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The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high-
precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents,
which are automatically generated by the nuclear force model used in these fits. After normalizing the wave
functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components,
gives 0.863(2), while model WJC-2 with very small P-state components gives 0.864(2). These are about 1%
larger than the measured value of the moment, 0.857 n.m., giving a new CST prediction for the size of the
ρπγ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear
dynamics. The physical significance of these results is discussed, and general formulas for the deuteron form
factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are
given.
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I. INTRODUCTION, SUMMARY, AND CONCLUSIONS

A. Background

This work is the second in a series of four planned
papers (the first, Ref. [1], accompanies this paper) that will
present the fourth-generation calculation of the deuteron form
factors using what is now called the covariant spectator theory
(CST) [2–4].

This new generation of calculations are required by the
new fits to the 2007 np data base [5] obtained using the CST
with a one boson exchange (OBE) kernel. It was found that
a high-precision fit (one with χ2/datum � 1) was possible
only if the NNσ0 vertices associated with the exchange of
a scalar-isoscalar meson σ0 included momentum-dependent
terms in the form

�σ0 (p,p′) = gσ0 1 − νσ0 [	(p) + 	(p′)], (1.1)

where νσ0 is a new parameter determined by fitting the NN
scattering data, p and p′ are the four-momenta of the outgoing
and incoming nucleons, respectively, and the 	 are projection
operators

	(p) = m − /p

2m
, (1.2)

which are nonzero for off-shell particles, and hence are a
feature of Bethe-Salpeter or CST equations.

Two high-precision models were found with somewhat
different properties. Model WJC-1, designed to give the best
fit possible, has 27 parameters, χ2/datum � 1.06, and a large
νσ0 = −15.2. Model WJC-2, designed to give a excellent fit
with as few parameters as possible, has only 15 parameters,
χ2/datum � 1.12, and a smaller νσ0 = −2.6. Both models also
predict the correct triton binding energy. The deuteron wave
functions predicted by both of these models [6] have small
P-state components of relativistic origin, and the normalization
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of the wave functions includes a term coming from the energy
dependence of the kernel, which contributes −5.5% for WJC-1
and −2.3% for WJC-2.

This momentum dependence of the kernel implies the
existence of a new class of np isoscalar interaction currents
that will contribute to the electromagnetic interaction of the
deuteron. These currents were fixed in Ref. [1], and this paper
completes the derivation started there by decomposing the
deuteron current into three independent form factors [7,8] and
expressing each of these form factors in terms of integrals over
bilinear products of eight invariant functions, or alternatively,
the two familiar nonrelativistic S- and D-state wave functions,
u and w, the two small P-state components, vt and vs , and
four additional amplitudes, referred to collectively as χ
, that
appear when both particles are off-shell [9,10]. This paper
also discusses the contributions of the interaction currents
to the charge and the magnetic moment. Calculation of the
quadrupole moment and the dependence of the form factors
on the momentum transfer of the scattered electron, Q2, will
be discussed in the remaining two papers, under preparation.

B. Organization of the paper

This paper is long and detailed, so the principal results
and conclusions have been extracted and summarized in this
section. The interaction current makes significant contribu-
tions to the wave function normalization (the charge) and
these are reviewed in some detail in Sec. I C. Then, one of
the principal new results of this paper, the calculation of the
deuteron magnetic moment including the contributions from
the interaction current, are presented in Sec. I D. Conclusions
are given in Sec. I E.

The remainder of the paper includes four more sections and
four Appendixes where many of the details are presented. The
two-body current from which all of the results are derived is
introduced in Sec. II. The entity that contains the relativistic
structure of the deuteron is the dnp vertex function with one
nucleon on shell. In Sec. II this vertex function is written as
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a sum of products of scalar invariant functions multiplied by
covariant Dirac spin operators. This expansion in terms of
invariants was first introduced by Blanckenbecler and Cook in
1960 [9], but we use the notation of Ref. [10]. Appendix A
shows how to expand these invariant functions in terms of
the CST deuteron wave functions u,w,vt , and vs (previously
reported in the literature), and χ
 = {z−−

0 ,z−−
1 ,z−+

0 ,z−+
1 }, the

negative ρ-spin helicity amplitudes for particle 1. The χ
 are
not zero even when both particles are on shell and are needed
for a complete calculation of the magnetic moment.

Next, Sec. III describes how the deuteron form factors are
extracted from the helicity amplitudes of the deuteron current,
and general formulas for the form factors, valid to all Q2,
are assembled. The final results, Eqs. (3.28) and (3.36), give
the form factors as a sum of products of the nucleon form
factors Fi(Q2) (with i = 1,2,3, with F3 a new nucleon form
factor that contributes to the nucleon current only when both
the incoming and outgoing nucleons are off shell) multiplied
by body form factors expressed as integrals over traces of
bilinear products of invariant functions from which the dnp
vertex is constructed. The interaction current contributions
are conveniently expressed in terms of two new types of
wave functions, �(2) and �̂. Explicit formulas for the 18
independent traces that appear in the final results are given in
Appendix B. The formulas are manifestly covariant; once the
rest frame wave functions are known these formulas reduce
the calculation of the deuteron form factors at any Q2 to
quadratures. These formulas will be used to calculate the form
factors in the fourth paper of this series, and are one of the
principal new results of this paper.

Finally, the last two sections discuss how the charge
(Sec. IV) and magnetic moment (Sec. V) are built up from
individual contributions from the wave function components,
the off-shell nucleon current, and the interaction current. These
sections assemble details given in Appendixes C and D. This
work is summarized in the following Secs. I C and I D.

C. Charge and normalization

The normalization condition ensures that the charge of the
deuteron is one. There are many ways to write this condition;
Sec. IV expresses the contributions from the interaction
currents in terms of two new wave functions, �(2), a wave
function that depends only on the 	 contributions from off-
shell particle 2, and �̂, a wave function with both particles off
shell, which, because of the interaction current contributions,
reduces to � when particle 1 is on shell. In this language, the
normalization condition (charge) can be expressed as a sum of
contributions from the components of �, �̂, and �(2):

1 =
∫ ∞

0
k2dk

4∑

=1

{1 + a
(k)}z2

 +

〈
∂Ṽ

∂P0

〉
, (1.3)

where the notation z
 = z
(k) is used generically to denote
the wave functions u,w,vt , or vs [not to be confused with the
helicity amplitudes denoted by z

ρ1ρ2

 and given in Eq. (A26)]

with 
 denoting the angular momentum of the state (so that
z0 = u, z2 = w, and z1 = vt or vs). In Sec. IV it is shown how
the derivative of the reduced kernel can be expressed in terms

TABLE I. Contributions to the normalization sum (1.3) for model
WJC-1. All entries are rounded to three decimal places; all totals are
subject to round-off error. Note that the total of columns four and five
equals the total in column six, confirming (1.4).

z
 z2

 a
z

2

 z
̂z
 z
z

(2)



〈
∂Ṽ
∂P0

〉
u 0.974 0.014 −0.035 −0.020 −0.054
w 0.077 0.022 −0.017 −0.002 −0.019
vt 0.001 −0.003 −0.007 −0.001 −0.007
vs 0.002 −0.008 0.001 −0.001 0.000

total 1.055 0.025 −0.057 −0.023 −0.080

of products involving the new wave functions〈
∂Ṽ

∂P0

〉
=

∫ ∞

0
k2dk

4∑

=1

{〈
z
z

(2)



〉 + 〈z
̂z
′

〉

}
(1.4)

and the contributions from the derivative of the strong form
factor contribute terms proportional to a
(k), with

a
(k) =
{−4a(p2)(Ek − md )δk 
 = 0,2
+4a(p2)(Ek − md )md 
 = 1

, (1.5)

where a(p2) was defined in Eq. (3.25) with p2 = m2
d + m2 −

2mdEk here, and δk = 2Ek − md . The budget for these con-
tributions is shown in Tables I and II, where all contributions
have been rounded to three decimal places.

Note that, except for the P-state contributions from model
WJC-2, all of these contributions are important at the level
of 0.001. If the magnetic moment is to be calculated to this
accuracy (a goal of this paper), then all of these terms must be
included.

D. Magnetic moment

The algebraic expression for the magnetic moment is
considerably more complicated than the simple form (1.3)
for the charge. While it is possible to calculate the exact result
from the formulas given in the appendixes, this will not give
much insight into the underlying physics. The goal in this
paper is to simplify these formulas, retaining all terms that
contribute to 1–2 parts per 1000.

Table III will be used to guide the calculation. It suggests
that sufficient accuracy is obtained if the coefficients of
all terms but those involving products of the leading wave
functions, namely u and w, are retained to leading order in the
small parameter δE = (Ek − m)/Ek (a few of the other terms

TABLE II. Contributions to the normalization sum (1.3) for
model WJC-2 (see caption to Table I).

z
 z2

 a
z

2

 z
̂z
 z
z

(2)



〈
∂Ṽ
∂P0

〉
u 0.957 0.007 −0.022 −0.012 −0.034
w 0.065 0.011 −0.010 0.001 −0.009
vt 0.000 0.000 0.002 0.000 0.002
vs 0.000 0.000 0.000 0.000 0.000

total 1.023 0.018 −0.030 −0.011 −0.041
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TABLE III. Integrated products of wave functions for model
WJC-1 with the largest P states. Entries above the diagonal are
the products z
z
′ ; those along the diagonal and below are products
weighted by (Ek − m)/Ek .

u w vt vs

u 0.007 0.094 −0.004 –
w −0.001 0.006 −0.009 −0.010
vt – −0.001 – 0.001
vs 0.001 −0.001 – –

are as large as 0.001, but neglecting all of these corrections is
not expected to change the results significantly, and all terms
of higher order in δE are negligible). Guided by these results
the formulas for the magnetic moment are simplified.

If the deuteron is treated as a nonrelativistic superposition
of S and D states, normalized to unity so that

1 =
∫ ∞

0
k2 dk(u2 + w2) = PS + PD, (1.6)

then the well-known result for the magnetic moment is

μd = μs + 3
4 (1 − 2μs)PD = μs + μNR, (1.7)

where μs = 0.880 is the isoscalar nucleon magnetic moment.
Inserting the measured deuteron magnetic moment, 0.857 (in
nuclear magnetons) gives the famous prediction of 4% for the
deuteron D state, a result too low for most modern models.

The CST results for the leading contributions to the mag-
netic moment (with an estimated accuracy of ±0.002) were
derived in Sec. V and Appendix D. After some simplification,
the results can be written [see Eq. (5.2)]

μd = μs + �μd, (1.8)

where �μd is the sum of eight different types of corrections
given in Eqs. (5.3) and (5.6) and listed in Tables IV and V.
The physical origin of each of these eight corrections is
summarized in Table IV, and their numerical size for each
of the models WJC-1 and WJC-2 are summarized in Table V.
A running sum of the correction terms is plotted in Fig. 1.

From these results I conclude that the CST is not able to
explain the magnetic moment precisely. Within the theoretical
errors, the missing contribution is about δμd � −0.006 ±
0.002, less than 1% of the magnetic moment and closer to

TABLE IV. Physical origin of the eight different types of
corrections that contribute to the magnetic moment.

term physical origin

μNR nonrelativistic D-state contribution
μRc relativistic corrections to S, D terms
μh′ dependence on the strong form factor, h

μV2 interaction currents: off-shell particle 2
μV1 interaction currents: on-shell particle 1
μint interference of P-states with S- and D-states
μP P-state squared terms
μχ P-state and negative ρ-spin z−−


 interference

TABLE V. Contributions to the magnetic moment from the eight
different types of corrections discussed in the text. To get the correct
experimental value, these corrections must equal −0.023.

WJC-1 WJC-2

u,w only all u,w only all

μNR −0.044 −0.044 −0.037 −0.037
μRc 0.021 0.021 0.009 0.009
μh′ −0.010 −0.009 −0.005 −0.005
μV2 0.001 0.004 −0.001 −0.009
μV1 0.013 0.006 0.008 0.008
μint – 0.016 – 0.001
μP – −0.004 – 0.000
μχ – −0.007 – 0.000

total −0.019 −0.017 −0.026 −0.016

the the experimental value than the nonrelativistic D-state
contribution (assuming the Pd � 5 − 6% found in most fits).
This small difference is a new prediction for the total size of
the famous ρπγ exchange current that has been extensively
studied [11–15] and other purely transverse contributions
not constrained by the np dynamics. Predictions for these
contributions will be the subject of a future paper.

E. Conclusions

The calculation of the magnetic moment given in this paper
is the first precise consequence of the interaction current
derived in Ref. [1]. Using this interaction current, and the
deuteron wave functions obtained from the precision CST fits
to the np scattering data, model WJC-1 predicts the magnetic
moment to be 0.863(2), while model WJC-2 predicts it to
be 0.864(2), where the theoretical error is an estimate of the
size of the many small terms omitted from the calculation.
Taking the value given by the most precise model (WJC-1)
and increasing the error to ±0.003 to allow for the model
dependence, my overall prediction is 0.863(3). This result is
larger than the experimental value by 0.006(3), implying that
the total size of the many missing purely transverse interaction
currents unconstrained by the np dynamics (including the
ρπγ and ωσγ currents) is much smaller than previously
estimated. Either these currents are individually quite small, or
they tend to cancel when added together. The CST prediction
for the magnetic moment, obtained without any adjustable
parameters, is within 1% of the experimental value.

The prediction is almost the same for both models, even
though the two models have quite different properties. This is
illustrated in Fig. 1, which shows the running sum of the eight
contributions, added in the order listed in Tables IV and V.
For both models the NR correction (1.7) is too small and the
relativistic corrections (μRc) bring the moment up to equal to,
or close to its experimental value. Both of these effects depend
on the S and D states only. Then the contributions from the
derivative of the strong nucleon form factor, proportional to
a(p2) = d log(h)/dp2 [see Eq. (3.25)], reduce the moment
again, giving an almost identical value near −0.032 for the
two models. The two interaction current contributions, V2
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FIG. 1. (Color online) Running sum of the corrections to the magnetic moment, in the order that they are listed in Tables IV and V. The
dashed line is �μd = −0.023, the correction needed to give the experimental value. The error bars are ±0.002, an estimate of the size of the
terms missing from the approximation of Eq. (1.8). Model WJC-1 (left) and model WJC-2 (right).

(arising from the momentum dependence associated with the
	 attached to the off-shell particle 2) and V1 (arising from
the momentum dependence associated with the 	 attached
to particle 1, which only contributes when both particles are
off shell), both give positive contributions, pushing the total
back up to a value equal, or close to the experimental value.
These interaction current contributions contain significant
contributions from the P states as well as the S and D states.
Perhaps the most surprising result comes from the last three
terms (μint,μP , and μχ ), all of which are zero if the P states vt

and vs are zero. In model WJC-2 where the P states are very
small, these terms add very little, but their contributions are
significant for model WJC-1, where they give large canceling
effects just sufficient to produce the same total prediction as
is obtained for model WJC-2. Note that even the term μχ ,
which is an interference between the P states and the negative
ρ-spin contributions from particle 1 [which contribute only to
the diagrams (B) of Fig. 2 when both particles are off shell]
is important to obtaining agreement between the two models.
As shown in Appendix C, these terms cancel in the charge, but
make a small but significant contribution to the model WJC-1
prediction for the magnetic moment.

A full comparison of my results with the many other
calculations in the literature will be postponed until I have
completed my calculation of the quadrupole moment and the
form factors. Here I note only that in a recent work based
on χEFT [16,17] the deuteron magnetic moment is used to
constrain the low-energy constants of χEFT, and hence the
magnetic moment itself is not predicted.

We now turn to the derivation of these results, as already
outlined in Sec. I B above.

II. WAVE AND VERTEX FUNCTIONS

In the CST, the two-body current is given by the five
diagrams shown in Fig. 2 (completely equivalent to the four
shown in Fig. 1 of Ref. [1]). These include the interaction

current contributions derived in Ref. [1], expressed in terms
of the the effective wave functions �(2) and the subtracted
vertex functions �̂ (directly related to �̂) with two particles
off shell. Although these diagrams are written for particle 2
off shell, the symmetry of the NN interaction is built into the
formalism from the start and they are completely equivalent
to an alternative set with particle 1 off shell. At the conclusion
of Ref. [1] it was shown that these diagrams can be written
as a trace over the product of covariant wave functions (or
vertex functions) of the initial and final deuteron, and a current
operator describing the interaction of the virtual photon with
the off-shell nucleon. In this section the covariant wave and
vertex functions will be discussed in detail.

A. General definitions

The covariant wave function of the deuteron is defined in
terms of the covariant dnp vertex function, G,

�
λd

αβ(k,P ) = (
�

λd

0

)
αβ ′(k,P )Cβ ′β

= Sαα′ (p)Gλd

α′β(k,P ), (2.1)

where C is the Dirac charge conjugation matrix, S is the bare
nucleon propagator (with the factor of −i removed)

S(p) = 1

m − /p
(2.2)

and, for an incoming deuteron of four-momentum P and
polarization four-vector ξ , G is written

Gλd

αβ (k,P ) = (�νC)αβ(k,P )ξν
λd

(P )

= �
λd

αβ ′ (k,P )Cβ ′β, (2.3)

with k the four-momentum of particle 1 (with Dirac index
β), and p = P − k the four-momentum of particle 2 (with
Dirac index α). Care must be taken to distinguish � (which
includes the charge conjugation matrix) from �0 (which does
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FIG. 2. (Color online) Diagrammatic representation of the two-body current operator in the covariant spectator theory using vertex functions
with particle 2 off shell. The interaction current contributions are contained in diagrams (A±) and parts of the (B) diagrams, as discussed in the
text. Off-shell nucleon lines are thicker than on-shell lines, which are also labeled with an ×. Diagrams (A) and (A±) describe the interaction
of the photon with particle 2, allowing particle 1 to be on shell in both the initial and final state. Diagrams (B±) describe the interaction of the
photon with particle 1, so that both particles must be off shell in either the initial state (diagram B+) or in the final state (diagram B−).

not). These wave (or vertex) functions satisfy the bound-state
CST equation

S−1
αα′ (p)�λd

α′β(k,P )

= −
∫

k′
V βγ,αα′ (k,k′; P )�α′γ ′(k′,P )�T

γ ′γ (k), (2.4)

where V is the symmetrized kernel (introduced in Ref. [5]),
the positive energy Dirac projection operator is

�γγ ′(k) = (m + /k)γ γ ′

2m
=

∑
λ′

uγ (k,λ′)ūγ ′(k,λ′), (2.5)

with the Dirac spinors u = u+ discussed in Appendix A, and
the volume integral is∫

k

=
∫

d3k

(2π )3

m

Ek

. (2.6)

Here particle 1, with four-momentum k = {Ek,k}, is on shell
(so that Ek = √

m2 + k2).
In the OBE models that are the basis of the work reported

here, the strong form factors at the meson-NN vertices are
products of strong form factors for each particle entering or
leaving the vertex. The strong form factor h(p) [where h(p)
is a function of p2] associated with each external nucleon line
can be factored out of the NN scattering kernel, leading to

V (k,k′; P ) = h(k)h(p)Ṽ (k,k′; P )h(k′)h(p′), (2.7)

where Ṽ is the reduced kernel, and we recall that, for both
primed and unprimed variables, p = P − k. If a particle with
momentum k is on shell, so that k2 = m2, the strong form factor
is defined so that h(k) = 1. Note that the expression (2.7) for
the kernel is written allowing for the possibility that any (or
all four) of the particles could be off shell.

The next step in the computation of the form factors is
to express the wave and vertex functions in terms of scalar
invariant functions, so that when the traces (3.28) and (3.33) are
computed, the result will be a sum of bilinear products of these
scalar functions multiplied by covariant kinematical factors.

The result is manifestly covariant, and the effect of boosting
the incoming and outgoing states is easily accounted for by
correctly shifting the arguments of the invariant functions.

B. Expansion of the wave or vertex functions

When particle 1 is on-shell, the covariant dnp deuteron
nucleon vertex function defined in Eq. (2.3) (with the charge
conjugation matrix removed) can be expanded into four
independent Dirac invariants

�μ(k,P ) = Fγ μ + G

m
kμ − 2	(p)

[
Hγ μ + I

m
kμ

]
, (2.8)

where k is the four-momentum of the on-shell particle 1,
so that k2 = m2, p = P − k is the four-momentum of the
off-shell particle 2, and 	(p) is the negative energy projection
operator of particle 2 [recall Eq. (1.2)]. The scalar functions
F,G,H, and I are all functions of p2, the only free scalar
variable. Note that

�
μ

(k,P ) = γ 0[�μ(k,P )]†γ 0

= Fγ μ + G

m
kμ −

[
Hγ μ + I

m
kμ

]
2	(p). (2.9)

It is sometimes convenient to work directly with wave
function �

μ
0 defined in Eq. (2.1) (with the charge conjugation

matrix removed), and the related amplitude �
μ

0 ,

�
μ
0 (k,P ) ≡ S(p)�μ(k,P )

= Aγ μ + B

m
kμ − 2	(p)

[
Cγ μ + D

m
kμ

]
, (2.10)

where S(p) is the undressed propagator of the off-shell particle,
and

(m2 − p2) C = m F (m2 − p2) D = m G

m A = 2m C − H m B = 2m D − I. (2.11)

The F,G,H, and I are related to the deuteron wave
functions, as discussed in Appendix A and many previous
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references [6,10,18,19]. When the spectator is on shell, these
invariants depend only on p2, the mass of the off-shell particle.

C. Bethe-Salpeter vertex functions

The (B) diagrams of Fig. 2 require Bethe-Salpeter (BS)
vertex functions with both particles off shell. These can be
expanded in terms of invariant functions that depend on the
two invariant variables p2 and k2 	= m2. To describe these, the
expansion (2.8) is generalized

�
μ
BS(k,P ) = Fγ μ + G

m
kμ − 2	(p)

[
Hγ μ + I

m
kμ

]
−

[
K1γ

μ + K2

m
kμ

]
2	(−k)

+ 4	(p)

[
K3γ

μ + K4

m
kμ

]
	(−k)

= �μ(k,P ) − �
μ
off(k,P ) 2	(−k), (2.12)

where the invariants in �μ (F,G,H,I ) are distinguished from
the old only by their arguments (two instead of one). The
appearance of the operator on the right of the last terms,
	(−k) [instead of 	(k), as might have been expected],
comes from moving the charge conjugation matrix past the
projection operator of particle 1: C 	T (k) = 	(−k) C. Particle
interchange symmetry relates H and I to K1 and K2, but we
will ignore this constraint for now; it is a numerical feature of
the solutions for the matrix elements.

As it turns out all eight invariant functions are present in
�μ, even when particle 1 is on shell. (A proof of this can
be found in Appendix B of the original longer version (v1)
of the present paper in the preprint archive [20].) The �

μ
off

part of the vertex function constructed from the four invariant
functions Ki is not zero when k2 = m2. However, because
of the presence of the projection operator 	(−k) it does not
contribute to diagrams where both k2 = m2 and the vertex
function is contracted with an on-shell projection operator (or
the on-shell u spinor). Thus it makes no contribution to the
(A) diagrams, but a full understanding of the content of the
(B) diagrams requires that it be included.

In the rest frame, when both particles are off shell, the
covariant variables are related to k2, the square magnitude of
the spectator three-momentum, and k0, the off-shell energy of
particle 1, through the relations

p2 = (P − k)2 = k2 + md (md − 2k0)

k2 = m∗2 ≡ k2
0 − k2. (2.13)

Solving these relations for k0 and k2 gives

k0 → R0 ≡ P · k

md

= m2
d + m∗2 − p2

2md

k2 → R2 ≡ k2
0 − m∗2 = (P · k)2

m2
d

− m∗2. (2.14)

These relations provide the unique covariant generalization
of the rest frame variables k0 and k2 (denoted by R0 and
R2). Stated more precisely, if the spectator associated with a
deuteron with four-momentum P has energy k0 and a squared

three-momentum k2, then the equivalent rest frame values of
these quantities are R0 and R2. Note that R0 and R =

√
R2

are quite different quantities.
It is instructive to derive these relations by a direct boost

from the moving frame to the rest frame. To do this, consider
(for definiteness) that the moving deuteron has momentum
{D0,0⊥,Q/2}, with

D0 =
√

m2
d + 1

4Q2. (2.15)

Then if the spectator has four-momentum k = {k0,k⊥,kz}, in
the rest frame these values are

R0 = 1

md

(
D0k0 − 1

2
Qkz

)
= P · k

md

Rz = 1

md

(
D0kz − 1

2
Qk0

)
(2.16)

with the transverse momentum, k⊥, unchanged. The first of
the two relations (2.14) emerges immediately, and to obtain
the second simply compute the square of the three-momentum
in the rest frame

R2 = k2
⊥ + R2

z

= k2 + η2
(
k2
z + k2

0

) − √
η kzk0D0

= (P · k)2

m2
d

+ k2 − k2
0 (2.17)

in agreement with (2.14). It is also easy to use (2.16) to confirm
that k2 = m∗2 is covariant by computing

R2
0 − R2

z − k2
⊥ = 1

m2
d

(
D2

0 − Q2

4

)(
k2

0 − k2
z

) − k2
⊥

= k2
0 − k2. (2.18)

A word of caution: depending on the context, k is sometimes
used to denote either the magnitude of the three-momentum
(i.e., R) or the four-momentum (and, when the square of
the four-momentum is involved, m∗2 will sometimes be used
instead of k2). Earlier discussions of deuteron wave functions
were restricted to cases when particle 1 was on shell, and were
evaluated in the rest frame [6,10,19] or used wave functions
boosted from the rest frame [21], where there was no need to
make a distinction between R and k.

All of the invariants defined in (2.12) depend on the two
variables R and R0, so that, for example F = F (R,R0).
However, because of the cancellation between the contribu-
tions from the (B) diagram and the 〈V1〉 interaction currents,
discussed in Ref. [1], the effective BS vertex function of
interest reduces to the CST function when particle 1 is on shell.
The frame-independent way to express this on-shell condition
is to introduce ER , where

ER ≡
√

m2 + R2 (2.19)

is the straightforward generalization of Ek . Note that ER = Ek

in the rest frame. Using this notation, the invariant functions
satisfy the condition

Z(R,ER) = Z(R), (2.20)
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where Z is a generic name for any of the eight invariant
functions.

III. DEUTERON FORM FACTORS

A. Definitions of the form factors

The most general form of the covariant deuteron electro-
magnetic current can be expressed in terms of three deuteron
form factors

〈dλ|Jμ|d ′ λ′〉 = −2Dμ

{
G1 ξ ∗

λ · ξ ′
λ′ − G3

(ξ ∗
λ · q)(ξ ′

λ′ · q)

2m2
d

}
−GM [ξ ′μ

λ′ (ξ ∗
λ · q) − ξ

∗μ
λ (ξ ′

λ′ · q)], (3.1)

where the form factors G1, G3, and GM = G2 are all functions
of the square of the momentum transfer q = P+ − P−,
with Q2 = −q2, Dμ = 1

2 (P+ + P−)μ, and P− (P+) the four-
momentum of the incoming (outgoing) deuterons, and ξ ′

λ′ (ξλ)
are the four-vector polarizations of the incoming (outgoing)
deuterons with helicities λ′ (λ). The polarization vectors satisfy
the well-known constraints

P+ · ξλ = P− · ξ ′
λ′ = 0

ξ ∗
λ · ξρ = −δλρ (3.2)

ξ ′∗
λ′ · ξ ′

ρ ′ = −δλ′ρ ′ .

This notation agrees with that used in Ref. [8], except that
now λ denotes the helicity of the outgoing deuteron and λ′ the
helicity of the incoming deuteron.

The form factors G1 and G3 are usually replaced by the
charge and quadrupole form factors, defined by

GC = G1 + 2
3ηGQ

GQ = G1 + (1 + η)G3 − GM (3.3)

with η = Q2/4m2
d . At Q2 = 0, the three form factors GC , GQ,

and GM give the charge, quadrupole moment, and magnetic
moment of the deuteron. Since one unit of the proton charge
has been removed from the current, the correct normalizations
are

GC(0) = 1

GM (0) = 2mdμd = G2(0) (3.4)

GQ(0) = m2
dQd = G3(0) + 1 − μd.

The form factors can be related to helicity amplitudes.
Working in the Breit frame, and choosing the momenta to
be

P
μ
± = {D0,0,0, ± 1

2Q}
(3.5)

qμ = {0,0,0,Q},
where D0 was defined in Eq. (2.15), the helicity four-vector
polarizations for the deuteron and the photon are

ξ
μ
λ =

{
{0,∓1, − i,0}/√2 λ = ±1

{ 1
2Q,0,0,D0}/md λ = 0

ξ
′μ
λ′ =

{
{0,±1, − i,0}/√2 λ′ = ±1

{− 1
2Q,0,0,D0}/md λ′ = 0

(3.6)

ε
μ
λγ

=
{

{0,∓1, − i,0}/√2 λγ = ±1

{1,0,0,0} λγ = 0,

where the polarization vectors for the incoming deuteron
(treated as particle 2 in the conventions of Jacob and Wick)
have been obtained from those of the outgoing deuteron
(particle 1 of Jacob and Wick) by a rotation through π about
the ŷ axis, multiplied by a phase

ξ ′
λ′ = (−1)1+λRy(π )ξλ′ . (3.7)

These definitions agree with Refs. [8] and [22] [except that in
Eq. (2.7) of Ref. [22] the ξμ(±1) refer to the spin direction
and not the helicity and there is a typo in the expression for
ξμ(0)].

We will denote the most general helicity amplitude by

G
λγ

λλ′ ≡ 〈P+ λ|Jμ|P− λ′〉εμ
λγ

. (3.8)

Under rotation by π about the ẑ axis, all of the helicity
four-vectors (3.6), represented generically by the vector ε,
transform as

ελ = (−1)λελ, (3.9)

giving the condition

λγ + λ + λ′ = 0. (3.10)

(This relation must be interpreted as arithmetic modulo 2, and
can be written in a variety of ways.) In addition, the amplitudes
are related to each other by Y -parity conservation (parity
followed by rotation π about the ŷ axis), which insures that

G
λγ

λλ′ = G
−λγ

−λ−λ′ . (3.11)

Hence it is sufficient to omit discussion to those nine
amplitudes with λγ = −1, and of the three amplitudes G0

λ−
and G0

−0. Of the remaining 14, Eq. (3.10) gives

G+
++ = G+

−− = G+
00 = G+

−+ = G+
+− = 0

G0
+0 = G0

0+ = 0, (3.12)

leaving seven possible amplitudes.
A conserved current must have the form (3.1), and direct

computation using this gives four further relations

G+
+0 = G+

0+

G0
++ = G+

−0 = G+
0− = 0 (3.13)

leaving only the three independent amplitudes G0
00,G

0
+− and

G+
+0 = G+

0+. (Note that Eq. (20) of Ref. [8] states incorrectly
that G+

0− and G−
0+ are nonzero.)

While the sum of all of the individual contributions to
the form factors is constructed to give a conserved current,
individual terms may not, and for this reason the average
of G+

+0 and G−
0− (equal to G+

0+), which enjoys a desirable
symmetry property discussed below, is used to extract the
magnetic contributions from individual terms. The form
factors are then extracted from the following combination of
helicity amplitudes

J1 ≡ G0
00 = 2D0

(
GC + 4

3η GQ

)
J2 ≡ G0

+− = 2D0
(
GC − 2

3η GQ

)
(3.14)

J3 ≡ 1
2 (G+

+0 + G−
0−) = 2D0

√
η GM,
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where Jn (with n = 1,2,3) is a convenient notation for the
helicity amplitudes. To calculate the deuteron form factors, it
therefore sufficient to calculate the three independent matrix
elements (3.14) of the two-body current operator.

The remaining parts of this section assemble the general
formulas for the three independent helicity amplitudes, Jn

starting from the results of Eqs. (3.30) and (3.31) of Ref. [1].
From these amplitudes the charge, quadrupole, and magnetic
form factors are obtained. Explicit expressions for the charge
will be given in Sec. IV and for the magnetic moment in
Sec. V. Results for the quadrupole moment will be given in a
subsequent paper.

B. Off-shell nucleon current

Following the method of Riska and Gross [23], a conserved
two-nucleon current can be constructed [21] using the dressed
single-nucleon off-shell current

jμ(p,p′) = h(p)h(p′)jμ
R (p,p′)

= e0 f0(p′,p)Fμ
1 + e0 g0(p′,p)	(p′)Fμ

3 	(p)

+ e0 f2(p′,p)F2(Q2)
iσμνqν

2m
, (3.15)

where jR is the reduced current, f0,g0,f2 are off-shell
functions discussed below, e0 = 1

2 is the isoscalar charge, the
off-shell projection operator 	 was defined in (1.2),

Fμ
i = [Fi(Q

2) − 1]γ̃ μ + γ μ

= Fi(Q
2)γ̃ μ + /qqμ

q2
, (3.16)

and the transverse γ matrix is

γ̃ μ = γ μ − /qqμ

q2
(3.17)

with q = p′ − p. The nucleon form factors are Fi(Q2), with
Q2 = −q2 [and F3, subject to the constraint that F3(0) = 1, a
new form factor that contributes only when both nucleons are
off shell]. The second form of (3.16) displays the interesting
fact that the important physics is contained in the transverse
part of the current; the longitudinal part that is constrained by
the WT identities will not contribute to any observable since
it is proportional to qμ, which vanishes when contracted into
any conserved current or any of the three polarization vectors
of an off-shell photon.

The off-shell functions f0 and g0 are determined from the
requirement that the reduced current, j

μ
R , satisfy the Ward-

Takahashi (WT) identity

qμ j
μ
R (p,p′) = e0

[
S−1

d (p′) − S−1
d (p)

]
, (3.18)

where Sd the dressed propagator

S−1
d (p) = m − /p

h2(p)
= S−1(p)

h2(p)
, (3.19)

where h occurs squared because one comes from the initial and
one from the final interactions that connect the propagator.

In all previous references it was assumed that the off-shell
function f2 = f0, but since the σμνqν term is transverse, the
WT identity places no constraint on f2. Since consistency

requires that any variation of f2 also include the overall factors
of hh′, so that the relationship (3.15) between the dressed
and reduced currents can be maintained, a simple ansatz for
possible variations of f2 is

f2(p.p′) = (1 − ω2) hh′ + ω2 f0(p,p′), (3.20)

where ω2 = 1 is the choice previously discussed, and ω2 = 0
a reasonable alternative. In this paper it was found that the
variation in the results for ω2 = 0 and ω2 = 1 was less that
0.001, the size of other terms omitted from the calculation. As
a result, ω2 was set to unity (our original assumption) and is
no longer considered a parameter. However, for completeness,
this dependence is recorded in the formulas given in Sec. V
and Appendix D.

Using the shorthand notation h = h(p) and h′ = h(p′), the
simplest solution to (3.18) gives

f0(p′,p) = h′

h

(m2 − p2)

p′2 − p2
+ h

h′
(m2 − p′2)

p2 − p′2

g0(p′,p) = 4m2

p′2 − p2

(
h

h′ − h′

h

)
. (3.21)

An important simplification of the current occurs if it is
contracted into the real (or virtual) photon polarization vectors
defined in (3.6), with the property that qμε

μ
λγ

= 0. In this case
the qμ terms in (3.15) can be dropped, and setting f2 = f0

from now on gives

jμ(p′,p) → f0(p′,p)jμ
N (p′,p)

+ e0g0(p′,p)F3(Q2)	(p′)γ μ	(p), (3.22)

where j
μ
N is the familiar on-shell nucleon current

j
μ
N (p′,p) = e0F1(Q2)γ μ + e0F2(Q2)

iσμνqν

2m
. (3.23)

In addition, the following limits are useful

f00 ≡ lim
p′2→p2

f0(p′,p) = 1 + 2a(p2)(m2 − p2)
(3.24)

g00 ≡ lim
p′2→p2

g0(p′,p) = −8m2 a(p2)

with

a(p2) = 1

h

dh

dp2
. (3.25)

C. Contributions from the (A) diagrams

The contributions from diagram (A) and (A±) were written
as a trace in Eq. (3.30) of Ref. [1]. Here the diagrams (A±) are
those parts of the interaction current that arise from the ν	(p)
and ν	(p′) terms in the sNN and vNN couplings (denoted by
〈V μ

2 〉 in Ref. [1]). Using the wave functions and currents intro-
duced above, the corresponding helicity amplitudes, defined
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in Eq. (3.8), can be written

G
λγ

λλ′(q)
∣∣
A+V2

= −
∫

k

tr

[{
�

λ

0(k,P+)
[
f0(p+,p−)j

λγ

N (q) + g0(p+,p−)	(p+)F3(Q2)e0γ
λγ 	(p−)

]
�λ′

0 (k,P−)

−�
λ

0(k,P+)
h+
h−

j
λγ

N (q)�(2)λ′
0 (k,P−) − �

(2)λ
0 (k,P+) j

λγ

N (q)
h−
h+

�λ′
0 (k,P−)

}
�(−k)

]
, (3.26)

where p± = P± − k, j
λγ

N = j
μ
N (ελγ

)μ and γ λγ = γμε
μ
λγ

are the vector currents j
μ
N and γ μ contracted with the photon polarization

vector ε
μ
λγ

. Part of the interaction current contribution is contained in the new wave function �(2) (or �
(2)
0 when the charge

conjugation matrix has been removed), obtained from a truncated kernel proportional to the off-shell couplings depending on 	(p)
and 	(p′) (for details see Ref. [1]). Calculation of the three independent helicity amplitudes defined in Eq. (3.14), labeled by n =
{1,2,3}, requires the helicity combinations n → {λγ ,λ,λ′} where 1 → {0,0,0},2 → {0,+,−} and 3 → {+, + ,0} + {−,0,−}.
With this correspondence implied in the equations below, six generic traces An,i , where and i = {1,2} and n = {1,3}, are defined

An,i(�1�2) ≡ −tr
[
�

λ

1(k,P+) j
λγ

i (q) �λ′
2 (k,P−) �(−k)

]
= −(−1)λγ tr

[
�

−λ′

2 (k,P−) j
−λγ

i (−q) �−λ
1 (k,P+) �(−k)

]
= (−1)λγ An,i(�2�1)

∣∣
q→−q

, (3.27)

where the transformations in the second line of (3.27) follow from the identity tr[O] = tr[O†] = tr[γ 0O†γ 0] and the
properties ε∗

λγ
= (−1)λγ ε−λγ

and ξ
′μ
−λ(q) = ξ

μ
λ (−q). The third line of (3.27) follows immediately from the second line for

the n = 1 or 2 helicity amplitudes (where λγ = 0, and λ′ ↔ −λ). However, the second line interchanges the two terms
that contribute to the helicity average for the n = 3 combination, transforming {+,+,0} ↔ −{−,0.−}. Hence choosing the
average of the two contributions ensures that the symmetry relation (3.27) holds, even if the individual contribution under
study does not, by itself, conserve current. With this notation the trace (3.26), for each independent helicity amplitude, can
be written

Jn(q)|A+V2 = e0F1(Q2)
∫

k

{
f0(p+,p−)An,1(�+�−) − h+

h−
An,1(�+�

(2)
− ) − εn3

h−
h+

An,1(�+�
(2)
− )

∣∣
q→−q

}
+ e0F2(Q2)

∫
k

{
f0(p+,p−)An,2(�+�−) − h+

h−
An,2(�+�

(2)
− ) − εn3

h−
h+

An,2(�+�
(2)
− )

∣∣
q→−q

}
+ e0F3(Q2)

∫
k

g0(p+,p−)

4m2
An,1(�+ �−), (3.28)

where εn3 = (1 − 2δn3) is the extra phase that appears for the n = 3 helicity amplitudes, as derived in Eq. (3.27), and �± =
�0(k,P±) and �

(2)
± = �

(2)
0 (k,P±). The last term uses the reduction 	�0 → �/(2m).

The formulas for the six An,i , expressed in terms of the invariant functions introduced in Sec. II, are lengthy and are given in
Appendix B.

D. Contributions from the (B) diagrams

Diagrams (B±) of Fig. 2 are not identical to the (B±) diagrams shown in Fig. 1 of Ref. [1]. Here the diagrams involve the
vertex function �̂BS , which includes parts of of the interaction current arising from the ν	(k) and ν	(k′) terms in the sNN and
vNN couplings (which can contribute only when k or k′ are off shell, and are denoted by 〈V μ

1 〉 in Ref. [1]). They were written
as a trace in Eq. (3.31) of Ref. [1]. Contracting these results with the photon polarization vector, and using the notation

E± =
√

m2 + (
k ± 1

2 q
)2

k̃± = {
k0,k ± 1

2 q
}

(3.29)

gives

G
λγ

λλ′(q)
∣∣
B+V1

=
∫

k

[
mEk

k · q

]
tr

{
1

k0
�̂λ

BS (̃k+,P+) Sd (p̃) �̃λ′
(̃k−,P−)�(−k̃−) j

λγ

N (q) �(−k̃+)

∣∣∣∣
k0=E−

− 1

k0
�̃λ (̃k+,P+) Sd (p̃) �̂λ′

BS (̃k−,P−)�(−k̃−) j
λγ

N (q) �(−k̃+)
∣∣
k0=E+

}
, (3.30)
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where p̃ = P± − k̃±. When k0 = E+, the outgoing particle
is on shell, with k̃+ = k̂+ and k̃− = k− = {E+,k − q/2}.
Similarly, when k0 = E−, the incoming particle is on shell,
with k̃− = k̂− and k̃+ = k+ = {E−,k + q/2}. The form of the
expression (3.30) show clearly how the singularities in the two
diagrams at E+ = E− cancel, giving a finite result. Part of the
interaction current contribution is contained in the new sub-
tracted wave function �̂BS(k,P ) = S(p)�̂BS(k,P ), obtained
through a cancellation of the vertex factors 	(̃k±) that could
be present if particle 1 is off shell (for details see Ref. [1]).

Note that the projection operator �(−k̃±) always ac-
companies the vertex functions �̂λ

BS (̃k±,P±). Following the
discussion in Sec. II C, when k̃± is off shell, the product
of the subtracted vertex function and projection operator,

�̂λ
BS (̃k±,P±)�(−k̃±), breaks into two terms

�̂λ
BS (̃k±,P±)�(−k̃±)

= �̂λ(̃k±,P±)�(−k̃±) − (m2 − k̃2
±)

2m2
�̂λ

off (̃k±,P±), (3.31)

where �̂ is identical to the on-shell vertex function �̃ when k̃±
is on shell (because the cancellation shown in Ref. [1] ensures
that there is no extra k̃± dependence).

Introducing the new amplitudes

ϒλ(̃k,P ) = �̂λ (̃k,P )�(−k̃) (3.32)

leads to the following expressions for the independent helicity
amplitudes (labeled by the index n as discussed above):

Jn(q)
∣∣
B+V1

=
∫

k

[
mEk

k · q

]
tr

{
1

k0

[
ϒ

λ
(̃k+,P+) − k · q

m2
�̂λ

off (̃k+,P+)
]
Sd (p̃) ϒλ′

(̃k−,P−) j
λγ

N (q)

∣∣∣∣
k0=E−

− 1

k0
ϒ

λ
(̃k+,P+) Sd (p̃)

[
ϒλ′

(̃k−,P−) + k · q
m2

�̂λ′
off (̃k−,P−)

]
j

λγ

N (q)
∣∣
k0=E+

}
, (3.33)

where the off-shell terms have been reduced using

(m2 − k̃2
±)

∣∣
k0=E∓

= ±2k · q. (3.34)

Equation (3.33) is further reduced by shifting k ± 1
2 q → k in the terms involving �off , and introducing the generic traces

Bn,i(k0) ≡ tr
[
ϒ

λ
(k̃+,P+)Sd (p̃)ϒλ′

(k̃−,P−)j
λγ

i (q)
]

= (−)λγ tr
[
ϒ

−λ′
(k̃−,P−)Sd (p̃)ϒ−λ(k̃+,P+)j

−λγ

i (q)
] = (−)λγ Bn,i(k0)

∣∣
q→−q

(3.35a)

Cn,i(� �off) = tr
[
ϒ

λ
(k,P+)Sd (P+ − k)�̂λ′

off(k − q,P−)j
λγ

i (q)
]

= (−)λγ tr
[
�̂−λ′

off (k − q,P−)Sd (P+ − k)ϒ−λ(k,P+)j
−λγ

i (−q)
] = (−)λγ Cn,i(�off �)

∣∣
q→−q

(3.35b)

where the labeling of the momenta in (3.35b) is as in Fig. 2, with the four-vector k always on shell. This allows the B +〈V1〉
contributions to the helicity amplitudes to be written

Jn(q)
∣∣
B+V1

= e0F1(Q2)
∫

k

{ [
mEk

k · q

] (Bn,1(k0)

k0

∣∣∣∣
−

− Bn,1(k0)

k0

∣∣∣∣
+

)
− 1

m
Cn,1(� �off) − 1

m
εn3Cn,1(� �off)

∣∣∣∣
q→−q

}

+ e0F2(Q2)
∫

k

{ [
mEk

k · q

] (Bn,2(k0)

k0

∣∣∣∣
−

− Bn,2(k0)

k0

∣∣∣∣
+

)
− 1

m
Cn,2(� �off) − 1

m
εn3Cn,2(� �off)

∣∣∣∣
q→−q

}
, (3.36)

where |± → |k0=E± .

The formulas for the B and C traces, when expressed in
terms of the invariant functions introduced in Sec. II, are
lengthy and are given in Appendix B.

E. Numerical calculation of the form factors

Computation of the form factors involves not only the
wave function � and the vertex function �, but also the
special wave function �(2) and the subtracted vertex functions
�̂. The calculation of the interaction current contributions has
been simplified by introducing the special functions �(2) and
�̂, and their Dirac conjugates. The kernels that produce the
bound-state functions �(2) and �̂ were already been given
in a very general form in Ref. [1], but, for convenience, are
given in more explicit detail in Appendix C of the original,

longer version (v1) of the present paper in the preprint
archive [20].

The numerical calculation of the form factors involves the
following steps.

(i) Start from the invariant functions {F,G,H,I } and
{A,B,C,D} given in (2.8) and (2.11), or the Ki defined
in Eq. (2.12). In the rest frame these are functions of
k = |k| and k0, and are constructed from the eight
helicity amplitudes z±±

0 , and z±±
1 as described in

Appendix A.
(ii) Replace the rest frame arguments k, and k0 by the

correctly transformed arguments R and R0 using the
general definitions given in Eqs. (2.14). The specific
realization of these general definitions depends on
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the diagram being evaluated and detailed expressions
for each diagram are given in Eqs. (B3), (B8),
and (B11), (B12).

(iii) Using the invariants with the proper arguments,
evaluate the A+V2 contributions to the helicity am-
plitudes (3.28) using Eqs. (B1)–(B2). Evaluate the
B+V1 contributions (3.36) using Eqs. (B6) and (B7)
and (B9)–(B10). The total result is the sum of these
two contributions.

(iv) Extract the individual form factors using the rela-
tions (3.14).

These general results do not reduce to simple expressions
for the form factors in terms of the the familiar u,w,vt , and vs

wave functions previously defined in the literature and shown
in Eqs. (A29) and (A30). Still, to make connections with
the older literature it is useful to express the result for the
static moments in terms of leading terms involving integrals
over products of u,w,vt ,vs and corrections. The charge and
magnetic moment will be reduced in this way in the following
sections.

IV. CHARGE

The charge and normalization have been previously dis-
cussed in many references, including Ref. [1], so the purpose

here is to see how the same result emerges from the
general expressions (3.28) and (3.36). Using the results of
Eqs. (C7) and (C8), the contributions from (3.28)
are

GC(0)
∣∣
A+V2

= e0

∫ ∞

0
k2dk

{
f00

[
u2 + w2 + v2

t + v2
s

]
+ g00

4m2

[
(2Ek − md )2(u2 + w2) + m2

d

(
v2

t + v2
s

)]
− 2

[
uu(2) + ww(2) + vtv

(2)
t + vsv

(2)
s

]}
= e0

∫ ∞

0
k2dk

{
u2 + w2 + v2

t + v2
s − 4a(p2)(Ek − md )

× [
(2Ek − md )(u2 + w2) − md

(
v2

t + v2
s

)]
− 2

[
uu(2) + ww(2) + vtv

(2)
t + vsv

(2)
s

]}
, (4.1)

with f00 and g00 defined in Eq. (3.24) [with a defined in
Eq. (3.25)], and the second line was obtained by using p =
P − k, which reduces f00 in the rest frame to

f00 = 1 + a(p2) 2md (2Ek − md ). (4.2)

The special wave functions z(2) are obtained from �(2) in
precisely the same way that the z are obtained from �.

Next, using the general results (C14) the contributions to
the charge from (3.36) are

GC(0)
∣∣
B+V1

= e0

∫ ∞

0
k2dk

{
u2 + w2 + v2

t + v2
s − 4a(p2)(Ek − md )

[
(2Ek − md )(u2 + w2) − md

(
v2

t + v2
s

)]
− 2

(
u[δ+û]k0 + w[δ+ŵ]k0

) + 2
(
vt [δ−v̂t ]k0 + vs[δ−v̂s]k0

)}
, (4.3)

where the functions δ+û, . . . ,δ−v̂s were defined in (C12), and if z = h ẑ, the derivative is zk0 = h dẑ(k0)/dk0|k0=Ek .
The charge must be sum of the two contributions (4.1) and (4.3)

1 = Gc(0)
∣∣
A+V2

+ Gc(0)
∣∣
B+V1

, (4.4)

which is also identical to the normalization condition (2.55) of Ref. [1].
The first parts of (4.1) and (4.3) are identical; their sum is the RIA contribution. This contribution arises from diagrams A and

B in different ways. The contribution from the A diagram includes the f0 and g0 factors in the off-shell current; these factors do
not appear in the B diagram, but similar contributions arise from the expansion of the dressed propagator Sd . Of course, the fact
that these contributions are identical is not really surprising; it is a consequence of current conservation. The remaining factors
originate from the interaction currents generated by the reduced kernel.

The remaining terms from (4.4) must equal the contribution from the energy derivative of the reduced kernel, ∂Ṽ /∂P0, which
appears in the normalization condition discussed in Ref. [1] and elsewhere. This leads to the identity

− 1

2md

∫
k

∫
k′

�
λ

λnα
(k,P )h(p)

∂

∂ P0
Ṽλnλ′

n,αα′ (k,k′; P ) h(p′)�λ′
α′λ′

n
(k′,P )

= −
∫ ∞

0
k2dk

{
uu(2) + ww(2) + vtv

(2)
t + vsv

(2)
s + u[δ+û]k0 + w[δ+ŵ]k0 − vt [δ−v̂t ]k0 − vs[δ−v̂s]k0

}
, (4.5)

where we have set e0 = 1
2 . This interesting identity, discussed

already in Sec. I, shows how the energy derivative of Ṽ
can be expressed in terms of special wave functions z(2)

and ẑ.

V. MAGNETIC MOMENT

Predictions for the magnetic moment are presented in this
section. The new interaction current current contributions,
which together account for about 5% of the charge, ensure that
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many new terms not previously encountered will contribute,
and the result for the magnetic moment is the first important
test of the CST.

The contributions from diagrams (A) and (A±) were given
in Eqs. (D6)–(D14) and from the diagrams (B) in Eqs. (D27)
and (D29). Adding these together and keeping the leading z

(2)



contributions and setting e0 = 1
2 gives

μd � μs

(
PS − 1

2PD

) + 3
4PD + �̃μd, (5.1)

where the correction terms are the sum of several contributions
of different origin. This form resembles the nonrelativistic
result, but is misleading because the sum of the S- and D-state
probabilities is not equal to unity in the relativistic theory.

Instead, it is more instructive to write the result in the form

μd = μs + �μd, (5.2)

where, for the nonrelativistic theory, the correction is

�μd → μNR = 3
4PD(1 − 2μs). (5.3)

To obtain a similar form from the CST, we use the
relativistic normalization condition. In the approximations
used to obtain the leading terms for the magnetic moment,
the normalization (or charge) is

1 =
∫ ∞

0
k2dk

{
u2 + w2 + v2

t + v2
s + 4a(p2)m

[
δk(u2 + w2) − 2m

(
v2

t + v2
s

)]
−u[δ+û]k0 − w[δ+ŵ]k0 + vt [δ−v̂t ]k0 + vs[δ−v̂s]k0 − uu(2) − ww(2) − vtv

(2)
t − vsv

(2)
s

}
. (5.4)

Multiplying this by μs , and adding and subtracting it from (5.1), gives an expression of the from (5.2) for the magnetic moment,
where the correction will be written as a sum of terms

�μd = μNR + μRc + μh′ + μV2 + μV1 + μint + μP + μχ, (5.5)

where the individual contributions are

μRc =
∫ ∞

0
k2dk

[
Ek − m

Ek

]{
−μs

(
u2 + 1

2
w2 −

√
2uw

)
− 1

4

(
5u2 − 89

4
w2 + 79

2
√

2
uw

)}
μh′ =

∫ ∞

0
k2dk a(p2)m

{
4(1 − μs)(1 − ω2)δku

2 − μs

[
2(2 + ω2) δkw

2 − m
(
6 v2

t + 4v2
s + 4

√
2vtvs

)]
+ δk

2
[(3 + 4ω2)w2 −

√
2uw] − m

2

(
9v2

t + 6v2
s + 8

√
2vtvs

)}
μV2 =

∫ ∞

0

k2dk

2

{
(2μs − 1)

3

2
ww(2) + μs

(
3vtv

(2)
t + 2vsv

(2)
s

) + (μs − 1)
√

2
(
vtv

(2)
s + vsv

(2)
t

) − 1

2
vtv

(2)
t + vsv

(2)
s − mI (2)

}
μV1 =

∫ ∞

0
k2dk

{
(2μs − 1)

(
3

4
w[δ+ŵ]k0 − 1

4
vt [δ−v̂t ]k0 − 1

2
vs[δ−v̂s]k0

)
− μs√

2
(vt [δ−v̂s]k0 + vs[δ−v̂t ]k0 )

}
μint = − m

2
√

6

∫ ∞

0
k2dk

{
u′(vt −

√
2vs) − w(

√
2vt + vs)

′ + 1

k
w(

√
2 vt + vs)

}
.

μP =
∫ ∞

0
k2dk

{
−μs

(
v2

t + v2
s +

√
2vtvs

) − 1

4
v2

t − 1

2
v2

s +
√

2vtvs + 3k

8
√

2
(vtv

′
s − v′

t vs)

}
μχ = −

∫ ∞

0
k2dk

{
m z−−

0

2k
(
√

2 vs + kv′
t ) + m z−−

1

2k
(
√

2 vt + vs + kv′
s)

}
, (5.6)

where ω2 = 1 was defined in Eq. (3.20) and mI (2) in Eq. (D12).
Each of these terms has a different physical origin, as discussed
in Sec. I D.

Many remaining details are discussed in the Appendixes.
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APPENDIX A: CONNECTIONS BETWEEN
THE INVARIANT FUNCTIONS AND
COMPONENT WAVE FUNCTIONS

This Appendix shows how to connect the invariant func-
tions defined in Sec. II to the helicity amplitudes that are
calculated in the code described in Refs. [5,6]. The four
particle 1 positive ρ-spin helicity amplitudes are simple linear
combinations of the more familiar component wave functions
u,w,vt , and vs . The traces given in Appendix B are bilinear
products of the invariant functions.
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In the rest frame the relativistic wave function (2.1) can be
expanded in a set of helicity spinors uρ(k,λ)

�
λd

αβ(k,P ) = 1

Nd

m

Ek

∑
λ1ρ1
λ2ρ2

u
ρ2
2α(k,λ2) u

ρ1T
1β ′ (k,λ1)γ 0

β ′β

×φ
ρ1ρ2
λ1λ2,λd

(k)

�
λd

αλ1
(k,P ) = 1

Nd

∑
λ2ρ2

u
ρ2
2α(k,λ2)φρ2

λ1λ2,λd
(k), (A1)

where ρ = ± is the ρ spin of the particle (if particle 1 is on
shell, ρ1 = +), k is the three-momentum of particle 1 in the
deuteron rest frame, and φ

ρ1ρ2
λ1λ2,λd

are normalized helicity am-
plitudes defined by this expansion. The second form of (A1),
obtained from the first using the orthogonality relations (A6)
below, will be used only when ρ1 = +; reference to ρ1 is
suppressed for simplicity. The transpose symbol is to remind
us that, if ψαβ is to be viewed as a matrix, then uβ ′ must be
interpreted as a row vector, but is redundant when the indices
are shown explicitly. The normalization constant Nd is

Nd = 1√
(2π )32md

(A2)

and the helicity spinors [cf. Ref. [5], Eqs. (E1) and (E7)] are

u
ρ
1 (k,λ) = Nρ(k,λ) ⊗ χλ(θ )

(A3)
u

ρ
2 (k,λ) = Nρ(k,λ) ⊗ χ−λ(θ )

with

N+(k,λ) =
(

cosh 1
2ζ

2λ sinh 1
2ζ

)
(A4)

N−(k,λ) =
(−2λ sinh 1

2ζ

cosh 1
2ζ

)
,

where tanh ζ = k/Ek , and, for momenta limited to the x̂ẑ
plane, so that k = {k sin θ,0,k cos θ}, the two-component
helicity spinors are

χ1/2 (θ ) =
(

cos 1
2θ

sin 1
2θ

)
χ1/2 (θ ) =

(
− sin 1

2θ

cos 1
2θ

)
. (A5)

These helicity spinors are real, so that u = uTγ 0, and they
satisfy the orthogonality relations

uρ ′
(k,λ′)γ 0uρ(k,λ) = δλ′λδρ ′ρ

Ek

m

uρ(k,λ′)uρ(k,λ) = ρ δλ′λ, (A6)

leading to the inverse relation

φ
+ρ2
λ1λ2,λd

(k) = Nd

m

Ek

u
ρ2
2 (k,λ2)γ 0�λd (k,P )u+T

1 (k,λ1)

= Nd

m

Ek

u
ρ2
2α(k,λ2)γ 0

αα′�
λd

α′λ1
(k,P ). (A7)

This is further reduced by writing the wave function in terms of
the vertex function, G, and the propagator of particle 2, S(p),
and decomposing the rest frame propagator for particle 2 into
positive and negative energy parts (or its ρ spin ± components)

Sαα′ (p) = m

Ek

∑
ρ,λ

Gρ(k0,k)uρ
2 (k,λ)uρ

2 (k,λ), (A8)

where, if particle 1 is also off shell so that k = {k0,k}, the
components of the propagator are

G+(k0,k) = 1

Ek + k0 − md

≡ 1

δ+

G−(k0,k) = −1

md + Ek − k0
≡ − 1

δ−
, (A9)

where the arguments of δ± will be suppressed. In most cases
particle 1 is on shell so that k0 = Ek , and (A9) reduce to (cf.
Eq. (E14) of Ref. [5])

G+(Ek,k) = 1

2Ek − md

≡ 1

δk

G−(Ek,k) = − 1

md

. (A10)

Using the expansion (A9), the helicity amplitudes (A7) reduce
to the previously published form (cf. Eq. (3.10) of Ref. [6],
except here φ is used in place of ψ and there are other changes
in notation)

φ
+ρ2
λ1λ2,λd

(k) = Nd

m

Ek

Gρ2 G+ρ2
λ1λ2,λd

(k)

= Nd

m

Ek

Gρ2u
ρ2
2 (k,λ2)�λd (k,P )Cu+T

1 (k,λ1),

(A11)

where no sum over the repeated index ρ2 is implied.
In the general case (when k0 	= Ek), the projection operators

present in the � of (A11) can be simplified by recalling that
p = P − k, k = {k0,k}, and ρ = ±1, giving

2mu
ρ2
2 (k,λ)	(p) = u

ρ
2 (k,λ)[m − γ 0(md − k0) − γ · k]

= −m d2 u
ρ
2 (k,λ)γ 0

2mu
ρ1
1 (k,λ)	(k) = u

ρ
1 (k,λ)[m − γ 0 k0 + γ · k]

= −m d1 u
ρ
1 (k,λ)γ 0, (A12)

where

m d1 = k0 − ρEk
(A13)

m d2 = md − k0 − ρEk.
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Because the helicity spinors are written as a direct product of
Nρ and χλ, each operating in its own 2 × 2 space, it is conve-
nient to similarly decompose the matrix �λd . To this end note
that

γμξ
μ
λd

=
(

0 −σ · ξλd

σ · ξλd
0

)
= −iτ2 ⊗ σ · ξλd

, (A14)

where τi are the 2 × 2 operators operating in the Nρ

Dirac space and σi operate on the χλ spin space, and
the three-component deuteron polarization vectors (for an
incoming deuteron), ξ i

λd
(with i = 1,2,3), are related to the

four-vectors by

ξ
μ
0 = {0,0,0,1} = {

0,ξ i
0

}
ξ

μ
± = 1√

2
{0,±1, − i,0} = {0,ξ i

±}. (A15)

Also note that, in 2 × 2 form,

C = −τ1 ⊗ iσ2. (A16)

Using this notation, the matrix elements are reduced to the
following convenient form

φ
ρ1ρ2
λ1λ2,λd

(k) = A
ρ1ρ2
λ1λ2

(k)
(
χ †

−λ2
iσ2χλ1

)(
k̂ · ξλd

)
+B

ρ1ρ2
λ1λ2

(k)
(
χ †

−λ2
σ · ξλd

iσ2χλ1

)
= −2λ1δλ1,λ2 d1

λd ,0(θ )Aρ1ρ2
λ1λ2

(k)

+
√

2
|λ|

d1
λd ,λ(θ ) B

ρ1ρ2
λ1λ2

(k), (A17)

where the identities (C26) from Ref. [6] were used to
evaluate the angular matrix elements. The coefficient A
contributes only when λ1 = λ2 and both of the coefficients
are independent of the deuteron polarization and the angle
θ . Using the definition of � when both particles are off shell,
Eq. (2.12), and the simplifications (A12), they reduce to

A
ρ1ρ2
λ1λ2

(k) = Nd

m

Ek

Gρ2 (k)Nρ2 (k,λ2)
k

m
{G − K4 d2 d1

+ (Id2 − K2 d1)τ3}(τ1)N
T
ρ1

(k,λ1)

B
ρ1ρ2
λ1λ2

(k) = Nd

m

Ek

Gρ2 (k)Nρ2 (k,λ2){(F + K3 d2 d1)iτ2

+ (H d2 + K1 d1)τ1}(τ1)N
T
ρ1

(k,λ1), (A18)

where γ 0 → τ3, and Cγ 0 = −γ 0C was used.
Before evaluating the matrix elements (A18), it is conve-

nient to project the partial wave amplitudes from (A17). Using
the definition given in Eq. (3.21) of Ref. [6], these are

φ
ρ1ρ2
λ1λ2,λd

(k) =
√

3

4π

∫
d�k D1∗

λd ,λ(φ,θ,0)φρ1ρ2
λ1λ2,λd

(k)

=
√

3π

∫ 1

0
sin θdθ d1

λd ,λ(θ )φρ1ρ2
λ1λ2,λd

(k), (A19)

where λ = λ1 − λ2 and the dJ
λ′,λ(θ ) are the rotation matrices,

in this case for J = 1 and λ′ = λd , where J is the angular mo-
mentum and λd the helicity of the deuteron. The normalization

of the J = 1 d matrices is independent of helicity∫ 1

0
sin θ dθ

[
d1

λd ,λ(θ )
]2 = 2

3
, (A20)

and hence the result for the partial waves is independent of the
deuteron helicity. Under parity, the amplitudes transform into
each other under the substitution λ1,λ2 → −λ1, − λ2. Hence
the partial wave amplitudes can conveniently written in terms
of a standard helicity with λ1 = λ0 = 1

2 . Writing a separate for-
mula for cases when λ1 = λ2 = λ0 and λ1 = −λ2 = λ0 gives

φ
ρ1ρ2
λ0λ0,λd

(k) ≡ z
ρ1ρ2
0 (k) =

√
4π

3

[
B

ρ1ρ2
λ0,λ0

(k) − A
ρ1ρ2
λ0,λ0

(k)
]

φ
ρ1ρ2
λ0,−λ0,λd

(k) ≡ z
ρ1ρ2
1 (k) =

√
8π

3
B

ρ1ρ2
λ0,−λ0

(k). (A21)

There are therefore eight independent amplitudes from which
the eight invariants that define � can be determined.

It is instructive to show explicitly that the parity relation
holds. To this end, introduce the matrix elements

D
ρ1ρ2
i λ1λ2

(k) = Nρ2 (k,λ2)τ̄iN
T
ρ1

(k,λ1), (A22)

where i = 0,1,2,3 with τ̄i = τi for i = 1,3, τ̄2 = iτ2, and
τ̄0 = 1. The entire helicity dependence of the partial waves
is contained in the helicity dependence of the D’s, and this can
be established from the symmetry property

Nρ(k,λ) = ρNρ(k, − λ)τ3, (A23)

which leads to the relations

D
ρ1ρ2
j λ1λ2

(k) = ρ1ρ2D
ρ1ρ2
j −λ1,−λ2

(k) j = 0,3
(A24)

D
ρ1ρ2
j λ1λ2

(k) = −ρ1ρ2D
ρ1ρ2
j −λ1,−λ2

(k) j = 1,2.

Examination of the definitions (A18) shows that only D0 and
D3 contribute to B, and only D1 and D2 contribute to A. The
extra factor of 2λ1 multiplying A is just sufficient to show
that both of the helicity amplitudes (A21) satisfy the expected
relation for a J = 1 amplitude: φρ1,ρ2 = ρ1ρ2φ

−ρ1,−ρ2 (cf.
Eq. (E22) of Ref. [5]), concluding the proof.

Working out the matrix elements (A18) gives the eight
independent helicity amplitudes in terms of the eight invariants
that define the two-particle of-shell vertex function (2.12).
Using the notation

K = π
√

2md (A25)

and recalling the definitions of δ± and G± from Eq. (A9)

z++
0 = G+m√

6KEk

{
F + k2

m2
G − Ek

m2
δ+H

− (Ek − k0)

m2

[
EkK1 − δ+

(
K3 − k2

m2
K4

)]}
z++

1 = G+
√

3K

{
F − δ+

Ek

H − (Ek − k0)

Ek

[
K1 − Ekδ+

m2
K3

]}
z+−

0 = − G−k√
6KEk

{
F − G + Ekδ−

m2
I

+ (Ek − k0)

m2
[EkK2 − δ−(K3 + K4)]

}
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z+−
1 = G−k√

3KmEk

{δ−H − (Ek − k0)K1}

z−+
0 = − G+k√

6KEk

{
F − G + Ekδ+

m2
I

+ (Ek + k0)

m2
[EkK2 − δ+(K3 + K4)]

}

z−+
1 = G+k√

3KmEk

{δ+H − (Ek + k0)K1}

z−−
0 = − G−m√

6KEk

{
F + k2

m2
G − Ek

m2
δ−H

− (Ek + k0)

m2

[
EkK1 − δ−

(
K3 − k2

m2
K4

)]}

z−−
1 = − G−

√
3K

{
F − δ−

Ek

H − (Ek + k0)

Ek

[
K1 − Ekδ−

m2
K3

]}
.

(A26)

Inverting these equations gives the eight invariants in terms of
the helicity amplitudes. The results are

F =
√

3K
2Ekmd

δ+δ−

{
(Ek + k0)

[
z++

1 − m

k
z+−

1

]

− (Ek − k0)

[
z−−

1 + m

k
z−+

1

]}

G =
√

3

2

mK
Ekmdk2

δ+δ−

{
(Ek + k0)

[
Ek z++

0 − m
z++

1√
2

− k
z+−

1√
2

]
− (Ek − k0)

[
Ek z−−

0 − m
z−−

1√
2

+ k
z−+

1√
2

]}

H = −
√

3mK
2md k

{(Ek + k0)δ− z+−
1 + (Ek − k0)δ+ z−+

1 }

I =
√

3

2

m2K
Ekmdk2

×
{

(Ek + k0)

[
δ+

(
m z++

0 − Ek√
2
z++

1

)
+ δ− k z+−

0

]

− (Ek − k0)

[
δ−

(
m z−−

0 − Ek√
2
z−−

1

)
− δ+ k z−+

0

]}

K1 = −
√

3mK
2md k

δ+δ−[z+−
1 + z−+

1 ]

K2 =
√

3

2

m2K
Ekmdk2

δ−δ+

(
m z++

0 − Ek

z++
1√

2
− kz+−

0

−m z−−
0 + Ek

z−−
1√

2
− kz−+

0

)

K3 = −
√

3m2K
2Ekmd k

{δ+(k z++
1 + m z−+

1 ) − δ−(k z−−
1 − m z+−

1 )}

K4 =
√

3m3K
2md k2

{
δ+

(√
2z++

0 − m

Ek

z++
1 + k

Ek

z−+
1

)

− δ−

(√
2z−−

0 − m

Ek

z−−
1 − k

Ek

z+−
1

)}
. (A27)

When particle 1 is on shell, so that k0 = Ek , the first four
amplitudes reduce to

F =
√

3K δk

[
z++

1 − m

k
z+−

1

]
G =

√
3Km δk

k2
[
√

2Ekz
++
0 − mz++

1 − k z+−
1 ]

H = −
√

3Km Ek

z+−
1

k

I =
√

6Km2

k2

[
mδk

md

(
z++

0 − Ek√
2m

z++
1

)
+ k z+−

0

]
(A28)

with δk = δ+(Ek,k) = 2Ek − md . These are uniquely deter-
mined by the the four on-shell helicity amplitudes with
ρ1 = +. If these amplitudes are expressed in terms of the
u,w,vt , and vs amplitudes previously defined in the literature
(see Eq. (C31) of Ref. [6]),

z++
0 = 1√

6
(u +

√
2w)

z++
1 = 1√

6
(
√

2u − w)

z+−
0 = − 1√

2
vs

z+−
1 = − 1√

2
vt , (A29)

the well-known expansions of F,G,H , and I derived in
Ref. [10] are obtained, reproduced here for completeness:

F = Kδk

[
u − w√

2
+

√
3

2

m

k
vt

]

G = Kδk m

[
u

Ek + m
+ (2Ek + m)

w√
2 k2

+
√

3

2

vt

k

]

H = KEk m

√
3

2

vt

k

I = −Kδkm
2

md

[
u

Ek + m
− (Ek + 2m)

w√
2 k2

]
−

√
3Km2 vs

k
. (A30)
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The on-shell values of the Ki invariants depend on all eight of
the helicity amplitudes. Because of their historical importance,
we will continue to express the helicity amplitudes (A29) in
terms of the u,w,vt ,vs wave functions, but will use the original
notation for the others, giving

K1 =
√

3

2

Kδkm

2k
[vt −

√
2 z−+

1 ]

K2 = −Kδkm
2

2Ek

[
u

Ek + m
− (Ek + 2m)

w√
2 k2

−
√

3
vs

k

−
√

3

k2
(Ekz

−−
1 −

√
2 mz−−

0 ) +
√

6
z−+

0

k

]

K3 = −Km2

2Ek

[
δk

md

(
u − w√

2

)
−

√
3

2

m

k
vt

−
√

3

(
z−−

1 − δk m

k md

z−+
1

)]

K4 = Km3

2Ek

[
δk

md

(
u

Ek + m
+ (2Ek + m)

w√
2 k2

+
√

3
z−+

1

k

)

−
√

3

2

vt

k
+

√
3

k2
(m z−−

1 −
√

2 Ekz
−−
0 )

]
. (A31)

The u,w,vt ,vs wave functions are sometimes transformed
into coordinate space (for a full discussion see Ref. [6]).
Denoting the typical wave function by z
 (so that z0 = u,
z2 = w, and z1 = vt or vs), the momentum and position space

wave functions are relatedby the spherical Bessel transforms

z
(k) =
√

2

π

∫ ∞

0
rdr j
(kr) z
(r)

z
(r)

r
=

√
2

π

∫ ∞

0
k2dk j
(kr) z
(k), (A32)

where j
 is the spherical Bessel function of order 
 with the
convenient recursion relation

j
(z) = z


(
−1

z

d

dz

)
 sin z

z
. (A33)

The normalization condition for the spherical Bessel functions,∫ ∞

0
k2dkj
(kr)j
(kr ′) = π

2r2
δ(r − r ′) (A34)

can be used to transform integrals from momentum space to
coordinate space. Another convenient identity is∫ ∞

0
dk

d

dk
(k2 z
z
′)

=
∫ ∞

0
k2 dk

(
2z
z
′

k
+ z
z

′

′ + z′


z
′

)
= 0. (A35)

APPENDIX B: RESULTS FOR THE TRACES

1. Contributions from the (A) diagrams

In this section the traces (3.27) needed for each of the
helicity amplitudes defined in Eq. (3.14) are evaluated. Using
the compact notation Z± = Z(R±) (where Z is the generic
name for {A,B,C,D}) with R± defined in Eq. (B3) below, the
results are

An,1(�+�−) = 2

m

{
A+A−(a−z+ + a+z− − a0z0) + B+B−

a0 a+a−
m2

+ D+D−
a+a−
m4

[2b0(c+ + c−) − ζ0a0]

+C+C−[4m2(2b0z0 − b+z− − b−z+) + 8a+a−(a0 − b0) + a0z0(ζ0 − 8m2) − 2a0b+b−
− 2b0z0(c+ + c−) + a+(2b0b− + 4c−z− − ζ0z−) + a−(2b0b+ + 4c+z+ − ζ0z+)

+ 2b+c+z− + 2b−c−z+] − A+B−a−z+ − B+A−a+z−
+A+C−[z0(2a0 − b0) − z−(2a+ − b+)] + C+A−[z0(2a0 − b0) − z+(2a− − b−)]

+A+D−
a−
m2

(a+b0 − a0b+ + z+c−) + D+A−
a+
m2

(a−b0 − a0b− + z−c+) − (B+D− + D+B−)
b0

m2
a+a−

+B+C−
a+
m2

(2m2z− − 2a0a− + b0a− − z−c−) + C+B−
a−
m2

(2m2z+ − 2a0a+ + b0a+ − z+c+)

+C+D−
a−

2m2
[z+(ζ0 − 4c−) + 2b+(2a0 − b0)] + D+C−

a+
2m2

[z−(ζ0 − 4c+) + 2b−(2a0 − b0)]

}
(B1)

An,2(�+�−) = 1

m

{
A+A−(b+z− + b−z+) − A+B−

a−
m2

[a0b+ + z+(c+ − c−)] − B+A−
a+
m2

[a0b− + z−(c− − c+)]

+D+D−a+a−
b0Q

2

m4
+ C+C−

1

m2

[(
4m2 + m2

d

)
(b+z− + b−c+) + (b0 − 2a0)(2a+b− + 2a−b+ + Q2z0)

− 2(b0 − 2a0)b+b− + Q2(a+z− + a−z+) + 4(a+z− − a−z+)(c+ − c−) − 4(b+c+z− + b−c−z+)
]

−A+C−
1

2m2
[4m2(b+z− + b−z+) − 2b0(a+b− − a−b+) − 2a0b+(2a− − b−) − Q2(a0z0 − a+z− − a−z+)
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TABLE VI. Vector products that depend on n used in the expansions of An,i . All are evaluated in the Breit frame using (3.5) and (3.6).
The helicity amplitude A3,i = 1

2 (A3+,i + A3−,i), as explained in Eq. (3.14). Not shown are ζ0 = 2m2
d + Q2 and c± = P± · k = D0Ek ∓ 1

2 kzQ,
which are the same for all helicity combinations.

coefficient n = 1
(
J 0

00

)
n = 2 (J 0

+−) n = 3+ (J +
+0) n = 3− (J −

0−)

a+ = k · ξ ∗ (EkQ − 2kzD0)/(2md ) 1√
2
(kx − iky) 1√

2
(kx − iky) (EkQ − 2kzD0)/(2md )

a− = k · ξ ′ −(EkQ + 2kzD0)/(2md ) 1√
2
(kx + iky) −(EkQ + 2kzD0)/(2md ) 1√

2
(kx + iky)

a0 = k · ε Ek Ek
1√
2
(kx + iky) − 1√

2
(kx − iky)

b+ = P− · ξ ∗ D0Q/md 0 0 D0Q/md

b− = P+ · ξ ′ −D0Q/md 0 −D0Q/md 0
b0 = P+ · ε = P− · ε D0 D0 0 0
z+ = ε · ξ ∗ Q/(2md ) 0 −1 0
z− = ε · ξ ′ −Q/(2md ) 0 0 1
z0 = ξ ∗ · ξ ′ −ζ0/

(
2m2

d

) −1 0 0

+ 2(c+ − c−)(b0z0 − 2a−z+) − 2b+c+z− − 2b−c−z+] + A+D−
a−

2m2
[z+Q2 + 2b0 b+]

−C+A−
1

2m2
[4m2(b−z+ + b+z−) − 2b0(a+b+ − a+b−) − 2a0b−(2a+ − b+) − Q2(a0z0 − a−z+ − a+z−)

− 2(c+ − c−)(b0z0 − 2a+z−) − 2b−c−z+ − 2b+c+z−] + D+A−
a+

2m2
[z−Q2 + 2b0 b−]

+B+C−
a+

2m2
[z−(Q2 − 4(c+ − c−)) − 2b−(b0 − 2a0)] + C+B−

a−
2m2

[z+(Q2 + 4(c+ − c−)) − 2b+(b0 − 2a0)]

+C+D−
a−
m4

[
a0

(
a+Q2 − b+m2

d

) + b0
(
2b+(c+ − m2) − a+(Q2 + 2c+ − 2c−) − z+

(
m2Q2 + m2

d (c+ − c−)
)]

+D+C−
a+
m4

[
a0

(
a−Q2 − b−m2

d

) + b0(2b−(c− − m2) − a−(Q2 − 2c+ + 2c−) − z−
(
m2Q2 − m2

d (c+ − c−)
)]

−B+D−
a+a−
2m4

[a0Q
2 − 2b0(c+ − c−)] − D+B−

a+a−
2m4

[a0Q
2 + 2b0(c+ − c−)]

}
, (B2)

where the vector products needed for this expansion are defined
in Table VI. The results for the the traces An,3 are obtained
by the substitutions A → F,B → G,C → H,D → I inAn,1.
These expressions are sums of products of invariant functions
and four-vector scalar products and hence are manifestly
covariant.

In the terms above, the spectator momentum k is always on
shell. In this case the arguments (2.14) of the wave functions
for the incoming and outgoing deuterons become

R2
± = (P± · k)2

m2
d

− m2 = k2 ∓ kz Q
D0Ek

m2
d

+ η
(
E2

k + k2
z

)
ER± =

√
m2 + R2±. (B3)

Careful examination of the formulas for A show that they
are unchanged under the transformation + ↔ −. For n = 1
helicity amplitudes, the plus and minus coefficients transform
into each other as Q → −Q (as do the arguments of the wave
functions), so that theA1,i satisfy the symmetry property (3.27)
by inspection. For the n = 2 helicity amplitudes, the a± to not
change with Q, but since the b± and z± coefficients are zero in
this case, the terms that remain contain either no factors of a±
or the product a+a−, preserving the symmetry in Q. Finally,
the separate terms n = 3± show no special symmetry, but it

can be shown that their sum again satisfies the symmetry (3.27)
appropriate to the n = 3 amplitude.

Although the expressions for A are given for identical wave
functions in initial and final states, this property has not been
used in the derivation of the equations and they can easily
be extended to the case when A → A(�+�

(2)
− ) needed for

the calculation of the interaction current terms. Consider the
operation of changing the sign of Q in a typical term. Using the
fact that the arguments R2

± → R2
∓ when Q → −Q, a typical

pair of terms in the expansions for A transforms to

Z+Y
(2)
− CZY (Q) ± Y+Z

(2)
− CYZ(Q)

→ Z−Y
(2)
+ CZY (−Q) ± Y−Z

(2)
+ CYZ(−Q)

= ±[Z(2)
+ Y−CYZ(−Q) ± Y

(2)
+ Z−CZY (−Q]. (B4)

Using the symmetry properties just discussed, the coefficients
have the property

CZY (Q) = ±εn3CYZ(−Q), (B5)

conforming to the symmetry properties used in (3.28).
This simplifies the calculations of the interaction current
contributions.
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2. Canceling singular contributions from the (B) diagrams

Here the traces (3.35a) needed for the B contributions are evaluated. In these terms k0 is not fixed until the subtraction shown
in Eq. (3.36) is carried out. The results for the traces that depend on k0 are

Bn,1(k0) = ζ

16m2

{
−2F̃+F̃−[2z0X2 + X3] + G̃+G̃−

1

m2
(2ã− − b̃−)(2ã+ − b̃+)[X2 − 16m2ã0]

+ 2H̃+H̃−
1

m2
X1[2z0X2 + X3 − 16m2(2a0z0 − b+z− − b−z+)] − Ĩ+Ĩ−

1

m4
X1X2(2ã− − b̃−)(2ã+ − b̃+)

+ 2F̃+G̃−(2a− − b−)[Y+
1 + 8ã0(ã+ − b̃+) + 8b̃0b̃+ − 4z+cq]

+ 2G̃+F̃−(2a+ − b+)[Y−
1 + 8ã0(ã− − b̃−) + 8b̃0b̃− + 4z−cq]

+ 16(F̃+H̃− + H̃+F̃−)X1(2a0z0 − b+z− − b−z+) − 2(G̃+H̃− + Ĩ+F̃−)X1
(2ã+ − b̃+)

m2
[Y−

1 + 4b̃0b̃−]

− 2(H̃+G̃− + F̃+Ĩ−)X1
(2ã− − b̃−)

m2
[Y+

1 + 4b̃0b̃+]

+ 8(G̃+Ĩ− + Ĩ+G̃−)X1
ã0

m2
(2ã− − b̃−)(2ã+ − b̃+) + 2Ĩ+H̃−X1

(2ã+ − b̃+)

m2
[Y−

1 − 8ã0(ã− − b̃−) − 4cqz−]

+ 2H̃+Ĩ−X1
(2ã− − b̃−)

m2
[Y+

1 − 8ã0(ã+ − b̃+) + 4cqz+]

}
(B6)

Bn,2(k0) = ζ

16m2

{
2F̃+F̃−(2X4 − X5) + 2G̃+G̃−

Q2

m2
(2ã0 − b̃0)(2ã+ − b̃+)(2ã− − b̃−) + 2H̃+H̃−

1

m2
X1X5

+ 2Ĩ+Ĩ−X1
b0 Q2

m4
(2ã+ − b̃+)(2ã− − b̃−) − 2(F̃+H̃− + H̃+F̃−)

1

m2
X1X4

− F̃+G̃−
1

m2
(2ã− − b̃−)(Y 2

+ + 4m2z+Q2) − G̃+F̃−
1

m2
(2ã+ − b̃+)(Y 2

− + 4m2z−Q2)

+ 4(F̃+Ĩ− + H̃+G̃−)
Q2

m2
z+(2ã− − b̃−)X1 + 4(Ĩ+F̃− + G̃+H̃−)

Q2

m2
z−(2ã+ − b̃+)X1

− 2(G̃+Ĩ− + Ĩ+G̃−)X1
ã0 Q2

m4
(2ã− − b̃−)(2ã+ − b̃+) + H̃+Ĩ−

1

m2
(2ã− − b̃−)(Y 2

+ − 4m2z+Q2)X1

+ Ĩ+H̃−
1

m2
(2ã+ − b̃+)(Y 2

− − 4m2z−Q2)X1, (B7)

where the new vector products are defined in Tables VII and VIII, and use has been made of the compact notation Z̃+ = Z̃(R̃+,R+
0 )

and Z̃− = Z̃(R̃−,R−
0 ) (where Z̃ is the generic name for the reduced vertex functions {F̃ ,G̃,H̃ ,Ĩ }) and the vertex function

arguments R̃± and R±
0 were defined in (2.14). These arguments depend on both k0 and Q. Recalling that k̃± = {k0,k±}, with

k± = k ± q/2, the arguments of the incoming and outgoing vertex functions are

R̃2
± = (P± · k̃±)2

m2
d

− k2
0 + k2

±

= k2
± ∓ (k±)zk0

QD0

m2
d

+ Q2

4m2
d

[
k2

0 + (k±)2
z

]
R±

0 = 1

2md

[2D0k0 ∓ (k±)zQ]. (B8)

Note that R̃2
± [which is not the same as the R2

± of Eq. (B3)] depends on Qk0, so that all k0 dependence vanishes when Q = 0,
and that in this limit, the arguments reduce to k2 and k0. The denominator of ζ contains an additional k0 dependence through the
factor of m2 − p̃2 = E2

k − (D0 − k0)2.
The symmetry (3.35a) of the B’s under the transformation Q → −Q can be confirmed using arguments similar to those used

for the A’s.
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TABLE VII. Vector products that depend on n used in the expansions of Bn,i . All are evaluated in the Breit frame using (3.5) and (3.6).
The helicity amplitude B3,i = 1

2 (B3+,i + B3−,i), as explained in Eq. (3.14). Not shown are ζ = h2(p̃)/(m2 − p̃2), ζ1 = D2 = D2
0, c0 = D · k̃ =

D0k0, and cq = q · k̃ = −Qkz, which are the same for all helicity combinations. Convenient combinations of these vector products are given
in Table VIII.

coefficient n = 1
(
J 0

00

)
n = 2 (J 0

+−) n = 3+ (J +
+0) n = 3− (J −

0−)

ã+ = k̃ · ξ ∗ (k0Q − 2kzD0)/(2md ) 1√
2
(kx − iky) 1√

2
(kx − iky) (k0Q − 2kzD0)/(2md )

ã− = k̃ · ξ ′ −(k0Q + 2kzD0)/(2md ) 1√
2
(kx + iky) −(k0Q + 2kzD0)/(2md ) 1√

2
(kx + iky)

ã0 = k̃ · ε k0 k0
1√
2
(kx + iky) − 1√

2
(kx − iky)

b̃+ = −q · ξ ∗ D0Q/md 0 0 D0Q/md

b̃− = q · ξ ′ −D0Q/md 0 −D0Q/md 0
b̃0 = D · ε D0 D0 0 0
z+ = ε · ξ ∗ Q/(2md ) 0 −1 0
z− = ε · ξ ′ −Q/(2md ) 0 0 1
z0 = ξ ∗ · ξ ′ −ζ0/

(
2m2

d

) −1 0 0

3. Regular contributions from the (B) diagrams

The results for the Cn,i traces that involve the four invariant functions Ki (contributing to �off in the initial state) are

Cn,1(� �off) = ζB

2m2

{
−4F̃+K1m

2(b̃0 z0 + 2a+z− − b̃−z+) + 2F̃+K2(a− − b̃−)[2a+(2a0 − b̃0) + z+(2c′
0 + cq)]

+ (F̃+K3 + H̃+K1)T1T2 − (F̃+K4 + H̃+K2)T1z+(a− − b̃−)

+ 2G̃+K1a+[z−(4m2 − 2c′
0 − cq) + 2a−b̃0 − 2a0 b̃−] − 4G̃+K2a+(2a0 − b̃0)(a− − b̃−)

− (G̃+K3 + Ĩ+K1)T1a+z− + (G̃+K4 + Ĩ+K2)
a0

m2
T1a+(a− − b̃−)

− H̃+K3T1[z0(2a0 − b̃0) − z+(2a− − b̃−)] + H̃+K4
a− − b̃−

2m2
T1[z+(4m2 − 2c′

0 − cq) − 2a+(2a0 − b̃0)]

− Ĩ+K3
a+

2m2
T1[2a−b̃0 − 2a0 b̃− − z−(2c′

0 + cq)] − Ĩ+K4
b̃0

m2
T1a+(a− − b̃−)

}
(B9)

Cn,2(� �off) = ζB

2m

{
−2F̃+K1T3 + 2F̃+K2(a− − b̃−)(2b̃0 b̃+ − Q2z+) − F̃+K3T1(b̃+z− + b̃−z+)

− (F̃+K4 + H̃+K2)
a− − b̃−

m2
T1(a0 b̃+ + cqz+) − 2G̃+K1a+[2b̃−(2a0 − b̃0) − z−(Q2 + 4cq)]

+ 2G̃+K2a+(a− − b̃−)(a0 Q2 + 2b̃0 cq) + (G̃+K3 + Ĩ+K1)
a+
m2

T1(a0 b̃− − cqz−) − H̃+K1T1(b̃+z− + b̃−z+)

+ H̃+K3
1

2m2
T1[4m2(b̃+z− + b̃−z+) + T3] + H̃+K4

a− − b̃−
2m2

T1[2b̃+(2a0 − b̃0) + z+(Q2 + 4cq)]

− Ĩ+K3
a+

2m2
T1(z−Q2 + 2b̃0 b̃−) − Ĩ+K4

a+
2m4

T1(a− − b̃−)(a0 Q2 + 2b̃0 cq)

}
, (B10)

where the vector products that enter into these formulas are
defined in Tables VI, VII, and IX, m2 − p2

+ = m2 − (P+ −
k)2 = 2D0Ek − m2

d − Qkz, Ki = Ki(R̂−,R̂−
0 ), and the final

state is on shell, so that Z̃ depends on only one argument
Z̃+ = Z(R+).

These terms are finite, so calculations of the static moments
require them to order Q2 only. The arguments of the Ki are

R̂2
− = 1

m2
d

[
D0Ek + 1

2
(kz − Q) Q

]2

− (m2 + 2kzQ − Q2)

→ k2 − kzQ

md

(2md − Ek) + η
[
(2md − Ek)2 + k2

z

]

R̂−
0 = 1

md

[
D0Ek + 1

2
(kz − Q) Q

]
→ Ek + kzQ

2md

+ 1

2
η(Ek − 4md ). (B11)

The argument of the Z+ is

R2
+ = 1

m2
d

[
D0Ek − 1

2
kzQ

]2

− m2

→ k2 − kzQ

md

Ek + η
(
E2

k + k2
z

)
. (B12)
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TABLE VIII. Combinations of vector products from Table VII that simplify Eqs. (B6) and (B7).

Y ±
1 = 4z±(m2 − k̃2) − z±Q2 + 8ã0ã± − 4b̃0b̃±

Y ±
2 = 4(m2 − k̃2)(ã0b̃± ± cqz±) − 4b̃0b̃±(m2 + k̃2) + 8ã0b̃±c0 ∓ cq [8b̃0ã± − z̃±(8c0 − Q2)] + Q2[b̃0b̃± + ã0(4ã± − 3b̃±)]

X1 = m2 − k̃2 + 2c0 − ζ1

X2 = 4(m2 − k̃2)(ã0 + b̃0) + Q2(ã0 − b̃0) + 8ã0c0

X3 = 4(m2 − k̃2)[z+(2ã− − 3b̃−) + z−(2ã+ − 3b̃+)] − 8(2ã0 − b̃0)(ã+b̃− + ã−b̃+) − Q2[z+(2ã− − b̃−) + z−(2ã+ − b̃+)]

+ 32ã0 ã+ã− + 8cq (ã+z− − ã−z+) − 8c0(b̃+z− + b̃−z+)

X4 = (b̃+z− + b̃−z+)[4(m2 + k̃2) − Q2] − 4ã0(2ã+b̃− + 2ã−b̃+ − z0 Q2) − 8cq (ã−z+ − ã+z−)

X5 = −8(ã0 − b̃0)(ã+b̃− + ã−b̃+) − 8(c0 − k̃2)(b̃+z− + b̃−z+) + Q2[4z0(ã0 − b̃0) − 2z−(2ã+ − b̃+) − 2z+(2ã− − b̃−)]

− 8cq (ã−z+ − ã+z−)

APPENDIX C: CHARGE

In this Appendix, the charge is evaluated by taking the Q2 =
0 limit of the contributions from Eqs. (B1), (B6), and (B9).
The results from this Appendix were collected in Sec. IV and
discussed in Sec. I C. Here, for simplicity, we return to the
notation k2 → k2.

1. (A) contributions

At Q2 = 0, Z± = Z(k) and all An,2 = 0. Averaging over θ
using 〈k2

z 〉 = 〈k2
x〉 = 〈k2

y〉 = 1
3 〈k2〉 gives

A1,1 = A2,1 = 2Ek

m

{
A2 + k2

3m2

[
B2 + m2

R D2 − 2md

Ek

BD

]

+C2

[
4 + m2

R + 4k2

3m2
− 4md

Ek

(
1 + k2

3m2

)]

+ 2md k2

3m2Ek

AD − 2AC

(
2 − md

Ek

)

− 2BC
k2

3m2

(
2 − md

Ek

)}

A1,3 = A2,3 = Ek

m

{
F 2 + k2

3m2

[
G2 + m2

R I 2 − 2md

Ek

GI

]

+H 2

[
4 + m2

R + 4k2

3m2
− 4md

Ek

(
1 + k2

3m2

)]

TABLE IX. Combinations of vector products used in the expan-
sions of Cn,i . The only new terms are ζB = h2(p+)/(m2 − p2

+) and
c′

0 = D · k = D0Ek; the b̃’s are taken from Table VII and the others
from Table VI.

T1 = Q2 + 8c′
0 + 4cq − 4ζ1

T2 = a0z0 + a+z− − a−z+
T3 = Q2T2 − 2a0 b̃−(2a+ + b̃+) + 2b̃0(a+b̃− + a−b̃+ + cqz0)

− 2c′
0(b̃+z− + b̃−z+) + cq (4a+z− − b̃+z− − 3b̃−z+)

+ 2md k2

3m2Ek

FI − 2FH

(
2 − md

Ek

)

− 2GH
k2

3m2

(
2 − md

Ek

)}
. (C1)

The contributions from the (A±) diagrams (referred to as
the 〈V μ

2 〉 part of the exchange current in Ref. [1]) can be
easily added. Using the symmetry relation (3.27) at Q = 0, the
generic XY term in the expansions (C1) can be transformed
as follows:

c0XY → 1
2c0(Xf Y i + Y f Xi)

→ → c0(XY (2) + YX(2)), (C2)

where c0 is independent of Q. The first step uses the symmetry
relation to uncover the structure of the generic XY term in the
case when the initial and final wave functions are not identical;
the symmetry relation guarantees that this replacement is
unique. Then, the second step merely applies the result to
the special case when the generic final-state functions are X
and the generic initial-state functions are X(2). The two terms
in (3.28) are identical in this case, giving a factor of 2.

2. (B) contributions

These contributions are obtained from Eq. (3.36) and
the traces Bn,i (B6) and the traces Cn,i (B9). The magnetic
terms (B7) and (B10) are zero and do not contribute.

A correct calculation of the singular term contribution to the
charge requires expansion of the invariants to order Q. Only
the k0 dependence coming from argument R±

0 will contribute,
and expanding around k0 = Ek gives

Z̃± = Z̃ + (Ek − k0)Z̃k0 , (C3)

where Z̃k0 = dZ̃/(dk0) evaluated at k0 = Ek . Hence

lim
Q→0

mEk

kzQ

[B1,1(k0)

k0

∣∣∣∣
−

− B1,1(k0)

k0

∣∣∣∣
+

]
,

= IZ + IZ′ , (C4)

where IZ′ includes derivatives of the vertex functions Z, and
IZ all of the rest [including contributions from the k0 expansion
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of the strong form factors h(p̃)]. The results for IZ and IZ′ are

IZ = 2Ek

m δ2
k

[
F 2 + k2

3m2
G2 + 4k2

3m2
d

(F − G)2

(
1 − md

Ek

)
− δ2

k

m2

(
H 2 + k2

3m2
I 2

)]
− 8Ek

m δk

a(p2)(Ek − md )

{
F 2 + k2

3m2
G2

− 2k2

3Ekmd

(F − G)2 − 2δk

Ek

[
FH + k2

3m2
(FI − H 2 + GH − GI )

]
− δkmd

m2

[
k2

3m2
I 2 +

(
1 − 2m2

mdEk

)
H 2

]}
IZ′ = − 4Ek

m δk

{
FFk0 + k2

3m2
GGk0 − 2k2

3Ekmd

(F − G)(Fk0 − Gk0 ) − δkmd

m2

[
k2

3m2
IIk0 +

(
1 − 2m2

mdEk

)
HHk0

]
− δk

Ek

[
FHk0 + Fk0H + k2

3m2
(FIk0 + Fk0I − 2HHk0 + GHk0 + Gk0H − GIk0 − Gk0I )

]}
, (C5)

where the strong form factor h(p̃) [where h is evaluated at p̃2 = m2 − md (2Ek − md )] has been reabsorbed into the Z’s (so
that they may be expressed in terms of the u,w,vt ,vs), Zk0 = h dZ̃/(dk0), and the contributions to IZ from the derivative of the
strong form factor have been isolated in the term proportional to a(p2).

The contribution from the regular terms is straightforward:

IC = − 2

m
C1,1 = − 4

m δk

{
FK1 − Ekδk

m2
(HK1 + FK3) + δ2

k

m2
HK3 + k2

3m2
GK1

+ k2δk

3m4md

[
m2(F − G)K2 − m2

dI (K3 + K4) + Ekmd (GK4 + IK2) − mdδkHK4
]}

. (C6)

3. Expressions in terms of the wave functions z�

Expanding the Z in terms of the wave functions z
(k) (where z
 is the generic name for {u,w,vt ,vs}) using (2.11) and (A30),
reduces (C1) to the following simple forms

An,1 = 4π2md

Ek

m

{
u2 + w2 + v2

t + v2
s

}
An,3 = 4π2md

Ek

m

{
δ2
k (u2 + w2) + m2

d

(
v2

t + v2
s

)}
. (C7)

Using (C2), the the result for the interaction current contribution is

A(2)
n,1 = 4π2md

Ek

m

{
2uu(2) + 2ww(2) + 2vtv

(2)
t + 2vsv

(2)
s

}
, (C8)

where z
(2)

 is the generic name for the wave functions that contribute to �(2). The contribution of these terms to the in normalization

condition is discussed in Sec. IV.
For the (B) contributions, the vertex functions Z are expanded in terms of the wave functions z
(k) using (A28) and (A29).

This gives

IZ = 4π2md

Ek

m

{
u2 + w2 − v2

t − v2
s +

√
2

3

Ek + 2m

mdk
[uvt md + wvs δk] + 2√

3

Ek − m

mdk
[wvt md − uvs δk]

− 4a(p2)(Ek − md )
[
δk(u2 + w2) − md

(
v2

t + v2
s

)]}
. (C9)

To obtain the result for IZ′ , the derivatives of the invariants must be evaluated using the general results (A27) which give the k0

dependence of the invariants. These give

Fk0 = ∂F

∂k0

∣∣∣∣
k0=Ek

= K
[
u − w√

2
+

√
3

2

m

k
vt

](
1 − δ2

k

2Ekmd

)
+ Kδk

[
uk0 − 1√

2
wk0 +

√
3

2

m

k
vtk0 +

√
3

2Ekk
(kz−−

1 + mz−+
1 )

]

Gk0 = ∂G

∂k0

∣∣∣∣
k0=Ek

= Km

[
u

Ek + m
+ (2Ek + m)

w√
2 k2

+
√

3

2

vt

k

](
1 − δ2

k

2Ekmd

)

+Km δk

[
uk0

Ek + m
+ (2Ek + m)

wk0√
2 k2

+
√

3

2

vtk0

k
+

√
3

2Ekk2
(
√

2Ekz
−−
0 − mz−−

1 + kz−+
1 )

]
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Hk0 = ∂H

∂k0

∣∣∣∣
k0=Ek

=
√

3

2

KEk m

k
vtk0 −

√
3

2

Kδk m

2k md

(vt −
√

2 z−+
1 )

Ik0 = ∂I

∂k0

∣∣∣∣
k0=Ek

= −2KEk m2

m2
d

[
u

Ek + m
− (Ek + 2m)

w√
2 k2

](
1 − δ2

k

2Ekmd

)
+

√
3Kδkm

2

2Ekmdk
vs

− Km2

md

[
δk

(
uk0

Ek + m
− (Ek + 2m)

wk0√
2 k2

)
+

√
3 md

vsk0

k

]
+

√
3

2

Km2

Ekmdk2

[
mdmz−−

0 − δkkz−+
0 − Ekmd√

2
z−−

1

]
, (C10)

where z
k0 = h ∂z̃
(k,k0)/(∂k0)|k0=Ek
and z
 = h z̃
. Note the appearance of the negative ρ-spin helicity amplitudes for particle

1, referred to generically as χ
. Substituting these expressions and the expansions (A30) into IZ′ gives

IZ′ = 4π2md

Ek

m

{
δ2
k

Ekmd

(u2 + w2) −
√

2

3

Ek + 2m

mdk
[uvt md + wvs δk] − 2√

3

Ek − m

mdk
[wvt md − uvs δk]

− 2(u[δ+u]k0 + w[δ+w]k0 ) +
(

2 − δk

Ek

)(
v2

t + v2
s

) + 2(vt [δ−vt ]k0 + vs[δ−vs]k0 )

−
√

2

3

δk

Ek

[u(z−−
0 +

√
2z−−

1 ) + w(
√

2z−−
0 − z−−

1 ) −
√

3(vtz
−+
1 + vsz

−+
0 )]

+ 2δk(Ek − md )√
3 Ekmdk

z−+
1 [(Ek + 2m)u +

√
2(Ek − m)w] + 2(Ek − md )

Ekk
vs

[√
2mz−−

0 − Ekz
−−
1

]}
. (C11)

where the new functions

δ+{u,w} = (Ek + k0 − md ){u,w}
δ−{vt ,vs} = (Ek − k0 + md ){vt ,vs} (C12)

have been introduced. Finally, the contribution from IC is obtained by substituting the expansions (A30) and (A31), giving

IC = −4π2md

Ek

m

{
δ2
k

Ekmd

(u2 + w2) − δk

Ek

(
v2

t + v2
s

) −
√

2

3

δk

Ek

[u(z−−
0 +

√
2z−−

1 ) + w(
√

2z−−
0 − z−−

1 ) −
√

3(vtz
−+
1 + vsz

−+
0 )]

+ 2δk(Ek − md )√
3 Ekmdk

z−+
1 [(Ek + 2m)u +

√
2(Ek − m)w] + 2(Ek − md )

Ekk
vs[

√
2mz−−

0 − Ekz
−−
1 ]

}
. (C13)

Note that all terms with particle 1 in a negative ρ-spin state cancel in IZ′ and IC . The charge is independent of the amplitudes
z−±
j . Finally, the sum of all the (B) terms is

IZ + IZ′ + IC = 4π2md

Ek

m

{
u2 + w2 + v2

t + v2
s − 4a(p2)(Ek − md )

[
δk(u2 + w2) − md

(
v2

t + v2
s

)]
− 2(u[δ+u]k0 + w[δ+w]k0 ) + 2(vt [δ−vt ]k0 + vs[δ−vs]k0 )

}
. (C14)

This result is discussed further in Sec. IV.

APPENDIX D: MAGNETIC MOMENT

1. (A) contributions

The contributions to the magnetic moment, in units of
e/(2m), from diagrams (A) and (A±) are obtained from the
limit

μd = lim
Q→0

m

md

J3

Q

∣∣∣∣
A+V2

= e0

∫
k

{
f00[M1A + κs M2A]

+ g00

4m2
M3A − M

(2)
1 − κs M

(2)
2

}
, (D1)

where κs = κp + κn is the isoscalar anomalous moment of the
nucleon and the MiA = MiA(k) are the limits

MiA(k) = m

md

lim
Q→0

A3,i(k)

Q
. (D2)

Since the anomalous moment term (B2) is linear in Q,
application of the symmetry condition (3.35a) gives

lim
Q→0

I
(2),2
XY

Q
→ c1(XY (2) + YX(2)) (D3)

and hence M
(2)
2 can be obtained directly from M2A, just as was

done for the charge. To calculate the M
(2)
1 term is more subtle,
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leading to the substitution

lim
Q→0

I
(2),1
XY

Q
→ c1(XY (2) + YX(2)) + c′

1 (X′Y (2)

+X(2)′Y − XY (2)′ − X(2)Y ′), (D4)

where X(2)′ = dX(2)/(dk), and c1 and c′
1 are additional factors.

(More details can be found in Appendix E of the original,
longer version (v1) of the present paper in the preprint
archive [20].) This result displays the substitution rule, which
for all terms (i.e., with or without the derivative) is

XY ′ → XY (2)′ + X(2)Y ′. (D5)

Since the exact result for the magnetic moment does not
simplify as it did for the charge, the goal here is to understand
the physical content of the leading terms only (those that are
expected to be larger than about 0.001 nuclear magnetons).
These terms are the products of the wave functions, including
some products of one large (u,w) and one small (vt ,vs)
component multiplied by the enhancement m/k, and products
of one wave function and one derivative, multiplied by m or k.
In addition the leading corrections to order δE = (Ek − m)/Ek

to products of u and w are retained. The results, expressed in
terms of the wave functions z
(k) (where z
 is the generic name
for {u,w,vt ,vs}), are

M1A(k) = 2π2 Ek

m

{
u2 + 1

4
w2 − 1

4
v2

t − 1

2
v2

s

+ m√
6

[
m1(k) + 1

2
m2(k)

]
+ �M1(k)

}
(D6)

M2A(k) = 2π2 Ek

m

{
u2 − 1

2
w2 − 1

2
v2

t −
√

2vtvs + �M2(k)

}
(D7)

M3A(k) = 2π2 Ek

m

{
m2

(
3

2
v2

t + v2
s + 2

√
2vtvs

)}
, (D8)

the interference terms are

m1(k) = 1

k
[u(vt −

√
2vs) − 2w(

√
2vt + vs)]

m2(k) = uv′
t − u′vt −

√
2(uv′

s − u′vs − wv′
t + w′vt )

+wv′
s − w′vs, (D9)

and the standard notation z′

 = dz
/(dk) has been used. The

leading corrections are

�M1(k) � −Ek − m

3Ek

[
u2 − w2 + 1√

2
uw

]
(D10)

�M2(k) � −Ek − m

3Ek

[
u2 + 1

2
w2 −

√
2uw

]
.

The contributions from the z(2) wave functions can be
obtained from M1A and M2A by the substitution (D5), but
first we transform the expression for M1A. The interference
terms can be rearranged and, recalling that the volume integral
over k is k2dk/Ek , integrated by parts, giving

M
int

1A (k) = 2π2 Ek

m

m

2
√

6

{[
u(vt −

√
2vs)

′ − u′(vt −
√

2vs) + 2

k
u(vt −

√
2vs)

]
+

[
w(

√
2vt + vs)

′ − w′(
√

2vt + vs) − 4

k
w(

√
2vt + vs)

]}
= 2π2 Ek

m

m√
6

{
−u′(vt −

√
2vs) + w

[
(
√

2vt + vs)
′ − 1

k
(
√

2vt + vs)

]}
≡ 2π2 Ek

m
mI (k). (D11)

The interference contribution from the z(2) wave functions can therefore be written

M
int(2)

1A (k) = 2π2 Ek

m

m√
6

{
−u(2)′(vt −

√
2vs) − u′(vt −

√
2vs)

(2) + w(2)

[
(
√

2vt + vs)
′ − 1

k
(
√

2vt + vs)

]
+w

[
(
√

2vt + vs)
(2)′ − 1

k
(
√

2vt + vs)
(2)

]}
= 2π2 Ek

m

m√
6

{
u(2)(vt −

√
2vs)

′ − u′(vt −
√

2vs)
(2) + 2

k
u(2)(vt −

√
2vs) + w(2)(

√
2vt + vs)

′

−w′(
√

2vt + vs)
(2) − 1

k

[
w(2)(

√
2vt + vs) + 3w(

√
2vt + vs)

(2)
]} ≡ 2π2 Ek

m
mI (2)(k). (D12)

With these definitions, the total contributions from the z(2) wave functions are

M
(2)
1 (k) = 2π2 Ek

m

{
2uu(2) + 1

2
ww(2) − 1

2
vtv

(2)
t − vsv

(2)
s + mI (2)(k)

]}
(D13)

M
(2)
2 (k) = 2π2 Ek

m

{
2uu(2) − ww(2) − vtv

(2)
t −

√
2
[
vtv

(2)
s + v

(2)
t vs

]}
. (D14)

064002-23



FRANZ GROSS PHYSICAL REVIEW C 89, 064002 (2014)

There are also small corrections �M
(2)
1 and �M

(2)
2 but these can be neglected.

The leading contributions proportional to the derivative of the strong form factor, expressed in terms of a(p2) defined in
Eq. (3.25), are assembled from M1A and M3A using (3.24). Dropping all terms proportional to δk except for the large u2 and w2

terms gives

MA1,a term � a(p2)[4mδkMA1(k) − 2MA3(k)] � 2π2 Ek

m
a(p2)

{
4mδk

(
u2 + 1

4
w2

)
− 2m2

(
3

2
v2

t + v2
s + 2

√
2vtvs

)}
MA2,a term � (2ω2 − 1) a(p2)4mδkMA2(k) � 2π2 Ek

m
a(p2) (2ω2 − 1) 4mδk

(
u2 − 1

2
w2

)
, (D15)

where ω2 = 1 is the parameter defined in Eq. (3.20).
In view of the rich history and importance of the magnetic moment, it is instructive to rewrite the largest terms in

expressions (D6) and (D7) as coordinate space integrals. In momentum space, the leading terms for the deuteron magnetic
moment can be rearranged into the following form

μd

∣∣
0 = e0

∫ ∞

0
k2dk

{
u2 + 1

4
w2 − 1

4
v2

t − 1

2
v2

s + m

2
√

6

[(
uv′

t − u′vt + 2uvt

k

)
+

√
2

(
u′vs − uv′

s − 2uvs

k

)
+

√
2

(
wv′

t − w′vt − 4wvt

k

)
+

(
wv′

s − w′vs − 4wvs

k

)]}
+ e0 κs

∫ ∞

0
k2dk

{
u2 − 1

2
w2 − 1

2
v2

t −
√

2 vtvs

}
. (D16)

These can be cast into integrals over the wave functions in coordinate space, defined by the transforms (A32). The squared terms
and the vtvs term are straightforwardly reduced using the normalization condition (A34). The interference terms can be reduced
by using the identity (A35) to shift derivatives, giving∫ ∞

0
k2dk

{
uv′ − u′v + 2uv

k

}
= −2

∫ ∞

0
k2dk u′(k)v(k) = 2

∫ ∞

0
rdr u(r)v(r)∫ ∞

0
k2dk

{
wv′ − w′v − 4wv

k

}
= 2

∫ ∞

0
k2dk w(k)

(
v′(k) − v(k)

k

)
= −2

∫ ∞

0
rdr w(r)v(r) (D17)

(where v can be either vt or vs) and the final integrals are are evaluated using the relations

u′(k) =
√

2

π

∫ ∞

0
r2dr

(
1

r

d

dk

)
j0(kr)u(r) = −

√
2

π

∫ ∞

0
r2dr j1(kr)u(r)

v′(k) − v(k)

k
=

√
2

π

∫ ∞

0
r2dr

(
1

r

d

dk
− 1

kr

)
j1(kr)v(r) = −

√
2

π

∫ ∞

0
r2dr j2(kr)v(r) (D18)

and then using the normalization condition (A34). Writing the final result in terms of the isoscalar magnetic moment, μs = κs + 1,
gives

μd |0 = e0 μs

∫ ∞

0
dr

{
u2 − 1

2
w2 − 1

2
v2

t

}
− e0 κs

√
2

∫ ∞

0
dr vtvs

× e0

∫ ∞

0
dr

{
3

4
w2 + 1

4
v2

t − 1

2
v2

s + 1√
6
mr[u(vt −

√
2 vs) − w(

√
2vt + vs)]

}
. (D19)

In Ref. [22], interaction currents were ignored and the (B) diagrams were assumed to be equal, to the (A) diagram (the RIA
approximation); in this case the normalization condition was

1 =
∫ ∞

0
dr

{
u2 + w2 + v2

t + v2
s

}
. (D20)

With this assumption, the results of Eq. (D19) agree with Ref. [22].
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2. (B) contributions

The contributions to the magnetic moment (in nuclear magnetons) from the singular terms (involving the B3,i traces) can be
written

μd = e0

∫
k

{M1B(k) + κsM2B(k)}, (D21)

where the MiB are

MiB = m

md

lim
Q→0

mEk

kzQ

[B3,i(k0)

Qk0

∣∣∣∣
−

− B3,i(k0)

Qk0

∣∣∣∣
+

]
. (D22)

The MiB are a sum of terms of the form

MiB → −2m2

md

[d1XY + c1(Xk0Y + Yk0X)] + d0
m2kz

md

[
1

Ek

(Xk0Y − Yk0X) − (md − Ek)

md k
(X′Y − Y ′X)

]
, (D23)

where d0,d1 and c1 are factors coming from the coefficients of the XY expansion, and d0 = x2kz, so that these terms will not be
zero when integrated over kz. (Details can be found in Appendix E of the original, longer version (v1) of the present paper in the
preprint archive [20].) The trace B3,2 is already linear in Q and hence for this term the d0 terms vanish.

Reviewing the above discussion, the actual calculation proceeds in two steps. First, keeping the arguments of the structure
functions fixed, expand the traces to first order in Q and δk0 ≡ k0 − Ek . Then make the following substitutions (for the d0,c1,d1

terms respectively):

kzδk0 (X+Y− − Y+X−) → m2k2
z

mdEk

(Xk0Y − Yk0X) + D2(X′Y − Y ′X)

Q(X+Y− + Y+X−) → −2m2

md

(Xk0Y + Yk0X)

Qδk0 (X+Y− + Y+X−) → −2m2

md

XY, (D24)

where

D2 = −m2k2
z

m2
d k

(md − Ek) (D25)

and the factor of kz that is part of d0 has been shown explicitly. The a(p2) contribution is obtained from the special substitution

Q(X+Y− + Y+X−) → 8m2a(p2)

md

(md − Ek)XY. (D26)

Using these substitutions, and expressing the M’s directly in terms of the wave functions z
, gives the following leading-order
results

M1B(k) = 2π2 Ek

m

{
u2 − 1

8
w2 − 3 uw

4
√

2
−

(
2 − 3m2

4k2

)
v2

t − 1

2
v2

s − 1

4
√

2

(
7 − 6m2

k2

)
vtvs + m

k
(
√

2vt − vs)(
√

2z−−
0 − z−−

1 )

+ k

4
√

2
(u′w − uw′) + m2

2
√

2 k
(vtv

′
s − v′

t vs) − 2u[δ+û]k0 − w[δ+ŵ]k0 +
√

2

(
1

2
u[δ+ŵ]k0 − vt [δ−v̂s]k0 − vs[δ−v̂t ]k0

)
+ 2vt [δ−v̂t ]k0 + vs[δ−v̂s]k0 + 2 a(p2)m

[
δk

(
2u2 + w2 − 1√

2
uw

)
− md

(
2v2

t + v2
s − 3√

2
vtvs

)]
+ �M1B(k)

}
M2B(k) = 2π2 Ek

m

{
u2 − 1

2
w2 − 1

2
v2

t −
√

2vtvs +
√

2 m

k
(
√

2z−−
0 − z−−

1 )vt − 2u[δ+û]k0 + w[δ+ŵ]k0 −
√

2[vt [δ−v̂s]k0

+ vs[δ−v̂t ]k0 ] + vt [δ−v̂t ]k0 − 4a(p2)(Ek − md )

[
δk

(
u2 − 1

2
w2

)
− md

(
1

2
v2

t −
√

2vtvs

)]
+ �M2B(k)

}
, (D27)

where z
k = z′

 and the leading-order correction terms are

�M1B(k) = Ek − m

12Ek

[
u2 + 131

4
w2 + 29

2
√

2
uw

]
�M2B(k) = −Ek − m

3Ek

[
u2 + 1

2
w2 −

√
2uw

]
. (D28)
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Note the unexpected presence of a leading uw contribution to M1B . This term does not reduce the the expected nonrelativistic
limit, but is canceled by a similar contribution from M1C , which we discuss now.

It is surprising that significant contributions come from the finite terms that depend on the traces C3,i . These give the following
additional leading contributions

M1C(k) = 2π2 Ek

m

{
−3

8
w2 + 9 uw

4
√

2
+

(
1 − m2

4k2

)
v2

t − 1

4
√

2

(
5 + 2m2

k2

)
vtvs + m

k
(vtz

−−
0 + vsz

−−
1 )

+ k

4
√

2
(u′w + 3uw′) − 1

2
kww′ − k

4
√

2
(vtv

′
s + 7v′

t vs) + m2

2
√

2 k
(vtv

′
s + 3v′

t vs) −
(

1

2
− m2

k2

)
vtv

′
t

+ 1

2
m(v′

t z
−−
0 + 3vtz

−−
0

′ + v′
sz

−−
1 + 3vsz

−−
1

′
) + 1

2
w[δ+ŵ]k0 − 1√

2
(u[δ+ŵ]k0 + vs[δ−v̂t ]k0 )

− 1

2
vt [δ−v̂t ]k0 − a(p2)m md

(
v2

t +
√

2vtvs

) + �M1C(k)

}

M2C(k) = 2π2 Ek

m

{
v2

t −
√

2 m

k
(
√

2z−−
0 − z−−

1 )vt

}
(D29)

with only one correction term

�M1C(k) = −Ek − m

4Ek

[
5u2 − 5

4
w2 + 49

2
√

2
uw

]
. (D30)

Adding the (B) and (C) contributions together, and rearranging some terms, gives

M1BC(k) = 2π2 Ek

m

{
u2 + 1

4
w2 − 1

2

{
3

2
w2 + kww′

}
+ 1

2
√

2
{3uw + ku′w + kuw′} − 1

4
v2

t − 1

2

{
3

2
v2

t + kvtv
′
t

}
− 1

2
v2

s

+ m2

2k2

{
v2

t + 2kvtv
′
t } − 1√

2
{3vtvs + kv′
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′
s} + 3k

4
√

2
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t vs) + m2

√
2 k2
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′
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t vs}
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2
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√
2
(
vt [δ−v̂s]k0 + vs[δ−v̂t ]k0

) + 3

2
vt [δ−v̂t ]k0 + vs[δ−v̂s]k0

−m(v′
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−−
0 + v′
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−−
1 ) + 3

2
m

{
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−−
0 + vtz

−−
0

′ + 2

k
vtz

−−
0

}
+ 3

2
m

{
v′
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−−
1 + vsz

−−
1

′ + 2

k
vsz

−−
1

}
− m

k
[
√

2vsz
−−
0 + (

√
2 vt + vs)z

−−
1 ] + 2a(p2)m

[
δk

(
2u2 + w2 − 1√

2
uw

)
− md

(
5

2
v2

t + v2
s −

√
2vtvs

)]
+�M1B (k) + �M1C(k)

}
M2BC(k) = 2π2 Ek

m

{
u2 − 1

2
w2 + 1

2
v2

t −
√

2vtvs − 2u[δ+û]k0 + w[δ+ŵ]k0 −
√

2[vt [δ−v̂s]k0 + vs[δ−v̂t ]k0 ]

+ vt [δ−v̂t ]k0 − 4a(p2)(Ek − md )

[
δk

(
u2 − 1

2
w2

)
− md

(
1

2
v2

t −
√

2vtvs

)]
+ �M2B(k)

}
. (D31)

The expression for M1BC has been arranged so that terms in the
interior curly braces integrate to zero (recalling that the volume
of integration is k2dk/Ek). Note that the correct leading uw

term (which equals 0) and w2 term are only obtained by the
summing the B and C traces and retaining the k derivative
contributions.
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