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3He and pd scattering to next-to-leading order in pionless effective field theory
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We study the three-body systems of 3He and pd scattering and demonstrate, both analytically and numerically,
that a new pd three-body force is needed at next-to-leading order in pionless effective field theory. We also show
that at leading order these observables require no new three-body force beyond what is necessary to describe nd

scattering. We include electromagnetic effects by iterating only diagrams that involve a single photon exchange
in the three-body sector.
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I. INTRODUCTION

There remain long-standing open questions in three-
nucleon physics. One example is the Ay puzzle, where
experimental evidence [1–3] is not consistent with existing
theoretical predictions [4–6]. For decades these systems
were studied using various potential models [7]. Now the
technology of effective field theories (EFTs) has advanced to
the point where we can address these issues using a systematic,
QCD-symmetry-based EFT to complement the predictions of
potential models. It is clear that the resolution of outstanding
three-nucleon puzzles will require EFT calculations to high
precision. This paper is part of that effort.

For momenta below the threshold for producing dynamical
pions (p < ��π ∼ mπ ), nuclear physics can be described by a
Lagrangian that consists solely of contact interactions between
and among nucleon fields and external currents. This theory,
pionless effective field theory (EFT �π ), has a simple and
manifest power counting [8–12]. In the two-nucleon sector
EFT �π has been used successfully to calculate nucleon-nucleon
(NN) scattering [13–16], electromagnetic form factors of the
deuteron [17], and the neutron-proton capture process [18,19].
It has also been used to study NN parity-violation [20–23] and
neutrino-deuteron processes [24–27].

In three-nucleon systems, EFT �π has been used to calculate
nucleon-deuteron (Nd) scattering [28–34], 3H and 3He bound-
state properties [35], and parity violation in nd interactions
[36,37]. The case of pd scattering in EFT �π was originally
investigated by Rupak and Kong [30]. They treated Coulomb
corrections perturbatively in α, the fine structure constant, and
developed a new power counting scheme in which the usual
Q counting was supplemented with an additional scale p,
the external momentum. They were able to calculate quartet
S-wave pd scattering to next-to-next-to-leading order (NNLO)
when certain diagrams were partially resummed [29,32] and
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found reasonable agreement with phase-shift data. However,
their technique encountered numerical problems at center-of-
mass (c.m.) momenta below 20 MeV. Further, their calculation
was not strictly perturbative in the EFT �π power counting, but
contained a subset of higher-order terms.

The work presented here builds upon that of König and
Hammer [33] who, extending the previous work of Rupak
and Kong, carried out calculations up to NNLO for both the
quartet and the doublet S-wave channels. Using an optimized
integration mesh they were able to obtain reasonable results
down to a c.m. momentum of about 3 MeV. However, again
this calculation was not strictly perturbative in the EFT �π power
counting. In addition, they assumed that up to next-to-leading
order (NLO) the three-body forces from doublet S-wave nd
scattering were sufficient to obtain cutoff-independent results
for pd scattering. Although their NLO phase shifts seem to
have reasonable cutoff dependence, they did not go to large-
enough cutoffs to really test cutoff independence. Indeed, we
show here that at NLO, fixing a three-body force to only nd
physics yields pd phase shifts and 3He binding energies that
do not converge for large cutoffs.

The primary results of this paper are as follows: We show
analytically and numerically that at leading order (LO) no
new three-body forces are needed in pd scattering beyond
those for nd scattering. However, we show that at NLO a new
pd three-body force is required to obtain cutoff-independent
results for pd scattering. Without that force we see that for
cutoffs much larger than 600 MeV there is significant cutoff
variation in the NLO pd phase shifts and NLO corrections
to the 3He binding energy. At NLO we fit this new three-
body force to the 3He binding energy and show that we then
obtain cutoff-independent results for the NLO pd phase shifts.
We also calculate an analytical form for this three-body force
and demonstrate agreement with the numerically calculated
values.1

1After discovering the necessity for an α-dependent three-body
force at NLO in the ppn system, four of the authors became aware
of parallel work done by others in the field. One of those (S.K.)
subsequently joined this paper as a fifth author; a part of his analysis
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II. EFFECTIVE LAGRANGIAN

The Lagrangian in the auxiliary field formalism up to NLO, including electromagnetic interactions and three-body forces, is
given by

L = N̂ †
(

iD0 +
�D2

2MN

)
N̂ − t̂

†
i

(
iD0 +

�D2

4MN

− �
(3S1)
(−1) − �

(3S1)
(0)

)
t̂i + yt [t̂

†
i N̂

T PiN̂ + H.c.]

− ŝ†a

(
iD0 +

�D2

4MN

− �
(1S0)
(−1) − �

(1S0)
(0)

)
ŝa + ys[ŝ

†
aN̂

T P̄aN̂ + H.c.] + Lphoton + L3, (1)

where the deuteron field (spin-singlet dibaryon field) t̂i (ŝa) is a spin-triplet isosinglet (spin-singlet isotriplet) combination
of nucleons. The projector Pi = 1√

8
σ2σiτ2 (P̄a = 1√

8
τ2τaσ2) projects out the spin-triplet isosinglet (spin-singlet isotriplet)

combination of nucleons. The covariant derivative is defined by

Dμ = ∂μ + ieÂμQ, (2)

with the charge operator Q = 1,(1 + τ3)/2,1 + I3 for the 1,2, and 3 representations of SU(2) isospin, respectively (I3 being the
isotriplet operator for isospin in the “z” direction). The Lagrangian for pure photon contributions, Lphoton, contains a kinetic and
gauge-fixing piece. Because we need only static Coulomb exchange we keep only the temporal component of Âμ. The propagator
for the exchange of such potential photons is given by

i�Coulomb(�k) = i

�k2 + λ2
, (3)

where λ is a finite photon mass used to regulate both infrared and collinear divergences and �k is the photon three-momentum.
The results for zero photon mass are obtained by numerically extrapolating to the λ = 0 limit.

We do not need to include magnetic-moment interactions in our NLO calculation. Reference [18] includes such effects at
N2LO in the spin-singlet np channel, but generically, because compared to the leading Coulomb-photon exchange they scale
as Q2

M2
N

and MN � ��π ∼ mπ , such effects are typically even smaller than N2LO corrections (cf. the counting of relativistic

corrections in Refs. [14,18]).
The Lagrangian for the three-body force is given by

L3 = MNH0(�)

3�2

[
yt N̂

†(�t · �σ )† − ysN̂
†(�s · �τ )†

] [
yt (�t · �σ )N̂ − ys(�s · �τ )N̂

]+ MNH
(α)
0 (�)

3�2

[
yt N̂

†Q(�t · �σ )†

− ysN̂
†Qŝ

†
3τ

3 − ysN̂
†(ŝ1τ

+)†
] [

yt (�t · �σ )QN̂ − ys(ŝ3τ
3)QN̂ − ys(ŝ1τ

+)N̂
]
, (4)

with τ+ = −(1/
√

2)(τ 1 + iτ 2) and H0(�) and H
(α)
0 (�) hav-

ing explicit cutoff dependence to make the resulting physics
cutoff independent order by order in the EFT �π expansion. The
expansion parameter of EFT �π can be written as Q

�
∼ γtρt ,

which implies that the a priori estimate for the uncertainty of
a NLO calculation is O[(γtρt )2], or roughly 17%.

H0(�) and H
(α)
0 (�) are decomposed into LO, NLO, etc.,

pieces, yielding

H0(�) = H0,0(�)︸ ︷︷ ︸
LO

+H0,1(�)︸ ︷︷ ︸
NLO

+ · · · (5)

[38] is also presented here. The authors then became aware of previous
discussions of the possibility of such a force that took place between
U. van Kolck and H.-W. Hammer, with additional discussions among
Hammer, D. R. Phillips, and S.K. Further work was then carried out
by S.K., H. W. Grießhammer, and Hammer. A paper on this topic is
forthcoming [39].

and

H
(α)
0 (�) = H

(α)
0,0 (�)︸ ︷︷ ︸

LO

+H
(α)
0,1 (�)︸ ︷︷ ︸
NLO

+ · · · , (6)

so that H0(�) and H
(α)
0 (�) need not be refit at each order. At

LO, H0,0(�) removes all cutoff dependence to order (1/�),
and H

(α)
0,0 (�) = 0. This is shown in Sec. VII. The NLO piece

H0,1(�) removes linear and logarithmic divergences from the
diagrams of nd scattering at NLO. A new feature that arises in
the case of pd scattering at NLO is the need for an α-dependent
three-body force H

(α)
0,1 (�). As shown in Sec. IX, including

isospin breaking in the effective range for the np and pp

singlet dibaryon propagators requires H
(α)
0,1 (�) to remove both

linear and logarithmic-type divergences. If isospin breaking
effects in the effective range are ignored in pd scattering, only
logarithmic-type divergences need to be removed by H

(α)
0,1 (�).

In the Lagrangian of Eq. (1), the term �
(3S1)
(0) and the deuteron

kinetic term are subleading compared to �
(3S1)
(−1) . The bare

deuteron propagator is given by i/�
(3S1)
(−1) and is dressed at

LO by an infinite number of nucleon bubbles as in Fig. 1.
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(LO)

(NLO)

FIG. 1. At LO the bare deuteron propagator i/�
(3S1)
(−1) is dressed by an infinite number of nucleon bubbles to give the LO dressed deuteron

propagator. At NLO the dressed deuteron propagator receives one effective range correction, which comes from the deuteron kinetic term and

the NLO correction �
(3S1)
(0) .

The sum of nucleon bubbles is a geometric series. Unknown
coefficients are fit to ensure that the deuteron pole is at the
correct position. At NLO the deuteron propagator gains a

single insertion of the deuteron kinetic term and �
(3S1)
(0) , as

shown in Fig. 1. The �
(3S1)
(−1) , �

(3S1)
(0) , and yt coefficients are

fit by ensuring that the deuteron pole is unchanged and that
either (i) the deuteron pole has the correct residue, known as
Z-parametrization, or (ii) the effective range expansion (ERE)
about the deuteron pole is reproduced perturbatively, known as
ERE parametrization [32,40]. For this paper we adopt the latter
approach. Details of this procedure and the resulting values of
the coefficients have been discussed in Ref. [32], so we merely
quote the expression for the deuteron propagator to NLO in
the ERE parametrization,

iDt (p0,�p) = 4πi

MNy2
t

1

γt −
√

�p2

4 − MNp0 − iε

×

⎡
⎢⎢⎢⎣ 1
︸︷︷︸

LO

− ρt

2

(√ �p2

4
− MNp0 − iε + γt

)
︸ ︷︷ ︸

NLO

⎤
⎥⎥⎥⎦ .

(7)

Here γt = 45.7025 MeV is the deuteron binding momentum
and ρt = 1.765 fm is the effective range about the deuteron
pole. Analogously the spin-singlet dibaryon propagator to
NLO is [32]

iDs(p0,�p) = 4πi

MNy2
s

1

γs −
√

�p2

4 − MNp0 − iε

×

⎡
⎢⎢⎢⎢⎢⎣ 1

︸︷︷︸
LO

− ρs

2

�p2

4 − MNp0

γs −
√

�p2

4 − MNp0 − iε︸ ︷︷ ︸
NLO

⎤
⎥⎥⎥⎥⎥⎦ ,

(8)

where γs = 1/as , as = −23.714 fm is the scattering length
in the 1S0 channel, and ρs = 2.73 fm is the effective range in
the 1S0 channel in an expansion about zero momentum. In the
case where the spin-singlet dibaryon consists of two protons,
Coulomb corrections must be included, as in Fig. 2. All
nucleon bubbles in this modified propagator have Coulomb-

photon exchanges between the nucleons. These exchanges can
be resummed to all orders yielding the pp dibaryon propagator
to NLO [13,41],

iDpp(p0,�p) = 4πi

MNy2
s

1
1
aC

+ 2κH (κ/p′)

×

⎡
⎢⎢⎢⎢⎣ 1

︸︷︷︸
LO

− rC

2

�p2

4 − MNp0

1
aC

+ 2κH (κ/p′)︸ ︷︷ ︸
NLO

⎤
⎥⎥⎥⎥⎦ , (9)

where

p′ = i

√
�p2

4
− MNp0 − iε, κ = αMN

2
, (10)

and

H (η) = ψ(iη) + 1

2iη
− ln(iη). (11)

The function ψ is the logarithmic derivative of the �
function. The scattering length in the pp channel is aC =
−7.8063 fm, and the effective range rC = 2.794 fm.

We label the propagators using the notation D
(n)
t (p0,�p),

where n = 0,1 refers to LO and NLO, respectively. Thus,
D

(0)
t (p0,�p) is the LO deuteron propagator and D

(1)
t (p0,�p)

contains only the NLO piece of the deuteron propagator, as
labeled in Eq. (7). So Dt (p0,�p) = D

(0)
t (p0,�p) + D

(1)
t (p0,�p) +

· · · . Analogous labeling is used for the np spin-singlet and pp
spin-singlet dibaryon propagators.

The deuteron wave-function renormalization is given by the
residue of the dressed deuteron propagator at the deuteron pole.
To simplify expressions for the amplitudes, we absorb into
them a factor of 4/MN , which requires dividing the deuteron
wave-function renormalization by the same factor. To NLO
this yields

ZD = 2πγt

MNy2
t

⎡
⎣ 1︸︷︷︸

LO

+ γtρt︸︷︷︸
NLO

+ · · ·
⎤
⎦ , (12)

where ZLO = (2πγt )/(MNy2
t ) and ZNLO = ZLOγtρt , and

ZD = ZLO + ZNLO + · · · . Note that in the ERE parametriza-
tion the residue is approached perturbatively order by order
and is not exact at NLO, unlike in the Z-parametrization.
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FIG. 2. (Color online) At LO the pp nucleon bubble has an infinite series of ladder diagrams of Coulomb photon exchanges that can

be resummed [13,41]. The LO bare spin-singlet dibaryon propagator i/�
(1S0)
(−1) is dressed by an infinite number of pp nucleon bubbles with

photon ladder sums to give the LO dressed pp dibaryon propagator. At NLO the dressed pp dibaryon propagator receives one effective range
correction.

III. COULOMB DIAGRAMS

For this calculation we use the power counting scheme
for pd scattering introduced by Rupak and Kong [30]. In
their scheme the usual Q ∼ γt counting is supplemented
by a new scale for the external momentum, p. Coulomb
contributions scale as αMN/p. For low momentum transfers
these will dominate over the scale Q from strong physics. For
momenta p � Q the usual Q counting is recaptured. The loop
integration measure is q0q3. In this power counting scheme,
q0 ∼ Q2/MN , and q either scales as Q or p, depending upon
whether the diagram is dominated by the external momentum
p or the binding momentum γt ∼ Q. In the integrand, dressed
dibaryon propagators scale as Q/q2 and photon propagators
as 1/q2. Nucleon lines scale as MN/Q2. Using this power
counting scheme the diagrams in Fig. 3 contribute at LO.
With y2

t ∼ y2
s ∼ ��π/M2

N [29], where ��π ∼ mπ is the cutoff of
EFT �π , diagram (a) scales as α��π/p2Q and diagrams (b), (c),
and (d) all scale as α��π/Q3. At low momentum, diagram (a)
has an infrared divergence because it scales as 1/p2. However,
this divergence will be regulated by a finite photon mass.
The remaining diagrams (b)–(d) are infrared finite. Both 3He
and 3H have a bound-state momentum of roughly 75 MeV.
For this momentum, diagrams (a)–(d) are equally important;
numerically, we show that all diagrams are equally important
in predicting the correct 3He bound-state energy. Calculations
for pd scattering have been carried out in Ref. [33] for both the
quartet and the doublet S-wave channel Coulomb-subtracted
phase shifts. In that calculation, as in the earlier one by Rupak
and Kong [30], diagram (d) is dropped because it is a 7% effect
at zero momentum, and diagrams (b) and (c), contributing each
at the 15% level, are also dropped. (In addition, diagram (a)
is approximated using an on-shell approximation in which the
dynamics from the nucleon bubble are neglected.)

These approximations yield good agreement with available
phase-shift data. However, it is not legitimate to apply them
in the bound-state regime, and so we do not use them in this

paper. Rather, we include all diagrams shown in Fig. 3 and
keep the full dynamical expression for diagram (a). Projecting
diagram (a) onto the S-wave channel yields the analytical form

B(q,p,E) = 4αMN

qp
F1

[
λ,2

√
3

4
q2 − MNE − iε

+ 2

√
3

4
p2 − MNE − iε,�q − �p

]
, (13)

where �q is the relative incoming three-momentum, q its
magnitude, �p is the relative outgoing three-momentum, p its
magnitude, and E the total energy of the system. The function
F1[a,b,�c + �d] for Re(b) > Re(a) is defined as

F1[a,b,�c + �d]

= − 1

4a

{
ln(z2 + a2) ln

(
b − a

b + a

)

− Li2

(
− i

z − ia

b − a

)
+ Li2

(
i
z − ia

a + b

)

− Li2

(
i
z + ia

b − a

)
+ Li2

(
− i

z + ia

a + b

)} c+d∣∣∣∣
|c−d|

, (14)

and for Re(a) > Re(b) as

F1[a,b,�c + �d]

= 1

a
tan−1

(
z

b

)
tan−1

(
z

a

)
+ 1

4a

{
ln(z2 + b2) ln

(
a − b

b + a

)

− Li2

(
− i

z − ib

a − b

)
+ Li2

(
i
z − ib

a + b

)

− Li2

(
i
z + ib

a − b

)
+ Li2

(
− i

z + ib

a + b

)} c+d∣∣∣∣
|c−d|

, (15)

(a) (b) (c) (d)

FIG. 3. Coulomb corrections at LO. Single lines are nucleon propagators, wavy lines are Coulomb photon propagators, double lines are
either np spin-singlet or spin-triplet dibaryons, and the thick solid lines are pp dibaryons.
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where the bar notation is defined as

f (z)
c+d∣∣
|c−d|

= f (c + d) − f (|c − d|). (16)

A similar calculation for diagram (b) yields

V1(q,p,E) = 4αMN

qp
F1

[
2

√
3

4
q2 − MNE − iε,

2

√
3

4
q2 − MNE − iε + 2λ,�q + 2�p

]
.

(17)

The S-wave projection of diagram (c), V2(q,p,E), is related
to that of diagram (b) by time-reversal symmetry:

V2(q,p,E) = V1(p,q,E). (18)

Diagram (d) is more challenging. In principle, it can be solved
and projected out in the S-wave channel exactly [28]. However,
the resulting form is too lengthy and cumbersome for practical
computation. Instead, for λ 	 γt we expand diagram (d) in
powers of λ [42]. Keeping all terms linear in λ yields

C(q,p,E)

= −2αMN

(
2

qp
F1

[√
2MNE − 3q2 − 3p2 + iε,

2

√
3

4
q2 − MNE − iε

+ 2

√
3

4
p2 − MNE − iε,�q − �p

]

+ λ
1

(p2 + q2 − MNE − iε)2 − p2q2
+ O(λ2) + · · ·

)

(19)

for the S-wave projected version of diagram (d).

IV. LEADING-ORDER SCATTERING AMPLITUDE

The LO pd scattering amplitude is found by solving the
set of coupled integral equations shown in Fig. 4. The ovals
with a capital “T” represent the t0,Nt→Nt (k,p,E) amplitude,
“S” the amplitude t0,Nt→Ns(k,p,E), and “P” the amplitude

t0,Nt→Npp(k,p,E), where the subscript 0 labels LO, t labels the
spin-triplet “deuteron,” s labels the spin-singlet np dibaryon,
and pp labels the spin-singlet pp dibaryon. The relative
incoming momentum is �k and the relative outgoing momentum
is �p; see Fig. 5 in Ref. [28] for momentum assignments.
Projecting the diagrams in Fig. 4 onto the doublet S-wave
channel, the scattering amplitude in cluster-configuration
space [32] at LO is

t0(k,p,E) = B0(k,p,E) + K0(q,p,E) ⊗ t0(k,q,E). (20)

The subscript 0 refers to LO and the bold script indicates that
this is a matrix equation in cluster configuration space. The
amplitude t0(k,p,E) is a three-vector defined by

t0(k,p,E) =
⎛
⎝ t0,Nt→Nt (k,p,E)

t0,Nt→Ns(k,p,E)
t0,Nt→Npp(k,p,E)

⎞
⎠ , (21)

with t0,Nt→Nt (k,p) the amplitude for pd scattering,
t0,Nt→Ns(k,p) the amplitude for pd going to a proton and an
np spin-singlet dibaryon, and t0,Nt→Npp(k,p) the amplitude
for pd going to a neutron and a pp spin-singlet dibaryon. The
“⊗” operation is defined as

A(q) ⊗ B(q) = 2

π

∫ �

0
dqq2A(q)B(q). (22)

The kernel and inhomogeneous terms are each decomposed
into three pieces:

B0(k,p,E) = B(S)
0 (k,p,E) + B(SC)

0 (k,p,E) + B(C)
0 (k,p,E),

(23)

and

K0(q,p,E) = K(S)
0 (q,p,E) + K(SC)

0 (q,p,E) + K(C)
0 (q,p,E).

(24)

The superscript (S) refers to all contributions with only
strong interactions, (SC) to contributions that mix strong and
Coulomb interactions, and (C) to contributions containing
only Coulomb interactions between the proton and remaining
dibaryon field. The inhomogeneous term

B(S)
0 (k,p,E) =

⎛
⎜⎜⎝

2y2
t

[
1
pk

Q0
(

p2+k2−MN E−iε
pk

)+ 2H0,0(�)
�2

]
2ytys

[
1
pk

Q0
(

p2+k2−MN E−iε
pk

)+ 2H0,0(�)
3�2

]
2ytys

[
2
pk

Q0
(

p2+k2−MN E−iε
pk

)+ 4H0,0(�)
3�2

]

⎞
⎟⎟⎠ . (25)

The kernel matrix K(S)
0 (k,q,E) is defined by

K(S)
0 (q,p,E) = MN

8π

1

qp
Q0

(
q2 + p2 − MNE − iε

qp

)⎛⎝ −y2
t −3ytys −3ytys

−ysyt y2
s −y2

s

−2ysyt −2y2
s 0

⎞
⎠D(0)

(
E − �q2

2MN

,�q
)

+ MN

8π

2H0,0(�)

�2

⎛
⎜⎝

−y2
t −ytys −ytys

− 1
3ysyt − 1

3y2
s − 1

3y2
s

− 2
3ysyt − 2

3y2
s − 2

3y2
s

⎞
⎟⎠D(0)

(
E − �q2

2MN

,�q
)

, (26)
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S

S

S

T

T

T

T

P

P

S

P

P

FIG. 4. (Color online) Coupled integral equations for LO doublet pd scattering. The single line represents a nucleon, the double line a
dressed deuteron propagator, the double-dashed line a dressed np spin-singlet dibaryon propagator, and the thick solid line a pp spin-singlet
dibaryon propagator. The solid squares represent the three-body force H0,0(�). The wavy lines are Coulomb photon exchanges.

where D(0)(E,�q) is a matrix of dibaryon propagators given by

D(0)(E,�q) =
⎛
⎝D

(0)
t (E,�q) 0 0

0 D(0)
s (E,�q) 0

0 0 D(0)
pp(E,�q)

⎞
⎠ . (27)

The function Q0(a) is a Legendre function of the second kind,

Q0(a) = 1

2
ln

(
a + 1

a − 1

)
. (28)

The inhomogeneous term

B(SC)
0 (k,p,E) =

⎛
⎝ −y2

t C(k,p,E)
−ytysC(k,p,E)

−2ytysV2(k,p,E)

⎞
⎠ , (29)
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FIG. 5. (Color online) NLO diagrams for pd scattering. The cross in the first boxed set of diagrams denotes a single insertion of an effective
range correction. All three-body force terms contain only the NLO and NLO-α three-body force and are depicted by blank squares. For other
notation, see Fig. 4.

and the kernel

K(SC)
0 (q,p,E) = MN

16π

⎛
⎜⎝

y2
t C(q,p,E) 3ytysC(q,p,E) 3ytysV1(q,p,E)

ysytC(q,p,E) −y2
s C(q,p,E) y2

s V1(q,p,E)

2ysytV2(q,p,E) 2y2
s V2(q,p,E) 0

⎞
⎟⎠D(0)

(
E − �q2

2MN

,�q
)

. (30)

Finally, the inhomogeneous term

B(C)
0 (k,p,E) =

⎛
⎝−y2

t B(k,p,E)
0
0

⎞
⎠ , (31)

and the corresponding kernel is

K(C)
0 (q,p,E) = MN

16π

⎛
⎜⎝

y2
t B(q,p,E) 0 0

0 y2
s B(q,p,E) 0

0 0 0

⎞
⎟⎠D(0)

(
E − �q2

2MN

,�q
)

. (32)

V. NEXT-TO-LEADING-ORDER SCATTERING AMPLITUDE

The NLO pd scattering amplitude is given by the sum of diagrams shown in Fig. 5. The letters in the ovals denote the same
scattering amplitudes as in the LO case. For the first boxed set of diagrams, labeled t

(ER)
1 (k,p,E), the cross represents an effective

range insertion and makes the propagator between the two scattering amplitudes the NLO correction to the dibaryon propagator.
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The diagrams in the second boxed set, labeled t
(3B)
1 (k,p,E), contain NLO three-body force terms represented by blank squares.

The blank squares contain contributions from both H0,1(�) and Hα
0,1(�). The final set of boxed diagrams, labeled t

(DK)
1 (k,p,E),

contains the NLO Coulomb corrections that come from gauging the dibaryon kinetic term. Splitting up the NLO pd scattering
amplitude into these three contributions yields

t1,Nt→Nt (k,p,E) = t
(ER)
1 (k,p,E) + t

(3B)
1 (k,p,E) + t

(DK)
1 (k,p,E), (33)

where

t
(ER)
1 (k,p,E) = ρt

4π

∫ �

0
dqq2[t0,Nt→Nt (k,q)]2

√
3
4q2 − MNE − iε + γt√
3
4q2 − MNE − iε − γt

+ 3ρs

4π

∫ �

0
dqq2[t0,Nt→Ns(k,q)]2

×
3
4q2 − MNE(√

3
4q2 − MNE − iε − γs

)2 + 3rC

8π

∫ �

0
dqq2[t0,Nt→pp(k,q)]2

3
4q2 − MNE[

2κH
(

κ√
3
4 q2−MN E−iε

)+ 1
aC

]2 , (34)

t
(3B)
1 (k,p,E) = 4

[
H0,1(�) + H

(α)
0,1 (�)

]
�2

⎡
⎣1 + 1

2π

∫ �

0
dqq2t0,Nt→Nt (k,q)

1√
3
4q2 − MNE − iε − γt

+ 1

2π

∫ �

0
dqq2t0,Nt→Ns(k,q)

1√
3
4q2 − MNE − iε − γs

+ 1

2π

∫ �

0
dqq2t0,Nt→Npp(k,q)

1

− 1
aC

− 2κH
(

κ√
3
4 q2−MN E−iε

)
⎤
⎦

2

, (35)

and

t
(DK)
1 (k,p,E) = −αMNρt

k2
Q0

(
2k2 + λ2

−2k2

)
− αMNρt

π

∫ �

0
dqq2t0,Nt→Nt (k,q)

1√
3
4q2 − MNE − iε − γt

1

qk
Q0

(
k2 + q2 + λ2

−2qk

)

− ρtαMN

4π2

∫ �

0
dqq2

∫ �

0
d��2t0,Nt→Nt (k,q)t0,Nt→Nt (k,�)

× 1√
3
4q2 − MNE − iε − γt

1√
3
4�2 − MNE − iε − γt

1

q�
Q0

(−q2 − �2 − λ2

2q�

)

− 3ρsαMN

4π2

∫ �

0
dqq2

∫ �

0
d��2t0,Nt→Ns(k,q)t0,Nt→Ns(k,�)

× 1√
3
4q2 − MNE − iε − γs

1√
3
4�2 − MNE − iε − γs

1

q�
Q0

(−q2 − �2 − λ2

2q�

)
. (36)

While the partial resummation technique [29] can be used to calculate NLO pd scattering, the result will also include a subset of
higher-order diagrams. In that technique the LO + NLO scattering amplitude is calculated by using the integral equation for the
LO scattering amplitude but (i) replacing all LO dibaryon propagators with LO + NLO dibaryon propagators and (ii) modifying
the Coulomb inhomogeneous term B(C)

0 (k,p,E) and kernel K(C)
0 (q,p,E) to include new contributions from photon exchanges

between a dibaryon and a nucleon line. These new contributions are given by

B(C)
1 (k,p) =

⎛
⎝−αρtMNy2

t

kp
Q0
(−k2−p2−λ2

2kp

)
0
0

⎞
⎠ , (37)

and

K(C)
1 (q,p,E) = −αM2

N

16π

1

qp
Q0

(−q2 − p2 − λ2

2qp

)⎛⎝y2
t ρt 0 0
0 y2

s ρs 0
0 0 0

⎞
⎠D(0)

(
E − �q2

2MN

,�q
)

. (38)
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The true advantages of the partial resummation technique
become apparent at NNLO, where it yields the straightforward
computation of diagrams without having to calculate the full
off-shell scattering amplitude. However, a new technique has
been developed that provides a strictly perturbative calculation
of diagrams, also without the need to separately calculate
full off-shell scattering amplitudes, and which is no more
numerically expensive than the partial resummation technique
[34]. Here we consider both a strictly perturbative and a partial
resummation calculation of the NLO pd scattering amplitudes.

VI. EXPRESSIONS FOR PHASE SHIFTS AND
BOUND-STATE ENERGIES

The physical elastic scattering amplitude T0(k) at LO is
obtained by putting the scattering amplitude full on-shell (k =
p,E = 3k2

4MN
− γ 2

t

MN
) and then multiplying by the LO deuteron

wave-function renormalization, yielding

T0(k) = ZLOt0,Nt→Nt

(
k,k,

3k2

4MN

− γ 2
t

MN

)
. (39)

The NLO correction to the elastic scattering amplitude T1(k)
is then obtained as

T1(k) = ZNLOt0,Nt→Nt

(
k,k,

3k2

4MN

− γ 2
t

MN

)

+ZLOt1,Nt→Nt

(
k,k,

3k2

4MN

− γ 2
t

MN

)
, (40)

where ZNLO is the NLO correction to the deuteron wave-
function renormalization. Both orbital and spin angular
momenta are separately conserved at NLO in EFT�π , so
the scattering matrix can be decomposed into a completely
diagonal basis of orbital and spin angular momenta. Because
the scattering matrix must be unitary, it has the following form
in terms of a phase shift for the doublet S-wave channel:

S = e2iδ. (41)

The scattering matrix is related to the scattering amplitude
T (k) via

S = 1 + i
2MNk

3π
T (k). (42)

Expanding both Eqs. (41) and (42) perturbatively yields

δ0(k) = 1

2i
ln

(
1 + i

2MNk

3π
T0(k)

)
, (43)

for the LO phase shift, and

δ1(k) = 1

2i

i 2MN k
3π

T1(k)

1 + i 2MN k
3π

T0(k)
, (44)

for the NLO correction to the phase shift.
For pd scattering we use the Coulomb-subtracted phase

shift,

δn,diff(k) = δn,full(k) − δn,C(k), (45)

where δ0,full(k) is the LO phase shift calculated by including
all of the strong (S), strong-Coulomb (SC), and Coulomb (C)

pieces in the integral equations. The δ0,C(k) phase shift is
calculated by only including the Coulomb (C) pieces in the
LO integral equations. In this case, all three channels decouple,
leaving a single channel integral equation to solve at LO. The
NLO correction, δ1,full(k), to the phase shift is obtained with
the LO amplitude that again contains all (S), (SC), and (C)
pieces. This LO amplitude is then used with Eqs. (34)–(36) to
calculate the NLO amplitude. For the NLO correction δ1,C(k)
the LO amplitude is calculated only using the (C) pieces.
Then this LO amplitude with only Eq. (36) yields the NLO
“Coulomb” amplitude.

In the partial resummation technique δ1,full(k) includes all of
the (S), (SC), and (C) pieces as well as the additional kernel
Eq. (38) and inhomogeneous term Eq. (37) in the integral
equation. For δ1,C(k) in the partial resummation technique,
only the (C) terms as well as the additional kernel Eq. (38)
and inhomogeneous term Eq. (37) are kept in the integral
equation. Thus, the integral equations decouple again, leaving
only a single-channel integral equation.

In addition to pd scattering we investigate the bound-state
properties of 3He. In particular, we want to be able to predict
its binding energy. At LO this is done by dropping the
inhomogeneous term in the integral equation, leading to the
homogeneous equation

t0(k,p,E) = K0(q,p,E) ⊗ t0(k,q,E). (46)

This equation is essentially an eigenvalue problem with
eigenvector t0(k,q,E) and eigenvalue one. Thus, the LO
bound-state energy B0 is the energy for which

det[1 − K0(q,p,B0)] = 0. (47)

The NLO correction to the bound-state energy is calculated
perturbatively. We extend the method used by Ji and Phillips
[43] to include complications from isospin. At the bound-state
energy the scattering amplitude possesses a pole and can be
written

t0(k,p,E) + t1(k,p,E) + · · ·
= Z0(k,p) + Z1(k,p)

E + B0 + B1
+ R0(k,p,E) + R1(k,p,E) + · · · ,

(48)

where Z0(k,p) (Z1(k,p)) is the LO (NLO) smooth residue
vector function about the pole, R0(k,p,E) (R1(k,p,E)) is the
LO (NLO) smooth remainder vector function, and B0 and B1

are the LO binding energy and NLO correction to the binding
energy, respectively. Expanding this expression perturbatively
and collecting all LO terms gives

Z0(k,p) = lim
E→−B0

(E + B0)t0(k,p,E). (49)

Doing the same at NLO gives

B1 = − lim
E→−B0

(E + B0)2[t1]n(k,p,E)

[Z0]n(k,p)
(50)

or

B1 = − lim
E→−B0

(E + B0)2ZT
0 (k,p)t1(k,p,E)

Z2
0(k,p)

(51)
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for the NLO correction to the bound-state energy. The subscript
n refers to any component of the three vector. For B1 the choice
of k and p should be completely arbitrary. This can be shown
rigorously by first noting that the components of the LO residue
vector function Z0(k,p) can be factorized as [44,45]

Z0(k,p) =

⎛
⎜⎝

�Nt (k)�Nt (p)

�Nt (k)�Ns(p)

�Nt (k)�Npp(p)

⎞
⎟⎠ . (52)

The functions �Nt (p), �Ns(p), and �Npp(p) are components of
the solution to the LO homogeneous integral equation �0(p),
which is given by

�0(p) = K0(q,p,B0) ⊗ �0(q), (53)

with �0(p) defined in terms of its components as

�0(p) =
⎛
⎝ �Nt (p)

�Ns(p)
�Npp(p)

⎞
⎠ . (54)

Note that the normalization of the LO homogeneous equation
is not given by Eq. (53) but can be obtained from Eq. (49)
or by using the techniques outlined in Ref. [33]. Substitut-
ing Eqs. (34)–(36) for [t1]1(k,p,E) in Eq. (50) and using
Eq. (49) together with Eq. (52), all LO amplitudes occurring
in [t1]1(k,p,E) and [Z0]1(k,p) are changed to products of
components of the homogeneous equation after taking the
limit. The resulting expression for B1 no longer has any
dependence on the momenta k and p (iε has been dropped
because E < 0 and all resulting square roots are positive):

B1 = ρt

4π

∫ �

0
dqq2[�Nt (q)]2

√
3
4q2 − MNE + γt√
3
4q2 − MNE − γt

+ 3ρs

4π

∫ �

0
dqq2[�Ns(q)]2

3
4q2 − MNE(√

3
4q2 − MNE − γs

)2

+ 3rC

8π

∫ �

0
dqq2[�Npp(q)]2

3
4q2 − MNE[

2κH
(

κ√
3
4 q2−MN E

)+ 1
aC

]2 + [H0,1(�) + H
(α)
0,1 (�)]

π2�2

⎡
⎣∫ �

0
dqq2�Nt (q)

1√
3
4q2 − MNE − γt

+
∫ �

0
dqq2�Ns(q)

1√
3
4q2 − MNE − γs

+
∫ �

0
dqq2�Npp(q)

1

− 1
aC

− 2κH
(

κ√
3
4 q2−MN E

)
⎤
⎦

2

− ρtαMN

4π2

∫ �

0
dqq2

∫ �

0
d��2�Nt (q)�Nt (�)

1√
3
4q2 − MNE − γt

1√
3
4�2 − MNE − γt

1

q�
Q0

(−q2 − �2 − λ2

2q�

)

− 3ρsαMN

4π2

∫ �

0
dqq2

∫ �

0
d��2�Ns(q)�Ns(�)

1√
3
4q2 − MNE − γs

1√
3
4�2 − MNE − γs

1

q�
Q0

(−q2 − �2 − λ2

2q�

)
. (55)

VII. LEADING-ORDER ASYMPTOTICS:
NO NEW COUNTERTERM AT LO

Observables must be independent of the momentum cutoff
used to regulate the theory. In particular, as � → ∞, O( 1

�2 ),
etc., pieces are suppressed and the prediction should stabilize.
For the case of LO nd scattering it is well established that
a three-body force is required to obtain cutoff-independent
results [46]. However, it has not been explicitly shown for the
case of LO pd scattering that no additional three-body force
term is needed to remove possible additional cutoff depen-
dence introduced by the inclusion of the Coulomb diagrams
that are necessary to describe pd interactions. Calculations of
doublet-channel pd scattering have been carried out in EFT �π
[33], but at LO these calculations did not go to sufficiently
high cutoffs to definitively settle the question. Here we show
that there is no new LO three-body force required for pd
scattering. To investigate the asymptotic behavior of the LO
scattering amplitude, we redefine the scattering amplitudes as

t+(k,p) = t0,Nt→Nt (k,p) + t0,Nt→Ns(k,p)

+ t0,Nt→Npp(k,p), (56)

t−(k,p) = t0,Nt→Nt (k,p) − t0,Nt→Ns(k,p) − t0,Nt→Npp(k,p),

(57)

and

t∅(k,p) = t0,Nt→Ns(k,p) − 1
2 t0,Nt→Npp(k,p). (58)

In addition, we define the dibaryon propagators

D+(E,�q)= (y2
t D

(0)
t (E,�q) + 1

3y2
s D

(0)
s (E,�q) + 2

3y2
s D

(0)
pp(E,�q)

)
,

(59)

D−(E,�q)= (y2
t D

(0)
t (E,�q) − 1

3y2
s D

(0)
s (E,�q) − 2

3y2
s D

(0)
pp(E,�q)

)
,

(60)

and

D∅(E,�q) = y2
s

(
D(0)

s (E,�q) − D(0)
pp(E,�q)

)
. (61)

The LO scattering amplitude is still given by Eq. (20).
However, the definition of the vector t0(k,p) is now replaced
with

t0(k,p) =
⎛
⎝t+(k,p)

t−(k,p)
t∅(k,p)

⎞
⎠ . (62)
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Likewise, K(S)
0 (q,p,E) becomes

K(S)
0 (q,p,E) =MN

8π

1

qp
Q0

(
q2 + p2 − MNE − iε

qp

)⎛⎜⎝
−2D+ −2D− − 8

3D∅
D− D+ − 4

3D∅
1
3D∅ − 1

3D∅ D+ − D− + 2
3D∅

⎞
⎟⎠

+ MN

8π

2H0,0(�)

�2

⎛
⎝−D+ −D− − 4

3D∅
0 0 0
0 0 0

⎞
⎠ , (63)

where D+, D−, and D∅ are dibaryon propagators with energy and momentum arguments (E − �q2

2MN
,�q). To study the asymptotic

limit (q ∼ p � ��π ) of the amplitudes, we keep only terms up to O(1/�2), yielding

K(SC)
0 (q,p,E) = MN

16π

⎛
⎜⎜⎝

2
3 [C(q,p,E) + V2(q,p,E) + V1(q,p,E)] 0 0

1
3 [C(q,p,E) − 2V2(q,p,E) + V1(q,p,E)] 0 0

1
6 [C(q,p,E) − 2V2(q,p,E) + V1(q,p,E)] 0 0

⎞
⎟⎟⎠D+ + · · · (64)

(see again Eqs. (17)–(19)) and

K(C)
0 (q,p,E) = MN

16π

⎛
⎜⎝

1 0 0
1
2 0 0
1
4 0 0

⎞
⎟⎠ 1

3
B(q,p,E)D+ + · · · (65)

(see again Eq. (13)), using the newly defined amplitudes. There is no need to redefine B0(q,p,E) because it is suppressed in the
asymptotic limit. The terms that have been omitted in the definitions of KSC(q,p,E) and K(C)(q,p,E) will become important
for higher orders in the EFT �π expansion. The dibaryon propagators expanded in the asymptotic limit yield

D+(E,�q) ∼ − 4π

MN

[
2

√
4

3

1

q
+ 4

3

(
γt + 1

3
γs + 2

3
γC

)
1

q2
+ 16

9

κ ln(q)

q2

]
+ · · · , (66a)

D−(E,�q) ∼ − 4π

MN

[
4

3

(
γt − 1

3
γs − 2

3
γC

)
1

q2
− 16

9

κ ln(q)

q2

]
+ · · · , (66b)

and

D∅(E,�q) ∼ − 4π

MN

[
4

3
(γs − γC)

1

q2
− 8

3

κ ln(q)

q2

]
+ · · · , (66c)

where γC is defined as

γC = 1

aC

− 2CEκ − 2κ ln

(√
4

3
κ

)
, (67)

with CE � 0.5772 the Euler-Mascheroni constant. The scattering amplitude in the asymptotic limit is obtained by using Eqs. (62)–
(65) and (66a)–(66c) in Eq. (20). Then, using appropriate ansätze (see Appendix for details), the asymptotic behavior of the
scattering amplitudes can be obtained. The resulting asymptotic forms are

t+(q) = C

{
sin
[
s0 ln

(
q

�∗
)]

q
+ 1√

3

(
γt + 1

3
γs + 2

3
γC

)
|B−1| sin

[
s0 ln

(
q

�∗
)+ Arg(B−1)

]
q2

+ 4κ

3
√

3
|C−1|

sin
[
s0 ln

(
q

�∗
)+ Arg(C−1)

]
q2

+ 4κ

3
√

3
|D−1|

sin
[
s0 ln

(
q

�∗
)+ Arg(D−1)

]
q2

+ 4κ

3
√

3
|B−1| ln(q)

sin
[
s0 ln

(
q

�∗
)+ Arg(B−1)

]
q2

− 16κ√
3π

|E−1|
sin
[
s0 ln

(
q

�∗
)+ Arg(E−1)

]
q2

+ · · ·
}
, (68)

t−(q) = C

{
− 1

2
√

3

(
γt − 1

3
γs − 2

3
γC

)
|B̃−1|

sin
[
s0 ln

(
q

�∗
)+ Arg(B̃−1)

]
q2

+ 2κ

3
√

3
|C̃−1|

sin
[
s0 ln

(
q

�∗
)+ Arg(C̃−1)

]
q2

− κ

3
√

3
|D̃−1|

sin
[
s0 ln

(
q

�∗
)+ Arg(D̃−1)

]
q2

+ 2κ

3
√

3
|B̃−1| ln(q)

sin
[
s0 ln

(
q

�∗
)+ Arg(B̃−1)

]
q2

− 16κ√
3π

|Ẽ−1|
sin
[
s0 ln

(
q

�∗
)+ Arg(Ẽ−1)

]
q2

+ · · ·
}
, (69)
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VANASSE, EGOLF, KERIN, KÖNIG, AND SPRINGER PHYSICAL REVIEW C 89, 064003 (2014)

and

t∅(q) = C

{
− 1

6
√

3
(γs − γC)|B̃−1|

sin
[
s0 ln

(
q

�∗
)+ Arg(B̃−1)

]
q2

+ κ

3
√

3
|C̃−1|

sin
[
s0 ln

(
q

�∗
)+ Arg(C̃−1)

]
q2

− κ

6
√

3
|D̃−1|

sin
[
s0 ln

(
q

�∗
)+ Arg(D̃−1)

]
q2

+ κ

3
√

3
|B̃−1| ln(q)

sin
[
s0 ln

(
q

�∗
)+ Arg(B̃−1)

]
q2

− 8κ√
3π

|Ẽ−1|
sin
[
s0 ln

(
q

�∗
)+ Arg(Ẽ−1)

]
q2

+ · · ·
}
. (70)

Note that the leading asymptotic form for t+(q) is exactly
the same as in nd scattering [31]. However, the subleading
t−(q), t∅(q), and the subleading part of t+(q) are modified in
pd scattering. In addition to acquiring a ln(q) piece, these am-
plitudes receive electromagnetic corrections in κ = αMN

2 and
isospin breaking effects from γC �= γs . The asymptotic form of
these amplitudes in nd scattering is obtained by setting κ = 0
and γs = γC . This asymptotic form can also be obtained by
replacing Dpp(E,q) with Ds(E,q). In this limit, D∅(E,q) = 0,
and in Eq. (63) t∅(q) decouples from t+(q) and t−(q). This
leaves two coupled integral equations. In the Wigner SU(4)
limit [47,48] (γt = γs), the t+(q) and t−(q) equations decouple.
The resulting equation for t+(q) is equivalent to a three-
boson problem and has a well-known solution that requires a
three-body force to obtain cutoff-independent results [49]. The
equation for t−(q) in this limit is equivalent to nd scattering in
the quartet S-wave channel and does not require a three-body
force for cutoff independence.

An analytical approximation for the LO three-body force is
obtained by plugging the asymptotic form of the scattering
amplitudes into Eq. (20), keeping the three-body force in
the homogeneous term, and then demanding that the results
are cutoff independent to order 1/�. It is only necessary to
keep the leading t+(q) amplitude when considering cutoff
independence to order 1/�, and because the leading behavior
of t+(q) is the same in both nd and pd scattering, the LO
three-body force is the same in both cases. Its approximate
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FIG. 6. (Color online) Comparison of numerical and analytical
calculations of LO three-body force for nd scattering, with c � 0.877
and �∗ � 1.55 MeV. The three-body force is numerically fit to give
the correct doublet S-wave nd scattering length, an−d = 0.65 fm.

analytic form is [49]

H0,0(�) = c
sin
(
s0 ln

(
�
�∗
)+ arctan s0

)
sin
(
s0 ln

(
�
�∗
)− arctan s0

) , (71)

where c is a regulator-dependent quantity. For our choice of
cutoff regularization we find that c = 0.877 ± 0.003 fits the
numerical results to the analytical form. Within the error of our
fit for c, we find good agreement with previous results [50].
Fitting to the numerical data yields �∗ � 1.55 MeV. This value
is not exactly the same as the �∗ � 1.63 MeV found in the
equations for the asymptotic amplitudes (see Eqs. (68)–(70)
and Sec. IX), most likely arising from finite-� effects. The
results of matching the numerical and analytical results for
H0,0(�) are shown in Fig. 6, where H0,0(�) is fit to give the
correct doublet S-wave nd scattering length, an−d = 0.65 fm.
Agreement between the numerical and analytical results is
clear.

Using the same three-body force H0,0(�) to calculate
the LO binding energies of 3H and 3He yields the cutoff
dependence shown in Fig. 7. The binding energies clearly
converge as a function of the cutoff used in the integral
equation. In Fig. 7, the solid line is the LO 3H binding-energy
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FIG. 7. (Color online) Cutoff dependence of LO predictions for
3He and 3H binding energies. The solid line is the 3H binding-energy
prediction when the LO three-body force is fit to the nd doublet
S-wave scattering length. The short-dashed line is the 3He binding
energy predicted when the the LO three-body force is fit to the nd

doublet S-wave scattering length. The long-dashed line is the 3He
binding-energy prediction when the LO three-body force is fit to
the 3H binding energy. Finally, the triangle point is a LO EFT�π
calculation by Ando and Birse in which Coulomb effects are treated
nonperturbatively [35].
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prediction when the three-body force is numerically fit to the
nd doublet S-wave scattering length, and the short-dashed
line the LO 3He binding-energy prediction using the same
three-body force. Fitting the three-body force to the 3H binding
energy of B3H = 8.481 798 ± 0.000 002 MeV yields the LO
3He binding-energy prediction given by the long-dashed line.
The triangle point is a EFT �π calculation by Ando and Birse of
the LO 3He binding energy at a cutoff of � = 380.689 MeV,
where Coulomb effects are treated fully nonperturbatively
[35]. The long-dashed line essentially passes through the
triangle point, which confirms that within the bound-state
regime of 3He it is a good approximation to treat Coulomb
effects perturbatively.

Using the three-body force H0,0(�) fit to the doublet S-wave
nd scattering length we analyze the cutoff dependence of the
LO pd S-wave phase shift from 200 to 107 MeV and find good
convergence as the cutoff is increased. These results are shown
in Fig. 12 in Sec. IX. The cutoff independence in both the pd
phase shifts and 3He binding energies confirms numerically
that H0,0(�) is the only three-body force needed at LO for
both nd and pd scattering.

VIII. NLO BEHAVIOR WITHOUT NEW pd
COUNTERTERM

To address if a new pd three-body force is needed at
NLO in addition to the NLO nd three-body force, we can
calculate the cutoff dependence of various physical quantities.
The NLO 3He binding-energy results are shown in Fig. 8.
The result using the partial resummation technique is given
by the short-dashed line, where a LO + NLO three-body force
is fit to the 3H binding energy. (A more detailed analysis of
the partial-resummation calculation can be found in Ref. [39];
for a preliminary discussion, among other things, see also
Ref. [38].) The NLO 3He binding energy is clearly diverging
for higher cutoffs. The dash-dotted line in Fig. 8 is the 3He
binding-energy prediction in a strictly perturbative calculation,
where the LO and NLO three-body forces are both separately
fit to reproduce the nd doublet S-wave scattering length
an−d = 0.65 fm. Again, for larger cutoffs the binding-energy
prediction is clearly diverging; a new NLO pd three-body force
is needed to make these results independent of the cutoff. In
the next section we derive an expression for this three-body
force and demonstrate that indeed it gives cutoff-independent
phase shifts.
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FIG. 8. (Color online) The long-dashed line is the LO 3He
binding-energy prediction when the LO three-body force is fit to
the 3H binding energy. The short-dashed line is the NLO 3He
binding-energy prediction in the partial resummation technique when
the three-body force is to fit the 3H binding energy [38,39]. The dash-
dotted line is the NLO 3He binding energy in a strictly perturbative
approach for the case where the LO and NLO nd three-body force is
fit to the doublet S-wave nd scattering length and any possible new
pd three-body force is ignored. Finally, the triangle point is again the
LO EFT�π calculation by Ando and Birse [35].

IX. NLO THREE-BODY FORCES AND
PREDICTED PHASE SHIFTS

To obtain an approximate analytical form for the NLO
three-body forces H0,1(�) and H

(α)
0,1 (�), we begin with

the NLO correction to the 3He binding energy, Eq. (55).
Redefining the solution to the homogeneous equation as

�+(q) = �Nt (q) + �Ns(q) + �Npp(q), (72)

�−(q) = �Nt (q) − �Ns(q) − �Npp(q), (73)

and

�∅(q) = �Ns(q) − 1
2�Npp(q) (74)

is entirely analogous to the redefinition of the LO scattering
amplitudes used to analyze the LO asymptotic behavior. In fact,
the asymptotic solutions for the scattering amplitudes t+(k,q),
t−(k,q), and t∅(k,q) are also the asymptotic solutions for
�+(q), �−(q), and �∅(q), respectively. Using this redefinition
of the homogeneous equation with Eq. (55), plugging in
the asymptotic solutions Eqs. (68)–(70), using dimensional
analysis, and keeping only those terms that diverge in the UV
limit (� → ∞) yields

[B1]UV-div = 1

4π

(
1

4
ρt + 1

12
ρs + 1

6
rC

)∫ �

dqq2[�(−1)
+ (q)]2 + 1

2π

(
1

4
ρt + 1

12
ρs + 1

6
rC

)∫ �

dqq2�
(−1)
+ (q)�(−2)

+ (q)

+ 1

4π

(
1

2
ρt − 1

6
ρs − 1

3
rC

)∫ �

dqq2�
(−1)
+ (q)�(−2)

− (q) + 1

4π

(
2

3
ρs − 2

3
rC

)∫ �

dqq2�
(−1)
+ (q)�(−2)

∅ (q)

+ 1√
3π

(
1

4
ρtγt + 1

12
ρsγs + 1

6
rCγC

)∫ �

dqq[�(−1)
+ (q)]2 + κrC

3
√

3π

∫ �

dqq ln(q)[�(−1)
+ (q)]2

+ 4[H0,1(�) + H
(α)
0,1 (�)]

3π2�2

{(∫ �

dqq�
(−1)
+ (q)

)2

+ 2
∫ �

dqq�
(−1)
+ (q)

∫ �

d���
(−2)
+ (�)
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+
√

4

3

(
γt + 1

3
γs + 2

3
γC

)∫ �

dqq�
(−1)
+ (q)

∫ �

d��
(−1)
+ (�) +

√
4

3

4κ

3

∫ �

dqq�
(−1)
+ (q)

∫ �

d� ln(�)�(−1)
+ (�)

}

− αMN

3π2

(
1

4
ρt + 1

12
ρs

)∫ �

dq

∫ �

d��
(−1)
+ (q)�(−1)

+ (�)Q0

(−q2 − �2 − λ2

2q�

)
, (75)

where the superscript “(n)” on the homogeneous solutions refers to the O(�n) piece of the asymptotic solution. To cancel the UV
divergences, H0,1(�)+H

(α)
0,1 (�) must be chosen such that [B1]UV-div is zero. H0,1(�), the NLO three-body force for nd scattering,

is found by setting κ → 0, rC → ρs , and γC → γs and then solving the resulting equation, including all divergent and O(�0)
pieces. (Because numerically ln(�) and ln2(�) terms are O(�0) except for extremely large cutoffs [45], which are not considered
here, we treat these terms as O(�0).) The resulting expression for H0,1(�) has a linear divergence and O(�0) pieces that are
given by

H0,1(�) = �h10(�) − 3π
(
1 + s2

0

)
64

{
1√
3

(ρt + ρs)(γt + γs)|B−1|G1(B−1) − 1

2
√

3
(ρt − ρs)(γt − γs)|B̃−1|G1(B̃−1)

+ 2√
3

(ρtγt + ρsγs)G1(0) + f

}/
sin2

[
s0 ln

(
�

�∗

)
− arctan(s0)

]
, (76)

where

G1(x) = cos[Arg(x)] ln(�) − 1

2s0
sin

[
2s0 ln

(
�

�∗

)
+ Arg(x)

]
, (77)

and the function h10(�) multiplying the linear divergence is

h10(�) = −3π
(
1 + s2

0

)
128

(ρt + ρs)

(
1 − 1√

1+4s2
0

sin
[
2s0 ln

(
�
�∗
)+ arctan

(
1

2s0

)])
sin2

[
s0 ln

(
�
�∗
)− tan−1(s0)

] . (78)

A previous calculation of the nd three-body force H0,1(�) appeared in Ref. [51]. However, this calculation dropped the
contribution from the linear divergence. In addition, the authors did not include additional subleading terms and isospin-breaking
terms. Despite this, their numerical results for the phase shifts are still correct as they numerically fit their NLO three-body
force to the nd scattering length. In the exact isospin limit, ρ = ρt = ρs and γ = γt = γs , Eq. (76) reduces to that of Ref. [45].
However, our solution does not contain the piece with a triple pole as in their result. This is because we do not explicitly split
H0,1(�) into two pieces; unlike their calculation, our scattering length is always fixed. The value f in Eq. (76) contains the details
of the infrared (IR) regularization of the integrals. The value of f depends on the regularization scheme and renormalization
condition and its value is obtained by fitting to the numerical data of the three-body force, H0,1(�). At sufficiently large cutoffs
the value of f is irrelevant; the linear divergence will dominate over this O(�0) term. For convenience we split up the three-body
force term H

(α)
0,1 (�) as

H
(α)
0,1 (�) = h

(α)
I (�) + h(α)

κ (�), (79)

where h
(α)
I (�) are contributions from isospin breaking and h(α)

κ (�) are terms with an explicit κ from electromagnetic effects.
(Actually, γC contains κ pieces, so a part of it should be relegated to h(α)

κ (�). However, we include all the contributions of γC

in h
(α)
I (�) for convenience.) Plugging Eqs. (76) and (79) into Eq. (75) and keeping all divergent and O(�0) terms provides the

three-body force terms

h
(α)
I (�) = −3π

(
1 + s2

0

)
16

⎛
⎝ 1

12
(rC − ρs)�

⎡
⎣1 − 1√

1 + 4s2
0

sin

[
2s0 ln

(
�

�∗

)
+ arctan

(
1

2s0

)]⎤⎦

+ 1

3
√

3

(
1

2
(ρt + ρs)(γC − γs) + 1

2
(rC − ρs)(γt + γs) + 1

3
(rC − ρs)(γC − γs)

)
|B−1|G1(B−1)

− 1

12
√

3

(
4

3
(rC − ρs)(γC − γs) − (ρt − ρs)(γC − γs) − (rC − ρs)(γt − γs)

)
|B̃−1|G1(B̃−1)

+ 1

3
√

3
(rCγC − ρsγt )G1(0) − 64

9
√

3πs0

√
1 + s2

0

h10(�) sin

[
s0 ln

(
�

�∗

)
− arctan(s0)

]
(γC − γs)

× [|B1 |G3(B−1) + G3(0)
]+ f

⎞
⎠/ sin2

[
s0 ln

(
�

�∗

)
+ arctan(s0)

]
, (80)
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and

h(α)
κ = −

√
3κπ

(
1 + s2

0

)
48

{(
ρt + 1

3
ρs + 2

3
rC

)[
|C−1|G1(C−1) + |D−1|G1(D−1) − 12

π
|E−1|G1(E−1) + 1

2
|B−1|G2(B−1)

]

+ rCG2(0) + 1

2

(
ρt + 1

3
ρs − 4

3
rc

)[
|C̃−1|G1(C̃−1) − 1

2
|D̃−1|G1(D̃−1) − 24

π
|Ẽ−1|G1(Ẽ−1) + 1

2
|B̃−1|G2(B̃−1)

]

− 128

3πs0

√
1 + s2

0

h10(�) sin

[
s0 ln

(
�

�∗

)
− tan−1(s0)

][
|C−1|G3(C−1) + |D−1|G3(D−1)

− 1

s0
|B−1|G4(B−1) − 12|E−1|G3(E−1) − 1

s0
G4(0)

]
+ �(�)

}/
sin2

[
s0 ln

(
�

�∗

)
+ arctan s0

]
. (81)

The functions G2(x), G3(x), and G4(x) are defined by

G2(x) = cos[Arg(x)] ln2(�) − 1

2s2
0

cos

[
2s0 ln

(
�

�∗

)
+ Arg(x)

]
− 1

s0
ln(�) sin

[
2s0 ln

(
�

�∗

)
+ Arg(x)

]
, (82)

G3(x) = cos

[
s0 ln

(
�

�∗

)
+ Arg(x)

]
(83)

and

G4(x) = sin

[
s0 ln

(
�

�∗

)
+ Arg(x)

]
− s0 ln(�) cos

[
s0 ln

(
�

�∗

)
+ Arg(B−1)

]
. (84)

The function �(�) contains contributions where a photon is
exchanged between a dibaryon and a nucleon and is given by
the double integral appearing in the last line of Eq. (75). To
obtain the analytical form of the asymptotic behavior we fit to
the following function:

�(�) = a ln(�) + b sin

[
2s0

(
�

�∗

)
+ c

]
+ d. (85)

This form gives good agreement with the numerical data
if a = 0.0234, b = −0.0153, c = 0.579, and d = −0.0885.
The value f in Eq. (80) again refers to the details of the IR
regularization and depends on the regularization scheme and
renormalization conditions. The value of f is determined by
fitting to the numerical data for H

(α)
0,1 (�). For the three-body

force, H
(α)
0,1 (�), we consider the two scenarios rC �= ρs and

rC = ρs . For rC �= ρs , H
(α)
0,1 (�) has a linear divergence such

that for sufficiently large cutoffs it will always dominate,
making the value of f unimportant there. For rC = ρs , the
linear divergence disappears and the worst divergence is
ln(�)2, which numerically isO(�0) except for extremely large
cutoffs. Because f is also O(�0) it has a more sizable impact
when rC = ρs .

The analytical and numerical results for �/H0,1(�) are
shown in Fig. 9. In �/H0,1(�), the dominant linear divergence
is divided out and this form quickly asymptotes to a sinusoidal
function. Also, all poles of H0,1(�) are converted to zeros. The
numerical results are obtained by fixing H0,1(�) to obtain the
correct doublet S-wave nd scattering length and = 0.65 fm.
To numerically determine H0,1(�) we calculate the LO nd
scattering amplitudes for a cutoff of � = 1012 MeV. Then
we use this LO amplitude to calculate the NLO integrals for

smaller cutoffs up to �̄ = 109 MeV. This ensures that finite-�
effects are suppressed up to a factor of �̄/� = 10−3. The value
f for H0,1(�) is found to be f � −0.1252. For cutoffs below
roughly 1000 MeV there seem to be notable discrepancies
between the analytical and numerical predictions. This is no
surprise for nd scattering because the asymptotic solution
does not match the numerical solution for the LO scattering
amplitude below cutoffs of about 1000 MeV. The value of �∗
for all of the three-body forces is �∗ � 1.63 MeV, which is
exactly the same �∗ appearing in the asymptotic form of the
LO scattering amplitudes [Eqs. (68)–(70)].

The numerical and analytical results for �/H
(α)
0,1 (�) with

rC �= ρs are shown in Fig. 10. The three-body force H
(α)
0,1 (�)

is fixed to reproduce the physical 3He binding energy
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FIG. 9. (Color online) NLO nd three-body force comparison of
numerical and analytic calculations. H0,1(�) is fixed to reproduce the
doublet S-wave nd scattering length. The value of f for H0,1(�) is
f � −0.1252.
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FIG. 10. (Color online) NLO pd three-body force comparison of
numerical and analytic calculations for rc �= ρs . H

(α)
0,1 (�) is fixed to

give the correct 3He binding energy at NLO. The value of f for
H

(α)
0,1 (�) is f � 0.1570.

−7.718 043 ± 0.000 002 MeV at NLO. Using B1 from either
Eq. (50) or Eq. (55) gives equivalent results. We calculate either
the homogeneous solution or the scattering amplitude up to a
cutoff � = 1012 MeV, depending on which equation is used to
determine B1. Then we calculate the NLO integrals for B1 for
either equation up to a cutoff of �̄ = 109 MeV. This is again to
suppress finite-� effects. The value of f for H

(α)
0,1 (�) is found

to be f � 0.1570. Below roughly 5000 MeV we find notable
differences between the numerical and analytical predictions.
This again is not surprising as for pd scattering asymptotic
solutions to the amplitude do not match the numerical solution
below cutoffs of 5000 MeV.

The numerical and analytical results for ln(�)2/H
(α)
0,1 (�)

with rC = ρs are given in Fig. 11. Again this choice divides
away the somewhat dominant ln(�)2 dependence and converts
all poles of H

(α)
0,1 (�) to zeros. The three-body force H

(α)
0,1 (�)

is calculated in exactly the same manner as for the case
rC �= ρs , except in our NLO integrals we set rC = ρs . The
value of f for H

(α)
0,1 (�) in this case is f � 0.1503. Again

for � � 5000 MeV there are notable differences between
the numerical and analytical results and the reason for such
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FIG. 11. (Color online) NLO pd three-body force comparison of
numerical and analytic calculations for rc = ρs . H

(α)
0,1 (�) is fixed to

give the correct 3He binding energy at NLO. The value of f for
H

(α)
0,1 (�) is f � 0.1503.
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FIG. 12. (Color online) LO and NLO pd scattering phase shifts.
The band comes from varying the cutoff from 200 to 107 MeV. The
star points come from an AV-18 potential calculation [4] and the open
squares from a pd phase-shift analysis [52].

disagreement is the same as in the rC �= ρs case. Also, the
triple pole from the term with h10(�) in Eqs. (80) and (81),
leading to the observed spikes, is more dominant because the
linear divergence is absent.

With the three-body forces fixed we now calculate the LO
and NLO phase shifts in pd scattering, as shown in Fig. 12.
The bands in the plot are generated by varying the cutoff from
200 to 107 MeV. With the new H

(α)
0,1 (�) three-body force added

there is clear convergence in the NLO phase shifts. If H
(α)
0,1 (�)

is removed, convergence is no longer observed. At NLO
these results are expected to have a roughly 17% uncertainty
(γ 2

t ρ2
t ∼ 17%). The star points come from calculations with

the AV-18 potential and wave functions determined using the
hyperspherical harmonic method [4]; they agree with our
results within the 17% uncertainty. The open squares come
from a pd phase-shift analysis [52] and also agree with our
results within this uncertainty.

X. CONCLUSION

By analyzing the asymptotic form of the pd scattering
amplitude we have shown explicitly that at LO no new three-
body force is needed for pd scattering beyond those for nd
scattering. This has been confirmed numerically by showing
that the LO 3He binding energy and pd scattering phase shifts
are cutoff independent using only the LO three-body force
from nd scattering. In the three-body sector we included only
electromagnetic terms that arise from iterating single Coulomb
photon exchanges. Based on the power counting of diagrams,
treating Coulomb effects fully nonperturbatively as in Ref. [35]
should not change this result.

Using the asymptotic form of the nd scattering amplitude
we derived an analytical expression for the NLO nd three-body
force. In the exact isospin limit our results agree with previous
findings [45]. However, our results disagree with those of other
authors [51] because they dropped linearly divergent terms and
some subleading pieces. Numerically calculating the NLO nd
three-body force by fitting to the doublet S-wave nd scattering
length, an−d , we find good agreement with our analytical form.
Using only the NLO nd three-body force to calculate the NLO
3He binding energy and pd scattering phase shift, both strictly

064003-16



3He AND pd SCATTERING TO NEXT-TO-LEADING . . . PHYSICAL REVIEW C 89, 064003 (2014)

perturbatively and using the partial resummation technique,
does not produce cutoff-stable results, clearly indicating the
need for a new pd three-body force.

From the asymptotic form of the pd scattering amplitude
we have calculated an analytical form for this new pd

three-body force, H
(α)
0,1 (�). Calculating H

(α)
0,1 (�) numerically

by fixing the NLO correction to give the correct 3He binding
energy gives good agreement between the analytical and nu-
merical forms, both for rc �= ρs and for rc = ρs . Finally, using
the new pd three-body force we obtain cutoff-independent
NLO phase shifts for pd scattering.

At NNLO in doublet S-wave nd scattering there is a NNLO
correction to the H0(�) three-body force and an additional new
energy-dependent three-body force [31,43]. In the case of pd
scattering these three-body forces will receive Coulomb and
isospin-breaking corrections. Thus, pd scattering at NNLO
will very likely require two new three-body forces beyond
those for nd scattering that need to be renormalized to pd and
3He data. Possible renormalization conditions include fixing to
the 3He binding energy and the pd doublet S-wave scattering
length, ap−d . Because this quantity is difficult to determine, it

might be preferable to instead use other bound-state properties
of 3He, such as the charge radius. We defer addressing
these questions to future work, but note here that an NNLO
EFT �π calculation of pd scattering will be an important first
step towards understanding polarization asymmetries and, in
particular, the Ay problem [5].
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APPENDIX A: COULOMB DIAGRAMS

The bubble diagram of Fig. 3(a) (excluding spin and isospin dependence) is given by

− ie2y2
t M

2
N

4π

1

(�k − �p)2 + λ2

1

|�k − �p| tan−1

⎛
⎜⎝ |�k − �p|

2
√

3
4
�k2 − MNE − iε + 2

√
3
4 �p2 − MNE − iε

⎞
⎟⎠ . (A1)

To perform the S-wave angular projection, we make the substitution z = |�k − �p|, yielding

ie2y2
t M

2
N

4πkp

∫ k+p

|k−p|
dz

1

z2 + λ2
tan−1

⎛
⎜⎝ z

2
√

3
4
�k2 − MNE − iε + 2

√
3
4 �p2 − MNE − iε

⎞
⎟⎠ . (A2)

This integral can be solved in terms of logarithms and dilogarithms, yielding Eq. (13) up to a constant factor from the spin and
isospin dependence.

The vertex diagram of Fig. 3(b) is given by the expression

ie2ysyjM
2
N

16π |�k + 2�p| tan−1

⎛
⎝ |�k + 2�p|

2
√

3
4
�k2 − MNE − iε + 2λ

⎞
⎠ 1

�k2 + �p2 + �k · �p − MNE − iε
, (A3)

again without spin and isospin factors. The substitution z = |�k + 2�p| gives the S-wave projection of the vertex diagram as

ie2ysyjM
2
N

8πkp

∫ |k−2p|

k+2p

1

z2 + 3�k2 − 4MNE − iε
tan−1

⎛
⎝ z

2
√

3
4
�k2 − MNE − iε + 2λ

⎞
⎠ . (A4)

This integral is similar to that of the bubble diagram and again can be solved in terms of logarithms and dilogarithms, yielding
Eq. (17), again up to a constant spin-isospin factor.

The “cross” diagram of Fig. 3(c) can be written using Feynman parameters as

iyiyj e
2M2

N

16π

∫ 1

0
dx

∫ 1

0
dyy

[−y2[�p + 2�k + x(�p − �k)]2 + 4y(�p2 + �k2 + �p · �k − MNE − iε − λ2) + 4λ2
]− 3

2 . (A5)
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This expression can, in principle, be solved exactly [28]. However, the resulting form is too lengthy for practical numerical
computation, so instead we expand in powers of λ 	 γt , yielding [42]

iyiyj e
2M2

N

16π

⎧⎪⎨
⎪⎩

1

�p2 + �k2 + �k · �p − MNE − iε

1

|�k − �p| tan−1

⎛
⎜⎝ |�k − �p|

2
√

3
4 �p2 − MNE − iε + 2

√
3
4
�k2 − MNE − iε

⎞
⎟⎠

−1

2

λ

(�p2 + �k2 + �k · �p − MNE − iε)2
+ O(λ2) + · · ·

}
. (A6)

The O(λ0) term is like the bubble diagram and its angular projection in the S wave can be carried out similarly. The O(λ1) term
has a trivial S-wave angular projection. Combining both angular projections we find Eq. (19) up to a constant from spin and
isospin projections.

APPENDIX B: ASYMPTOTICS

Collecting all terms to O(�−2) from Eqs. (63)–(65), t+(p) asymptotically is given by the integral equation

t+(p) = 4√
3π

1

p

∫ ∞

0
dq ln

(
q2 + pq + p2

q2 − pq + p2

)
t+(q) + 4

3π

(
γt + 1

3
γs + 2

3
γC

)
1

p

∫ ∞

0
dq ln

(
q2 + pq + p2

q2 − pq + p2

)
1

q
t+(q)

+ 16κ

9π

∫ ∞

0
dq ln

(
q2 + pq + p2

q2 − pq + p2

)
ln(q)

q
t+(q) − 32κ

3
√

3π

∫ ∞

0
dqq[C̃(q,p,0)

+ Ṽ1(q,p,0) + Ṽ2(q,p,0) + 1

2
B̃(q,p,0)]t+(q) + · · · . (B1)

The function B̃(q,p,E) is defined as B̃(q,p,E) = 1
8κ

B(q,p,E), and C̃(q,p,E), Ṽ1(q,p,E), and Ṽ2(q,p,E) are defined
analogously. Strictly speaking the integrals over B̃(q,p,E) and related functions will contain subleading pieces. However, we
only extract numerically those pieces to O(�−2). To solve this integral equation we use the ansatz t+(p) = Cps−1 + A+ps−2 +
B+ ln(p)ps−2. This requires solving [31]

I (s) = 4√
3π

∫ ∞

0
dx ln

(
x2 + x + 1

x2 − x + 1

)
xs−1 = 8√

3s

sin
(

πs
6

)
cos
(

πs
2

) . (B2)

For the leading term Cps−1 we find the condition I (s) = 1. Solving the resulting transcendental equation for s we find the
solutions s = ±is0, where s0 � 1.0064 and the constant C is left unsolved in the asymptotic limit because it depends on physics
not in the asymptotic regime. Using the relation ln(x) = ∂

∂α
xα|α=0 integrals containing logarithms can be rewritten in the form

of Eq. (B2), yielding the solution

4√
3π

∫ ∞

0
dx ln(x) ln

(
x2 + x + 1

x2 − x + 1

)
xs−1 = ∂

∂α

4√
3π

∫ ∞

0
dxxα ln

(
x2 + x + 1

x2 − x + 1

)
xs−1

∣∣∣∣
α=0

= ∂

∂α
I (s + α)

∣∣∣∣
α=0

= I ′(s). (B3)

Finally, we consider integrals from Coulomb corrections, B̃(q,p,0), etc. Integrals over these functions can be written as an
asymptotic series in inverse powers of p,∫ ∞

0
dqq2qsC̃(q,p,0) =

∞∑
n=1

JC(s − n)ps−1−n, (B4)

∫ ∞

0
dqq2qsB̃(q,p,0) =

∞∑
n=1

JB(s − n)ps−1−n, (B5)

∫ ∞

0
dqq2qsṼ1(q,p,0) =

∞∑
n=1

JV1 (s − n)ps−1−n, (B6)

∫ ∞

0
dqq2qsṼ2(q,p,0) =

∞∑
n=1

JV2 (s − n)ps−1−n. (B7)

064003-18



3He AND pd SCATTERING TO NEXT-TO-LEADING . . . PHYSICAL REVIEW C 89, 064003 (2014)

The requiredO(�−2) contributions are obtained by solving the above integrals for many values of p and then fitting an appropriate
polynomial of inverse powers of p to extract the appropriate coefficients. This procedure gives

JB(is0 − 1) � 0.812 − 0.260i,

JV1 (is0 − 1) � 0.295 − 0.198i,
(B8)JV2 (is0 − 1) � 0.303 − 0.123i,

JC(is0 − 1) � 0.186 − 0.113i.

Plugging in the ansatz given above for t+(p), we perform the necessary integrals and the resulting equations give

B+ = C
2κ

3
B−1 (B9)

and

A+ = C

{
1√
3

(
γt + 1

3
γs + 2

3
γC

)
B−1 + 2κ

3
C−1 + 2κ

3
D−1 − 16κ√

3π
E−1

}
. (B10)

Note that these coefficients depend upon the constant C, which again cannot be solved in the asymptotic limit because it depends
on physics not in the asymptotic regime. The coefficients B−1, C−1, D−1, and E−1 are given in terms of the integrals above as

B−1 = I (is0 − 1)

1 − I (is0 − 1)
, (B11)

C−1 = I ′(is0 − 1)

1 − I (is0 − 1)
, (B12)

D−1 = B−1C−1, (B13)

and

E−1 =
1
3 [2JC(is0 − 1) + 2JV1 (is0 − 1) + 2JV2 (is0 − 1) + JB(is0 − 1)]

1 − I (is0 − 1)
. (B14)

Collecting all terms up to O(�−2) we find the following integral equation for t−(p):

t−(p) = − 2

3π

(
γt − 1

3
γs − 2

3
γC

)
1

p

∫ ∞

0
dq ln

(
q2 + pq + p2

q2 − pq + p2

)
Cqis0−2 + 8κ

9π

1

p
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0
dq ln(q) ln

(
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− 16κ

3
√

3π
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0
dq

[
C̃(q,p,0) + Ṽ1(q,p,0) − 2Ṽ2(q,p,0) + 1

2
B̃(q,p,0)

]
Cqis0

− 2√
3π

1

p

∫ ∞

0
dq ln

(
q2 + pq + p2

q2 − pq + p2

)
t−(q). (B15)

Note that the presence of Cqis0−1 is merely an insertion of the leading behavior of t+(q). Using the ansatz t−(p) = A−pis0−2 +
B ln(p)pis0−2 we find

B = C
κ

6
B̃−1 (B16)

and

A− = C

{
− 1

2
√

3

(
γt − 1

3
γs − 2

3
γC

)
B̃−1 + κ

6
C̃−1 − κ

12
D̃−1 − 16κ√

3π
Ẽ−1

}
. (B17)

The constants B̃−1, C̃−1, D̃−1, and Ẽ−1 are again given in terms of the integrals above as

B̃−1 = I (is0 − 1)

1 + 1
2I (is0 − 1)

, (B18)

C̃−1 = I ′(is0 − 1)

1 + 1
2I (is0 − 1)

, (B19)

D̃−1 = B̃−1C̃−1, (B20)

and

Ẽ−1 =
1
3

[JC(is0 − 1) + JV1 (is0 − 1) − 2JV2 (is0 − 1) + 1
2JB(is0 − 1)

]
1 + 1

2I (is0 − 1)
. (B21)
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Finally, we collect all the O(�−2) terms to find the following integral equation for t∅(p):

t∅(p) = − 2

9π
(γs − γC)

1

p

∫ ∞

0
dq ln

(
q2 + pq + p2

q2 − pq + p2

)
Cqis0−2 + 4κ

9π

1

p
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q2 − pq + p2

)
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− 8κ

3
√

3π
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0
dq

[
C̃(q,p,0) + Ṽ1(q,p,0) − 2Ṽ2(q,p,0) + 1

2
B̃(q,p,0)
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− 2√
3π

1

p
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0
dq ln
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q2 + pq + p2

q2 − pq + p2

)
t∅(q) (B22)

Using the ansatz t∅(p) = A∅pis0−2 + B ln(p)pis0−2 we find that B is the same as in the t−(p) ansatz, and A∅ is given by

A∅ = C

{
− 1

6
√

3
(γs − γC) B̃−1 + κ

6
C̃−1 − κ

12
D̃−1 − 8κ√

3π
Ẽ−1

}
. (B23)
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