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The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high-
precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents,
which are automatically generated by the nuclear force model used in these fits. After normalizing the wave
functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components,
gives 0.863(2), while model WJC-2 with very small P-state components gives 0.864(2). These are about 1%
larger than the measured value of the moment, 0.857 n.m., giving a new CST prediction for the size of the
pmy exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear
dynamics. The physical significance of these results is discussed, and general formulas for the deuteron form
factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are

given.
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I. INTRODUCTION, SUMMARY, AND CONCLUSIONS

A. Background

This work is the second in a series of four planned
papers (the first, Ref. [1], accompanies this paper) that will
present the fourth-generation calculation of the deuteron form
factors using what is now called the covariant spectator theory
(CST) [24].

This new generation of calculations are required by the
new fits to the 2007 np data base [5] obtained using the CST
with a one boson exchange (OBE) kernel. It was found that
a high-precision fit (one with x2/datum ~ 1) was possible
only if the NNoy vertices associated with the exchange of
a scalar-isoscalar meson oy included momentum-dependent
terms in the form

A”(p,p") = goy1 — v, [O(p) + (P, (1.1)

where v,, is a new parameter determined by fitting the NN
scattering data, p and p’ are the four-momenta of the outgoing
and incoming nucleons, respectively, and the ® are projection
operators

m—p
O(p) = ——. (1.2)
2m
which are nonzero for off-shell particles, and hence are a
feature of Bethe-Salpeter or CST equations.

Two high-precision models were found with somewhat
different properties. Model WJC-1, designed to give the best
fit possible, has 27 parameters, x>/datum ~ 1.06, and a large
Vs, = —15.2. Model WJC-2, designed to give a excellent fit
with as few parameters as possible, has only 15 parameters,
xz/datum 2~ 1.12,and asmaller v,, = —2.6. Both models also
predict the correct triton binding energy. The deuteron wave
functions predicted by both of these models [6] have small
P-state components of relativistic origin, and the normalization
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of the wave functions includes a term coming from the energy
dependence of the kernel, which contributes —5.5% for WJC-1
and —2.3% for WJC-2.

This momentum dependence of the kernel implies the
existence of a new class of np isoscalar interaction currents
that will contribute to the electromagnetic interaction of the
deuteron. These currents were fixed in Ref. [1], and this paper
completes the derivation started there by decomposing the
deuteron current into three independent form factors [7,8] and
expressing each of these form factors in terms of integrals over
bilinear products of eight invariant functions, or alternatively,
the two familiar nonrelativistic S- and D-state wave functions,
u and w, the two small P-state components, v, and vy, and
four additional amplitudes, referred to collectively as yg, that
appear when both particles are off-shell [9,10]. This paper
also discusses the contributions of the interaction currents
to the charge and the magnetic moment. Calculation of the
quadrupole moment and the dependence of the form factors
on the momentum transfer of the scattered electron, 02, will
be discussed in the remaining two papers, under preparation.

B. Organization of the paper

This paper is long and detailed, so the principal results
and conclusions have been extracted and summarized in this
section. The interaction current makes significant contribu-
tions to the wave function normalization (the charge) and
these are reviewed in some detail in Sec. IC. Then, one of
the principal new results of this paper, the calculation of the
deuteron magnetic moment including the contributions from
the interaction current, are presented in Sec. I D. Conclusions
are given in Sec. I E.

The remainder of the paper includes four more sections and
four Appendixes where many of the details are presented. The
two-body current from which all of the results are derived is
introduced in Sec. II. The entity that contains the relativistic
structure of the deuteron is the dnp vertex function with one
nucleon on shell. In Sec. II this vertex function is written as
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a sum of products of scalar invariant functions multiplied by
covariant Dirac spin operators. This expansion in terms of
invariants was first introduced by Blanckenbecler and Cook in
1960 [9], but we use the notation of Ref. [10]. Appendix A
shows how to expand these invariant functions in terms of
the CST deuteron wave functions u,w,v;, and v, (previously
reported in the literature), and x, = {zy ~,z; .29 ".z; '}, the
negative p-spin helicity amplitudes for particle 1. The y, are
not zero even when both particles are on shell and are needed
for a complete calculation of the magnetic moment.

Next, Sec. III describes how the deuteron form factors are
extracted from the helicity amplitudes of the deuteron current,
and general formulas for the form factors, valid to all Qz,
are assembled. The final results, Eqs. (3.28) and (3.36), give
the form factors as a sum of products of the nucleon form
factors F;(Q?) (with i = 1,2,3, with F3 a new nucleon form
factor that contributes to the nucleon current only when both
the incoming and outgoing nucleons are off shell) multiplied
by body form factors expressed as integrals over traces of
bilinear products of invariant functions from which the dnp
vertex is constructed. The interaction current contributions
are conveniently expressed in terms of two new types of
wave functions, W@ and W. Explicit formulas for the 18
independent traces that appear in the final results are given in
Appendix B. The formulas are manifestly covariant; once the
rest frame wave functions are known these formulas reduce
the calculation of the deuteron form factors at any Q2 to
quadratures. These formulas will be used to calculate the form
factors in the fourth paper of this series, and are one of the
principal new results of this paper.

Finally, the last two sections discuss how the charge
(Sec. IV) and magnetic moment (Sec. V) are built up from
individual contributions from the wave function components,
the off-shell nucleon current, and the interaction current. These
sections assemble details given in Appendixes C and D. This
work is summarized in the following Secs. IC and ID.

C. Charge and normalization

The normalization condition ensures that the charge of the
deuteron is one. There are many ways to write this condition;
Sec. IV expresses the contributions from the interaction
currents in terms of two new wave functions, ¥, a wave
function that depends only on the ® contributions from off-
shell particle 2, and W, a wave function with both particles off
shell, which, because of the interaction current contributions,
reduces to W when particle 1 is on shell. In this language, the
normalization condition (charge) can be expressed as a sum of
contributions from the components of ¥, W, and VIR

1= /Oo K dk 24:{1 +a(k))zg + <ﬁ> (1.3)
0 = 3 Po

where the notation z; = z¢(k) is used generically to denote
the wave functions u,w,v;, or v [not to be confused with the
helicity amplitudes denoted by z;'** and given in Eq. (A26)]
with £ denoting the angular momentum of the state (so that
70 = U, 2o = w,and z; = v, or vy). In Sec. IV it is shown how
the derivative of the reduced kernel can be expressed in terms
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TABLE . Contributions to the normalization sum (1.3) for model
WIC-1. All entries are rounded to three decimal places; all totals are
subject to round-off error. Note that the total of columns four and five
equals the total in column six, confirming (1.4).

Ze 2 a2 2¢Ze 22 (2%)
u 0.974 0.014 —0.035 —0.020 —0.054

0.077 0.022 —0.017 —0.002 —0.019
v 0.001 —0.003 —0.007 —0.001 —0.007
Vs 0.002 —0.008 0.001 —0.001 0.000
total 1.055 0.025 —0.057 —0.023 —0.080
of products involving the new wave functions

% >0 !

— V= Kdky {zez?) + (2 1.4

()= [ oS leatt ezl s

and the contributions from the derivative of the strong form
factor contribute terms proportional to a,(k), with

—da(p*)(Ex —ma)  €=0,2

Ha(p)Ee —mamg t=1 > Y

ae(k) = {
where a(p?) was defined in Eq. (3.25) with p? = mé +m? —
2m4Ey here, and &, = 2E; — my. The budget for these con-
tributions is shown in Tables I and II, where all contributions
have been rounded to three decimal places.

Note that, except for the P-state contributions from model
WIC-2, all of these contributions are important at the level
of 0.001. If the magnetic moment is to be calculated to this
accuracy (a goal of this paper), then all of these terms must be
included.

D. Magnetic moment

The algebraic expression for the magnetic moment is
considerably more complicated than the simple form (1.3)
for the charge. While it is possible to calculate the exact result
from the formulas given in the appendixes, this will not give
much insight into the underlying physics. The goal in this
paper is to simplify these formulas, retaining all terms that
contribute to 1-2 parts per 1000.

Table IIT will be used to guide the calculation. It suggests
that sufficient accuracy is obtained if the coefficients of
all terms but those involving products of the leading wave
functions, namely u and w, are retained to leading order in the
small parameter g = (Ey — m)/E} (a few of the other terms

TABLE II. Contributions to the normalization sum (1.3) for
model WJC-2 (see caption to Table I).

e Z% azZ% Z[Z\e ZZZ(gZ) (%)
u 0.957 0.007 —0.022 —0.012 —0.034
0.065 0.011 —0.010 0.001 —0.009
v, 0.000 0.000 0.002 0.000 0.002
Vs 0.000 0.000 0.000 0.000 0.000
total 1.023 0.018 —0.030 —0.011 —0.041
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TABLE III. Integrated products of wave functions for model
WIC-1 with the largest P states. Entries above the diagonal are
the products z,z.; those along the diagonal and below are products
weighted by (E, — m)/Ey.

u w Ut Us
u 0.007 0.094 —0.004 -
w —0.001 0.006 —0.009 —0.010
v; — —0.001 — 0.001
Vg 0.001 —0.001 - -

are as large as 0.001, but neglecting all of these corrections is
not expected to change the results significantly, and all terms
of higher order in §g are negligible). Guided by these results
the formulas for the magnetic moment are simplified.

If the deuteron is treated as a nonrelativistic superposition
of S and D states, normalized to unity so that

1 :/ k* dk(u® + w?) = Ps + Pp, (1.6)
0
then the well-known result for the magnetic moment is
ta = s + 3(1 = 2u)Pp = s + Uxr, (1.7)

where p; = 0.880 is the isoscalar nucleon magnetic moment.
Inserting the measured deuteron magnetic moment, 0.857 (in
nuclear magnetons) gives the famous prediction of 4% for the
deuteron D state, a result too low for most modern models.

The CST results for the leading contributions to the mag-
netic moment (with an estimated accuracy of 0.002) were
derived in Sec. V and Appendix D. After some simplification,
the results can be written [see Eq. (5.2)]

Ha = ps + Apa, (1.8)

where Apu, is the sum of eight different types of corrections
given in Egs. (5.3) and (5.6) and listed in Tables IV and V.
The physical origin of each of these eight corrections is
summarized in Table IV, and their numerical size for each
of the models WJC-1 and WJC-2 are summarized in Table V.
A running sum of the correction terms is plotted in Fig. 1.
From these results I conclude that the CST is not able to
explain the magnetic moment precisely. Within the theoretical
errors, the missing contribution is about du; ~ —0.006 +
0.002, less than 1% of the magnetic moment and closer to

TABLE 1IV. Physical origin of the eight different types of
corrections that contribute to the magnetic moment.

term physical origin

JANR nonrelativistic D-state contribution

URe relativistic corrections to S, D terms

W dependence on the strong form factor, &
My, interaction currents: off-shell particle 2
Hy, interaction currents: on-shell particle 1
Wint interference of P-states with S- and D-states
wp P-state squared terms

My P-state and negative p-spin z, ~ interference
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TABLE V. Contributions to the magnetic moment from the eight
different types of corrections discussed in the text. To get the correct
experimental value, these corrections must equal —0.023.

WIC-1 WIC-2
u,w only all u,w only all
INR —0.044 —0.044 —0.037 —0.037
M Re 0.021 0.021 0.009 0.009
s —0.010 —0.009 —0.005 —0.005
v, 0.001 0.004 —0.001 —0.009
Wy, 0.013 0.006 0.008 0.008
Ming - 0.016 - 0.001
wp - —0.004 - 0.000
My - —0.007 - 0.000
total —0.019 —0.017 —0.026 —0.016

the the experimental value than the nonrelativistic D-state
contribution (assuming the P; >~ 5 — 6% found in most fits).
This small difference is a new prediction for the total size of
the famous pmy exchange current that has been extensively
studied [11-15] and other purely transverse contributions
not constrained by the np dynamics. Predictions for these
contributions will be the subject of a future paper.

E. Conclusions

The calculation of the magnetic moment given in this paper
is the first precise consequence of the interaction current
derived in Ref. [1]. Using this interaction current, and the
deuteron wave functions obtained from the precision CST fits
to the np scattering data, model WJC-1 predicts the magnetic
moment to be 0.863(2), while model WIC-2 predicts it to
be 0.864(2), where the theoretical error is an estimate of the
size of the many small terms omitted from the calculation.
Taking the value given by the most precise model (WJC-1)
and increasing the error to 0.003 to allow for the model
dependence, my overall prediction is 0.863(3). This result is
larger than the experimental value by 0.006(3), implying that
the total size of the many missing purely transverse interaction
currents unconstrained by the np dynamics (including the
pry and woy currents) is much smaller than previously
estimated. Either these currents are individually quite small, or
they tend to cancel when added together. The CST prediction
for the magnetic moment, obtained without any adjustable
parameters, is within 1% of the experimental value.

The prediction is almost the same for both models, even
though the two models have quite different properties. This is
illustrated in Fig. 1, which shows the running sum of the eight
contributions, added in the order listed in Tables IV and V.
For both models the NR correction (1.7) is too small and the
relativistic corrections (i g.) bring the moment up to equal to,
or close to its experimental value. Both of these effects depend
on the S and D states only. Then the contributions from the
derivative of the strong nucleon form factor, proportional to
a(p?®) = dlog(h)/dp?* [see Eq. (3.25)], reduce the moment
again, giving an almost identical value near —0.032 for the
two models. The two interaction current contributions, V,
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FIG. 1. (Color online) Running sum of the corrections to the magnetic moment, in the order that they are listed in Tables IV and V. The
dashed line is Ap, = —0.023, the correction needed to give the experimental value. The error bars are +0.002, an estimate of the size of the
terms missing from the approximation of Eq. (1.8). Model WJC-1 (left) and model WJC-2 (right).

(arising from the momentum dependence associated with the
® attached to the off-shell particle 2) and V| (arising from
the momentum dependence associated with the ® attached
to particle 1, which only contributes when both particles are
off shell), both give positive contributions, pushing the total
back up to a value equal, or close to the experimental value.
These interaction current contributions contain significant
contributions from the P states as well as the S and D states.
Perhaps the most surprising result comes from the last three
terms (fLing, 4 p, and 1y ), all of which are zero if the P states v,
and v, are zero. In model WJC-2 where the P states are very
small, these terms add very little, but their contributions are
significant for model WJC-1, where they give large canceling
effects just sufficient to produce the same total prediction as
is obtained for model WJC-2. Note that even the term u,,
which is an interference between the P states and the negative
p-spin contributions from particle 1 [which contribute only to
the diagrams (B) of Fig. 2 when both particles are off shell]
is important to obtaining agreement between the two models.
As shown in Appendix C, these terms cancel in the charge, but
make a small but significant contribution to the model WJC-1
prediction for the magnetic moment.

A full comparison of my results with the many other
calculations in the literature will be postponed until I have
completed my calculation of the quadrupole moment and the
form factors. Here I note only that in a recent work based
on xEFT [16,17] the deuteron magnetic moment is used to
constrain the low-energy constants of x EFT, and hence the
magnetic moment itself is not predicted.

We now turn to the derivation of these results, as already
outlined in Sec. I B above.

II. WAVE AND VERTEX FUNCTIONS

In the CST, the two-body current is given by the five
diagrams shown in Fig. 2 (completely equivalent to the four
shown in Fig. 1 of Ref. [1]). These include the interaction

current contributions derived in Ref. [1], expressed in terms
of the the effective wave functions \IIQA) and the subtracted
vertex functions I' (directly related to W) with two particles
off shell. Although these diagrams are written for particle 2
off shell, the symmetry of the N N interaction is built into the
formalism from the start and they are completely equivalent
to an alternative set with particle 1 off shell. At the conclusion
of Ref. [1] it was shown that these diagrams can be written
as a trace over the product of covariant wave functions (or
vertex functions) of the initial and final deuteron, and a current
operator describing the interaction of the virtual photon with
the off-shell nucleon. In this section the covariant wave and
vertex functions will be discussed in detail.

A. General definitions
The covariant wave function of the deuteron is defined in
terms of the covariant dnp vertex function, G,

\p;g(k,P) = (¥5"), , (k,P)Cpg

ap’
= Sea(P)G (k. P),

where C is the Dirac charge conjugation matrix, S is the bare
nucleon propagator (with the factor of —i removed)

@2.1)

1
S(p) = —— 2.2)
m—

?
and, for an incoming deuteron of four-momentum P and
polarization four-vector &, G is written

Goi(k, P) = (I\,Cap(k, P)E}, (P)

= T4 (k.P)Cpp. (2.3)

with k the four-momentum of particle 1 (with Dirac index
B), and p = P — k the four-momentum of particle 2 (with
Dirac index «). Care must be taken to distinguish ¥ (which
includes the charge conjugation matrix) from ¥, (which does
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FIG. 2. (Color online) Diagrammatic representation of the two-body current operator in the covariant spectator theory using vertex functions
with particle 2 off shell. The interaction current contributions are contained in diagrams (A, ) and parts of the (B) diagrams, as discussed in the
text. Off-shell nucleon lines are thicker than on-shell lines, which are also labeled with an x. Diagrams (A) and (A..) describe the interaction
of the photon with particle 2, allowing particle 1 to be on shell in both the initial and final state. Diagrams (B.) describe the interaction of the
photon with particle 1, so that both particles must be off shell in either the initial state (diagram B, ) or in the final state (diagram B_).

not). These wave (or vertex) functions satisfy the bound-state
CST equation

S (D)W s (k. P)

= —f V gy.aa (kK5 PYWory (K, PYA, (K), 2.4
k/

where V is the symmetrized kernel (introduced in Ref. [5]),

the positive energy Dirac projection operator is

(m + k)yy’

. (2.5)

Ayy(k) = = uy (k)i (k,)),
Y
with the Dirac spinors u = u™ discussed in Appendix A, and

the volume integral is

[=] &%
v J QY E

Here particle 1, with four-momentum k = {E; Kk}, is on shell
(so that E; = v/m? 4+ Kk?).

In the OBE models that are the basis of the work reported
here, the strong form factors at the meson-N N vertices are
products of strong form factors for each particle entering or
leaving the vertex. The strong form factor A(p) [where h(p)
is a function of p?] associated with each external nucleon line
can be factored out of the N N scattering kernel, leading to

V(k.K's P) = h(k)h(p)V (k.K's PYR(KR(p'),  (2.7)

2.6)

where V is the reduced kernel, and we recall that, for both
primed and unprimed variables, p = P — k. If a particle with
momentum & is on shell, so that k2 = m?, the strong form factor
is defined so that 4(k) = 1. Note that the expression (2.7) for
the kernel is written allowing for the possibility that any (or
all four) of the particles could be off shell.

The next step in the computation of the form factors is
to express the wave and vertex functions in terms of scalar
invariant functions, so that when the traces (3.28) and (3.33) are
computed, the result will be a sum of bilinear products of these
scalar functions multiplied by covariant kinematical factors.

The result is manifestly covariant, and the effect of boosting
the incoming and outgoing states is easily accounted for by
correctly shifting the arguments of the invariant functions.

B. Expansion of the wave or vertex functions

When particle 1 is on-shell, the covariant dnp deuteron
nucleon vertex function defined in Eq. (2.3) (with the charge
conjugation matrix removed) can be expanded into four
independent Dirac invariants

G 1
Ik, P) = Fy" + —k" — 2®(p)[HV“ + —k“}, (2.8)
m m

where k is the four-momentum of the on-shell particle 1,
so that k? = m?, p = P —k is the four-momentum of the
off-shell particle 2, and ®(p) is the negative energy projection
operator of particle 2 [recall Eq. (1.2)]. The scalar functions
F,G,H, and I are all functions of p2, the only free scalar
variable. Note that

Tk, P) = y° [T (k, P)]'y°
n G n n ! n
= Fy" + —k" — | Hy" + —I" 20(p). (2.9)

It is sometimes convenient to work directly with wave
function W defined in Eq. (2.1) (with the charge conjugation

matrix removed), and the related amplitude Gg‘ s
W (k, P) = S(p)T'*(k, P)
B D
=Ay" + —k" — 2®(17)[CV“ + —k“], (2.10)
m m
where S(p) is the undressed propagator of the off-shell particle,
and
m>—p>C=mF m*>—-pHD=mG
mA=2mC—H mB=2mD —1.

The F,G,H, and I are related to the deuteron wave
functions, as discussed in Appendix A and many previous

@2.11)
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references [6,10,18,19]. When the spectator is on shell, these
invariants depend only on p?, the mass of the off-shell particle.

C. Bethe-Salpeter vertex functions

The (B) diagrams of Fig. 2 require Bethe-Salpeter (BS)
vertex functions with both particles off shell. These can be
expanded in terms of invariant functions that depend on the
two invariant variables p2 and k2 * m?. To describe these, the
expansion (2.8) is generalized

G I
Ths(k.P) = Fy" + —k" — 2®(p)[Hy“ + n;k“}
K
- [Kly“ + —2k“]2®(—k)
m

+4®(p)[1<3y“ + %k“}@(—k)

= I"(k, P) — T".(k, P) 20(—k), (2.12)

where the invariants in I'* (F,G, H,I) are distinguished from
the old only by their arguments (two instead of one). The
appearance of the operator on the right of the last terms,
®(—k) [instead of ®(k), as might have been expected],
comes from moving the charge conjugation matrix past the
projection operator of particle 1: C ©7 (k) = ©(—k)C. Particle
interchange symmetry relates H and / to K| and K, but we
will ignore this constraint for now; it is a numerical feature of
the solutions for the matrix elements.

As it turns out all eight invariant functions are present in
I'*, even when particle 1 is on shell. (A proof of this can
be found in Appendix B of the original longer version (v1)
of the present paper in the preprint archive [20].) The 'Y
part of the vertex function constructed from the four invariant
functions K; is not zero when k* = m?. However, because
of the presence of the projection operator ®(—k) it does not
contribute to diagrams where both k> = m? and the vertex
function is contracted with an on-shell projection operator (or
the on-shell u spinor). Thus it makes no contribution to the
(A) diagrams, but a full understanding of the content of the
(B) diagrams requires that it be included.

In the rest frame, when both particles are off shell, the
covariant variables are related to k2, the square magnitude of
the spectator three-momentum, and ko, the off-shell energy of
particle 1, through the relations

p? = (P —k)* = k* + my(mg — 2ko)

K =m* =k} - K. (2.13)
Solving these relations for ko and k? gives
Pk 2 2 2
ko = Ry = = M tm P
mey 2md
P -k)?
K> — stkg—m“:( 2) —m*. (2.14)

mg

These relations provide the unique covariant generalization
of the rest frame variables ko and k? (denoted by R, and
R?). Stated more precisely, if the spectator associated with a
deuteron with four-momentum P has energy ko and a squared
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three-momentum k2, then the equivalent rest frame values of
these quantities are Ry and R?. Note that Ry and R = vR?
are quite different quantities.

It is instructive to derive these relations by a direct boost
from the moving frame to the rest frame. To do this, consider
(for definiteness) that the moving deuteron has momentum
{Dy,0,,0/2}, with

Dy = \/m% + 102

Then if the spectator has four-momentum k = {ko,k, ,k;}, in
the rest frame these values are

1 1
Ry = —(Doko - —ka) =
my

(2.15)

Pk

mgq

2

R, = l(Dokz - %Qk()) (2.16)

mq
with the transverse momentum, Kk, unchanged. The first of
the two relations (2.14) emerges immediately, and to obtain
the second simply compute the square of the three-momentum
in the rest frame

R*=kj +R:
=K + 0’ (k2 + k5) — v/ kko Do
P - k)?
_ 2) +k— k3 (2.17)
my

in agreement with (2.14). Itis also easy to use (2.16) to confirm
that k> = m*? is covariant by computing

1 2
R- -k = (0f- L)) -
d
=k} — K. (2.18)

A word of caution: depending on the context, k is sometimes
used to denote either the magnitude of the three-momentum
(i.e., R) or the four-momentum (and, when the square of
the four-momentum is involved, m*? will sometimes be used
instead of k?). Earlier discussions of deuteron wave functions
were restricted to cases when particle 1 was on shell, and were
evaluated in the rest frame [6,10,19] or used wave functions
boosted from the rest frame [21], where there was no need to
make a distinction between R and k.

All of the invariants defined in (2.12) depend on the two
variables R and Ry, so that, for example F = F(R,Ry).
However, because of the cancellation between the contribu-
tions from the (B) diagram and the (V;) interaction currents,
discussed in Ref. [1], the effective BS vertex function of
interest reduces to the CST function when particle 1 is on shell.
The frame-independent way to express this on-shell condition
is to introduce E g, where

ERE\/m2+R2

is the straightforward generalization of E;. Note that Ex = Ej
in the rest frame. Using this notation, the invariant functions
satisfy the condition

(2.19)

Z(R,ER) = Z(R), (2.20)
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where Z is a generic name for any of the eight invariant
functions.

III. DEUTERON FORM FACTORS
A. Definitions of the form factors

The most general form of the covariant deuteron electro-
magnetic current can be expressed in terms of three deuteron
form factors

* . // .
(dA|TH|d 3y = —2DF {G1 g, -, 86D }

2
2m3

—GulgE - -7 E -9l G
where the form factors G, G3, and G, = G, are all functions
of the square of the momentum transfer ¢ = Py — P_,
with Q2 = —¢?, D" = J(P; + P-)", and P_ (P;) the four-
momentum of the incoming (outgoing) deuterons, and &;, ()
are the four-vector polarizations of the incoming (outgoing)
deuterons with helicities A’ (1). The polarization vectors satisfy
the well-known constraints

P £ =P & =0
Sf'épz_‘s?»p

3 /

N 'Ep’ - _5k’p’~
This notation agrees with that used in Ref. [8], except that
now A denotes the helicity of the outgoing deuteron and A’ the
helicity of the incoming deuteron.

The form factors G; and Gj are usually replaced by the
charge and quadrupole form factors, defined by

Gc=Gi+3nGyg

Go=Gi+(+nG3—-Gy (3.3)
withn = Q%/4m?. At Q% = 0, the three form factors G¢, G,
and G, give the charge, quadrupole moment, and magnetic
moment of the deuteron. Since one unit of the proton charge
has been removed from the current, the correct normalizations
are

(3.2)

Ge(0) =1

Gu(0) =2mapq = G2(0)

Go(0) =mgQs = G3(0) + 1 — g
The form factors can be related to helicity amplitudes.

Working in the Breit frame, and choosing the momenta to
be

(3.4)

P = {Do,0,0, £ 5 0}
q" =1{0,0,0,0},
where Dy was defined in Eq. (2.15), the helicity four-vector
polarizations for the deuteron and the photon are
0,F1, —i,0}/v/2 1=+l
(10,0,0,Dp}/my 1 =0
" {0,£1, —i,01/v/2 A ==l 46
—10.,0,0,Do}/mq X' =0
0,71, —i,0}/v/2 A, = %I
v {1,0,0,0} Ay =0,

(3.5)

& =

PHYSICAL REVIEW C 89, 064002 (2014)

where the polarization vectors for the incoming deuteron
(treated as particle 2 in the conventions of Jacob and Wick)
have been obtained from those of the outgoing deuteron
(particle 1 of Jacob and Wick) by a rotation through 7 about
the y axis, multiplied by a phase

& =D R (g

These definitions agree with Refs. [8] and [22] [except that in
Eq. (2.7) of Ref. [22] the £#(%1) refer to the spin direction
and not the helicity and there is a typo in the expression for
§1(0)].

We will denote the most general helicity amplitude by

3.7

A

Gy = (PL Al P- V)€, . (3.8)

Under rotation by 7 about the Z axis, all of the helicity
four-vectors (3.6), represented generically by the vector ¢,
transform as

g, = (—Dey, (3.9)

giving the condition

Ay +A+A =0. (3.10)

(This relation must be interpreted as arithmetic modulo 2, and
can be written in a variety of ways.) In addition, the amplitudes
are related to each other by Y-parity conservation (parity
followed by rotation 7 about the y axis), which insures that

A

Y 7}LV
Gyl =G}, (.11)

Hence it is sufficient to omit discussion to those nine

amplitudes with A, = —1, and of the three amplitudes Gg_

and Ggo. Of the remaining 14, Eq. (3.10) gives
G, =Gt =Gl=G*, =G+ =0
GYy =Gy, =0, (3.12)

leaving seven possible amplitudes.
A conserved current must have the form (3.1), and direct
computation using this gives four further relations

Gly=Gg,
Gl =G =Gl =0 (3.13)

leaving only the three independent amplitudes G{),, G _ and
Gio = G(')ﬁr. (Note that Eq. (20) of Ref. [8] states incorrectly
that G(')t and G, . are nonzero.)

While the sum of all of the individual contributions to
the form factors is constructed to give a conserved current,
individual terms may not, and for this reason the average
of Gio and G, (equal to G ), which enjoys a desirable
symmetry property discussed below, is used to extract the
magnetic contributions from individual terms. The form
factors are then extracted from the following combination of
helicity amplitudes

j] = Ggo = 2D0 (GC + %77 GQ)
Jo=GY_=2Dy(Gc —3nGy)
Js = 2G4+ Gy) = 2Do /1 Gy,

(3.14)
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where 7, (with n = 1,2,3) is a convenient notation for the
helicity amplitudes. To calculate the deuteron form factors, it
therefore sufficient to calculate the three independent matrix
elements (3.14) of the two-body current operator.

The remaining parts of this section assemble the general
formulas for the three independent helicity amplitudes, 7,
starting from the results of Egs. (3.30) and (3.31) of Ref. [1].
From these amplitudes the charge, quadrupole, and magnetic
form factors are obtained. Explicit expressions for the charge
will be given in Sec. IV and for the magnetic moment in
Sec. V. Results for the quadrupole moment will be given in a
subsequent paper.

B. Off-shell nucleon current

Following the method of Riska and Gross [23], a conserved
two-nucleon current can be constructed [21] using the dressed
single-nucleon off-shell current

7*(p.p") = h(p)h(p")jr(p,P)
= ey fo(p',P)F} + €0 go(p',p)O(p)F} O(p)

o
+eo (P, p)Fz<Q2>”’2—q”,

m

(3.15)

where jr is the reduced current, fy,go,f> are off-shell
functions discussed below, ¢y = % is the isoscalar charge, the
off-shell projection operator ® was defined in (1.2),

Fi = RQY) - 117" + "
= Fi(QH7" + qqq—; (3.16)
and the transverse y matrix is
yh=vy" - qqi; (3.17)

with ¢ = p’ — p. The nucleon form factors are F;(Q?), with
Q% = —¢ [and F3, subject to the constraint that F3(0) = 1, a
new form factor that contributes only when both nucleons are
off shell]. The second form of (3.16) displays the interesting
fact that the important physics is contained in the transverse
part of the current; the longitudinal part that is constrained by
the WT identities will not contribute to any observable since
it is proportional to ¢#, which vanishes when contracted into
any conserved current or any of the three polarization vectors
of an off-shell photon.

The off-shell functions f; and g are determined from the
requirement that the reduced current, jg, satisfy the Ward-
Takahashi (WT) identity

4. jx(p.p) = eo[S;'(P) — S7'(p)]. (3.18)
where S, the dressed propagator
_ m— S~(p)
S (p) = P (3.19)

hX(p) — hXp)’
where & occurs squared because one comes from the initial and
one from the final interactions that connect the propagator.

In all previous references it was assumed that the off-shell
function f, = fo, but since the 0/"g, term is transverse, the
WT identity places no constraint on f,. Since consistency

PHYSICAL REVIEW C 89, 064002 (2014)

requires that any variation of f; also include the overall factors
of hh', so that the relationship (3.15) between the dressed
and reduced currents can be maintained, a simple ansatz for
possible variations of f; is
L(p-p") =0 —w) k' + w3 fo(p,p), (3.20)

where w, = 1 is the choice previously discussed, and w, = 0
a reasonable alternative. In this paper it was found that the
variation in the results for w, = 0 and w, = 1 was less that
0.001, the size of other terms omitted from the calculation. As
a result, w, was set to unity (our original assumption) and is
no longer considered a parameter. However, for completeness,
this dependence is recorded in the formulas given in Sec. V
and Appendix D.

Using the shorthand notation & = h(p) and A’ = h(p’), the
simplest solution to (3.18) gives

o )_/i’(mZ—pz) h (m® = p?)
fop’p_hp/2_p2 W pz_p/z

) 4m®> (h W
go(p,p) = POy (W - Z)' (321

An important simplification of the current occurs if it is
contracted into the real (or virtual) photon polarization vectors
defined in (3.6), with the property that quefy = 0. In this case
the g* terms in (3.15) can be dropped, and setting f» = fj
from now on gives

i*w.p) = folp'.pin®'.p)

+e0go(p', P)F3(QH)O(P )y O(p),  (3.22)
where jy is the familiar on-shell nucleon current
Py _ 2., 1 2 iauvql)
InP'.p) = e Fi(Q)y" + e F2(Q7) o (3.23)
In addition, the following limits are useful
fo= lim fo(p',p) =1+ 2a(p>)m* = p*)
rrm . (3.24)
goo = lim go(p’,p) = —8m”a(p”)
p*=p
with
1 dh
2
=——. 3.25
aph =g (3.25)

C. Contributions from the (A) diagrams

The contributions from diagram (A) and (AL ) were written
as a trace in Eq. (3.30) of Ref. [1]. Here the diagrams (A4 ) are
those parts of the interaction current that arise from the v®(p)
and vO(p’) terms in the s N N and vN N couplings (denoted by
(Vz” ) in Ref. [1]). Using the wave functions and currents intro-
duced above, the corresponding helicity amplitudes, defined
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in Eq. (3.8), can be written

G @l gy, = = / tr“wé(k,m[fo(m,p)mq) + 80(p+. P-)O(P) F3(QMeoy™ O(p_) | W5 (k. P-)

~ Wy (k, P+>—/N”<q>w<“ (k, P_) — WG (&, P+>JNV(q>—w”<k P )}A( k)] (3.26)

where py = Py —k, ] N = JN (ex ), and y*v y,tefy are the vector currents j 1’\? and y* contracted with the photon polarization

vector e,\y. Part of the interaction current contribution is contained in the new wave function W® (or ‘-1162) when the charge
conjugation matrix has been removed), obtained from a truncated kernel proportional to the off-shell couplings depending on ®(p)
and O(p’) (for details see Ref. [1]). Calculation of the three independent helicity amplitudes defined in Eq. (3.14), labeled by n =
{1,2,3}, requires the helicity combinations n — {A,,A,A’} where 1 — {0,0,0},2 — {0,4,—} and 3 — {4, +,0} + {—,0,—}.
With this correspondence implied in the equations below, six generic traces A, ;, where and i = {1,2} and n = {1,3}, are defined

A i (0 0) = —t[ W (k, Py) j” (q) W) (k, P_) A(—K)]
= — (=1 [0, (k, PL) j7 (—q) Wik, Py) A(—K)]

= (=DM A, i (V0| (3.27)

q9==q’
where the transformations in the second line of (3.27) follow from the identity tr[O] = tr[OF] = tr[yOOTyO] and the
properties e)’fy = (-1 €, and E'_“k(q) = £/'(—q). The third line of (3.27) follows immediately from the second line for
the n =1 or 2 helicity amplitudes (where A, =0, and A" <> —X). However, the second line interchanges the two terms
that contribute to the helicity average for the n = 3 combination, transforming {+,+,0} <+ —{—,0.—}. Hence choosing the
average of the two contributions ensures that the symmetry relation (3.27) holds, even if the individual contribution under
study does not, by itself, conserve current. With this notation the trace (3.26), for each independent helicity amplitude, can
be written

h
T @Dlasv, = eOFl(QZ)/l: {fo(P+»P—)An,1(‘I’+‘I’—) -2

h_
2) (@)
A (WP — € A (0 )|ﬁq}

h h_
+eoF2(Q%) / {fo(m,p_)An,z(wv—) — AW ) — engh—An,z(mw?’ﬂqﬂ}
+

+eoF5(Q >/M (T4 T, (3.28)

where €,3 = (1 — 26,3) is the extra phase that appears for the n = 3 helicity amplitudes, as derived in Eq. (3.27), and ¥ =
Wy (k, Py) and ‘11(2) \P(z)(k P.). The last term uses the reduction ® ¥y — I'/(2m).

The formulas for the six A4, ;, expressed in terms of the invariant functions introduced in Sec. II, are lengthy and are given in
Appendix B.

D. Contributions from the (B) diagrams
Diagrams (By) of Fig. 2 are not identical to the (B.) diagrams shown in Fig. 1 of Ref. [1]. Here the diagrams involve the
vertex function I'gg, which includes parts of of the interaction current arising from the v®(k) and vO(k’) terms in the s N N and
vN N couplings (which can contribute only when k or k" are off shell, and are denoted by (V/*) in Ref. [1]). They were written
as a trace in Eq. (3.31) of Ref. [1]. Contracting these results with the photon polarization vector, and using the notation
Er=/m?+ (k+ 1q)’
ki = {ko.k £ 1q} (3.29)

gives

E 1=, ~ e~ ~ ~
G @y, = /k [’11:_;]“{;70 (ke Py) Sa(P) T (K-, POYA(=K-) iy (9) A=)

ko=E_

1 = ~ ~ o~ ~ ~
1 PERLPO SiP T PN IN@AED], } (3.30)
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where p = Py — flé When ko =
is on shell, with k+ =ky and k- =k_ ={E; k—q/2}.
Similarly, when kg = E_, the incoming particle is on shell,
with k_ = k_ and k+ = k+ = {E_,k + q/2}. The form of the
expression (3.30) show clearly how the singularities in the two
diagrams at £, = E_ cancel, giving a finite result. Part of the
interaction current contribution is contained in the new sub-
tracted wave function Wps(k, P) = S(p)I'ps(k, P), obtained
through a cancellation of the vertex factors ®(k.) that could
be present if particle 1 is off shell (for details see Ref. [1]).
Note that the projection operator A(—ky) always ac-
companies the vertex functions T ps(k+, P+). Following the
discussion in Sec. IIC, when ks is off shell, the product
of the subtracted vertex function and projection operator,

J

E, the outgoing particle

E 1 — ~ K -q=
jn(q)|B+V1 - f |:’lq(1_(::| tr{k_o [Tk(k%PJr)— m—qu"ﬁ

1
—k—T(k+,P+>Sd(p>[Wk_,P)+—r wG_ PO <q>|k0=E+},

where the off-shell terms have been reduced using

(m? — l;:zt)’k(]:E

=42k q.
.

PHYSICAL REVIEW C 89, 064002 (2014)

f}\; S(Ei, P.)A(—ky), breaks into two terms

Tk, Po)A(—kz)

~ o~ ~ (m* — k7))~
= T (k. Po)A(—ks) — Tirgﬁ(ki,&), (3.31)
where T is identical to the on-shell vertex function T when Ei
is on shell (because the cancellation shown in Ref. [1] ensures
that there is no extra k1 dependence).

Introducing the new amplitudes
Y*(k,P) =T*(k,P)A(—k) (3.32)

leads to the following expressions for the independent helicity
amplitudes (labeled by the index n as discussed above):

wer, PO] S/ T (P j (@)

ko=E_

(3.33)

(3.34)

Equation (3.33) is further reduced by shifting k & %q — Kk in the terms involving I" o, and introducing the generic traces

Byitko) = trﬁA(E+»P+)Sd(ﬁ)TX(]€ P)j" (q)]

= (ru[T
= [Tk, Py)Sa(Ps —

= (Vv u[Tof k — g, P)Sa(Py —

Cn,i(r Foff)

Mk POSAPYT My, PO (@)] = (=7 By iko)]
Tk — q,P)j" ()]
Yk, Pr) i (=q)] = (=) Coi(Toie T)|

(3.35a)

q9—>—q

(3.35b)

q9—>—q

where the labeling of the momenta in (3.35b) is as in Fig. 2, with the four-vector k always on shell. This allows the B +(V;)

contributions to the helicity amplitudes to be written

Bn,l(kO)

mE; 7 ( Bui(ko)
T @y, = eoFl(Q)/” "]( ;00 _

ko

1
) - a1 (I Toge) —
+

Bn,Z(kO)

1
—€3C,,1(T" Togr)
m

q—)—q}

rerson | [25) (0

where |+ — |k=E, -

The formulas for the 5 and C traces, when expressed in
terms of the invariant functions introduced in Sec. II, are
lengthy and are given in Appendix B.

E. Numerical calculation of the form factors

Computation of the form factors involves not only the
wave function ¥ and the vertex function I', but also the
special wave function W'® and the subtracted vertex functions
I'. The calculation of the interaction current contributions has
been simplified by introducing the special functions w® and
T, and their Dirac conjugates. The kernels that produce the
bound-state functions W® and T were already been given
in a very general form in Ref. [1], but, for convenience, are
given in more explicit detail in Appendix C of the original,

1
—€,3C 2(T Togr)
m

1
) — —Cp2(T' Togr) — }, (3.36)
+ m q—>—q

(

longer version (vl) of the present paper in the preprint
archive [20].

The numerical calculation of the form factors involves the
following steps.

(i) Start from the invariant functions {F,G,H,I} and
{A,B,C,D} givenin (2.8) and (2.11), or the K; defined
in Eq. (2.12). In the rest frame these are functions of
k = |k| and ko, and are constructed from the eight
helicity amplitudes z(fi, and zfi as described in
Appendix A.

(i) Replace the rest frame arguments k, and ko by the
correctly transformed arguments R and Ry using the
general definitions given in Eqgs. (2.14). The specific
realization of these general definitions depends on
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the diagram being evaluated and detailed expressions
for each diagram are given in Egs. (B3), (BS),
and (B11), (B12).

(iii)) Using the invariants with the proper arguments,
evaluate the A+V, contributions to the helicity am-
plitudes (3.28) using Egs. (B1)—(B2). Evaluate the
B+V, contributions (3.36) using Egs. (B6) and (B7)
and (B9)—(B10). The total result is the sum of these
two contributions.

(iv) Extract the individual form factors using the rela-
tions (3.14).

These general results do not reduce to simple expressions
for the form factors in terms of the the familiar u,w,v,, and v;
wave functions previously defined in the literature and shown
in Egs. (A29) and (A30). Still, to make connections with
the older literature it is useful to express the result for the
static moments in terms of leading terms involving integrals
over products of u,w,v;,vs; and corrections. The charge and
magnetic moment will be reduced in this way in the following
sections.

IV. CHARGE

The charge and normalization have been previously dis-
cussed in many references, including Ref. [1], so the purpose

J

PHYSICAL REVIEW C 89, 064002 (2014)

here is to see how the same result emerges from the
general expressions (3.28) and (3.36). Using the results of

Egs. (C7) and (C8), the contributions from (3.28)
are
GO,
oo
= eO/ kzdk{foo[u2 +w? + v} + 7]
0
+&[(2E _ )2( 2 2 2(.2 2
o K —ma) (W’ 4+ w?) +m(v] + ;)]

— 2[uu(2) + ww® + v,v,(z) + vsvgz)]}

oo
= eO/ Kdk{u® + w® + v} + v} — 4a(p*)Ex — my)
0

X [(2Ek — may)(u2 + wz) —my (v,2 + vf)]

—2[uu® + ww® + v + v@]}, 4.1
with fyoo and goo defined in Eq. (3.24) [with a defined in

Eq. (3.25)], and the second line was obtained by using p =
P — k, which reduces fy in the rest frame to

foo = 1+ a(p?)2maQE; — my).

The special wave functions z» are obtained from W® in
precisely the same way that the z are obtained from W.

Next, using the general results (C14) the contributions to
the charge from (3.36) are

4.2)

o0
GOy, y, = €0 /0 Kdk{u® + w? 4+ v} + v — da(p*)(Ex — m)[QEx — ma)(u® + w?) — my (v} + v7)]

—2(ul84alk, + w1 Wlk,) + 2(v:[6- D1k, + vs[8-Ds1i,) ] (4.3)
where the functions 6.4, ...,5_0, were defined in (C12), and if z = h Z, the derivative is zx, = h dZ(ko)/dkolky=Ek-
The charge must be sum of the two contributions (4.1) and (4.3)
1= GOy, + GOy, (4.4)

which is also identical to the normalization condition (2.55) of Ref. [1].

The first parts of (4.1) and (4.3) are identical; their sum is the RIA contribution. This contribution arises from diagrams A and
B in different ways. The contribution from the A diagram includes the f; and go factors in the off-shell current; these factors do
not appear in the B diagram, but similar contributions arise from the expansion of the dressed propagator S;. Of course, the fact
that these contributions are identical is not really surprising; it is a consequence of current conservation. The remaining factors
originate from the interaction currents generated by the reduced kernel.

The remaining terms from (4.4) must equal the contribution from the energy derivative of the reduced kernel, 9 % /9 Py, which
appears in the normalization condition discussed in Ref. [1] and elsewhere. This leads to the identity

2md // Aa(k P)h(p) 5=

— _/ Kl fuu® + ww® + v, + v0@ 4+ uld il + wlbs Wy, — vl8- 01k — vs[8-sle ), (4.5)
0

Vx e (kK5 PYR(PYWS,, (K, P)

(

where we have set ¢y = 1. This interesting identity, discussed V. MAGNETIC MOMENT

already in Sec. I, shows how the energy derivative of V
can be expressed in terms of special wave functions z®
and Z.

Predictions for the magnetic moment are presented in this
section. The new interaction current current contributions,
which together account for about 5% of the charge, ensure that
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many new terms not previously encountered will contribute,
and the result for the magnetic moment is the first important
test of the CST.

The contributions from diagrams (A) and (A1) were given
in Egs. (D6)—(D14) and from the diagrams (B) in Eqs. (D27)
and (D29). Adding these together and keeping the leading zf)

contributions and setting ey = % gives

ta = ps(Ps— 3Pp) + 3Pp + Apg,

where the correction terms are the sum of several contributions
of different origin. This form resembles the nonrelativistic
result, but is misleading because the sum of the S- and D-state
probabilities is not equal to unity in the relativistic theory.

5.1

J

PHYSICAL REVIEW C 89, 064002 (2014)

Instead, it is more instructive to write the result in the form

Ha = s + A, (5.2)
where, for the nonrelativistic theory, the correction is
Apa = par = 3 Pp(1 = 2p). (5.3)

To obtain a similar form from the CST, we use the
relativistic normalization condition. In the approximations
used to obtain the leading terms for the magnetic moment,
the normalization (or charge) is

oo
1= / kzdk{u2 +w? +v? + 02+ 4a(p2)m[6k(u2 + w?) — 2m(vt2 + vf)]
0

—ul[84 0k, — Wb Wk, + v [6-Ds I, + vs[6-Dslr, — uu

@ _ ww(z) — U[UEZ) — Usl)iz)}.

(5.4)

Multiplying this by u, and adding and subtracting it from (5.1), gives an expression of the from (5.2) for the magnetic moment,

where the correction will be written as a sum of terms

Apg = UNR + HRe + Mpr + iy, + [y, + Ming + fp + [y,

89 79
5 — —w? + uw)}
4( 4 23/2

where the individual contributions are

o E; — 1
mec=/ kzdk|: k m“—m(uz-;-—wz—«/iuw)—
0 E; 2

(5.5)

o0
Ly = / k*dk a(pz)m{4(1 — 1)1 — )8u® — 1 [2Q2 + @) rw?® — m(6 V7 + 4v? + 4 2v,0,) ]
0

8
+ 3"[(3 + da)w? — 2uw] — %(91;3 +6v; + Sﬁv,vs)}

2

© k2dk 3 1
Ry, = / {(2us - 1)§ww(2) + 115 (Buv? 4+ 200@) + (g — DV2(v,02 + v,07) — Evzvfz) + v,08 — m'(z)}
0

& 2 3 . 1 .
My, = k“dk{Qus — 1) Zw[5+w]k0 - th[5—vt]ku -

0

1 .
s [8— vS]ko) -

5—%@, [5_04 i, + Vs [a_mko)}

Lin = —2’"7 /0 N kzdk{u’m — V2u,) — w(v2v, + v,) + %w(«/i v+ vs)}.

*° 1 1 3k
wp = / k2dk{—/¢s(vt2 + v + «/Ev,vx) — Zv? — v+ V2v,05 + — (v, — vt/vs)}
0

o o [mzy” oM '
MX=_f K*dk T(ﬁvs—l—kvf)Jr & (V2 + v, + kv,
0

where @, = 1 was defined in Eq. (3.20) and m'® in Eq. (D12).
Each of these terms has a different physical origin, as discussed
in Sec. ID.

Many remaining details are discussed in the Appendixes.

ACKNOWLEDGMENTS

This work was partially supported by Jefferson Science
Associates, LLC, under U.S. DOE Contract No. DE-ACO05-
060R23177.

82

(5.6)

APPENDIX A: CONNECTIONS BETWEEN
THE INVARIANT FUNCTIONS AND
COMPONENT WAVE FUNCTIONS

This Appendix shows how to connect the invariant func-
tions defined in Sec. II to the helicity amplitudes that are
calculated in the code described in Refs. [5,6]. The four
particle 1 positive p-spin helicity amplitudes are simple linear
combinations of the more familiar component wave functions
u,w,v;, and vy. The traces given in Appendix B are bilinear
products of the invariant functions.
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In the rest frame the relativistic wave function (2.1) can be
expanded in a set of helicity spinors u”(k,A)

Wik, P) = Z s (K A2) uf (K. A)DYS
iéﬁi
x¢f:f; )
Wi (k,P)=— Zugg(k A0 5 (K), (A1)
)nzpz

where p = % is the p spin of the particle (if particle 1 is on
shell, p; = +), k is the three-momentum of particle 1 in the
deuteron rest frame, and ¢}'}? , are normalized helicity am-
plitudes defined by this expansion. The second form of (A1),
obtained from the first using the orthogonality relations (A6)
below, will be used only when p; = +; reference to p; is
suppressed for simplicity. The transpose symbol is to remind
us that, if Y4 is to be viewed as a matrix, then ug must be
interpreted as a row vector, but is redundant when the indices

are shown explicitly. The normalization constant Ny is
_ 1
V)3 2my

and the helicity spinors [cf. Ref. [5], Egs. (E1) and (E7)] are

(A2)

P(k,A) = N,(k,\ 0
W (k1) = Np(k,2) ® x(6) A3
W(k,2) = N,(k,1) ® x_1(0)
with
hi
Nik.h) = < ot )
2 sinh 3¢
(Ad)
—2)»sinh%{
N_(k,\) = ;
cosh%{

where tanh ¢ = k/Ej, and, for momenta limited to the X%
plane, so that k = {ksin6,0,kcos6}, the two-component
helicity spinors are

cos%@ —sin %9
X,,(0) = sin 19 X.,(0) = cos 1o | (AS)

These helicity spinors are real, so that 7 = uTy?, and they
satisfy the orthogonality relations

/ E
7 (k) ul (k, 1) = 5”8,,/[)—"
m
u” (kA (K, A) = p 8z, (A6)
leading to the inverse relation
i, ) = dE_k @5 (K, ha)y "W (ke Pt T (k)

m
= N — E — TR KAy W (K, P). (A7)
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This is further reduced by writing the wave function in terms of
the vertex function, G, and the propagator of particle 2, S(p),
and decomposing the rest frame propagator for particle 2 into
positive and negative energy parts (or its o spin = components)

Saa (P) = Z G” (ko Kyuy (k, M)y (k,2),  (A8)

p)\

where, if particle 1 is also off shell so that k = {kg,k}, the
components of the propagator are

1 1

Gtkpk) = —— = —
(ko,) Ep+ ko —my S+
—1 1
G (kg k)= ————— = ———, A9
(ko. k) mo t Er — o 5 (A9)

where the arguments of §1 will be suppressed. In most cases
particle 1 is on shell so that kg = Ey, and (A9) reduce to (cf.
Eq. (E14) of Ref. [5])

1
GHE k= —— = —
( k ) 2Ek —my (Sk
1
G (Er.k) = —— (A10)
mgq

Using the expansion (A9), the helicity amplitudes (A7) reduce
to the previously published form (cf. Eq. (3.10) of Ref. [6],
except here ¢ is used in place of i and there are other changes
in notation)

m
0152000 = Na oGP 67,8

- NdEﬂGP’ﬁ (k.20 (k, PYCTET (kA ),
k

(Al1)

where no sum over the repeated index p, is implied.

In the general case (when ko # E}), the projection operators
present in the I of (A11) can be simplified by recalling that
p =P —k, k= {koKk}, and p = £1, giving

2miuy (k,\)O(p) = uh (k,A)[m — y°(mg — ko) — y - k]
= —mdy uj(k,1)y°
2mut (k,\)Ok) = uf (k,A)[m — y ko +y - Kkl

= —md, u}(k,1)y°, (A12)

where

mdy = ko — pEy
(A13)
md2 =md—ko—pEk.
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Because the helicity spinors are written as a direct product of
N, and y;, each operating in its own 2 x 2 space, it is conve-
nient to similarly decompose the matrix I'*<. To this end note
that

0
B
where 1; are the 2 x 2 operators operating in the N,
Dirac space and o; operate on the x, spin space, and
the three-component deuteron polarization vectors (for an
incoming deuteron), & ;d (with i = 1,2,3), are related to the
four-vectors by

£} =10,0,0,1} = {0,&,}

1 .

_aéé’xd) =—-in®o-§, (Ald)

(A15)
V2
Also note that, in 2 x 2 form,
C=—-1Qio. (A16)

Using this notation, the matrix elements are reduced to the
following convenient form

¢)[")1])/‘)22)‘1’(k) = Af:ﬁ(k)(xlzlb'th ) (12 : EM)
+BLL 0K o & o,
= 20183, d3, o OAL L (k)

2
+V27 4, 0) B (b,

where the identities (C26) from Ref. [6] were used to
evaluate the angular matrix elements. The coefficient A
contributes only when A; = A, and both of the coefficients
are independent of the deuteron polarization and the angle
6. Using the definition of I" when both particles are off shell,
Eq. (2.12), and the simplifications (A12), they reduce to

(A17)

m — k
AL (k) = NdE—kaz(k)sz(k,)vz);{G — Kydy dy

+(Idy — K> d)Ts) (TN, (k)

Bﬂlpz _ m 02 AT .
D50 = Na-GPUON (6 2)(F + K3 dy dy)ims

+(Hd + K d)u)(@)N, (kA),  (Al8)

where y° — 13, and Cy® = —y°C was used.

Before evaluating the matrix elements (A18), it is conve-
nient to project the partial wave amplitudes from (A17). Using
the definition given in Eq. (3.21) of Ref. [6], these are

3
#0050 =\ o [ a0l @0.0008,, 00

1
=37 /0 sinfdo dj,(0)¢1', (K),  (A19)
where A = A — A, and the d{,, ,(0) are the rotation matrices,
in this case for J/ = 1 and A’ = A4, where J is the angular mo-
mentum and A, the helicity of the deuteron. The normalization
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of the J = 1 d matrices is independent of helicity

1
2
/ sin0dé [d) ,6)] = 2
0

and hence the result for the partial waves is independent of the
deuteron helicity. Under parity, the amplitudes transform into
each other under the substitution A1,A» — —A;, — A,. Hence
the partial wave amplitudes can conveniently written in terms
of a standard helicity withA; = Xy = % Writing a separate for-

(A20)

mula for cases when A; = Ay = Ap and Ay = —Ay = X gives
¢/71P2 (k) — ZPIPZ(k) _ 4_7-[[8!’1»”2 (k) _ APlﬂz (k)]
AorosAd — %0 - 3 XosAo Ao,Ao
P1P2 k) = P1P2 k) = 8_7T BPIPZ k A21
d)?»o,—)»u,)wz( ) = [ (k) = 3 )»o,—?»o( ). ( )

There are therefore eight independent amplitudes from which
the eight invariants that define I" can be determined.

It is instructive to show explicitly that the parity relation
holds. To this end, introduce the matrix elements

— _—T
DI (k) = Ny (k)TN (k) (A22)

where i =0,1,2,3 with T, =1; for i = 1,3, T» = i1, and
7y = 1. The entire helicity dependence of the partial waves
is contained in the helicity dependence of the D’s, and this can
be established from the symmetry property

N,(k.A) = pN,(k, — V)13, (A23)
which leads to the relations
D0 = poD) S, J=03

D2 (k) = —p1pa D%, (k) j=1.2.

Examination of the definitions (A18) shows that only D, and
D; contribute to B, and only D; and D, contribute to A. The
extra factor of 2A; multiplying A is just sufficient to show
that both of the helicity amplitudes (A21) satisfy the expected
relation for a J =1 amplitude: ¢*"** = p;pr¢p™"1 772 (cf.
Eq. (E22) of Ref. [5]), concluding the proof.

Working out the matrix elements (A18) gives the eight
independent helicity amplitudes in terms of the eight invariants
that define the two-particle of-shell vertex function (2.12).
Using the notation

K =y2mq (A25)
and recalling the definitions of 81 and G* from Eq. (A9)
AT PP

J6KE, m2 m2

— 2
(- )

G*t 1) E,—k Eb
ZT+= {F__+H_(k 0)[Kl_ k-‘rK:{“

gt

V3K Ey Ey m?
Gk Eé_
+_
= lF oGy 2
0 «/EICEk{ m?
Ei —k
+ BB g 5 ks + Km}
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= i{3 H — (E; — ko)K,}
T SBCmE. Lo
G+k Ek8+
—+
wt=———JF-G+ I
0 \/EICEk{ m?
(Ex + ko)
+ P [EKy — 84.(K3 + K4>]}
G*k
-+ _
z — 2 " (6. H—(E + koK
1 ﬁKmEk{ + (Ex + ko)K 1}
L P P
T T BKE, m?> om?
E 2
_(k—dl;k())[EkKl_(g_<K3_k_2K4>:|}
m m
G- S_ E, +k EiS_
g=- S lp Sy R Bl
V3K E; E; m?
(A26)

Inverting these equations gives the eight invariants in terms of
the helicity amplitudes. The results are

V3K

2Ekmd
__ m _.
—(Ek — ko) 2 + EZI
++

3 mK z
G = 8. 8_NE; +ko)| Ex 2T —m=1—
\/;Ekm(}k2 * {( et 0)|: k20 " NG)

m . _
F = 3+5—{(Ek + ko)[z# - EZT }

e o [P PSS e |
NG x — ko)| Ex z NG NG
H=- {m {(Ex + ko)d—z{ ™ + (Ex — ko)d; 27 T}

\/§ m?K
I =,-—
2Ekmdk2

E
x{(Ek+ko)[5+<ng+—7% ++>+5 kzg™ }

—(Ex — ko)[a <m 5 — %x;‘) -8 kz(;*“

V3mK
Zmd k

3 mZIC ++
K, = 5_8 R s S SEC
2 \/;Ekmdk2 +('"ZO SV

- 2y —+
+Ei—= —kz
/2 0)

K =-

8+3 [Zl - +Z1 ]
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V3m2K

Ks = e e Gk T ma ) =8 kg —m i)
«/_m3lC m .k _
Ky = k2 {8+<\/_Z - _kzl + E_kzl )
(V2 ok
ZO - Z] - E_kzl . (A27)

When particle 1 is on shell, so that ky =
amplitudes reduce to

E, the first four

F= \/gKSk[ZT - ;ZT:|

d
G= \/glC—2k[«/§Ekza'+ —mzft —kz{]

Z+

mSk Ek
I=veK A
el -7

with §; = 8 (Ey,k) = 2E; — my,. These are uniquely deter-
mined by the the four on-shell helicity amplitudes with

= +. If these amplitudes are expressed in terms of the
u,w,v;, and vy amplitudes previously defined in the literature
(see Eq. (C31) of Ref. [6]),

**)+kz0 } (A28)

Z3'+ = %(u + \/Ew)

ZfL+ = %(«/Eu —w)

g = —%vs

i = —%vt, (A29)

the well-known expansions of F,G,H, and [ derived in
Ref. [10] are obtained, reproduced here for completeness:

w +\/§m
- — ——
V2 V2

G = Ks [ L QE +m—2 +\/§”’]
= m| ——— m
LEc+m ¢ fk 2k

F = ’C(Sk |:M

3
H=KEm/>2
2
I=_IC8km |: u £ 192 w :|
myg [ Ex+m V2 k2
—ﬁlcmz% (A30)
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The on-shell values of the K; invariants depend on all eight of
the helicity amplitudes. Because of their historical importance,
we will continue to express the helicity amplitudes (A29) in
terms of the u, w,v,,v; wave functions, but will use the original
notation for the others, giving

K, = \/glcg—zm[vt — V2771
KZZ_K;kETZ[Eki _(Ek+2m)f 2—«/5%
— g(Ekzl__ —V2mzg7) + «/6%]
e S )
2E; [ mg V2 2k
— 3<zf_—](jl€—mzl_+):|
K4 ’gg[% (Ek’:' +(2Ek+m)f 2 £%>
_ §%+*k/_f(mzl fEkzg->] (A31)

The u,w,v;,v; wave functions are sometimes transformed
into coordinate space (for a full discussion see Ref. [6]).
Denoting the typical wave function by z, (so that zo = u,
Zp = w, and z; = v, or vy), the momentum and position space

J

2
A (W W) = Z{A+A—(a—2+ +ayz- —apz0) + B+ B-

PHYSICAL REVIEW C 89, 064002 (2014)

wave functions are relatedby the spherical Bessel transforms

2 o0
ze(k) = /—/ rdr jo(kr)z,(r)
T Jo
[2 [,
= —/ k*dk jo(kr) zo(k),
7T Jo

where j, is the spherical Bessel function of order £ with the
convenient recursion relation

Je@) =z (

The normalization condition for the spherical Bessel functions,

Z¢(r)

(A32)

1d
zdz

¢ sin sinz
. (A33)
z

/ KRdkjokr) jokr'y = —=8- =) (A34)
0 2r

can be used to transform integrals from momentum space to
coordinate space. Another convenient identity is

dk —(k /
/0 dk( 20Z¢)

/ kzdk(
0

APPENDIX B: RESULTS FOR THE TRACES

2zpzp
k

+ zezp + z@z@«) =0. (A35)

1. Contributions from the (A) diagrams

In this section the traces (3.27) needed for each of the
helicity amplitudes defined in Eq. (3.14) are evaluated. Using
the compact notation Zy = Z(Ry) (where Z is the generic
name for {A, B,C, D}) with Ry defined in Eq. (B3) below, the
results are

aop a+a_

+ D+D_

oao]

+ CC_[4m*(2bozo — bz — b_z4) + 8aia_(ap — bo) + aozo({o — 8m*) — 2agh,b_

—2bozo(cy +c-)+ar(bob_ +4c_z_ —
+2b+C+Z_ =+ 2b_C_Z+] —

+ A, C_[z0(2ap — bo) — z-(2ay — b)) +

a_ a
+Ap Do (asho — aghs +zc0) + D+A_m—+2(a_b0 —agb_ +z_c.)—(B.D_+D,B_

0z-) +a-(2boby +4cizy — Goz4)

A+B_a_Z+ — B+A_a+z_

C+A_[z0(2ag — by) — z4(2a— — b_)]

bo
)—2(1+(1_
m

a a-
+ B+C_m—;(2mzz_ —2apa- +boa_ —z_c_)+ C+B_ﬁ(2mzz+ —2apas + boay — z4cy)

CD_
e 2m?

— [24(5o — 4c-) + 2b4(2ag — bo)] + D+C— [Z (o —4cy) +2b_(2a0 — bo)]}

B

1
Aip(W W) = {A+A (byz— +b_z4) — A+B_—[a0b+ +z4(cr —c)] — B+A— [aob +z(c- —cy)]

by Q
+ D+D_a+a_ + C+C_

1
[(4m + md)(b+z +b_cy)+ (bg — 2a9)2arb_ +2a_by + Q 20)

—2(by — 2a0)b+b_ + Q%ayz- +a-z) +Marz- —a-z)eyp —c) —4(bycrzo +boc_zy)]

1
- A+C,ﬁ[4m2(b+z, +b_z1) — 2bolayrb_ —a_by) — 2agh;(2a_ — b_) — Q*(apzo — a+z— — a_z)

064002-16



COVARIANT SPECTATOR THEORY OF np ...

PHYSICAL REVIEW C 89, 064002 (2014)

TABLE VI. Vector products that depend on n used in the expansions of A, ;. All are evaluated in the Breit frame using (3.5) and (3.6).
The helicity amplitude A; ; = %(A3+,,- + A;_ ), as explained in Eq. (3.14). Not shown are {, = 2m?2 + Q? and c; = Py -k = DoE; F %kZQ,

which are the same for all helicity combinations.

coefficient n=1/(Jy) n=2(J") n=3 ) n=3_(0)

a, =k- & (Ex Q — 2k.Do)/(2mya) %(kx —iky) ﬁ(kx —iky) (Ex Q — 2k Do)/ (2my)
a =k-§& —(ExQ + 2k, Do)/ (2my) %(kx +iky) —(ExQ + 2k, Do)/(2my) %(kx +iky)

ag =k-€ o Ey ﬁ(kx +iky) —%(kx —ik,)

by =p_-& DoQ/my 0 0 DoQ/my
b_=P,-& —DoQ/my 0 —DoyQ/my 0
b0=P+~€=P,~6 D() D() 0 0

zy =€-§" Q/(@2mg) 0 -1 0

=€ & —Q/Q2my) 0 1

70 = &% & —%o/(2m3) -1 0 0

+2(C+ — C_ )(b()Z() —_ 2a Z+) — 2b+C+Z7 — 2b C_ Z+] + A+D7

1
—C+A,2—m2[4mz(b,z+ +byz.) —2bolasby —ayb ) — 2apb_(2a, —

—2(cy —c)bozo — 2a42-) = 2b_c_z4 —

B C,
+ B 2
+ C+D7 [Cl()(a+ Q — b+md) + b0(2b+(c+
+p,c W T [ao(a— Q% — b_m3) + bo(2b_(c—
—B+D— 2 2 [aoQ —2bo(cy —c-)] — D+B—

where the vector products needed for this expansion are defined
in Table VI. The results for the the traces .4, 3 are obtained
by the substitutions A - F,B — G,C — H,D — [in A, ;.
These expressions are sums of products of invariant functions
and four-vector scalar products and hence are manifestly
covariant.

In the terms above, the spectator momentum k is always on
shell. In this case the arguments (2.14) of the wave functions
for the incoming and outgoing deuterons become
=———-m =k2:FkZQD°—2Ek+n(E§+k§)
mg my

Eg, = /m?+ R3.

Careful examination of the formulas for A show that they
are unchanged under the transformation + <> —. For n =1
helicity amplitudes, the plus and minus coefficients transform
into each other as Q — —Q (as do the arguments of the wave
functions), so that the A, ; satisfy the symmetry property (3.27)
by inspection. For the n = 2 helicity amplitudes, the a4 to not
change with Q, but since the b, and z. coefficients are zero in
this case, the terms that remain contain either no factors of a4
or the product aa_, preserving the symmetry in Q. Finally,
the separate terms n = 31 show no special symmetry, but it

(B3)

2b+C+Z ] + D+A7_[Z

5 3lz-(Q% —d(ey — o)) —2b- (50—2610)]+C+B—

—m?) —a_(Q*

[Z+ Q% +2by b, ]

by) — Q*(aozo — a-z4 — a+z-)

2 S[z- Q% +2bob_]

[z+(Q2 +4(cy — ) — 2b(by — 2ap)]
m?) — a(Q® + 2c — 2¢-) — 24 (m* Q* + mg(cy — )]
—2c+2c)—z_ (m2Q2 — mé(cJr — c,))]

O {40 @ + 2bo(es — e )]} (B2)

2m

(

can be shown that their sum again satisfies the symmetry (3.27)
appropriate to the n = 3 amplitude.

Although the expressions for .4 are given for identical wave
functions in initial and final states, this property has not been
used in the derivation of the equations and they can easily
be extended to the case when A — AW, W?) needed for
the calculation of the interaction current terms. Consider the
operation of changing the sign of Q in a typical term. Using the
fact that the arguments R — RZ when Q — —Q, a typical
pair of terms in the expansions for .4 transforms to

Z,YPC(0) £ Y, Z29Cy2(0)
- Z YPC (=) £ Y_ZPCyz(—-0)

=£[ZPY Cyz(-0) £ YPZ_Cry(—-Q1.  (BY)

Using the symmetry properties just discussed, the coefficients
have the property

Czy(Q) = £€,3Cyz(—0), (BS)
conforming to the symmetry properties used in (3.28).

This simplifies the calculations of the interaction current
contributions.
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2. Canceling singular contributions from the (B) diagrams

Here the traces (3.35a) needed for the B contributions are evaluated. In these terms kj is not fixed until the subtraction shown
in Eq. (3.36) is carried out. The results for the traces that depend on kg are

¢
16m?

~ o~ ~ ~ 1 - ~
B,,.1(ko) = {—2F+F[2Z0X2 + X3] + G+G,ﬁ(2&, — b_)Q2ay — by)[X> — 16m*d)

~ ~ 1 ~~ 1 ~ ~
+ 2H+H_ﬁX1 [ZZOXQ + X3 — 16m2(2610Z0 - b+Z_ - b_Z+)] - I+I_%X]X2(26~l_ — b_)(2d+ — b+)

+2F,.G_(a_ — b)Y + 8ag(@y — by) + 8bohy —4z,¢,]
+2GF_Qa, —b)Y] + 8ag(a_ —b_)+ 8bob_ +4z_c,]

Qay —by) o o
+16(F H_ + H, F)X1(apzo — bsz— —b_z.) —2AG H_+ T, F_ X1 =LY} + 4bob_]
~ ~ ~ ~ 2a_ —b_
_2fG-+ F X, (“m—)[w 4 4Bob ]
N e Gy o~ Q4 —by)
+8(G+1_ +1,G_ )Xlﬁ(Za_ — b )2ay —by)+ 2I+H_X1T[ — 8agd@- —b_) — degz-]
~~ _ (Qa_.—b_ -
+2H+I,X1%[Y1+ — 8510(5l+ — b+) + 4CqZ+]} (B6)

~ ~ ~ ~ 02 . . . ~ ~ 1
Buatho) = —— 0B F Xy — X5)+ 2. G- L ay — bo)2a, — b,)24 — b.)+ 2. A —= X, X
16m? m2 m?2

~~ _ byQ? _ . I |
42l X =2 g Qay —b)Qa- —b_)—2F H- + H, F-)— X1 X4
m m
~ ~ 1 - ~ ~ 1 ~
— F+G,m(251, —b)YI +4m*z,. 0 — G+F,W(251+ —b)(Y? +4m?z_0%

2 2
+4(F. I+ H.G )Q—Z+(2a — b )X, + 4, F_ +H,)%z,(zcu—zh)x1

2
—2G. I +T1,.GHX, do Q

- - ~ ~ 1 -
(a_ —b_)Qa, —by)+ H+LW(2&, —b)(YE —4m*z, 0HX,

~ ~ 1 ~
+ I+H_ﬁ(2é+ — b )(Y? —4m?7z_0HX,, (B7)

where the new vector products are defined in Tables VII and VIII, and use has been made of the compact notation Z += =7 (R, RY)
and Z_ = Z(R Ry ) (where 7 is the generic name for the reduced vertex functions {F G,H,I }) and the vertex functlon
arguments R. and R were defined in (2.14). These arguments depend on both ko and Q. Recalling that k. = {ko,k.}, with
ky =k+£q/2, the arguments of the incoming and outgoing vertex functions are

- Py -ky)?
R = P - ke)” zi) -k +KL
my
oDy  ©?
= F (kako— > + = [k + (ke
d d
1
RE = = —[2Doko F (k2): 01 B8
mgq

Note that ﬁi [which is not the same as the Ri of Eq. (B3)] depends on Qky, so that all ky dependence vanishes when Q = 0,
and that in this limit, the arguments reduce to k* and k(. The denominator of ¢ contains an additional ky dependence through the
factor of m* — p* = Ef — (Do — ko).

The symmetry (3.35a) of the B’s under the transformation Q — —Q can be confirmed using arguments similar to those used
for the A’s.
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TABLE VII. Vector products that depend on n used in the expansions of B, ;. All are evaluated in the Breit frame using (3.5) and (3.6).
The helicity amplitude 55 ; = 2(B3+, + B;_ ), as explained in Eq. (3.14). Not shown are ¢ = h*(p)/(m* — p*), &4 = D* = D3, co =D - k=

Dyky, and ¢, = q - k = — Qk,, which are the same for all helicity combinations. Convenient combinations of these vector products are given
in Table VIII.

coefficient n=1/(Jy) n=2(@J%) n=3. ) n=3_(0)

a, =k-¢ (koQ — 2k. Do)/ (2my) Lk, — iky) Lk, — iky) (ko Q — 2k. Do)/ (2my)
a =k-¢ —(koQ + 2k: Do)/ (2ma) Z ke +iky) —(koQ + 2k Do)/ (2ma) Tk +iky)

Gy =k-€ ko ko %(kx +iky) —%(kx —iky)
by=—q-§" DyQ/my 0 0 DyQ/my

lé— =q-§& —DoQ/my 0 —DoQ/my 0

b() =D-¢€ D() D() 0 0

2y =€-§" 0/(2myg) 0 -1 0
z-=¢€-§& —0/2my) 0 0 1

6 =8 ~to/ (2m3) - 0 0

3. Regular contributions from the (B) diagrams

The results for the C, ; traces that involve the four invariant functions K; (contributing to Iy in the initial state) are
Cu (T Togp) = 232 { AF, Kim®(bo 20 + 2a,2— — b_z4) + 2F, Ky(a_ — b_)[2a4(2a0 — bo) + 21 (2¢) + ¢,)]
+(FyKs + H K)T\To — (F Ky + H K)Tiz i (a- —b_)
+2G Kiaylz_(4m* — 2¢) — ¢g) + 2a_by — 2ap b_] — 4G , Kya, (2ag — bo)a_ — b_)
(G Ky + T KDTiasz— + (G Ka+ 7+K2):T()2T1a+(a, b))

~ - - ~ a_ —b_ , .
— Hy K3Tilz0(2a0 = bo) = 242a- = b )l + Hy Ka———Tilzy (4m” = 2 = cg) = 2a4(2a0 — bo)]

b ~
- 1+1<32 T\[2a_bo — 2a0 b — z_(2c) + c,)] — I+K4m—02T1a+(a_ - b_)} (BY)

Cn’z(r Foff) ;51 { 2F+K1 T3 + 2F+K2((l_ — b )(Zb() b+ — Q Z+) F+K3T] (B+Z_ + E_Z+)

—b_ ~ ~ -
— (FoKy + HoK) ™= Tilao by +¢,24) = 261 Kia4125-Qaq — bo) = 2-(Q” +4e,)

o~ ~ ~ a o~ ~ o~ o~
+2G  Kyai(a- — b_)ao Q* + 2y cy) + (G K3 + 1+K1)m—+2T1(ao b_ —cgz-) — H K Ti(byz— +b-z4)

~ 1 - - ~ a_—b_ ~ ~
+ H+K32—n12T1 [4m2(b+zf + b7Z+) + T3] + H+K42—n12T1 [2b+(2a0 — b()) + Z+(Q2 + 4Cq)]

~ a - ~ a ~ ~
~ L K355 Tz Q% + 250 bo) — LKz 5 Ti(a- — b_)ao Q° +2bo ¢, (B10)
2m 2m
[
where the vector products that enter into these formulas are N
defined in Tables VI, VIL and IX, m> — p2 =m> — (P, —  Ro = = Dobit 5k = 0) 0
ky? = 2DyE; — m} — Qk, K; = K;(R_,R;), and the final Lo 1
state is on shell, so that Z depends on only one argument — Ep+ = + —n(Ey — 4my). (B11)
Z.=Z(R 2mg 2
+ = Z(Ry).

These terms are finite, so calculations of the static moments

require them to order Q2 only. The arguments of the K; are The argument of the 2 is

5 1 1 2 > _ Lol
R = m—§|:D0Ek+§(kz— o) Q} — (m? + 26,0 — 0% Re=i [DoEk‘ E’QQ} B
k0
S K- ZQ(Zmd . Ek)+77[(2md _ Ek) Ty ] - K — - (Ek +k2) (B12)
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TABLE VIII. Combinations of vector products from Table VII that simplify Eqgs. (B6) and (B7).

Y =dz.o(m? — k?) — 22 Q% 4 8agas. — 4bob

YsF = 4(m? — k*)(aobs £ Cqz+) — 4bobs(m® + k) + 8dobyco F ¢y [8bods — Z+(8co — Q)] + Q?[bobs + do(4ds — 3b1)]

Xi=m’ =k +2c -4
X, = 4(m? — k*)(do + bo) + Q*(do — bo) + 8éoco

X3 = 4(m? — k*)[z4(2a_ — 3b_) + z_(2a, — 3b,)] — 8Qdy — bo)asb_ +a_b.) — Q*[z.(2a_ — b_) + z_(2a, — by)]

+32Gga a_ +8cy(Gyz. —a_zy) —8colbyz +b_zy)

Xy =(byz_ + b z)[4m* + &) — Q°] — 4do(2a b +2a by — 20 Q%) — 8¢,z —drz-)
Xs = —8(do — bo) @b+ d-b,) — 8(co — k*)(byz— + b_z4) + Q*[4z0(do — bo) — 22-(2a, — by) — 22,24 — b_)]

— 8¢ (@ z4 —arz.)

APPENDIX C: CHARGE

In this Appendix, the charge is evaluated by taking the Q% =
0 limit of the contributions from Egs. (B1), (B6), and (B9).
The results from this Appendix were collected in Sec. IV and
discussed in Sec. IC. Here, for simplicity, we return to the
notation k> — k2.

1. (A) contributions

At Q* =0, Zy = Z(k) and all A, » = 0. Averaging over 6
using (k2) = (k2) = (k%) = 5 (k*) gives

2F k2
A=A = —k{A2 + —[32 +my D* —
m

3m?
rofaqpmy o B _dma K
m —_—— — —
R 3,2 Ex 3m?

Zmd
——BD
Ey

2my k2
4R Ap _oac (24
3m2Ek Ek

k2
_2BcLt (24
3m2 Ek

E k2 )
Az = Aoy = —k{F2 + —[G2 +m 1% — —ZdGI:|
m

3m2 k
il M AR
m ~t_Thd i
R 3m2 Ex 3m?

TABLE IX. Combinations of vector products used in the expan-
sions of C, ;. The only new terms are {z = h*(p,)/(m* — p?) and
¢y = D -k = DyEy; the b’s are taken from Table VII and the others
from Table VI.

Ty = Q%+ 8ch + 4c, — 44
T, = apzo + a7z —a_z4

T =0T — 2ag l;_~(2a+ +by)+ 2[50(a+~15_ + G_Ej + ¢420)
—2cy(byz- +b_z)+cy(bayz. —byz_ —3b_zy)

2md k2 my
+ FI -2FH(2—- —
3m2Ek Ek

k2 mgy
—2GH—(2——) ¢.

3m2 Ek
The contributions from the (A1) diagrams (referred to as
the (V') part of the exchange current in Ref. [1]) can be
easily added. Using the symmetry relation (3.27) at Q = 0, the

generic XY term in the expansions (C1) can be transformed
as follows:

(ChH

coXY — LeoXTY +YIXY)

= = o(XYP +YX?), (C2)

where ¢ is independent of Q. The first step uses the symmetry
relation to uncover the structure of the generic XY term in the
case when the initial and final wave functions are not identical;
the symmetry relation guarantees that this replacement is
unique. Then, the second step merely applies the result to
the special case when the generic final-state functions are X
and the generic initial-state functions are X®. The two terms
in (3.28) are identical in this case, giving a factor of 2.

2. (B) contributions

These contributions are obtained from Eq. (3.36) and
the traces B, ; (B6) and the traces C,; (B9). The magnetic
terms (B7) and (B10) are zero and do not contribute.

A correct calculation of the singular term contribution to the
charge requires expansion of the invariants to order Q. Only
the ko dependence coming from argument ROi will contribute,
and expanding around kg = Ej gives

Zy =7+ (Ex — ko) Z,. (C3)
where Z(O —=dZ /(dko) evaluated at k) = E;. Hence
i mEj |:B1,1(k0) By, 1 (ko) ]
im — ,
0-0 k. Q ko |- ko |y
=1;+1yp, (C4)

where 77 includes derivatives of the vertex functions Z, and
T, all of the rest [including contributions from the k( expansion
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of the strong form factors 4(p)]. The results for Z; and 7, are

2B [, K, W o, Ma S o, kK, 8Ey  , N
I; = F —G —((F -G H —1 - — Ey — F —G
‘ m 8} |: T3 3m? + ( ) E.) m? * 3m? ms a(p NE = ma) + 3m?

2k? 28, k2 Semy [ k2 2m?

- F—-GY—-"|FH+ —(FI—H>+GH-GI)| — — 7 1— H?
3Ekmd( ) Ek |: + 3m2( + ):| m2 |:3m2 + dek
4Ek k2 2k2 Skmd k2 2m2

Ty =——-AFF, + —GGy, — F—G)F, —G)— —=| —11 1— HH,
z m (Sk { ko + 3m2 ko SEkmd( )( ko ko) m2 3m 2 ko + dek ko

Sk k2

~ FHy, + F,H + W(Flko + Fi, I —2HH;, + GH, + G ,H — G, — Gy, 1) | ¢, (C5)

where the strong form factor h(5) [where h is evaluated at jp*> = m? — my(2E; — my)] has been reabsorbed into the Z’s (so
that they may be expressed in terms of the u,w,v;,vs), Zy, = hd Z /(dkyp), and the contributions to Z, from the derivative of the
strong form factor have been isolated in the term proportional to a(p?).

The contribution from the regular terms is straightforward:

2 4 E 32 K
Te=—=Cy=—-——{FK — —* —GK,
m m & 3m
k25 2 2
Sortm [m*(F — G)Ky — m3I(K3 + K4) + Exma(GKa + 1K) — myS  HK, ] ¢ (C6)

3. Expressions in terms of the wave functions z,

Expanding the Z in terms of the wave functions z,(k) (where z; is the generic name for {u,w,v;,vs}) using (2.11) and (A30),
reduces (C1) to the following simple forms

E;
A, =4 md—{u + w? + v; +v}

A,z =4 md—{Sk(u +w )+md(v +v )} (C7)
Using (C2), the the result for the interaction current contribution is
E;
A, = 472my = 2uu® + 20w® + 20,02 + 20,02}, (C8)
m

where z( ) is the generic name for the wave functions that contribute to W . The contribution of these terms to the in normalization

condition is discussed in Sec. IV.
For the (B) contributions, the vertex functions Z are expanded in terms of the wave functions z,(k) using (A28) and (A29).

This gives

E 12 Ep +2 2 E,—
I =4n2md—k u2+w2—vt2—v3+ —M[uv,md+wvs o]+ — k m[wvtmd—uvs Skl
m ; 3 mgk 3 mgk

—da(p*)(Ex — m)[8c® + w?) — my(v; + v7)] } (C9)

To obtain the result for Z, the derivatives of the invariants must be evaluated using the general results (A27) which give the kg
dependence of the invariants. These give

oF 3m 82 3 m V3
F, = — =Klu—-— f 1— Ks k ou
7 Bk ko=E, |:M V2 * 2k :|< 2Ekmd) * k|:uk0 \/_wko ko 2Ey k( ama ):|
G 3 82
Gy = — =/cm[ L L QEA4m—— f”f]<1— k )
dko ko=Ex Er+m f 2 2E my

3 vy, V3
Km 8 b 4 QE f’“ Exzo ™ —mz; 4+ kgt
+ Km k|:Ek+m ( k+m)fk2+ 2Ek2f k2o —mzy +kziT)
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oH 3 ICEk m IC(Sk m
Hk = — = \/j— Urk f \/_Z
° T dkoly—p, V2 k" V22km
ol 2KEgm w 82 V3 K8m?
Ly=—| = L — (Ex +2m) 2}(1— k >+ oy
dko k0=Ek ﬁk 2Ermy 2E mgk

+\/§ fom? “ _sukzt
3 Km” [ o _ _
) Ekmdkz dMZ kKZg

TRk
SN E—————

Eimy __

e

(C10)

where zo, = h 0Z,(k,ko)/(3ko)|k,=£, and z, = h Z,. Note the appearance of the negative p-spin helicity amplitudes for particle
1, referred to generically as y,. Substituting these expressions and the expansions (A30) into Z, gives

E 2 Ex+2
IZ/_4nmd L (2+w2)— et im
Ek mey 3 mdk

[uv; mg + wo, &1 —

2 Ek—m
ﬁ mdk

[wv, mg — uvy 8]

S
—2u[84uly, + wldiwlk) + (2 - E—k> (v7 +v7) + 2 (8- v, ]k, + vs[8-vslk,)
k

2
B @ Z—k[u@a* + V22 )+ w(V2z T =2 ) = VA oz )]

201 (Ex —
V3 Exmak

where the new functions

5+{M,UJ} =

87{1),,1)3} = (Ek

a) T H(Ex 4 2mu 4+ V2(Ey — myw] +

2B =) oz — Ekz;—]}. (C11)

Ek

(Ex + ko — ma){u,w}
— ko + ma){vi,vs} (C12)

have been introduced. Finally, the contribution from Z is obtained by substituting the expansions (A30) and (A31), giving

E; - S 0 o \/E St
Te = —4ntmy—~ SRS -
C — 7de {Ek d( ) Ek(vl+vs) 3E
201 (Ex —
V3 Exmak

) 27 T[(Ex + 2m)u + V2(E; — myw] + 2Bk = ma) ’"")vs[fzmza‘ -~ Ekz;‘]}.

[u(zg ™ +V227) + w225~ —277) — V3wizr T + v,z5 )]

C13
Ek (C13)

Note that all terms with particle 1 in a negative p-spin state cancel in Z and Z. The charge is independent of the amplitudes

z;i. Finally, the sum of all the (B) terms is

E
Ty +Tp+1c = 4n2md;" {? + w? + v + 7 — da(p>)(Ex

— 2(ul8 1 uly, + wlspwlk,) + 2(v,[8-vlx, 4 v5[8-vslk,)}-

This result is discussed further in Sec. IV.

APPENDIX D: MAGNETIC MOMENT

1. (A) contributions

The contributions to the magnetic moment, in units of
e/(2m), from diagrams (A) and (AL) are obtained from the
limit

m J3 — —
Mg = lim —— = 60/ {f()O[MlA + ks M2al
0—-0my Q A+V, k
2 —2
TN UL NN M;>}, o)

—mg)[8w® + w?) — my(v] +v)]

(C14)

(

where k; =k, + K, is the isoscalar anomalous moment of the
nucleon and the M; 4 = M; (k) are the limits

M;s(k) = — lim M

L D2)

Since the anomalous moment term (B2) is linear in Q,
application of the symmetry condition (3.35a) gives

(2).2

I
lim X & ¢ (XY® +YX®)
0—0 Q

(D3)

— . . — .
and hence M (2  can be obtained directly from M> 4, just as was

— .
done for the charge. To calculate the M (1 ) term is more subtle,
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leading to the substitution

2).1
gmo % — i (XYP 4+ YXP) + ) (X'Y?
+ XY —xy® — x@v), (D4

where X" = dX® /(dk), and ¢ and ¢/ are additional factors.
(More details can be found in Appendix E of the original,
longer version (vl) of the present paper in the preprint
archive [20].) This result displays the substitution rule, which
for all terms (i.e., with or without the derivative) is

XY — XY@ 4 x@y’. (D5)

Since the exact result for the magnetic moment does not
simplify as it did for the charge, the goal here is to understand
the physical content of the leading terms only (those that are
expected to be larger than about 0.001 nuclear magnetons).
These terms are the products of the wave functions, including
some products of one large (u,w) and one small (v;,v;)
component multiplied by the enhancement m/ k, and products
of one wave function and one derivative, multiplied by m or k.
In addition the leading corrections to order §p = (Ey — m)/Ey
to products of u and w are retained. The results, expressed in
terms of the wave functions z,(k) (where z; is the generic name
for {u,w,v;,v}), are

_ Ex 1 1 1
M]A(k) = 27T2;{1/l2 + sz — ZUIZ — Evg

(D6)
|

1
+ % [ml(k) + Emz(m} +AM, (k)}

— int

2./6

PHYSICAL REVIEW C 89, 064002 (2014)

_ E 1 1
Mas(k) = 2712;"{# — —w? — —v} = V20, + AMz(k)}

2 2
(D7)

_ E 3
Ma(k) = 2n2;k{m2(§v,2 + 02+ 2«/§v,vs>}, (D8)

the interference terms are

my (k) = %[u(v, — V2v)) = 2w(v2v; + vy)]

my(k) = uv; — u'v, — «/E(uv; —u'vy — wv, + w'vy)

+wv, — w'v,, (DY)

and the standard notation z, = dz,/(dk) has been used. The
leading corrections are

Ek —m 2 2 1
AM (k) >~ — — _
1(k) 3L, [u w” + ﬁuw} o0
E; — 1
AM,(k) ~ —];Tkm[uz + sz — ﬁuw]

The contributions from the z® wave functions can be
obtained from M4 and My, by the substitution (D5), but
first we transform the expression for ‘M, 4. The interference
terms can be rearranged and, recalling that the volume integral
over k is k’dk/ E, integrated by parts, giving

M, (k) = 2n2%1{[u(v, — V2u,) = u' (v, — V2v,) + %u(v, - ﬁvs)]

+ [w(fzvt +v,) — w' (V2v, 4 v,) — %w(fzvt + vs)}}

= 2712&&{—1/(0, —V2v,) + w[(\/zv, +vg) — 1(&0, + vs)i“ = 27'[2ﬂ m! (k).
m /6 k m

The interference contribution from the z® wave functions can therefore be written

— int(2)

M,, (k)= ZnZEi{—u(z)’(v, —V2vy) — ' (v, — V20)? + w® |:(\/§v, + ) — l(x/ivt + vs)]
m /6 k

+ w|:(\/§v, +v,)? — %(\/Ev, + vs)@i”

E 2
= ZnZﬁ%{u(z)(v; —V20,) — ' (v — V2v,)® + %u(z)(vz —V2v) + w®V2v, + vy

1 E
— u)’(\/zv, + ) — %[w(z)(\/ivt + vy) + 3w(v2v, + vs)(z)]} =722k m! (k).
m

With these definitions, the total contributions from the z® wave functions are

=+(2)

52

E 1
M, (k)= an—k{Zuu(z) + —ww® —
m 2

E
M, (k) = 2n2—k{2uu(2) —ww®?
m

(D11
(D12)
1
Ev,v,(z) — U v‘gz) + ml(z)(k):H (D13)
— vtv,(z) - \/E[v,vgz) + v,(z)vs]}. (D14)
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There are also small corrections AM ;2) and AM;Z) but these can be neglected.

The leading contributions proportional to the derivative of the strong form factor, expressed in terms of a( p?) defined in
Eq. (3.25), are assembled from M, and M3, using (3.24). Dropping all terms proportional to 8, except for the large u* and w?
terms gives

_ _ _ E 1 3
M 412 term == a(p?)[Am8 M 41 (k) — 2M 43(k)] ~ an—ka(pz){4m8k <u2 + Zw2> — 2m2(§v,2 + v + 2«/§v,vs>}
m
_ _ E 1
M 120 1erm == Ry — 1) a(p?)YAms M s (k) ~ 2772;](0(172)(20)2 — 1) 4ms; (u2 - zwz), (D15)

where w, = 1 is the parameter defined in Eq. (3.20).

In view of the rich history and importance of the magnetic moment, it is instructive to rewrite the largest terms in
expressions (D6) and (D7) as coordinate space integrals. In momentum space, the leading terms for the deuteron magnetic
moment can be rearranged into the following form

L, 1, , 2uv, V2 2u vy
v; 2vs+2\/_|:< —uv+ A )+ u'vy — uv, 3

4
4 4w,
—i—x/z(wv; —w'y, — u/im) + (wv; —w'vy — %):”

0 1 1
+60K$/ kzdk{uz—zwz——vz—ﬁv,vs}. (D16)
0

002 2 1 2
/,Ld|0280/0 kdk{bt +Zw —

These can be cast into integrals over the wave functions in coordinate space, defined by the transforms (A32). The squared terms
and the v, v, term are straightforwardly reduced using the normalization condition (A34). The interference terms can be reduced
by using the identity (A35) to shift derivatives, giving

2 { 2“”} oo 2 ’ *
/ k*dkiuv —u'v + o = —Zf kedku' (k)v(k) = 2/ rdr u(r)v(r)
0 0

/00 kzdk{ wv —w'v — M} = 2/OC k*dk w(k)< "(k) — Lk)) = —2/00 rdr w(r)v(r) (D17)

(where v can be either v; or vy) and the final integrals are are evaluated using the relations

, \/7 x (1 d\ . \/7 ©
u'(k) = —/ redr ——) Jokr)u(r) = — —/ redr jy(kr)u(r)
b4 r dk b4
v'(k) — @ \/7/ <—— - i) Jikryv(r) = [/ ridr jy(kryv(r) (D18)

and then using the normalization condition (A34). Writing the final result in terms of the isoscalar magnetic moment, u; = ;s + 1,
gives

Md|0=eoﬂsf dr{uz——w2——vt2}—eo/csx/§ dr v, v,
0 2 2 0

x eO/O dr{ iw + Ll_“ﬂ - %vf + %mr[u(v, V2v,) — w2v, + vs)]}. (D19)

In Ref. [22], interaction currents were ignored and the (B) diagrams were assumed to be equal, to the (A) diagram (the RIA
approximation); in this case the normalization condition was

o0
1:[ driu® +w® + v} +v7}. (D20)
0

With this assumption, the results of Eq. (D19) agree with Ref. [22].
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2. (B) contributions

The contributions to the magnetic moment (in nuclear magnetons) from the singular terms (involving the 33 ; traces) can be
written

pa= e [ (1006 + 32a(0), D21)
k
where the M, are
— E, [ B (k B (k
M,-B:ﬁlimm k|:3,(0) _ Bs.i(ko) } (D22)
mg 0—0 k:Q | Qko |_ Oko |,
The M, are a sum of terms of the form
— 2m? m*k. [ 1 (mg —Ev),, /
Mip > ——[di XY + c1(Xp, Y + Y, X)1 + do — XV =Y X) — ——— (XY =Y X) |, (D23)
My my | Eg mgq

where dy,d; and ¢ are factors coming from the coefficients of the XY expansion, and dy = x»k;, so that these terms will not be
zero when integrated over k.. (Details can be found in Appendix E of the original, longer version (v1) of the present paper in the
preprint archive [20].) The trace B3 ; is already linear in Q and hence for this term the dy terms vanish.

Reviewing the above discussion, the actual calculation proceeds in two steps. First, keeping the arguments of the structure
functions fixed, expand the traces to first order in Q and &y, = ko — Ej. Then make the following substitutions (for the dy,c;,d,
terms respectively):

m*k?
kb, (X4 Y_ —Y X ) — (XY — Yo X))+ Da(X'Y = Y'X)
my Ey
2m?
QXY+ Vi X) = =S (XY + Y X)

2m?
Qb (X Y_+Y X ) > —XY, (D24)
mq
where
m2k?
Dy = ——5—(my — Ey) (D25)
myk

and the factor of k. that is part of dy has been shown explicitly. The a(p?) contribution is obtained from the special substitution
8 2 2
XLy + V. X)— A Eoxy. (D26)
mq

Using these substitutions, and expressing the M’s directly in terms of the wave functions z;, gives the following leading-order
results

_ E 1 3 3m? 1 1 6m?
MlB(k)zznZEk{uz— —w? ue <2 m >vf— Evf— (7— m >vas+%(«/§v, —0)(V2z57 —z7)

8 a2 U 42 VA
k m2 1
—'w —uw) + —— (v, — vjvy) — ey — i V2( zul8y ol — v [8_ 0y, — vs[8_ 1]
+4ﬁ(uw uw)+2ﬁk(vrvs v vg) — 2u[8y iy, — wldy by, + 2u[ $ Wk, — Ve [8- D1k — v5[6-Dilg,
1 3
+ 20, [8_ 0, Tx, + s [8_ DTk, + 2a(pP)m [5k <2u2 +w? — ﬁuw> — my <2v3 + 02 — Ev,vsﬂ + AMIB(k)}
_ E 1 1 V2m
Mop(k) = 2n25"{u2 = Sw? = v = V20 + == (V2557 — 5 v = 2l + sy, — V2[u (88,
. R 2 , 1, 1,
+ s [6- D¢ Jiy] + v [6- D¢ ]k, — 4a(p ) Ex — ma)| S| u” — Sw) —mal 5v; —V2uu, ) | + AMap(k) ¢, (D27)
where z¢ = zj, and the leading-order correction terms are
Ex—m[ , 131 , 29
AM, (k) = i
18(k) 12E, |:M + 7Y +2ﬁuw
AMagh) = — =2y Lo (D28)
2B = 3Ek u 2w uw |.
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Note the unexpected presence of a leading uw contribution to M z. This term does not reduce the the expected nonrelativistic
limit, but is canceled by a similar contribution from M;C, which we discuss now.

It is surprising that significant contributions come from the finite terms that depend on the traces Cs ;. These give the following
additional leading contributions

M oo(k) = 272 Eef 3 , n Quw +(1 m*\ , 1 54 2m? n m( == 4 vz
= — 11— sw - — vy, — —= — Jvivg + —( Vg
1C m ) 4ﬁ a%2 t 4ﬁ k2 t k 120 21

K ww + 3uw’) — Skww — ot 430 — (L= o
u w uw ) — -Kww — UU UU; - — — UV
442 2 442 22k 2 k)

1
+omizg~ + 3uz5 " vz +3uz )+ Ew[am]ko -

+

— (v, + Tvjvg) + ———

1
_(M [8+ﬁ)]k0 + Us [87‘0[]]{0)

V2
1
= S8/l = a(pPmmy (v + ~2v,0,) + AMlc(k)}
— E \/_m
Mac(k) = 2:1%{ - —— (255 - z;‘)vf} (D29)
with only one correction term
AM; (k) Eimmlsn 50, % (D30)
=— —Zw? w|.
1 4Ek W
Adding the (B) and (C) contributions together, and rearranging some terms, gives
— E 1 1(3 1 1 13 1
Mlgc(k) = 27‘[2;]({1/{2 =+ sz — E{sz + kww'} =+ m{&tw ~|—ku/w +kuw’} — th2 — E{EUZZ —l—kvtv;} — Evf
" 2k 1 3 kv, kv, v! 3k k k
+ 2k2{v + 2kv, v, - «/5{ VU5 4 kv, v 4 kvu )+ m(v,v v vx)—i— «/_ z{v,vs + v,v + kv vs}

. 1 . . . 3 . .
—2u[84 ]k, — Ew[‘s-&-w]ko — V2(v, [8- 0,1k, + vs[8-011x,) + Evt[a—vt]ko + vs[8_Ds ]k,

/) _—— /) _—— 3 /) _—— - 2 —_ 3 /) _—— -/ 2 —_
—m(vtzo + vz )+ Em v,zo +uzy + %UtZO + Em vz +usz; + Evszl

1 5
- %[fzvsza* + (V2u 4 vz 71+ 2a(pPm [ak <2u2 +w’ — ﬁuw) - md<5v3 +) - ﬁvrvs)}

+ AM,p(k) + AMlC(k)}

_ E 1 1
Mipc(k) = 2n2;k { ut — sz + Evf — V2v05 — 2u[84 01k, + WIS Wiy — V2[vi[8 D1y + Vs[5 D11k, ]
1
+ 0 [8-0, 1k, — da(p*)(Ex — md)[ak (u2 - 5w2> - md< -V2 vtvs)} + AMzB(k)}- (D31)

(

The expression for M | g¢ has been arranged so that termsinthe  term (which equals 0) and w? term are only obtained by the
interior curly braces integrate to zero (recalling that the volume summing the B and C traces and retaining the k derivative
of integration is k>dk/Ey). Note that the correct leading uw contributions.
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