.c.

) + mNy2H(E,�)

6
N †((di

t σi

)†(
d

j
t σj

) − [(
di

t σi

)†(
dA

s σA

) + H.c.
]

+ (
dA

s τA

)†(
dB

s σB

))
N + · · · , (1)

where Dμ is the covariant derivative which acts on the nucleon
and dibaryon fields with ∂μ + ie 1+τ3

2 Aμ and ∂μ + ieCAμ

relations, respectively. Aμ is the external field and C = 2,1,
and 0 for proton-proton, neutron-neutron, and neutron-neutron
dibaryons. The center dots in the last line denote the other
suppressed terms. In Eq. (1), N is the nucleon isodoublet field.
The dibaryon auxiliary fields for deuteron and isodinucleon

systems are introduced by di
t and dA

s , respectively. The
operators P i = 1√

8
σ2σ

iτ2 and P A = 1√
8
σ2τ2τ

A with τA (σi)
as isospin (spin) Pauli matrices are the projection operators
of nucleon-nucleon (NN ) 3S1 and 1S0 states, respectively.
mN represents the nucleon mass and the three-nucleon
force is introduced by H(E,�), where E and � are the
total energy and cutoff momentum. The H(E,�), which
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absorbs all dependence on the cutoff as � → ∞, is given
by [19,25,26]

H(E,�) = 2

�2

∞∑
m=0

H2m(�)

(
mNE + γ 2

t

�2

)m

= 2H0(�)

�2
+ 2H2(�)

�4
(mNE + γ 2

t ) + · · · , (2)

where the interactions proportional to H2m enter at
N2mLO [19].

In our calculation, we consider generally y2 = 4π
mN

. The
parameters �s/t and c0s/t are given by matching the EFT(/π )
NN scattering amplitude to the effective range expansion
(ERE) of the scattering amplitude of two nonrelativistic
nucleons around the iγs/t [10]. γt = 45.7025 MeV is the
binding momentum of the deuteron and γs = 1

as
with as =

−23.714 fm as the scattering length in the 1S0 state.
The Lagrangian of the M1 interaction is constructed by

considering the nucleon and dibaryon operators coupling to
the magnetic field �B,

LB = e

2mN

N †(k0 + k1τ
3)�σ · �BN + e

L1

mN
√

ρdr0
d

j †
t d3

s Bj

− e
2L2

mNρd

i εijk di†
t d

j
t Bk + H.c. (3)

In the above equation, k0 = 1
2 (kp + kn) = 0.4399 and k1 =

1
2 (kp − kn) = 2.35294 with kp (kn) as the proton (neutron)
magnetic moment are the isoscalar and isovector nucleon
magnetic moments, respectively. e is the electric charge
and ρd = 1.764 fm (r0 = 2.73 fm) denotes the effective
range of the triplet (singlet) NN state. The coefficients
L1 = −4.427 ± 0.015 fm and L2 = −0.4 fm, which enter
at next-to-leading order (NLO), have been fixed from the
cross section of np → dγ at thermal energy, σ

exp
np→ dγ =

334.2 ± 0.5 mb and the deuteron magnetic moment μM ,
respectively [20].

The diagrams of the M1 transition in the nd → 3Hγ process
up to NnLO (n � 2) are schematically shown in Fig. 1. Note
that in the entire paper, the superscript “(n)” denotes the
contribution from the sum of all pieces up to, and including,
order n. D(n) indicates the propagator of the dibaryon fields
up to NnLO which is given in the cluster-configuration
space as

D(n)(q0,q) =
⎛
⎝D

(n)
t

(
q0 − q2

2mN
,q

)
0

0 D(n)
s

(
q0 − q2

2mN
,q

)
⎞
⎠ ,

(4)

where

D
(n)
t (q0,q) = 1

γt −
√

q2

4 − mNq0 − iε

×
n∑

m=0

( ρd

2 (mNq0 − q2

4 + γ 2
t )

γt −
√

q2

4 − mNq0 − iε

)m

,

D(n)
s (q0,q) = 1

γs −
√

q2

4 − mNq0 − iε

×
n∑

m=0

( r0
2

(
mNq0 − q2

4

)
γs −

√
q2

4 − mNq0 − iε

)m

. (5)

We emphasize that the above propagators can be applied up to
N3LO and should be corrected for the higher orders.

In Fig. 1, the dashed oval denotes the nucleon-deuteron
(Nd) scattering amplitudes which are presented by t

(n)
d and

t (n)
q for the doublet and quartet channels up to NnLO,

respectively. The Faddeev equations of t
(n)
d/q are introduced

in Appendix A. The dashed half-oval indicates the normalized
triton wave function up to NnLO which is introduced by t

(n)
3H

in the following. The procedure of making the triton wave
function and its normalization condition are briefly presented
in Appendix B.

We consider the contribution of all diagrams shown in Fig. 1
in the amplitude of neutron radiative capture by a deuteron
reaction. The third diagram of the second line and all diagrams
of the first line in Fig. 1 have not been considered in the pre-
vious EFT(/π ) calculations of the nd →3Hγ amplitude [2,3].
We have also added the contribution of the 3S1 → 3S1 M1
transition to the amplitude of the nd → 3Hγ process which
was previously not considered in [2,3]. This two-body M1
transition is indicated in the Lagrangian of Eq. (3) by the
L2 coefficient which enters first at NLO as L1. However the
contribution of the 3S1 →3S1 M1 transition is small at NLO
but its effect is significant at N2LO.

Before we evaluate the contribution of the diagrams in
Fig. 1, let us make a comment about the computational process
of the amplitude at NLO and N2LO. Introducing the NnLO
diagrams as in Fig. 1, includes some diagrams of higher order,
for example the NLO calculation includes N2LO, N3LO, and
N4LO terms. So, this calculation includes higher-order terms,
but it is not—or at least, not immediately—a full higher-order
correction, and so does not achieve that precision. On the
other hand, the additional diagrams are small in a well-
behaved expansion, so the precision is not compromised. This
procedure is made only for convenience in the computational
process.

Now, we make a comment about the evaluation of the first
diagram in the second line of Fig. 1. This diagram is different
somewhat from other ones because it has two contributions
corresponding to the poles in the nucleon propagators before
and after the photon creation. Therefore, these two poles are
corresponding to two contributions, one is that the photon
is emitted during the exchange of a nucleon and the other
is that the photon is emitted after exchanging the nucleon.
If we add the half-off-shell Nd scattering amplitude from
left to the first diagram in the first line of Fig. 1, we miss
the contribution of the case that the photon emission occurs
during the nucleon exchange. So, we have to replace the half-
off-shell Nd scattering amplitude by four diagrams which
are introduced in Fig. 4. Thus, we must substitute the first
diagrams of the second line by four diagrams introduced in
the third line of Fig. 1. The effect of the photon emitted during
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FIG. 2. The a4 diagram in Fig. 1. k and Ei denote the incoming
c.m. momentum and the total energy of the initial nd system,
respectively. All notation are the same as in Fig. 1.

the exchange of another nucleon can also be applied when
the triton formation precedes the photon-nucleon interaction.
But the evaluation of this effect makes no significant changes
in the final results.

By working in the Coulomb gauge, the M1 amplitude of
nd →3Hγ can be written as two orthogonal terms,

(t†σaN )(�εd × (�ε∗
γ × �̃q))a, i(t†N )(�εd · �ε∗

γ × �̃q), (6)

with t , �εγ , �εd , and �̃q are the final 3H (or 3He) field, the three-
vector polarization of the produced photon, the three-vector
polarization of the deuteron, and the unit vector along the
three-momentum of the photons, respectively.

In the nd → 3Hγ process, two initial doublet (2S 1
2
) and

quartet (4S 3
2
) channels can make the final triton state using the

M1 transition. If we evaluate the contributions of all diagrams
in Fig. 1, we can generally write the NnLO (n � 2) amplitude
of the nd → 3Hγ process as

W (n) = t†
[M(n)

d Yd + M(n)
q Yq

]
N, (7)

where

Yd = i�εd · �ε∗
γ × �̃q + �σ × �εd · �ε∗

γ × �̃q ,
(8)

Yq = 2 i�εd · �ε∗
γ × �̃q − �σ × �εd · �ε∗

γ × �̃q .

For example, we concentrate on the detailed evaluation
of the diagram a4 contribution. The energy and momentum
of the incoming particles are shown in Fig. 2. We start by
writing the amplitude of the diagram in Fig. 2 using the
Lagrangians in Eqs. (1) and (3). Generally, before applying
the projection operators, we can write the contribution of the
diagrams in Fig. 2 in the cluster-configuration space up to
NnLO (n � 2) as

S̄
(n)
4,unproj.(Ei,k) = i

e y2

16mN

∫
d4q

(2π )4
t

(n)†
3H

(q)
1

q0 − Ei + Ef − q2

2mN
+ iε

1

q0 − q2

2mN
+ iε

1

Ei − q0 − k2

2mN
− (�k+�q)2

2mN
+ iε

D(n)(Ei,q)

×
(

(k0 + k1τ3)σkσsσrBk (k0 + k1τ3)σkτAσrBk

(k0 + k1τ3)σkσsτBBk (k0 + k1τ3)σkτAτBBk

)
, (9)

where k is the incoming momentum and Ei = 3k2

4mN
− γ 2

t

mN
denotes the energy of the initial nd system. Ef represents the final state

energy which is given by Ef = −Bt with Bt = 8.48 MeV as the binding energy of the triton. The s (A) and r (B) indices are
the spin (isospin) components of the incoming and outgoing dibaryons. To solve the energy integration, we introduce the poles
of Eq. (9) in the complex plane. It is obvious that we have the three following poles:

q0 = q2

2mN

− iε,

q0 = Ei − Ef + q2

2mN

− iε, (10)

q0 = Ei − k2

2mN

− (�k + �q)2

2mN

+ iε,

where they result from the denominator of the nucleon propagators. With respect to the poles in Eq. (10) and doing the integration
over energy and the solid angle, the S̄

(n)
4,unproj.(Ei,k) is

S̄
(n)
4,unproject.(Ei,k) = e y2

32π2

1

Ef − Ei

∫ �

0
dq q2 t

(n)†
3H

(q)
1

kq

[
D(n)(Ei,q)Q0

(
mNEi − k2 − q2

kq

)

−D(n)(Ef ,q)Q0

(
mNEf − k2 − q2

kq

)] (
(k0 + k1τ3)σkσsσrBk (k0 + k1τ3)σkτAσrBk

(k0 + k1τ3)σkσsτBBk (k0 + k1τ3)σkτAτBBk

)
(11)

with Q0(z) as the zeroth Legendre polynomial of the second kind. In order to obtain the contribution of the diagram in Fig. 2 for
the nd → 3Hγ reaction, we have to project the initial Nd system to the doublet and quartet cases (corresponding to two possible
M1 transitions) while the final state should be 2S 1

2
because of the triton. The contribution of the M1 transition with the initial
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quartet channel (4S 3
2
) is calculated by applying the projection operators

Pd,rB = 1√
3

(
σr 0
0 τB

)
(12)

and

P s
q,l =

(
δs
l − 1

3σ sσl 0

0 0

)
(13)

with l as the spin component of the deuteron in the quartet channel, from left and right in Eq. (11), respectively. So, we gain

S̄
(n)
4,q(Ei,k) = e y2

24
√

3π2

1

Ef − Ei

∫ �

0
dq q2 t

(n)†
3H

(q)
1

kq

[
D(n)(Ei,q)Q0

(
mNEi − k2 − q2

kq

)

−D(n)(Ef ,q)Q0

(
mNEf − k2 − q2

kq

)] (
k0 + k1τ3 0

0 0

)
t†[2 i�εd · �ε∗

γ × �̃q − �σ × �εd · �ε∗
γ × �̃q]N. (14)

Taking into account the projection operators PsA
d = (Pd,sA

)†
and Pd,rB for the incoming and outgoing channels, respectively,

the contribution of the diagram in Fig. 2 for the initial doublet channel is given by

S̄
(n)
4,d (Ei,k) = e y2

96π2

1

Ef − Ei

∫ �

0
dq q2 t

(n)†
3H

(q)
1

kq

[
D(n)(Ei,q)Q0

(
mNEi − k2 − q2

kq

)
−D(n)(Ef ,q)Q0

(
mNEf − k2 − q2

kq

)]

×
(

k0 + k1τ3 −3(k0 + k1τ3)

3(3k0 − k1τ3) −(3k0 − k1τ3)

)
t†[i�εd · �ε∗

γ × �̃q + �σ × �εd · �ε∗
γ × �̃q]N. (15)

The results of Eqs. (14) and (15) are calculated using �B = −i �̃q × �ε∗
γ and the sum over the repeated indices.

Finally, the total contribution of the diagram in Fig. 2 can be written as

W
(n)
4 = S̄

(n)
4,d + S̄

(n)
4,q = t†

[
S

(n)
4,dYd + S

(n)
4,qYq

]
N, (16)

where t†S(n)
4,xYxN = S̄

(n)
4,x with x = d,q. By ignoring the normalization factor of the incoming deuteron, Eq. (16) is as we expected.

One can evaluate the contribution of all diagrams in Fig. 1 using the same procedure as for the a4 diagram. After applying the
integration over energy and solid angle, the contribution of all M1 diagrams in the M(n)

x function [Eq. (7)], before multiplying
the deuteron wave function normalization factor, is given by

M (n)
x (Ei,k) = S

(n)
0,x(Ei,k) + S(n)

x (Ei,k) − 1

2π2

∫ �

0
dq q2 S(n)

x (Ei,q)D(n)(Ei,q) t (n)
x (Ei ; k,q), (17)

where

S(n)
x (Ei,k) =

5∑
i=1

S
(n)
i,x (Ei,k). (18)

In the above, x can be “d” or “q” for doublet and quartet channels, respectively. The 2 × 2 matrix function S
(n)
i,x with i = 0, . . . ,5

represents the contribution of the “ai” diagram in Fig. 1 for the initial x channel up to NnLO (n � 2).
For the initial doublet (S = 1

2 ) state, in the cluster-configuration space, we obtain

S
(n)
0,d (Ei,k) = e

6mN

1

Ef − Ei

t
(n)†
3H

(k)

(
−(k0 + k1τ3) 0

0 3k0 − k1τ3

)
,

S
(n)
1,d (Ei,k) = e y2

32π

1

Ef − Ei

t
(n)†
3H

(k)D(n)(Ef ,k)

[√
3

4
k2 − mNEi −

√
3

4
k2 − mNEf

] (
2k0 k1τ3

k1τ3 0

)
,

S
(n)
2,d (Ei,k) = e y2

96π2

1

Ef − Ei

∫ �

0
dq q2t

(n)†
3H

(q)D(n)(Ef ,q)
1

kq

[
Q0(

mNEi − k2 − q2

kq
)Q0

(
mNEf − k2 − q2

kq

)]

×
(

−5k0 + 5k1τ3 3k0 + k1τ3

3k0 + k1τ3 3k0 + 5k1τ3

)
,

064005-5



ARANI, NEMATOLLAHI, MAHBOUBI, AND BAYEGAN PHYSICAL REVIEW C 89, 064005 (2014)

S
(n)
3,d (Ei,k) = e

3mNρd

t
(n)†
3H

(k)D(n)(Ef ,k)

⎛
⎝ 4L2

√
ρd

r0
L1τ3√

ρd

r0
L1τ3 0

⎞
⎠ ,

S
(n)
4,d (Ei,k) = e y2

96π2

1

Ef − Ei

∫ �

0
dq q2 t

(n)†
3H

(q)
1

kq

[
D(n)(Ei,q)Q0(

mNEi − k2 − q2

kq
) − D(n)(Ef ,q)Q0

(
mNEf − k2 − q2

kq

)]

×
(

k0 + k1τ3 −3(k0 + k1τ3)

3(3k0 − k1τ3) −(3k0 − k1τ3)

)
,

S
(n)
5,d (Ei,k) = e y2

24π2

1

Ef − Ei

H(Ei,�)
∫ �

0
dq q2 t

(n)†
3H

(q)

[
D(n)(Ei,q) − D(n)(Ef ,q)

] (
k0 + k1τ3 −(k0 + k1τ3)

3k0 − k1τ3 −(3k0 − k1τ3)

)
. (19)

Also, in the incoming quartet channel (S = 3
2 ), we have

S
(n)
0,q(Ei,k) = e

3
√

3mN

1

Ef − Ei

t
(n)†
3H

(k)

(
k0 + k1τ3 0

0 0

)
,

S
(n)
1,q(Ei,k) = e y2

32
√

3π

1

Ef − Ei

t
(n)†
3H

(k)D(n)(Ef ,k)

[√
3

4
k2 − mNEi −

√
3

4
k2 − mNEf

] (
2k0 0
k1τ3 0

)
,

S
(n)
2,q(Ei,k) = e y2

48
√

3π2

1

Ef − Ei

∫ �

0
dqq2t

(n)†
3H

(q)D(n)(Ef ,q)
1

kq

[
Q0(

mNEi − k2 − q2

kq
) − Q0

(
mNEf − k2 − q2

kq

)]

×
( −k0 + k1τ3 0

−3k0 − k1τ3 0

)
,

S
(n)
3,q(Ei,k) = e

3
√

3mNρd

t
(n)†
3H

(k)D(n)(Ef ,k)

( −2L2 0√
ρd

r0
L1τ3 0

)
,

S
(n)
4,q(Ei,k) = e y2

24
√

3π2

1

Ef − Ei

∫ �

0
dqq2t

(n)†
3H

(q)
1

kq

[
D(n)(Ei,q)Q0

(
mNEi − k2 − q2

kq

)

−D(n)(Ef ,q)Q0

(
mNEf − k2 − q2

kq

)] (
k0 + k1τ3 0

0 0

)
,

S
(n)
5,q(Ei,k) = 0. (20)

The results of M
(n)
i,x are obtained after applying the appro-

priate projection operators for initial and final states. We note
that the S

(n)
5,q must be zero since in the quartet (S= 3

2 ) channel all
spins are aligned and there is no three-body interaction in this
channel because the Pauli principle forbids the three nucleons
to be at the same point in space.

Low-energy observables of the nd → 3Hγ process are
cutoff-independent by the introduction of H0 and H2 up to
N2LO (see Table II). Namely, they are renormalized and
therefore no new three-body forces are needed up to N2LO.
The same argument can be applied equally with three-body
currents [21], so no three-body currents are included in the
present calculation.

We stress that the M (n)
x amplitude is a 2 × 2 matrix

which is written in the cluster-configuration space and so the
contributions of both initial ndt and nds systems are taken
into account. Thus, the physical amplitude of the nd →3Hγ
process is given by

M(n)
x (E; k,p) = M (n)

x (E; k,p) ·
(√

Z (n)
t

0

)
, (21)

where Z (n)
t indicates the normalization factor of the incoming

deuteron wave function at NnLO,

Z (n)
t =

(
∂

∂q0

1

D
(n)
t (q0,q)

∣∣∣∣
q0=− γ 2

t
mN

,q=0

)−1

. (22)

We note that τ3 = −1 must be applied for the nd →3Hγ
process.

III. CROSS SECTION OF nd → 3Hγ PROCESS

In the following, we use the W (n) amplitude for calculating
the total cross section of nd → 3Hγ . In order to proceed to
calculate the cross section, we use the following spin sums:∑

spin/pol

(t†YdN )(N †Y †
q t) = 0,

1

6

∑
spin/pol

|t†YdN |2 = 2

9
, (23)

1

6

∑
spin/pol

|t†YqN |2 = 4

9
,
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where the factor 1
6 comes from the average over initial state

polarizations. The above calculations are done in the Coulomb
gauge �̃q · �εγ and the results are given using εi∗

d ε
j
d = ε

j∗
d εi

d =
δij , �̃q = (0,0,1) and �ε±

γ = 1√
2
(1,∓i,0), where the upper and

lower signs denote the photon with the right and left helicity,
respectively.

From Eq. (23), the total cross section of the neutron
radiative capture by a deuteron can be written as

σ
(n)
tot = (Ei − Ef )3

v

∣∣M(n)
d

∣∣2 + 2
∣∣M(n)

q

∣∣2

27
, (24)

where the “(n)” superscript denotes NnLO results and v is the
incident neutron velocity in the c.m. frame.

IV. NUMERICAL IMPLEMENTATION

In the computation of the M1 amplitude of the diagrams
in Fig. 1, we need to obtain the triton wave function and
the half-off-shell Nd scattering amplitude at leading (LO),
next-to-leading, and next-to-next-to-leading orders. The half-
off-shell neutron-deuteron scattering is obtained order by
order by solving numerically the Faddeev equations which
are introduced in Appendix A for both initial doublet and
quartet channels. We solve them by the Hetherington-Schick
method [22–24] in a Mathematica code with a specific cutoff
momentum �. We also obtain the triton wave function at each
order by solving the homogenous part of the Faddeev equations
of Nd scattering in the doublet channel with the same cutoff
and then normalize it by the method which is introduced in
Appendix B.

Using the order-by-order results of t
(n)
3H

and t (n)
x (x = d and

q), we can be able to solve the integrations in Eqs. (17), (19),
and (20) to obtain the M1 amplitude of nd → 3Hγ . We solve
these integrations numerically using the Gaussian quadrature
weights and also the same cutoff momentum � as before.

As we see from Eq. (2), the parameters H0(�) and H2(�)
must be determined order by order for the cutoff �. At each
order, we obtain the value of H0 by constructing the exact
triton scattering length, a3 = 0.65 fm. The H2 parameter which
enters at N2LO is determined for an arbitrary cutoff value by
matching the triton binding energy to the experimental value,
B

exp
t = 8.48 MeV.

V. RESULTS

In this work, we have concentrated on the evaluation of
the cross section of the nd → 3Hγ process up to N2LO.
Our EFT(/π ) results for the amplitudes and cross sections of
the nd → 3Hγ process at thermal energy 2.5 × 10−8 MeV
are shown in Table I. We compare schematically our EFT(/π )
results at thermal energy for the cross section with the previous
model-dependent theoretical calculations and the experimental
data in Fig. 3.

We use the power counting introduced by Bedaque etal.
in [19,25,26]. The EFT(/π ) expansion parameter is Q

�̄
∼ 1

3 ,
where Q and �̄ are the small and large parameters, so the NLO
and N2LO diagrams enter 33% and 11% corrections to the
leading- and next-to-leading-order amplitudes, respectively.

TABLE I. Our EFT(/π) results for the amplitudes and cross
sections of the nd → 3Hγ process at thermal energy 2.5 × 10−8 MeV.
n denotes our results up to NnLO.M(n)

x and σ (n)
x are the amplitude and

cross section of the nd → 3Hγ process for the incoming x (x = d,q)
channel up to NnLO, respectively. σ

(n)
tot is the total cross section up to

NnLO. The deviations which have been added to our EFT(/π) results
of the total cross section indicate the systematic EFT(/π) errors at each
order. The results of the amplitudes and cross sections are presented

in 10−7 MeV− 5
2 and mb units, respectively.

n

√
|M(n)

q |2
√

|M(n)
d |2 σ (n)

q σ
(n)
d σ

(n)
tot

0 4.88 3.65 0.232 0.065 0.297 ± 0.196
1 5.20 5.68 0.264 0.157 0.421 ± 0.093
2 5.30 6.33 0.273 0.196 0.469 ± 0.033

Also, with respect to our power counting, the error of N2LO
amplitude must be less than 3.7% of the exact value. The cross
section is proportional to the square of the amplitude. It is
obvious that if the systematic EFT(/π ) error in the amplitude is
“α”, as an example, the cross section has a maximum error
∼2α% in the EFT(/π ) approach. So, we expect to have a
maximum error of 7% at N2LO for the cross section.

Our results in Table I show the convergence in our
power counting from LO to N2LO. At NLO, 0.124 mb
adds to the leading-order value and at N2LO 0.048 mb
to the next-to-leading order. Our EFT result for the total
cross section of neutron radiative capture by a deuteron
at N2LO, σ

(2)
tot = 0.469 mb, has an error of 7% compare

with the experimental value, σ
exp
tot = 0.508 ± 0.015 mb. We

Experiment

Our EFT results

Earlier N LO EFT result

AV14 VIII IA MI MD

AV18 IX IA MI MD

AV14 VIII IA MI MD

AV18 IX IA MI MD

AV14 VIII IA MI MD

AV18 IX IA MI MD

AV18 IX gauge inv.

AV18 IX gauge inv. 3N current

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Method

T
ot
al
cr
os
ss
ec
tio
n
m
b

FIG. 3. (Color online) Comparison between different theoretical
results for the total cross section of the nd → 3Hγ process.
The points from left to right denote the results computed by
experiment [15], our LO EFT(/π), our NLO EFT(/π), our N2LO
EFT(/π), earlier N2LO EFT(/π) [3], AV14/VIII(IA+MI+MD)[14],
AV18/IX(IA+MI+MD)[14], AV14/VIII(IA+MI+MD+�PT )[14],
AV18/IX(IA+MI+MD+�PT )[14], AV14/VIII(IA+MI+MD+
�)[14], AV18/IX(IA+MI+MD+�) [14], AV18/IX(gauge inv.) [27],
and AV18/IX(gauge inv.+3N -current) [27] methods, respectively.
The thin band indicates the error band of the experimental result of
the cross section. Two horizontal dashed lines determine the upper
and lower limits due to our systematic EFT(/π) error at N2LO.
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TABLE II. The cutoff variation of our EFT(/π) results for the
total cross section between � = 200 and � = 900 MeV. n = 0,1,2
denotes the LO, NLO, and N2LO results, respectively.

n Abs[1 − σ
(n)
tot (�=200 MeV)

σ
(n)
tot (�=900 MeV)

]

0 0.098756
1 0.045714
2 0.004006

stress that the contribution of the E2 transition has not been
included in our calculation for the amplitude of the nd → 3Hγ
reaction. The E2 transition is suppressed by two powers of the
initial nucleon momentum or photon energy compared to the
dominant M1 transition. Therefore, this effect numerically
has a contribution of ( (Ei−Ef ) or k

�
)2 ∼ 0.25% correction in the

quartet-initial-channel amplitude of nd → 3Hγ and so ∼0.5%
in total cross section at threshold regime. Also, with respect to
the power counting as discussed above, we expect a maximum
error ∼7% in N2LO EFT(/π ) results of the cross section. Thus
the 7% error in our N2LO results is acceptable. We believe that
the higher-order corrections make this discrepancy narrow.

According to Table II, we have computed the cutoff
variation of our EFT(/π ) results for the total cross section
within a natural range of � = 200 to � = 900 MeV at LO,
NLO, and N2LO. The range of cutoff variation should be a
few times the pion mass because, here, the existence of a
definite � → ∞ limit in an EFT calculation does not guarantee
that the results found in that limit are rigorous consequences
of the EFT [28,29]. Our results in Table II indicate that
the M1 amplitudes and the cross section of nd → 3Hγ are
cutof-independent and properly renormalized. The differences
of our results and the previous EFT(/π ) calculation of total cross
section at thermal energy [3] are due to the ignored diagrams
and the 3S1 → 3S1 M1 transition effects.

The L2 coefficient corresponding to the contribution of the
3S1 → 3S1 M1 transition is small compared with L1 which
comes from the 1S0 →3S1 M1 transition [20]. So, we expect
that the 3S1 → 3S1M1 transition has a small (and negligible)
effect at NLO results but at N2LO the 3S1 → 3S1 M1 transition
could have a significant effect. Our results for the total cross
section with and without the L2 coefficient effect which are
summarized in Table III are as we expected.

The effects of the diagrams in Fig. 1 which have been
neglected in the previous EFT(/π ) calculation [3] have been
investigated in Table IV. The results in the third column of
Table IV are the total doublet and quartet amplitudes of the
M1 nd → 3Hγ transition at LO, NLO, and NnLO. In the fourth

TABLE III. The 3S1 → 3S1 M1 transition effect in the total cross
section at LO (n = 0), NLO (n = 1), and N2LO (n = 2).

n σ
(n)
tot (L2 = 0) σ

(n)
tot (L2 = −0.4 fm) difference

0 0.297 ± 0.196 0.297 ± 0.196 0
1 0.472 ± 0.104 0.421 ± 0.093 0.051
2 0.553 ± 0.041 0.469 ± 0.033 0.084

TABLE IV. The investigation of the ignored contributions in the
previous EFT(/π) calculation [3] at each order. M̄(n)

x indicates the
total NnLO amplitude of M1 nd → 3Hγ without the contribution of
the time ordering that corresponds to the photon emitted during the
nucleon exchange in the first diagram of the second line in Fig. 1.
M(n)

013,x denotes the sum of the amplitudes of the diagrams “a0”,

“a1”, and “a3” for the incoming x channel. Also, M(n)
2,x is only the

contribution of the “a2” diagram in the first line of Fig. 1 for the initial
x channel, respectively. q and d in the first column indicate the initial
quartet (4S 3

2
) and doublet (2S 1

2
) channels, respectively. The results of

the amplitudes are presented in units of 10−7 MeV− 5
2 .

x n

√
|M(n)

x |2 Abs[
√

|M(n)
x |2

√
|M(n)

013,x |2
√

|M(n)
2,x |2

−
√

|M̄(n)
x |2]

0 4.88 ± 1.61 0.10 5.27 0.21
q 1 5.20 ± 0.57 0.47 6.05 0.42

2 5.30 ± 0.19 0.90 6.26 0.58
0 3.65 ± 1.20 2.11 3.79 1.16

d 1 5.68 ± 0.63 2.94 4.37 2.41
2 6.33 ± 0.23 3.47 4.55 3.39

column, we present the computed values of the contribution
which is only corresponding to the nucleon pole before photon
creation in the first diagram in the second line of Fig. 1 at each
order. The fifth and sixth columns of Table IV represent only
the evaluated values for the amplitudes of the “a0 + a1 + a3”
and “a2” diagrams in the first line of Fig. 1, respectively, for
both doublet and quartet channels.

The lack of a correct calculation of the first diagram of the
second line in Fig. 1 creates the significant errors as indicated in
the fourth column of Table IV at each order. The results shown
in the fifth column of Table IV indicate that the diagrams with
radiation from external nucleon leg, external deuteron leg, and
on-shell two-body bubble in the first line of Fig. 1 are LO
effects and so one expects that these diagrams have a very
important effect in the final results of the amplitude of the
M1 nd → 3Hγ transition and could not be ignored. But the
last column depicts that the diagram “a2” in the first line of
Fig. 1 has a small effect at LO especially in the quartet channel
as estimated in the previous EFT(/π ) calculation [3]. Finally,
we emphasize that our results have been evaluated using the
properly normalized triton wave function.

VI. CONCLUSION AND OUTLOOK

In the present parity-conserving EFT(/π ) calculation, we
have calculated the amplitudes and cross section for nd →3Hγ
fully in the cluster-configuration space up to N2LO. We
have considered one- and two-body currents. No three-body
currents are needed to renormalize the observables in this work
up to N2LO. The M1 is the dominant transition at the low
energies. We have included the contribution of the possible
diagrams which have not been included in the previous EFT(/π )
calculations and used the properly normalized triton wave
function. We have also considered the effects of the 3S1 → 3S1

M1 transition [L2 coefficient in Eq. (3)] in the nd → 3Hγ
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==                      + 

  +            + 

FIG. 4. The Nd scattering diagrams up to NnLO (n � 2). All notations are the same as in Fig. 1.

amplitudes together with other transitions which are included
in the previous EFT(/π ) calculations.

The N2LO EFT(/π ) total cross section is determined to
be σ

(2)
tot = 0.469 ± 0.033 mb. The reliable calculation of the

doublet and quartet amplitudes can be used in the calculation
of parity-violating observables in the nd → 3Hγ process.
The N2LO EFT(/π ) total cross section σ

(2)
tot is within 7% of

the measured values. The remaining discrepancies between

theory and experiment indicate that inclusion of 1) higher order
corrections and 2) higher-order multipoles contributions, may
refine the differences.
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APPENDIX A: FADDEEV EQUATIONS OF Nd SCATTERING IN THE DOUBLET AND QUARTET CHANNELS

The diagrams of the Nd scattering amplitude up to NnLO are shown in Fig. 4. The Faddeev equation of the diagrams in Fig. 4
for the quartet channel in the cluster-configuration space is given by(

t (n)
q (E; k,p) 0

0 0

)
= −4πK(E; k,p)

(
1 0
0 0

)
+ 2

π

∫ �

0
dq q2 K(E; q,p)D(n)(E,q)

(
t (n)
q (E; k,p) 0

0 0

)
(A1)

and for the Nd scattering in the doublet (S= 1
2 ) channel, we have(

t
(n)
ddt N→dt N

t
(n)
ddsN→dt N

t
(n)
ddt N→dsN

t
(n)
ddsN→dsN

)
(E; k,p) = 2π

[
K(E; k,p)

(
1 −3

−3 1

)
+ H(E,�)

(
1 −1

−1 1

)]

− 1

π

∫ �

0
dqq2

[
K(E; q,p)

(
1 −3

−3 1

)
+ H(E,�)

(
1 −1

−1 1

)]

×D(n)(E,q)

(
t

(n)
ddt N→dt N

t
(n)
ddsN→dt N

t
(n)
ddt N→dsN

t
(n)
ddsN→dsN

)
(E; k,q), (A2)

where E = 3k2

4mN
− γ 2

t

mN
, k and p are the total energy of Nd system, the incoming and outgoing momentums, respectively. In

Eq. (A2), t
(n)
ddxN→dyN

denotes the dxN → dyN transition amplitude (x,y = s or t) in the doublet channel. The propagator of the
exchanged nucleon, K, is

K(E; k,p) = 1

2

∫ 1

−1

d(cos θ )

k2 + p2 − ME + kp cos θ
, (A3)

where θ indicates the angle between �k and �p vectors. Other variables in the above equation are similar to the text. The results of
Eqs. (A1) and (A2) are evaluated by considering the operators for projecting the Nd system to 2S 1

2
and 4S 3

2
channels. For the

doublet and quartet channels the projection operators Pd,iA and Pj
q,i are used, respectively, with isospin index A and spin indices

i and j [10].
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APPENDIX B: TRITON WAVE FUNCTION

The normalized triton wave function is obtained by solving the homogeneous part of Eq. (A2) with the application of E = −Bt ,
where Bt is the binding energy of the triton. So, the homogeneous part of Eq. (A2) for the calculation of the triton wave function
up to NnLO can be written as

t
(n)
3H

(p) = − 1

π

∫ �

0
dqq2

[
K(−Bt ; q,p)

(
1 −3

−3 1

)
+ H(−Bt,�)

(
1 −1

−1 1

)]
D(n)(−Bt,q) t

(n)
3H

(q), (B1)

where t
(n)
3H

(q) = (
t

(n)
3Hdt N→dt N

(q) t
(n)
3HdsN→dt N

(q)

t
(n)
3Hdt N→dsN

(q) t
(n)
3HdsN→dsN

(q)
). Generally, t (n)

3HdxN→dyN
(q) denotes the contribution of the dxN → dyN transition (x,y =

s or t) for making the triton.
One can be able to normalize the solution of Eq. (B1) for the incoming deuteron channel by [9]

1 = −
∫

q2 dq

2π2

∫
q ′2 dq ′

2π2

(
t

(n)
3H

(q)

(
1
0

))†D(n)(−Bt,q)
∂

∂E
[V (E,q,q ′)D(n)(E,q ′)]|E=−Bt

t
(n)
3H

(q ′)
(

1
0

)
, (B2)

where V is given by

V (E,q,q ′) = 2π

[
K(E; q,q ′)

(
1 −3

−3 1

)
+ H(E,�)

(
1 −1

−1 1

)]
. (B3)

If we need to find the normalized contribution of the triton wave function which comes from the incoming singlet dibaryon
field, the replacement (1

0) by (0
1) in Eq. (B2) must be done.
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