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Using the covariant spectator theory (CST), one boson exchange models have been found that give precision
fits to low-energy np scattering and the deuteron binding energy. The boson-nucleon vertices used in these models
contain a momentum dependence that requires a new class of interaction currents for use with electromagnetic
interactions. Current conservation requires that these new interaction currents satisfy a two-body Ward-Takahashi
identity, and using principals of simplicity and picture independence, these currents can be uniquely determined.
The results lead to general formulas for a two-body current that can be expressed in terms of relativistic np wave
functions, �, and two convenient truncated wave functions, � (2) and �̂, which contain all of the information
needed for the explicit evaluation of the contributions from the interaction current. These three wave functions can
be calculated from the CST bound- or scattering-state equations (and their off-shell extrapolations). A companion
paper uses this formalism to evaluate the deuteron magnetic moment.
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I. INTRODUCTION AND SUMMARY

A. Background

Very quickly after the discovery of both the deuteron and the
neutron in 1932, the measured deuteron magnetic moment was
used to estimate the neutron magnetic moment (for an early
review see Ref. [1]). Calculations of the deuteron electromag-
netic form factors, along with the magnetic and quadrupole
moments, have long been a definitive test of hadronic theory.
The first calculations of the deuteron form factors for large
momentum transfer [2] and the first measurement [3] were
published in 1956. For recent reviews see Refs. [4,5].

This work is the first of a series of four planned papers
(the second paper, referred to as Ref. II [6], accompanies this
paper) that present the fourth-generation calculation of the
deuteron form factors using what is now called the covariant
spectator theory (CST). Like all work on this subject, study of
the form factors has proved to be an important doorway into
the development of hadronic theory.

I did the first of these calculations in 1964–1965 using
dispersion theory [7,8], where the form factors are expressed as
dispersion integrals in the square of the momentum transferred
by the virtual photon, q2 = −Q2. From this point of view
the virtual photon couples to the dd̄ channel, and the role
of the nucleon appears through contributions from the NN̄
intermediate states. The normal threshold for the NN̄ cut
is at 4m2, way above the three-pion threshold at 9m2

π (the
deuteron is isoscalar and G-parity conservation prevents if
from coupling to the lower threshold two-pion intermediate
state). The existence of anomalous thresholds explains this
paradox: the diagram with a nucleon exchanged between
the dd̄ pair contributes a singularity with an anomalous
threshold at only 16mEB � 1.7m2

π (with EB = 2.2246 MeV
the deuteron binding energy), significantly below the three-
pion cut, establishing, even from this novel point of view, the
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overwhelming importance of the d → NN (or, simply, dNN)
vertex function to our understanding of the electromagnetic
structure of the deuteron [9]. Perhaps more significantly, the
imaginary parts of the form factors in the anomalous region
come from contributions where the exchange nucleon is on
mass shell. This exchange nucleon plays the role of a spectator,
removed from the interaction of the virtual photon with the
NN̄ pair. At the same time it was realized that many other
diagrams, with pions dressing the dNN vertices, also produce
anomalous thresholds, and that these should be summed to all
orders in order to naturally regularize the leading anomalous
contributions. From this observation it was a short step to
the idea that the description is unified [10] by introducing
a covariant wave function satisfying an integral equation in
which one nucleon is on shell (as dictated by the anomalous
cut condition), leading naturally to the CST equation for the
dNN vertex. Study of the deuteron form factor led directly to
the introduction of the CST. Only later [11,12] was it realized
that the cancellation theorem provided another, perhaps more
convincing, justification for the CST.

The second CST calculation of the deuteron form fac-
tors was done in 1980 in collaboration with Arnold and
Carlson [13]. That paper evaluated twice the contribution
from diagram (A) in Fig. 1, now described as the relativistic
impulse approximation (RIA). At that time we did not
have relativistic deuteron wave functions determined directly
from the np scattering data; we used wave functions either
constructed from nonrelativistic models or the Buck-Gross
wave functions [14] constrained only by the deuteron binding
energy and quadrupole moment.

The third-generation calculations, done in 1995 in col-
laboration with Van Orden and Devine [15], used, for the
first time, consistent covariant wave functions determined
by fitting the np phase shifts up to laboratory energies of
350 MeV [16]. At that time we realized that a proper gauge-
invariant calculation [17] required all four of the diagrams
shown in Fig. 1, and results for both the RIA and the complete
impulse approximation (CIA) were presented. This calculation
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FIG. 1. (Color online) Diagrammatic representation of the current operator of the covariant spectator theory with particle 1 on shell (the
on-shell particle is labeled with a ×). Diagrams (A), (B+), and (B−) are the complete impulse approximation (CIA), while (C) is the interaction
current term. In some cases the sum of the (B) diagrams is approximately equal to the first, and for this reason the relativistic impulse
approximation (RIA) is the defined to be two times the first term, (A).

was successful, showing that a fully relativistic calculation
could provide a very good explanation of the form factors,
even up to high Q2.

At the same time that the third-generation calculations were
being done, Alfred Stadler and I were working on extending
the CST formalism to the three-nucleon sector. Using the CST
three-body equations [18] we discovered in 1996 [19] that a
reasonable description of the triton binding energy could not
be obtained unless the one boson exchange (OBE) models
used previously were extended by adding off-shell couplings
to the NNs vertices, �s , for the exchange of the scalar meson
s. Written in terms of the off-shell projection operator

�(p) = m − /p

2m
(1.1)

the NNs vertices now become

�s(p,p′) = gs1 → gs1 − νs[�(p) + �(p′)], (1.2)

where νs is a new parameter to be determined by fitting
data, and p and p′ are the four-momenta of the outgoing and
incoming nucleons, respectively. It is important to realize that
these factors are nonzero whenever particles are off shell, and
hence are a feature of Bethe-Salpeter or CST equations. We
discovered a remarkable fact: the value of νs that gives the best
fit to the two-body scattering data also gives the correct triton
binding energy without the introduction of any three-body
forces of relativistic origin. After the initial discovery in 1996,
we developed new high-precision fits to the scattering data
below 350 MeV laboratory energy, and confirmed that this
remarkable conclusion persists [20]. Interpretation of these
results have been discussed in conference talks [21,22].

The presence of off-shell couplings for scalar (and vector)
mesons will generate isoscalar interaction currents never
before encountered. Once we understood their importance, it
became imperative to compute the interaction currents implied

by the presence of such terms and redo the form factor
calculations. This is the purpose of this fourth-generation
calculation.

B. Can the CST make predictions?

In the last two decades the approach to low-energy nuclear
physics based on chiral effective field theory (χEFT) has
become very popular. Recently χEFT has been applied suc-
cessfully to the description of low-energy electron scattering
from few-body systems [23,24] using precision fits to np data
described by Entem and Machleidt [25]. This approach, based
as it is on a perturbation expansion of the QCD Lagrangian,
carries with it an estimate of theoretical error, but, as pointed
by out by Entum and Machleidt [25], a precision fit (i.e., with
a χ2/datum � 1) requires a calculation at least to N3LO (with
24 parameters to be fit to the data). Since N4LO calculations
have not yet been attempted, and the difference between the
NNLO and N3LO calculations is very large, it may be difficult,
in practice, to estimate the theoretical error. There is also a
dependence on the renormalization scale, which should vanish
if the effective theory were fully mature. Good fits seem to
require a renormalization scale in the range of 500 to 700 MeV,
which is unfortunately right in the region where the dynamics
makes important contributions.

As the preceding remarks illustrate, χEFT has made
tremendous strides since the failure of the beautiful KSW
theory [26] to explain the 3S-3D tensor force. Still, it is possible
to believe that χEFT may not converge in the NN sector, and
that the recent successes may be partly due to the large number
of adjustable parameters. Studies of alternatives to χEFT
continue to be interesting, and one of these alternatives is the
approach based on the CST. It has been found that the CST (i)
is a remarkably successful phenomenology (precision fits to
np data with as few as 15 parameters, and a dynamical model

064001-2



COVARIANT SPECTATOR THEORY OF np . . . PHYSICAL REVIEW C 89, 064001 (2014)

with simple one boson exchanges, with off-shell couplings that
effectively generate some of the loops required by χEFT),
(ii) is able to link two- and three-body observables without
additional parameters (such as the prediction of the triton
binding energy referred to in the preceding subsection), and
(iii) is manifestly covariant, incorporating the Dirac structure
of a spin-1/2 nucleon (which may partially account for its
efficient treatment of spin observables). In view of these
successes, it is of interest to see if the new high-precision CST
models can be successfully extended into the electromagnetic
sector, and to learn if they can make unique predictions without
introducing further parameters.

As applied to few-nucleon systems, the CST assumes
that each nucleon is an off-shell composite object that can
interact through two-body forces constructed from OBE, with
parameters fixed by fitting to NN scattering data. How can
the off-shell current of the composite nucleons, and the
interaction currents generated by the phenomenological NN
OBE interaction, be constrained? This has been a serious
issue for all models using composite hadrons and tends to
undermine confidence in such models (including the CST) to
make predictions for electromagnetic observables.

The tool for constraining and constructing these currents is
current conservation, and the general method used here was
introduced by D. O. Riska and me [17] (a similar technique,
unknown by us at the time, was also developed by Ball
and Chiu [27]). The construction first involves finding a
current for the off-shell composite nucleon that satisfies the
Ward-Takahashi identity. As reviewed in Sec. II D, the off-shell
current used here has one new off-shell nucleon form factor
F3(Q2) [subject to the constraint that F3(0) = 1], but its lon-
gitudinal part is otherwise completely fixed. Later in Sec. III,
the new two-body isoscalar interaction currents implied by
the off-shell, ν-dependent couplings, given in Eq. (1.2), are
constructed. These are completely new isoscalar interaction
currents never before encountered, and study of their effect on
the deuteron form factors, including the static magnetic and
quadrupole moments, is one of the principal goals of this series
of papers. How uniquely can they be defined?

The answer to this rests on the introduction of a new
concept, which I call “picture independence”. Briefly, as
emphasized in Ref. [20], a pure OBE theory with off-shell
OBE couplings (picture 1) is equivalent to another theory
(picture 2) with no off-shell OBE couplings but augmented
by an infinite set of two- and three-body force diagrams
constructed from meson loops that are not two-nucleon (or
in the three-nucleon sector, three-nucleon) irreducible. This
equivalence might appear to be of limited use, since picture
2 involves an infinite number of irreducible kernels that are
difficult to calculate. But, as it turns out, requiring the two
pictures give equivalent electromagnetic currents places strong
constraints on both.

Of course one can always make the currents more com-
plicated by adding purely transverse terms (i.e., terms that
satisfy the condition qμj

μ
T = 0, where j

μ
T has no longitudinal

part constrained by current conservation) but the principal of
simplicity, as discussed in Sec. III, eliminates these and makes
the choice of interaction current all but unique. The interaction
current used in this paper has no undetermined parameters.

This approach makes CST electromagnetic calculations
fully predictable, with the possibility that they will fail. A
major goal of this fourth-generation calculation, with its four
related papers, is to see if the approach will work for the
deuteron form factors. One of the consequences of the principal
of simplicity is that the famous ρπγ exchange current is
excluded from consideration. Adding such a current (and
its ωσγ companion) [28] can certainly have some effect,
particularly if unrealistic assumptions are made about their
structure [29]; these currents certainly contribute at some level
of accuracy. In Ref. II I will show that the interaction currents
fixed in this paper give a result for the magnetic moment that
is very close to the experimental data, indicating that all other
contributions are very small indeed.

C. Summary

The next section (Sec. II) defines the dnp vertex function
and the relativistic kernel used in the CST bound-state
equation, and reviews the work of Ref. [17], which showed
that the exact result for the form factors in the CST requires
the calculation of only four diagrams (shown in Fig. 1), one of
which is the interaction current contribution. If the interaction
current satisfies the two-body Ward-Takahashi (WT) identity
derived in Appendix A, the two-body current is conserved,
provided the one-body current satisfies the one-body WT
identity. The section concludes by discussing the covariant
normalization condition, and showing that the normalization
condition guarantees that the deuteron charge is unity, results
previously reported in Refs. [11,17,30,31].

As mentioned above, Sec. III uses the principals of
simplicity and picture independence to derive the isoscalar
interaction current. This derivation is one of the principal
new results of this paper. The interaction current will be
shown to factor into a sum of products of the nucleon current
multiplied by truncated NN interaction kernels constructed
from the full OBE NN kernel. Only scalar and vector meson
exchanges contribute; contributions from � terms present in
the pseudoscalar exchanges cancel.

The factorized form of the interaction current permits these
contributions to be expressed as a product of the nucleon
current and truncated deuteron wave functions, which can be
combined with the CIA contributions. The interaction current
contributions from the off-shell particle 2 are represented
by a new, truncated wave function, �(2), and combine with
the contributions from diagram (A) of Fig. 1. Contributions
from the (originally on-shell) particle 1 cancel some of
the contributions from the (B) diagrams; their combined
contributions can be expressed in terms of a new wave
function, �̂. Section III concludes with general formulas for
the deuteron current given as traces over products of the wave
(or vertex) functions, propagators, and nucleon currents, the
second principal result of this paper.

Evaluation of the results for the magnetic moment is the
main result of the second paper in this series, Ref. II, prepared
at the same time as this paper. Calculation of the magnetic
moment is the first numerical prediction of the consequences
of the interaction currents found in this work.
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II. DEUTERON CURRENT

The structure of the composite deuteron enters through
the dnp vertex function and covariant wave function. In this
section the notation for the vertex function, the wave function,
and the CST bound-state equations that they satisfy is given.
The bound-state equation was solved in Ref. [32], and the
wave functions used in Ref. II were obtained there. Following
this, the general formulas for the deuteron current is given,
the role of the strong nucleon form factors discussed, and the
diagrams that do not depend on the interaction current reduced.
The section concludes with derivation of the two-body WT
identity that the interaction current must satisfy and a review
of the normalization condition for the deuteron wave functions
and its connection to the deuteron charge.

A. Deuteron vertex and wave functions

The relativistic structure of the deuteron bound state is
written in terms of the covariant dnp vertex function. For
an incoming deuteron of four-momentum P and polarization
four-vector ξ , this vertex function is written

Gλd

αβ(k,P ) = (�νC)αβ(k,P )ξν
λd

(P )

= �
λd

αβ ′(k,P )Cβ ′β, (2.1)

where k is the four-momentum of particle 1 (with Dirac index
β), p = P − k is the four-momentum of particle 2 (with Dirac
index α), and λd is the polarization of the deuteron. Since p
is not an independent variable, it will usually be suppressed,
except when we need to refer to the momentum of particle
2 explicitly, in which case we will sometimes use p instead
of P − k. This vertex function is sometimes needed when
both particles are off shell (when it will sometimes carry the
subscript “BS” to avoid confusion), but when one particle is
on shell it will always be particle 1, and in this case k2 = m2,
and we may sometimes use the on-shell matrix element

Gλd

αλ(k,P ) = Gλd

αβ(k,P ) ūT
β (k,λ), (2.2)

distinguished from Gαβ only by the replacement of the
Dirac index β by the nucleon helicity index λ. The matrix
element (2.2) has the structure of a nucleon spinor; it describes
the state of an incoming deuteron and two outgoing nucleons,
one of which is off shell. Note that the convention for writing
the vertex function G in this paper differs from Eq. (3.7) of
Ref. [32]. Here the indices α and β are interchanged and the
spinor of the on-shell particle 1 is contracted from the right.
This is done to simplify the formulas for the current, but all
results are independent of this change.

The state of an outgoing deuteron is obtained by taking the
Dirac conjugate, defined by

O = γ 0O†γ 0. (2.3)

For the general case, the conjugate vertex function is therefore

Gλd (k,P ) = γ 0Gλd †(k,P )γ 0

= Cγ 0�†
ν(k,P )γ 0 ξν ∗

λd
(P )

= C �ν(k,P )ξν ∗
λd

(P ), (2.4)

where use was made of γ 0C†γ 0 = C. Using the properties
of γ 0,

γ 0(γ μ)†γ 0 = γ μ (2.5)

the outgoing vertex function can be written in a more intuitive
form. Consider a term in �ν of the form γν /P and go through
the steps explicitly:

γ 0�†
νγ

0 → γ 0 /P
†
γ †

ν γ 0 = /Pγν → �ν. (2.6)

We therefore recognize that �ν is the matrix �ν with its γ
matrices written in reverse order (and the deuteron polarization
vector complex conjugated).

If particle 1 is on shell, (2.2) and (2.6) imply that

Gλd

λα(k,P ) = uT
β (k,λ)(C �ν)βα(k,P )ξν ∗

λd
(P )

= uT
β (k,λ)Gλd

βα(k,P ). (2.7)

The on-shell particle is now on the left, the correct location for
constructing matrix elements.

It is convenient to introduce covariant wave functions. Two
different wave functions will be defined. When the charge
conjugation matrix is included, the notation is

�
λd

αβ(k,P ) = Sαα′ (p)Gλd

α′β(k,P )
(2.8)

�
λd

βα(k,P ) = Gλd

βα′ (k,P )Sα′α(p),

where S is the bare nucleon propagator (see the discussion in
Sec. II D below). Sometimes it is convenient to remove the
charge conjugation matrix explicitly from both sides of the
relations (2.8), giving(

�
λd

0

)
αβ

(k,P ) = Sαα′ (p)�λd

α′β(k,P )
(2.9)(

�
λd

0

)
βα

(k,P ) = �
λd

βα′ (k,P )Sα′α(p).

The reader is cautioned to be aware of the difference between
� and �0, related the the charge conjugation factor C

�λd (k,P ) = �
λd

0 (k,P ) C. (2.10)

In both cases, the replacement of the index β by λ denotes
multiplication from the right [as in Eq. (2.2)] or the left by the
transpose [as in Eq. (2.7)] of the appropriate on-shell nucleon
spinor.

Most of the results of this paper are expressed in terms
of the manifestly covariant dnp vertex and wave functions,
Eqs. (2.1), (2.8), and their various alternate forms. These
functions can be expressed in terms invariant functions, and
also in terms of the familiar nonrelativistic S- and D-state wave
functions, u and w, and the small P-state components, vt and
vs . Use of these expansions is postponed until Ref. II.

B. Equation for the bound-state wave function

The equation for the bound-state wave function (2.8) with
particle 1 on shell (cf. Eq. (3.7) of Ref. [32], with the notational
change in � mentioned above) is

S−1
αα′ (p)�λd

α′λ(k,P )

= −
∫

k′
V λλ′,αα′ (k,k′; P )�α′λ′(k′,P ), (2.11)
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where V is the symmetrised kernel (introduced in Ref. [20]
and discussed below) and the volume integral is∫

k

=
∫

d3k

(2π )3

m

Ek

. (2.12)

Here particle 1, with four-momentum k = {Ek,k}, is on shell
(so that Ek = √

m2 + k2).
It is sometimes convenient to remove the on-shell spinors

and write this equation in terms of Dirac matrices only. The
sum over the polarization of the on-shell spinors can be
replaced using the positive energy Dirac projection operator

�γγ ′(k) = (m + /k)γ γ ′

2m
=

∑
λ′

uγ (k,λ′)ūγ ′(k,λ′), (2.13)

and, recalling the transpose that appears in Eq. (2.2), this gives

S−1
αα′ (p)�λd

α′β(k,P )

= −
∫

k′
V βγ,αα′ (k,k′; P )�α′γ ′(k′,P )�T

γ ′γ (k). (2.14)

This equation can be decomposed into partial waves as
discussed in Ref. [32] and reviewed in Ref. II. For this paper
the partial wave amplitudes are not needed.

C. General formula for the bound-state current

As discussed in Ref. [17], the CST two-body current
operator can be expressed in terms of the four diagrams shown
in Fig. 1. Using the notation for the vertex and wave functions
reviewed above, they can be written

J
μ
λλ′(q) =

∫
k

{
�

λ

λnα
(k,P+) j

μ
αα′ (p+,p−) �λ′

α′λn
(k,P−)

+
∫

k′
�

λ

λnα
(k,P+) V

μ
λnλ′

n,αα′ (k P+; k′ P−)�λ′
α′λ′

n
(k′,P−)

+
[

Ek

E+

]
�

λ

λnα
(k̂+,P+)Gλ′

αβ(k−,P−)

× [
ūγ (k+,λn) j

μ
γγ ′(k̂+,k−) Sγ ′β(k−)

]T

+
[

Ek

E−

]
Gλ

βα′ (k+,P+) �λ′
α′λ′

n
(k̂−,P−)

× [
Sβγ (k+) j

μ
γγ ′(k+,k̂−) uγ ′(k−,λ′

n)
]T

}
, (2.15)

where sums over repeated polarization indices are implied, V μ

is the two-nucleon interaction current, and

P± = D ± 1
2q (2.16)

with (in the Breit frame) D = {D0,0}, and q = {0,q} with

q = {0,0,qz} and D0 =
√

m2
d + 1

4 q2. In diagrams A and C, k

and k′ are on shell, so that k2 = k′2 = m2 and k = {Ek,k} and
k′ = {Ek′,k′}. In diagram A,

p± = P± − k. (2.17)

In the last two diagrams, B±, the hat is used to label the on-shell
four-momentum, so that

k̂± = {
E±,k ± 1

2 q
}

k± = {
E∓,k ± 1

2 q
}

(2.18)

p̂± = P± − k̂± = P∓ − k∓,

with E± =
√

m2 + (k ± 1
2 q)2. All four terms have been

written using the same volume integral (2.12), but, in the last
two terms, this integral must be corrected since in the B± terms
the correct on-shell energy is E± and not the Ek included in
the volume integral. Note that the vertex functions G and G in
the last two terms have both particles off shell.

The single nucleon current is an operator in isospin space

jμ(q) = jμ
s (q) + jμ

v (q) τ3 → jμ
s (q) → jμ(q), (2.19)

since in this paper we consider the isoscalar currents only (and
drop the subscript s). This current is sufficient for study of the
deuteron form factor, the focus of this paper. At q = 0, the
current reduces to

jμ(0) = 1
2 = e0, (2.20)

where e0 is the isoscalar charge (consistent with Eq. (2.17) of
Ref. [17]). Even though e0 = 1

2 , we will continue to use e0

throughout this paper.

D. Role of the strong nucleon form factor

In the CST calculations under discussion, the NN scattering
kernel includes a strong nucleon form factor, which we will
denote by h(p) in this paper [33] [this form factor is a scalar
function of p2 but written simply as h(p) for convenience].
This strong form factor is related to the nucleon self energy, and
is to be distinguished from the electromagnetic form factors of
the nucleon (the connection between them is discussed below).
The strong form factor h(k) = 1 when the nucleon is on shell
(k2 = m2). To avoid confusion with the electromagnetic form
factors of the nucleon, we will always refer to h as the strong
form factor.

In the OBE models that have been used, where the strong
form factors at the meson-NN vertices are products of strong
form factors for each particle entering or leaving the vertex,
the strong form factor associated with each external nucleon
line can be removed from the NN scattering kernel and the
interaction current, leading to

V (k,k′; P ) = h(k)h(p)Ṽ (k,k′; P )h(k′)h(p′)
(2.21)

V μ(kP+; k′P−) = h(p+)Ṽ μ(kP+; k′P−)h(p′
−),

where Ṽ is the reduced kernel and Ṽ μ the reduced interaction
current, and we recall that, for both primed and unprimed vari-
ables, p = P − k and p± = P± − k. Note that the expression
for the kernel is written allowing for the possibility that any (or
all four) of the particles could be off shell, but the expression
for the interaction current V μ assumes that k2 = k′2 = m2.

When proving current conservation it is best to remove the
strong form factors from the interaction kernel and interaction
current, and incorporate them into the propagator, giving a
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dressed propagator of the form

S−1
d (p) = m − /p

h2(p)
= S−1(p)

h2(p)
, (2.22)

where the h occurs squared because one comes from the initial
and one from the final interactions that connect the propagator.
Following the method of Riska and Gross [17], a conserved
two-nucleon current can then be constructed using a dressed
single nucleon current of the form [33]

jμ(p,p′) = h(p)h(p′)jμ
R (p,p′), (2.23)

where the reduced current j
μ
R satisfies the Ward-Takahashi

(WT) identity

qμ j
μ
R (p,p′) = e0

[
S−1

d (p′) − S−1
d (p)

]
, (2.24)

where the isoscalar charge, e0, was introduced in Eq. (2.20).
The WT identity for the dressed current is then

qμ jμ(p,p′) = e0

[
h(p)

h(p′)
S−1(p′) − h(p′)

h(p)
S−1(p)

]
. (2.25)

The development depends very strongly on whether or not
there is a strong form factor h different from unity. To see the
connection between the current and h, it is sufficient to look
at the WT identity for the nucleon current, Eq. (2.24), at small
q and expand the right-hand side. This gives the condition

j
μ
R (p,p) = −e0

∂S−1
d (p)

∂pμ

. (2.26)

If h = 1, so that S−1
d (p) → S−1(p) = m − /p, this gives the

familiar current

j
μ
R (p,p) → jμ(p,p) = e0 γ μ. (2.27)

However, using the dressed propagator (2.22) gives the result

j
μ
R (p,p) = e0

h2

{
γ μ + 4m

h

∂h

∂pμ

�(p)

}
, (2.28)

where �(p) was defined in Eq. (1.1) and, for the full current

jμ(p,p) = e0

{
γ μ + 4m

h

∂h

∂pμ

�(p)

}
. (2.29)

Thus, when h �= 1, two completely equivalent descriptions
are possible. One may use either

(i) the reduced current j
μ
R , the dressed propagator Sd , and

the reduced interactions Ṽ and Ṽ μ, or
(ii) the full current jμ, the bare propagator S, and the full

interactions V and V μ.

In the following discussion we will sometimes remove the
strong form factors from the kernel and the interaction current
(relying in the difference between V and Ṽ to distinguish
between the two), but will use the bare propagator S and always
include the strong form factors in the vertex functions and the
wave functions, where they occur naturally [consistent with
the definitions (2.8) in which the propagator S that appears is
the bare propagator]. We will use the full current jμ. These
conventions will require that, in cases when Ṽ is used in
place of V , the h are written explicitly. This notation has

the advantage that Eq. (2.15) for the two-nucleon current is
unchanged in the presence of the strong nucleon form factor.

E. General form of the nucleon current with h �= 1

To prepare for a general discussion of the charge and
normalization, we summarize previous results for the general
form of the off-shell nucleon current when h �= 1.

The simplest form of off-shell nucleon current consistent
with current conservation (in the notation of Ref. [5]) is

jμ(p′,p) = e0 f0(p′,p)γ μ + e0 g0(p′,p)�(p′)γ μ�(p)

+ e0 f0(p′,p)

{
(F1 − 1)γ̃ μ + F2

iσμνqν

2m

}
+ e0 g0(p′,p)�(p′)(F3 − 1)γ̃ μ�(p), (2.30)

where q = p′ − p, Fi = Fi(q2) are the form factors of the
nucleon [with F3, subject to the constraint that F3(0) = 1, a
new form factor that contributes only when both nucleons are
off shell], and the transverse γ matrix is

γ̃ μ = γ μ − /qqμ

q2
. (2.31)

Note that the terms involving the form factors Fi are all
transverse. The functions f0 and g0 describe the modification
of the current due to the presence of the strong form factor h.
Using the shorthand notation h = h(p) and h′ = h(p′), these
functions are

f0(p′,p) = h′

h

(m2 − p2)

p′2 − p2
+ h

h′
(m2 − p′2)

p2 − p′2
(2.32)

g0(p′,p) = 4m2

p′2 − p2

(
h

h′ − h′

h

)
.

These functions are consistent with the Ward-Takahashi
identity (2.24), and both are regular at p′2 = p2. Note the
useful relation

f0(p′,p) = 1

2

[
h′

h
+ h

h′

]
− g0(p′,p)

8m2
(2m2 − p′2 − p2).

(2.33)

Several limits of this current are interesting. First, when
either the initial or final particle is on shell, the term involving
F3 will not contribute, and the current reduces to

lim
p2=m2

jμ(p′,p) → 1

h′ j
μ
0 (q)

(2.34)
lim

p′2=m2
jμ(p′,p) → 1

h
j

μ
0 (q),

where

j
μ
0 (q) = e0

{
γ μ + (F1 − 1)γ̃ μ + F2

iσμνqν

2m

}
. (2.35)

Note that the simplified current j
μ
0 satisfies a simplified WT

identity

qμj
μ
0 (q) = e0[S−1(p′) − S−1(p)] = e0 /q. (2.36)
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Second, when q → 0 (but neither particle is on shell) the
current reduces to

jμ(p,p) = e0 f00 γ μ + e0 g00 �(p)γ μ�(p), (2.37)

where

f00 ≡ lim
p′2→p2

f0(p′,p) = 1 + 2a(p2)(m2 − p2)

(2.38)
g00 ≡ lim

p′2→p2
g0(p′,p) = −8m2 a(p2)

with

a(p2) = 1

h

dh

dp2
. (2.39)

Finally, in Sec. III E it will be convenient to observe the the
full current can be written in two convenient forms

jμ(p′,p) = f0(p′,p)jμ
0 (q) + �(p′) j

μ
off(p

′,p) �(p)

= 1

2

[
h′

h
+ h

h′

]
j

μ
0 (q) + jμ

g (p′,p), (2.40)

where j
μ
off contributes only when both particles are off shell,

and j
μ
g is the part of the current that depends on g0

j
μ
off(p

′,p) ≡ e0 g0(p′,p)[(F3 − 1)γ̃ μ + γ μ]

jμ
g (p′,p) = −g0(p′,p)

8m2
(2m2 − p′2 − p2) j

μ
0 (q)

+�(p′) j
μ
off(p

′,p) �(p). (2.41)

The full form of the current (2.40) is needed only for the
proof of current conservation. In all applications (after current
conservation has been proved) the terms proportional to qμ

can be dropped because either the helicity amplitudes are
needed (and q · ε = 0), or the nucleon current will be coupled
to another conserved current. Dropping the qμ terms reduces
the full current (2.40) and the simplified current (2.35) to

jμ(p′,p) → f0(p′,p)jμ
N (q)

+ e0 g0(p′,p)�(p′)F3(q2)γ μ�(p)

j
μ
0 (q) → j

μ
N (q), (2.42)

where j
μ
N (q) is the familiar isoscalar nucleon current (with e0

included)

j
μ
N (q) = e0 F1(q2)γ μ + e0 F2(q2)

iσμνqν

2m
. (2.43)

The conditions (2.38) ensure that jμ(p,p′) → j
μ
N (q) when

both nucleons are on shell.
The interesting off-shell term proportional to the new nu-

cleon form factor, F3(q2), will contribute only to diagram 1(A),
because the (B) diagrams have either the initial or final nucleon
on shell, and one of the � projection operators will always
vanish. Under these conditions the nucleon current reduces
to (2.34) insuring that, in the (B) diagrams where particle 1
may have off-shell momenta k±, the factors of h(k±) contained
in the vertex functions will cancel.

F. Reduction of the (A) and (B) diagrams

In doing calculations, it is convenient to write the (A) and
(B) diagrams as traces over products of γ matrices.

To rewrite the (A) diagram as a trace, recall that the
incoming and outgoing vertex functions both have a factor
of C [recall Eqs. (2.1) and (2.7)], which is also contained in
the wave function � [recall (2.10 )]. Use (2.13) to replace the
sum over the positive energy spinors and extract and remove
the charge conjugation matrices, recalling that C = −C−1 and
using

C−1γ μ T C = −γ μ. (2.44)

The result is

J
μ
λλ′ (q)|A
= −

∫
k

tr[�
λ

0(k,P+)jμ(p+,p−)�λ′
0 (k,P−) �(−k)], (2.45)

where the wave functions �0 will be written in terms of γ
matrices and invariants in Ref. II.

The B± terms in Eq. (2.15) are each singular as qμ → 0, but
together are finite. They can be combined conveniently if we
note that the two off-shell propagators (where the singularity
is located) are

Sαβ(k±) = 2m�αβ(k±)

m2 − k2±
= 2m�αβ(k±)

E2± − E2∓
= 2m�αβ(k±)

±2k · q
,

(2.46)

where S(k+) is the propagator at the pole where k0 = E−.
Hence, restoring the positive energy projection operator
using (2.13), the two B± terms combine into a symmetric form.
Introducing the reduced vertex functions (for the general case
when both k and p are off shell)

G(k,P ) = �(k,P ) C = h(k)h(p) �̃(k,P ) C (2.47)

and extracting the charge conjugation operator as was done for
the (A) diagrams gives

J
μ
λλ′(q)|B±=

∫
k

[
mEk

k · q

]
tr

{
1

k0
�̃λ(̃k+,P+) [h2(p̃)S(p̃)] �̃λ′

(̃k−,P−)

×�(−k̃−) j
μ
0 (q) �(−k̃+)|k0=E−

− 1

k0
�̃

λ

(̃k+,P+) [h2(p̃)S(p̃)] �̃λ′
(̃k−,P−)

×�(−k̃−)jμ
0 (q) �(−k̃+)|k0=E+

}
, (2.48)

where the notation

k̃ = {k0,k}, k̃± = k̃ ± 1
2q, p̃ = D − k̃, (2.49)

[recall that D = 1
2 (P+ + P−)] is used to display the fact that

the two terms are identical except for the energy factors E±.
As q → 0, E− → E+ showing that the numerator approaches
zero and the singularity is canceled. To reduce the two (B)
terms to (2.48) it is necessary to use (2.34), the behavior of the
current under charge conjugation

C−1jμT (k′,k)C = −jμ(−k, − k′)
(2.50)C−1j

μT
0 (q)C = −j

μ
0 (q),
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and to recall that the sign introduced through the substi-
tution C = −C−1 is canceled by the change is the sign of
the current. Note that the off-shell strong form factors for
particle 1 that were originally contained in G(k−,P−) and
G(k+,P+) are canceled by the strong form factor that arises
in the conversion of jμ → j

μ
0 [recall Eq. (2.34)], so that all

strong form factors for particle 1 are removed from these
diagrams, even thought particle 1 is off shell in parts of these
diagrams. These diagrams also do not include contributions
from F3.

G. Two-body Ward-Takahashi identity

The condition that the reduced interaction current
Ṽ μ(kP+; k′P−) must satisfy in order that the total current,
Jμ(q) be conserved is referred to as the two-body WT identity,
and is derived in Appendix A. It can be written

qμṼ
μ
ββ ′,αα′ (k P+; k′ P−)

= e0[Ṽββ ′,αα′ (k,k′; P−) − Ṽββ ′,αα′ (k,k′; P+)

+ Ṽββ ′,αα′ (k − q,k′; P−) − Ṽββ ′,αα′ (k,k
′ + q; P+)].

(2.51)

When the interaction current is constructed below, it will be
shown to satisfy (2.51) thus insuring that the total current is
conserved.

Expanding the right hand side of (2.51) in powers of q and
retaining the linear term only, gives

lim
q→0

Ṽ
μ
ββ ′,αα′ (k P+; k′ P−) = −2e0

∂

∂Pμ

Ṽββ ′,αα′ (k,k′; P )

− e0
∂

∂kμ

Ṽββ ′,αα′ (k,k′; P )

− e0
∂

∂k′
μ

Ṽββ ′,αα′ (k,k′; P ),

(2.52)

where the partials are with respect to one variable, holding the
other (independent) variables fixed. Equation (2.52) is not a
unique solution for the exchange current; transverse compo-
nents not constrained by the two-body WT identity can (and
will) be present, but up to these transverse components, (2.52)
gives the solution for the exchange current in the limit q → 0.

H. Deuteron charge and wave function normalization

Now, using the the expression (2.52) for the two-body
interaction current, and the results of Secs. II E and II F, the
general expression (2.15) can be evaluated in the limit as
q → 0. Expanding the numerators of the (B) diagrams about
q = 0, using (2.48) and the relation

E± − Ek = ±k · q
2Ek

+ O(q2), (2.53)

the deuteron charge becomes (with sums over repeated indices
implied)

2md GC(0) = lim
q→0

J 0
λλ′ (q) =

∫
k

�λ
λnα

(k,P ) j 0
αα′ (p,p) �λ′

α′λn
(k,P )

− e0

∫
k

∫
k′

�λ
λnα

(k,P ) h(p)

{(
2

∂

∂P0
+ ∂

∂k0
+ ∂

∂k′
0

)
Ṽλnλ′

n,αα′ (k,k′; P )

}
h(p′)�λ′

α′λ′
n
(k′,P )

−
∫

k

∂

∂k0

{
m

k0
�̃

λ

βα (̃k,P )[h2(p̃) S(p̃)]αα′ �̃λ′
α′β ′ (̃k,P )

[
�(−k̃) j 0

0 (0) �(−k̃)
]
ββ ′

}∣∣∣∣
k0=Ek

, (2.54)

where we anticipated the definition of the deuteron charge form factor, GC , previously defined [5] and reviewed in Ref. II. The
last term is written in terms of the reduced vertex functions, �̃, defined in Eq. (2.47). Because of the cancellation discussed above,
only the strong form factors for particle 2, h(p̃), remain in (2.54).

The evaluation of the last term in (2.54) is carried out in Appendix B. Combining the result (B11) with the other terms in
Eq. (2.54) shows that the k and k′ derivatives cancel, and the first term is doubled, giving

2md ed = lim
q→0

J 0
λλ′(q) = 2

∫
k

�λ
λnα

(k,P ) j 0
αα′ (p,p) �λ′

α′λn
(k,P )

− 2e0

∫
k

∫
k′

�λ
λnα

(k,P ) h(p)
∂

∂P0
[Ṽλnλ′

n,αα′ (k,k′; P )]h(p′) �λ′
α′λ′

n
(k′,P ), (2.55)

where GC(0) = ed = 1 is the deuteron charge. In Appendix C
it is shown that the contributions coming from the h′ terms
included in the f00 and g00 contributions to j 0 are exactly
equal to the h′ terms coming from the derivative of the full
kernel ∂V /∂P0. Symbolically,

∂V

∂P0
= 〈j 0〉|h′ terms + ∂Ṽ

∂P0
. (2.56)

Using 2e0 = 1, this shows that the condition (2.55) is the same
result that emerges from the normalization condition given in
Eq. (2.28) of Ref. [30].

The principal conclusions of this discussion will be sum-
marized for later reference:

(i) The singular diagrams (B±) contribute an equal
amount to the leading term [the first term in (2.55)].
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This is the origin of the definition of the RIA as equal
to two times the leading diagram (A).

(ii) The k and k′ derivatives arising from the (B) diagrams
and the interaction current cancel. This cancellation
anticipates some general features of the contributions
from the interaction current to be discussed in the next
section.

(iii) Because of the relation (2.56), the normalization
condition can either be written using the bare current
(e0γ

0) and the derivative of the full kernel, or the
dressed current and the derivative of the reduced
kernel. To compute the charge from the dressed current
and the derivative of the full kernel introduces an error
by double counting the h′ terms.

A final comment: including only one factor of h in the defi-
nition of the wave function is convenient; it leaves the normal-
ization condition with h2j 0 � e0γ

0 as the leading term. This
one factor occurs naturally if the vertex function is calculated
from the full kernel and the wave function defined by multiply-
ing by the bare propagator, as was done in Eqs. (2.8) and (2.9).

III. ISOSCALAR INTERACTION CURRENT

A. General considerations

The isoscalar interaction currents are constrained by the
two-body WT identity (2.51) [or, alternatively, (A11)]. If the
right-hand side of this identity is zero, then the longitudinal
component of the current is zero, and the assumption that
the accompanying transverse component is also zero is the
simplest possible choice for the interaction current. Only if
the longitudinal component of the current is nonzero will we
look to the physics to see if a nonzero transverse component
should accompany the longitudinal component. We will refer
to this assumption as the principal of simplicity.

A second principal that governs our choice of interaction
current is the principal of picture independence. This principal
leads to very strong constraints that all but uniquely define the
interaction currents, at least for isoscalar interactions. This
principal will be developed in detail in the latter part of this
section.

In the CST, the kernel (or reduced kernel) is symmetrized
(or antisymmetrized) by hand, so it is the sum of two terms

Ṽββ ′,αα′ (k,k′; P ) = 1
2 [Vββ ′,αα′ (k,k′; P )

±Vαβ ′,βα′ (P − k,k′; P )], (3.1)

where {k,β; p ≡ P − k,α} ({k′,β ′; p′ ≡ P − k′,α′}) are the
outgoing (incoming) four-momenta and Dirac indices of the
two particles, Ṽ is the reduced kernel, and we emphasize that
V (without the bar) is the unsymmetrized reduced kernel (this
is similar to Eq. (2.6) of Ref. [20], but here the strong nucleon
form factors have been removed and k is the momentum of
the on-shell particle 1, instead of the relative momentum). The
linear combination (3.1) is symmetric or antisymmetic under
the exchange of the particles in the final state: {k,β} ↔ {P −
k,α}. The kernels used in the CST are linear combinations of
such terms, as discussed in detail in Ref. [32]. For the one
boson exchange (OBE) models being discussed in this paper,

k' - k

k'k

p p'

k' - p±

k'k

p p'

FIG. 2. (Color online) Generic Feynman meson exchange dia-
grams for the direct (left) and exchange (right) processes, showing the
two momentum transfers qd = k′ − k and qe = k′ − p = k′ + k − P .

the Feynman diagrams corresponding to the two terms are
shown in Fig. 2.

It is shown in Appendix D that any meson exchange inter-
action that depends only on the exchanged four-momentum
will not contribute to the right-hand side of the two-body
WT identity (A11), and it can therefore be assumed, guided
by the principal of simplicity, that the interaction current
accompanying this interaction is also zero.

Therefore, isoscalar interaction currents will only come
from a possible energy dependence of the vertex functions
of the OBE interaction. These generate contact interactions
of the type shown in Fig. 3. Examination of the vertex
functions used in models WJC-1 and WJC-2 [20,32] shows
the this energy dependence is only located in the off-shell
couplings, i.e., the terms proportional to �(p) [where � was
defined in Eq. (1.1)]. These terms do not exist in theories
where the particles are always on shell, and are unique to
the CST. Such �-dependent terms are present in the scalar,
vector, and pseudoscalar exchange terms, but the � terms
in the pseudoscalar exchange reduce to terms depending on
momentum transfer only (and hence their contributions to
isoscalar exchange currents cancel).

B. General structure of the currents

This discussion begins by using minimal substitution to
find the general form of the interaction currents. Then, in a

p+ p'-

k'k k'k

p+ p'-

k'- kk'- k + q

p+ p'-

k'k

k'+ k - P-

p+ p'-

k'k

k'+ k - P+

FIG. 3. (Color online) Feynman diagrams for the generic meson
interaction currents arising from vertex interactions. Top row: direct
terms; bottom row: exchange terms.
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subsequent section, it is shown how the principal of picture
independence leads a unique choice for these currents.

The unsymmetrized reduced OBE kernel introduced in (3.1)
has the form

Vββ ′,αα′ (k,p; k′,p′) =
∑

b

V b
ββ ′,αα′ (k,p; k′,p′), (3.2)

where b is the boson type, and it will be convenient in this
section to use the redundant notation {k,p; k′,p′} in place of
{k,k′; P }. When the external momenta are labeled as above
this is referred to as the direct kernel; when {k,β} and {p,α}
are exchanged it will be referred to as the exchange kernel.
Each term in the sum has the form

V b
ββ ′,αα′ (k,p; k′,p′) = �b

ββ ′ (k,k′) ⊗ �b
αα′ (p,p′)�̃b(q̃)

= V̊ b
β,β ′ (k,k′) ⊗ �b

αα′ (p,p′)

= �b
ββ ′ (k,k′) ⊗ V̊ b

α,α′ (p,p′), (3.3)

where �̃b(q̃), with q̃ = k′ − k = p − p′, is the dressed me-
son propagator, including the meson form factor and some
additional factors

�̃b(q̃) = εb δ
f (�b,q̃)

m2
b + |q̃2| = εb δ �b(q̃), (3.4)

and �b
ββ ′(k,k′) or �b

αα′ (p,p′) are the bNN vertex functions
for particle 1 or 2 [20]. These vertex functions should not
be confused with the projection operators �(k) introduced in
Eq. (2.13). The second and third lines of (3.3) define truncated
OBE kernels (that part of the kernel that remains once the bNN
vertex function for particle 1 or 2 has been removed). These
will be used in the discussion below. The vertex functions,
�b

αα′ (p,p′) are decomposed into two parts

�b
αα′ (p,p′) = Ab

αα′ (p − p′) + [Bb�(p′) + �(p)Bb]αα′ ,

(3.5)

where, for each meson

Ab(p − p′) =

⎧⎪⎪⎨
⎪⎪⎩

gs1 scalar

gpγ 5 pseudoscalar
gv Oμ

v (p − p′) vector

gaγ
5γ μ pseudovector

(3.6)

with Oμ
v (p − p′) = γ μ + κv iσμν(p − p′)ν/(2m), and

Bb =

⎧⎪⎪⎨
⎪⎪⎩

−νs1 scalar

−gp(1 − λp)γ 5 pseudoscalar
gvνv γ μ vector
0 pseudovector.

(3.7)

Note that the B’s are independent of momenta, and the A’s
depend only on ±q̃ (there is also another dependence on q̃
coming from the vector meson propagator, but this does not
affect the discussion). With the proper substitutions, the same
relations hold for �b

ββ ′(k,k′), and for the exchange kernel.
For any particle with momentum p, minimal substitution

leads to the replacement

pμ → pμ − e0A
μ, (3.8)

where e0 is the isoscalar nucleon charge and commutes
with all isospin operators. This means that, in general,
there will be contributions from both isovector and isoscalar
meson exchanges. However, the factors in pseudoscalar vertex
functions depend only on the momentum transfer q̃, and will
not contribute to the current because the p and p′ terms (or
the k and k′ terms) will cancel. Nevertheless, it is convenient
to ignore this now (so that all the mesons can be treated
on the same footing) and simply drop contributions from
pseudoscalar mesons (π and η) in the final result.

k'k

p+ p'-

k'- k

p+ p'-

k'k

k'- k + q

p+ p'-

k'k

k'- k + q

k - q

p+ p'-

k'k

k'- k + q

k' + q

k'k

p+ p'-

k'- k

k'k

p+ p'-

k'- k

p-
p'+

+

+

1

2

1

2

FIG. 4. (Color online) Illustration of the structure of the direct interaction currents displayed in Eq. (3.12). In the diagram the meson
currents j

μ
b are attached to each of the four nucleon lines, but will not be identified as nucleon currents until later.

064001-10



COVARIANT SPECTATOR THEORY OF np . . . PHYSICAL REVIEW C 89, 064001 (2014)

p+ p'-

k'k

k'+ k - P-

1

2
p+ p'-

k'k

k'+ k - P-

k' + q

p+ p'-

k'k

k'+ k - P+

1

2
p+ p'-

k'k

k'+ k - P+

 p'+
p+ p'-

k'k

k'+ k - P+

k - q

+

+

p+ p'-

k'k p-

k'+ k - P-

FIG. 5. (Color online) Illustration of the structure of the exchange interaction currents displayed in Eq. (3.12). The meson currents j
μ
b

attached to the outgoing crossed nucleon lines to are identified with the number of the particle in the final state, so that (for example) the meson
current in the lower right diagram is j

μ
b1 because the outgoing nucleon will become particle 1, even though j

μ
b attaches to particle 2 at the vertex.

Since the projection operators � are linear in p, minimal
substitution gives

�(pi) → e0

2m
γ μ → 1

2m
j

μ
b (q), (3.9)

where j
μ
b is the generalization of the pointlike interaction

current, e0γ
μ, which might arise from the bNN vertex. The

specific structure of j
μ
b will be fixed later. At this point,

conditions on j
μ
b will be determined by demanding that the

interaction current satisfy the two-body WT identity. The effect
of the replacement (3.9) is to construct the interactions currents
from the kernels by replacing, for example, the vertex function
�b(p,p′) by meson current operators using the following
substitution

�b(p,p′) → 1

2m

[
Bb j

μ
b + j

μ
b Bb

]
. (3.10)

In terms of the truncated OBE kernels introduced in (3.3), this
replacement gives, for the contribution coming from vertex
function �b(p,p′),

V
b μ
ββ ′,αα′ (k,p+; k′,p′

−)

= 1

2m
V̊ b

β,β ′ (k,k′)
[
Bbj

μ
b + j

μ
b Bb

]
αα′ (p+,p′

−), (3.11)

where the arguments of the current used originally in
Eq. (2.21), {kP+; k′P−}, are, for convenience, replaced in
this section by the momenta of the individual particles
{k,p+; k′,p′

−}, with p′
− = P− − k′ and p+ = P+ − k. The

labeling of the momenta is illustrated in the bottom row of
Fig. 4.

The exchange terms will have the appropriate indices and
momenta interchanged. Using these truncated OBE kernels
and labeling the momenta of the various terms in the interaction
current as shown in Figs. 4 and 5 leads to the following ansatz
for the reduced interaction current:

Ṽ
μ
ββ ′,αα′ (k,p+; k′,p′

−) = 1

4m

∑
b

{[
Bb j

μ
b + j

μ
b Bb

]
ββ ′ (k,k′) ⊗ V̊ b

αα′ (p+,p′
−) + V̊ b

ββ ′ (k,k′) ⊗ [
Bb j

μ
b + j

μ
b Bb

]
αα′ (p+,p′

−)

± [
Bb j

μ
b + j

μ
b Bb

]
αβ ′(p+,k′) ⊗ V̊ b

βα′ (k,p′
−) ± V̊ b

αβ ′ (p+,k′) ⊗ [
Bb j

μ
b + j

μ
b Bb

]
βα′(k,p′

−)
}
. (3.12)

where the extra factor of 1/2 comes from the symmetrization, Eq. (3.1). Note that the four terms in the first line come from
the direct interaction, with moments labeled as in Fig. 4 [with the top row corresponding to the first two terms dependent on
V̊ b(p+,p′

−) and the bottom row of the figure corresponding to the last two terms dependent of V̊ b(k,k′)]. The four terms in the
second line of Eq. (3.12) come from the exchange interaction, with momenta labeled as in Fig. 5 [with the top row of the figure
corresponding to the first two terms dependent on V̊ b(k,p′

−) and the bottom row corresponding to the last two terms dependent
on V̊ b(p+,k′)]. Using the form (A11) for the WT identity (and expanding the symmetrized kernels in terms of unsymmetrized
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kernels) and writing the unsymmetrized kernels in terms of V̊ b leads to the requirement

qμṼ
μ
ββ ′,αα′ (k,p+; k′,p′

−)

= 1

4m

∑
b

{[
Bb qμj

μ
b + qμj

μ
b Bb

]
ββ ′ (k,k′) ⊗ V̊ b

αα′ (p+,p′
−) + V̊ b

ββ ′ (k,k′) ⊗ [
Bb qμj

μ
b + qμj

μ
b Bb

]
αα′ (p+,p′

−)

± [
Bb qμj

μ
b + qμj

μ
b Bb

]
αβ ′ (p+,k′) ⊗ V̊ b

βα′ (k,p′
−) ± V̊ b

αβ ′ (p+,k′) ⊗ [
Bb qμj

μ
b + qμj

μ
b Bb

]
βα′ (k,p′

−)
}

= e0

2
{Vββ ′,αα′ (k,p−; k′,p′

−) − Vββ ′,αα′ (k,p+; k′,p′
+) + Vββ ′,αα′ (k − q,p+; k′,p′

−) − Vββ ′,αα′ (k,p+; k′ + q,p′
−)

+Vαβ ′,βα′ (p−,k; k′,p′
−) − Vαβ ′,βα′ (p+,k; k′,p′

+) + Vαβ ′,βα′ (p+,k − q; k′,p′
−) − Vαβ ′,βα′ (p+,k; k′ + q,p′

−)}
= e0

2

∑
b

{
V̊ b

ββ ′(k,k′) ⊗ [�b(p−,p′
−) − �b(p+,p′

+)]αα′ + [�b(k − q,k′) − �b(k,k′ + q)]ββ ′ ⊗ V̊ b
αα′ (p+,p′

−)

± V̊ b
αβ ′ (p+,k′) ⊗ [�b(k − q,p′

−) − �b(k,p′
+)]βα′ ± [�b(p−,k′) − �b(p+,k′ + q)]αβ ′ ⊗ V̊ b

βα′ (k,p′
−)

}
, (3.13)

where the terms in the second step must be rearranged in
order to display them in terms of the differences shown
in the last step. Using the general form (3.5) for the �’s,
and recalling that Ab factor contained in the vertex function
�b(p,p′) [recall Eq. (3.6)] only depends on p − p′, it follows
that the differences, when expressed as a matrix in Dirac space
all reduce to the same result

1

2m
[Bb

/q + /qBb] = �b(p−,p′
−) − �b(p+,p′

+)

= �b(k − q,k′) − �b(k,k′ + q)

= �b(k − q,p′
−) − �b(k,p′

+)

= �b(p−,k′) − �b(p+,k′ + q). (3.14)

This in turn shows that the WT identity (3.13) is satisfied if all
the boson currents satisfy the same simple condition

qμ j
μ
b = e0 /q. (3.15)

While this condition is satisfied by the simple ansatz,
j

μ
b = e0 γ μ, this is not a satisfactory choice because it has

a pointlike structure inconsistent with the extended structure
of the nucleon and the mesons being exchanged. There should
be an electromagnetic form factor associated with the γ bNN
vertex. Following the treatment of Ref. [17] this form factor
can be incorporated into a transverse part of the current. One
solution is

j
μ
b (q) = e0 {(FγbNN (Q2) − 1)γ̃ μ + γ μ}, (3.16)

where FγbNN (0) = 1 and the transverse γ̃ μ was defined
in Eq. (2.31). Note that this current is finite as q2 → 0.
Furthermore, when contracted with another conserved current
(or a photon polarization vector) the term proportional to qμ

can be dropped, giving

j
μ
b (q) → e0 FγbNN (Q2) γ μ. (3.17)

The interaction currents (3.16) are very general and provide
very little predictive power. It will now be shown how these
currents can be fixed uniquely by the principle of picture
independence.

C. Constraints imposed by the principal
of picture independence

Previous studies of three-body forces in the CST [19,20]
have shown how the off-shell couplings arising from the
dependence of the vertex functions on the projection operator
�(p) can be removed if their effect is reproduced by adding
other interactions. This leads to two equivalent pictures, to
be denoted in this paper by P1 and P2. Picture P1 is the
original pure OBE interaction model with off-shell couplings.
Picture P2 is a dynamically equivalent model with no off-shell
couplings, but with additional interactions added to reproduce
the effect of the off-shell couplings. The same two pictures can
be described in the electromagnetic interactions of two-body
systems, and requiring that they give an identical description
of the physics leads to strong constraints on the details of the
interaction currents in both pictures.

Begin the discussion by looking at the two pictures up to
fourth order, illustrated in Fig. 6. The action of the off-shell
projection operator � on the nucleon propagator S removes
the internal nucleon line, shrinking neighboring interactions
to a point and replacing some of the box diagrams by triangle
diagrams. A simple box diagram in picture P1 is converted
into three diagrams in P2, a box (without off-shell couplings)
and two triangles. To construct a conserved current using
the methods of Ref. [17], the kernel must be of the form
h(p)Ṽ h(p′) (with Ṽ independent of h), and the triangle
diagrams that emerge from picture P2 are proportional to four
powers of h. Therefore, only if h = 1 is it easy to construct the
exact current operator in both pictures. (It may be possible
to construct the current in picture P2 for the case h �= 1,
but this has not been investigated, and it is not necessary
to do so.) As it turns out, this limitation does not seem to
be serious; it will be shown that the current constructed for
h = 1 is also an acceptable choice for the more general case
when h �= 1.

Each of these two equivalent sets of diagrams suggests its
own current operator. Limiting the discussion to the current of
off-shell particle 2, the current diagrams generated by picture
P1 are shown in Fig. 7, where because of the restriction
h = 1 (for this argument only) the nucleon current jμ → j

μ
0 ,

where j
μ
0 was defined in Eq. (2.35). The single Feynman
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X

a+b a+ b

S

P1

X XX

a a

S

b b
2m

= + +

P2

ab+ba
2m

(1) (2) (3)

FIG. 6. (Color online) Two equivalent pictures of the generic meson interaction up to fourth order. In pictureP1 the fourth-order contribution
is a single box diagram with off shell-couplings represented by the operator �. In picture P2 the single box is rearranged into the three Feynman
diagrams that emerge when the cancellations between � and the nucleon propagator S are exploited using �S = 1/(2m). Here a � hAh′ and
b � hBh′ with A and B given in Eq. (3.5).

box diagram generates four current diagrams, all of which
include contributions from the nucleon current, j

μ
0 and the

interaction current j
μ
b generated from the off-shell � terms

in the bNN interaction. The current diagrams generated by
picture P2 are shown in Fig. 8. Here there are only two
diagrams, since one of the triangle diagrams, Fig. 8(2), does not
have a coupling depending on the triangular loop momentum,
while the other, Fig. 8(3), generates a new current associated
with the momentum-dependent part of the bbNN interaction.

The constraint arising from the principal of picture indepen-
dence requires that the currents appearing in the two pictures
be identical. Since P2 has no bNN interaction current, that
must also vanish for P1, and this will happen only if

j
μ
b (q) = j

μ
0 (q). (3.18)

This requirement also fixes the bbNN current in P2, and the
(infinitely) many other higher order interaction currents that
are a feature of P2. Fortunately, these higher order currents

need not be calculated when using picture P1; they all are a
consequence of the simple OBE interaction current. There is an
equivalence theorem similar to that found in previous studies of
the three body system: the simple interaction currents arising
from a theory with off-shell couplings are equivalent to an
infinite number of very complex interaction currents that arise
from a theory with no off-shell couplings. Further discussion
of this fascinating subject is postponed for a later day.

Note that the constraint (3.18) is possible only because both
currents satisfy the same conditions, (2.36) for j

μ
0 and (3.15)

for j
μ
b . As anticipated, the hadronic structure of the currents

from all boson exchanges are identical (even though their Dirac
structures are different). Complete equivalence also requires
that the magnetic, purely transverse parts of the currents be
identical, a result that might not have been anticipated.

Figure 9 shows that the same conclusions also apply to the
electromagnetic interactions of the on-shell particle 1 [those
interactions giving rise to the (B) diagrams of Fig. 1]. Here

(    )j -2jI(   )j -jI
b

2m

X

a+b a+ b

S

X

a+b a+ b

S S

X

a+ b

S

X

a+b

S

j
b

2m
jI

b
2m

jI

X

a a

S S

X

a

S

X

a

S

j

X

b
2m

b
2m

b
2m

- -

+ + +

(   )j -jI

FIG. 7. (Color online) The single box diagram for picture P1 generates, through a two-step process, four diagrams with the current coupling
to the off-shell particle 2. Here h = h′ = 1 and j � j0 defined in Eq. (2.35) is the nucleon current, and jI � jb, where jb was introduced in
Eq. (3.9).
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X XX

a a

S

b b
2m

+ +

ab+ba
2m

(1) (2) (3)
X

a

S S

aj

X

+

bj2b

4m2

FIG. 8. (Color online) The three diagrams for picture P2 generate only two diagrams with the current coupling to particle 2.

picture P1 retains off-shell couplings and interactions from
those parts of the diagram where particle 1 is off shell. Among
these are the contributions illustrated in Fig. 9(c) and 9(d);
these are interaction currents arising from the projection oper-
ator in the bNN vertex associated with off-shell contributions
of particle 1, even though the particle entering (or leaving)
the interaction is on shell. Again, the off-shell projection
operator cancels the neighboring nucleon propagator, giving
contributions that exactly cancel the interaction current terms
reducing the total result to only two diagrams, Figs. 9(a’) and
9(b’), the same two that would appear in picture P2, insuring
picture equivalence.

Examination of Fig. 9 illustrates another point: in the
framework of picture P1, the exact answer for the combined
electromagnetic contributions from particle 1 [the (B) dia-
grams of Fig. 1 together with the interaction currents from
particle 1] is the result of a cancellation between the off-shell
contributions and the interaction currents. This cancellation
also holds when h �= 1, and will be formulated more precisely
in the next section.

D. Computation of interaction current contributions

The condition (3.18) permits the interaction current to be
reexpressed in terms of four new truncated NN kernels (to

be distinguished from the truncated OBE kernels introduced
above), which are denoted V ��′

(with � = {1,2} and �′ = {i,f }
as described below) and the nucleon current j

μ
0 . Returning

to the notation used in Eq. (2.21) for the arguments of the
current and the kernel, and noting that k and k′ are on shell
(k2 = k′2 = m2), the interaction current is

Ṽ
μ
ββ ′,αα′ (kP+; k′P−) = 1

2m

{
V 2i

ββ ′,αα1
(k,k′; P+) j

μ
0 α1α′ (q)

+ j
μ
0 αα1

(q) V
2f
ββ ′,α1α′ (k,k′; P−)

+V 1i
ββ1,αα′ (k,k′ + q; P+) j

μ
0 β1β ′ (q)

+ j
μ
0 ββ1

(q) V
1f
β1β ′,αα′ (k − q,k′; P−)

}
,

(3.19)

and using the notation kf and ki for four-momenta that are not
necessarily on shell, the truncated NN kernels are

V 1i
ββ ′,αα′ (kf ,ki ; P ) = 1

2

∑
b

{
Bb

ββ ′ ⊗ V̊ b
αα′ (pf ,pi)

±Bb
αβ ′ ⊗ V̊ b

βα′ (kf ,pi)
}

X
a a

X
a+b

S
X

a+ b

S
j

+

a a

j
X

-

a
X

a

-
b

2m
jIb

2m
jI

j -jI(   )
X

S
j

+

aa
X

S

a

j

a
X

+

a
X

a

+ 2m
b

2m
b j -jI(   )

(a) (b) (c) (d)

(a') (b') (c') (d')

FIG. 9. (Color online) The single box diagram for picture P1 generates, again through a two-step process, four diagrams with the current
coupling to the on-shell particle 1. With the constraint (3.18) only the two diagrams depending on a2 survive, giving the same result as
picture P2.
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V
1f
ββ ′,αα′ (kf ,ki ; P ) = 1

2

∑
b

{
Bb

ββ ′ ⊗ V̊ b
αα′ (pf ,pi)

±Bb
βα′ ⊗ V̊ b

αβ ′ (pf ,ki)
}

V 2i
ββ ′,αα′ (k,k′; P ) = 1

2

∑
b

{
Bb

αα′ ⊗ V̊ b
ββ ′ (k,k′)

±Bb
βα′ ⊗ V̊ b

αβ ′ (p,k′)
}

V
2f
ββ ′,αα′ (k,k′; P ) = 1

2

∑
b

{
Bb

αα′ ⊗ V̊ b
ββ ′ (k,k′)

±Bb
αβ ′ ⊗ V̊ b

βα′ (k,p′)
}
, (3.20)

with pi = P − ki and pf = P − kf . Note that the kernel
V 1i accompanies the current j0 of the incoming nucleon 1,
V 1f accompanies the current j0 of the final nucleon 1, V 2i

accompanies the current j0 of the incoming nucleon 2, and
V 2f accompanies the current j0 of the final nucleon 2. Also
observe that, in applications, V 1i always has kf = k (on shell)
and V 1f always has ki = k′ (on shell), so that in no case are
both kf and ki off shell in the same term.

For future reference it is useful to note that V 2i is the
coefficient of the of the off-shell projection operator �(p′),
V 2f the coefficient of the off-shell projection operator �(p),

and, when either k = kf or k′ = ki are off shell, V 1i the
coefficient of the off-shell projection operator �(ki), and V 1f

the coefficient of the off-shell projection operator �(kf ). The
exchange term of the full kernel contains a term proportional
to �(p) ⊗ �(p′) so it is incorrect to expand the full kernel in
a sum of the form V 2f ⊗ �(p) + V 2i ⊗ �(p′), as this would
double count this term. However, in all applications either ki

or kf is on shell, so the full kernel contains no term of the form
�(kf ) ⊗ �(ki), so the expansion

Ṽββ ′,αα′ (kf ,ki ; P )

= V A
ββ ′,αα′ (kf ,ki ; P ) + [

V 1i
ββ1,αα′ (kf ,ki ; P ) �β1β ′ (ki)

+�ββ1 (kf ) V
1f
β1β ′,αα′ (kf ,ki ; P )

]
, (3.21)

is useful, and will be used below.
It is important to realize that even though this interaction

current was fixed here using the principle of picture indepen-
dence in the case when h = 1, it still satisfies the two-body WT
identity and hence is an acceptable choice for the interaction
current, even in the general case when h �= 1.

Matrix elements of the interaction currents involve integrals
over the initial and final three-momenta. Inserting the general
result (3.19) for the interaction current into the interaction
current term in Eq. (2.15), and writing the reduced kernels in
terms of their three independent four-vector arguments, gives
the somewhat simplified result

〈V μ〉 =
∫

k

∫
k′

�
λ

λnα
(k,P+) h(p+)Ṽ μ

λnλ′
n,αα′ (k P+; k′ P−) h(p′

−) �λ′
α′λ′

n
(k′,P−)

= 1

2m

∫
k

∫
k′

�
λ

λnα
(k,P+) h(p+)

[
V 2i

λnλ′
n,αα1

(k,k′; P+) j
μ
0 α1α′ (q) + j

μ
0 αα1

(q) V
2f
λnλ′

n,α1α′ (k,k′; P−)

+V 1i
λnβ,αα′ (k,k′ + q; P+) j

μ
0 βλ′

n
(q) + j

μ
0 λnβ

(q) V
1f
βλ′

n,αα′ (k − q,k′; P−)
]
h(p′

−) �λ′
α′λ′

n
(k′,P−). (3.22)

Further insight and a check on these results can be found in Appendix E, where it is shown how this expression for the exchange
current reduces to (2.52) when q → 0.

At this point it is convenient to rewrite the interaction current (3.22) in another form, which will remove any reference to the
truncated kernels, and display the current in a form similar to that found already in diagrams (A) and (B). To this end, recall the
relativistic wave equations for the bound state, Eq. (A2), and use these to introduce convenient truncated vertex functions defined by

S−1
αα′ (p−)�(2)λ′

α′λn
(k,P−) = −h(p−)

∫
k′

�αα1 (p−)V 2f
λnλ′

n,α1α′(k,k′; P−) h(p′
−)�λ′

α′λ′
n
(k′,P−)

(3.23)
�

(2)λ
λ′

nα
′(k′,P+)S−1

α′α(p′
+) = −

∫
k

�
λ

λnα
(k,P+) h(p+) V 2i

λnλ′
n,αα′′ (k,k′; P+) �α′′α(p′

+) h(p′
+),

where � restores the factor originally removed from the definition (3.20), so that �(p−)V 2f (k,k′; P−) is that part of the kernel
proportional to �(p−). Because 2mS(p−) = �−1(p−), the factors of S−1 and 2m� can be dropped from both sides of the
equation, giving

2m�
(2)λ′
αλn

(k,P−) = −h(p−)
∫

k′
V

2f
λnλ′

n,αα′ (k,k′; P−) h(p′
−)�λ′

α′λ′
n
(k′,P−)

(3.24)
2m�

(2)λ
λ′

nα
′(k′,P+) = −

∫
k

�
λ

λnα
(k,P+) h(p+) V 2i

λnλ′
n,αα′ (k,k′; P+) h(p′

+).

While these equations are are simpler to use analytically, the original versions (3.23) are easier to work with numerically because
their kernels are easily recognizable parts of the full kernel used in the original bound-state equations. The wave function �(2)

is a convenient object because it can be computed at the same time the wave function � is computed, removing all of the details
of the OBE model from the computations of the form factors.
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Similar equations hold for the V 1 kernels, but here both nucleons are off shell, so the equations take a slightly different form,
similar to Eqs. (A7)

G(1)λ′
αβ (k − q,P−) = −h(k − q)h(p+) �ββ ′ (k − q)

∫
k′

V
1f
β ′λ′

n,αα′ (k − q,k′; P−) h(p′
−) �λ′

α′λ′
n
(k′,P−)

(3.25)
G(1)λ

βα′ (k′ + q,P+) = −
∫

k

�
λ

λnα
(k′,P+) h(p+) V 1i

λnβ ′,αα′ (k,k′ + q; P+) �β ′β(k′ + q) h(k′ + q)h(p′
−),

where here it is convenient to work directly with G. These equations are rewritten by moving the � projection operators to the
other side, and dividing by the strong form factors (converting G → G̃), giving

2m Sββ ′ (k − q)G̃(1)λ′
αβ ′ (k − q,P−) = −

∫
k′

V
1f
βλ′

n,αα′ (k − q,k′; P−) h(p′
−) �λ′

α′λ′
n
(k′,P−)

(3.26)
2m G̃(1)λ

β ′α′ (k′ + q,P+)Sβ ′β(k + q) = −
∫

k

�
λ

λnα
(k′,P+) h(p+) V 1i

λnβ,αα′ (k,k′ + q; P+).

As shown below, the vertex function G(1) will soon be replaced by another more useful object.
Substituting (3.24) and (3.26) into (3.22), the matrix element of the interaction current breaks into two terms:

〈V μ〉 = 〈
V

μ
2

〉 + 〈
V

μ
1

〉
, (3.27)

where

〈
V

μ
2

〉 = −
∫

k

{
�

λ

λnα
(k,P+)

h+
h−

j
μ
0 αα′ (q)�(2)λ′

α′λn
(k,P−) + �

(2)λ
λnα

(k,P+)
h−
h+

j
μ
0 αα′ (q) �λ′

α′λn
(k,P−)

}
〈
V

μ
1

〉 = −
∫

k

G̃λ

λnα
(k,P+)[h2

+S+]αα′ G̃(1)λ′
α′β ′ (k − q,P−) j

μ
0 λnβ

(q) Sββ ′ (k − q)

+ G̃(1)λ

β ′α′ (k + q,P+)[h2
−S−]αα′ G̃λ′

α′λ′
n
(k,P−) Sβ ′β(k + q) j

μ
0 βλ′

n
(q)

]
, (3.28)

with h± = h(p±) and S± = S(p±), and the order of some of the terms has been interchanged, possible because the indices are
shown on all matrices. The matrix element 〈V μ

2 〉 is expressed in terms of wave functions, � = S G, while the matrix element
〈V μ

1 〉 is expressed entirely in terms of reduced vertex functions, G̃. This facilitates comparison with the expressions for diagrams
(A) and (B). Replacing the sum over on-shell spinors by the projection operator, and removing the charge conjugation matrices
permits each of these matrix elements to be written as a trace. The result is

〈
V

μ
2

〉 =
∫

k

tr

[{
�

λ

0(k,P+)
h+
h−

j
μ
0 (q)�(2)λ′

0 (k,P−) + �
(2)λ
0 (k,P+) j

μ
0 (q)

h−
h+

�λ′
0 (k,P−)

}
�(−k)

]
(3.29a)

〈
V

μ
1

〉 =
∫

k

tr [�̃λ(k,P+)h2
+S+�̃(1)λ′

(k − q,P−)S(−k + q) j
μ
0 (q) �(−k)

+ �̃
(1)λ

(k + q,P+)h2
−S−�̃λ′

(k,P−) �(−k) j
μ
0 (q) S(−k − q)] (3.29b)

=
∫

k

mEk

k · q
tr

{
1

k0
�̃λ(k̃+,P+) Sd (p̃) �̃(1)λ′

(k̃−,P−) �(−k̃−) j
μ
0 (q) �(−k̃+)|k0=E+

− 1

k0
�̃

(1)λ
(k̃+,P+) Sd (p̃) �̃λ′

(k̃−,P−) �(−k̃−) j
μ
0 (q) �(−k̃+)|k0=E−

}
, (3.29c)

where the result (3.29c) for 〈V μ
1 〉 was obtained by shifting k → k + 1

2 q in the first term and k → k − 1
2 q in the second, recalling

that Sd (p̃) = h2(p̃)S(p̃), and using (2.46) and the notation of Eq. (2.49). While the expression (3.29c) for 〈V μ
1 〉 looks similar to

the expression (2.48) for J
μ
B± , it differs in the fact that the two factors in the brackets { } do not cancel when q → 0 as they do

in (2.48). In (3.29c) the apparent singularity at q → 0 is canceled by the behavior of the terms �̃(1)(k,P )�(−k), each of which
vanish when q → 0.

E. Combined result

The results for the interaction currents can now be combined with the formulas for the (A) and (B) diagrams, displaying the
cancellations between the interaction current and contributions from the (B) diagrams, discussed diagrammatically in Sec. III C.

064001-16



COVARIANT SPECTATOR THEORY OF np . . . PHYSICAL REVIEW C 89, 064001 (2014)

Combining (2.45) and (3.29a) gives

J
μ
λλ′ (q)|A+V2 = −

∫
k

tr

[{
�

λ

0(k,P+)jμ(p+,p−)�λ′
0 (k,P−) − �

λ

0(k,P+)
h+
h−

j
μ
0 (q)�(2)λ′

0 (k,P−)

−�
(2)λ
0 (k,P+) j

μ
0 (q)

h−
h+

�λ′
0 (k,P−)

}
�(−k)

]
. (3.30)

Combining (2.48) and (3.29c) gives

J
μ
λλ′(q)|B+V1 =

∫
k

[
mEk

k · q

]
tr

{
1

k0
�̂

λ

BS (̃k+,P+) Sd (p̃) �̃λ′
(̃k−,P−)�(−k̃−) j

μ
0 (q) �(−k̃+)|k0=E−

− 1

k0
�̃

λ

(̃k+,P+) Sd (p̃) �̂λ′
BS (̃k−,P−)�(−k̃−) j

μ
0 (q) �(−k̃+)|k0=E+

}
. (3.31)

where we introduced a new vertex function

�̂λ
BS (̃k,P ) ≡ �̃λ(̃k,P ) − �̃(1)λ (̃k,P ), (3.32)

which is the result of the cancellations between the (B) diagram contributions, �̃, and the exchange currents arising from particle
1, �̃(1). Using the subscript “BS” on this amplitude reminds us that it is a vertex functions with both of the final nucleons off
shell, and hence has the structure of a Bethe-Salpeter vertex function. However, as discussed in Sec. III F, this is obtained by
quadratures from the CST wave functions, and hence would differ from that obtained from the solution of a BS equation.

The complete result for the deuteron current is the sum of the two terms (3.30) and (3.31). This is the final result of this paper;
further reductions of these results must await the discussions in Ref. II.

F. Computation of the BS vertex functions

The BS vertex functions, �̂BS , that enter into Eq. (3.31) are computed from a generalization of Eq. (A7). Going to the rest
frame, removing the on-shell spinors, and writing the result for the reduced vertex function allows (A7) to be written in the form

G̃λ′
αβ (kf ,P ) = [

�̃λ′
BS(kf ,P )C]

αβ
= −

∫
k′

Ṽββ ′′,αα′ (kf ,k′; P ) h(p′)�λ′
α′β ′(k′,P )�T

β ′β ′′ (k′)
(3.33)

G̃λ
β ′α′(k′

i ,P ) = [C �̃
λ

BS(k′
i ,P )

]
β ′α′ = −

∫
k

�T
β ′′β(k)�

λ

βα(k,P )h(p)Ṽβ ′′β ′,αα′ (k,k′
i ; P ),

where, reflecting the fact that these equations are used under a double integral, the role of k and k′ and the indices have been
interchanged in the two equations, and the off-shell momenta are distinguished by another subscript: kf or k′

i . The off-shell
dependence in these equations comes entirely from the kernel; the wave function under the integral (which depends on k′2 = m2

or k2 = m2) contains none of this dependence. Multiplying (3.26) by � gives the the �̂’s needed in (3.31)[
�̂λ′

BS(kf ,P )C]
αβ

≡ [(�̃λ′
(kf ,P ) − �(1)λ′

(kf ,P ))C]αβ

= −
∫

k′

[
Ṽββ ′′,αα′ (kf ,k′; P ) − �ββ1 (kf )V 1f

β1β ′′,αα′ (kf ,k′; P )
]
h(p′)�λ′

α′β ′ (k′,P )�T
β ′β ′′ (k′)

= −
∫

k′
V̂ββ ′′,αα′ (kf ,k′; P ) h(p′)�λ′

α′β ′(k′,P )�T
β ′β ′′ (k′) (3.34a)

[C�̂
λ

BS(k′
i ,P )

]
β ′α′ ≡ [C(�̃λ(k′

i ,P ) − �
(1)λ

(k′
i ,P ))]β ′α′

= −
∫

k

�T
β ′′β(k)�

λ

βα(k,P ) h(p)[Ṽβ ′′β ′,αα′ (k,k′
i ; P ) − V 1i

β ′′β1,αα′ (k,k′
i ; P )�β1β ′ (k′

i)]

= −
∫

k

�T
β ′′β(k)�

λ

βα(k,P ) h(p)V̂β ′′β ′,αα′ (k,k′
i ; P ), (3.34b)

where V̂ is the kernel without any off-shell projection operators �(k) in the numerator [or �(k′) for the conjugate equation], and
�̂BS is the vertex function computed from this kernel. Since there is no � associated with the on-shell particle, and the � factor
that would be present when the particle is off shell has been canceled, the expansions (3.21) show immediately that [returning to
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the notation of Eq. (3.21)]

V̂ββ ′,αα′ (kf ,ki ; P ) = V A
ββ ′,αα′ (kf ,ki ; P ), (3.35)

where V A is defined by the expansion (3.21), and either kf or ki may be off shell, but not both. The �̂BS vertex functions have
the full BS structure (depending on two four-momenta that are both off shell), but, as previously emphasized, this dependence
arises only from the dependence of the truncated kernels (3.35) on the off-shell four-momenta kf (or ki) and not on the wave
functions � (or �̄) from which they are calculated.
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APPENDIX A: DERIVATION OF THE TWO-BODY WT IDENTITY

Using the WT identity (2.25) for the dressed single nucleon current, and recalling that the wave functions and vertex functions
include the nucleon form factors, the divergence of the current (2.15) reduces to

qμJμ(q) =
∫

k

{
�

λ

λnα
(k,P+) e0

[
h(p+)

h(p−)
S−1(p−) − h(p−)

h(p+)
S−1(p+)

]
αα′

�λ′
α′λn

(k,P−)

+
∫

k′
�

λ

λnα
(k,P+)

[
qμV

μ
λnλ′

n,αα′ (k P+; k′ P−)
]
�λ′

α′λ′
n
(k′,P−)

}

+ e0

∫
k+

�
λ

λnα
(k̂+,P+)

Gλ′
αβ(k−,P−)

h(k−)
ūT

β (k+,λn) − e0

∫
k−

uT
β ′ (k−,λn)

Gλ

β ′α′ (k+,P+)

h(k+)
�λ′

α′λn
(k̂−,P−). (A1)

Note that the last two integrals are over k± [with the Ek → E± in (2.12)], and the transpose label is retained on the spinors ū and
u in the last two terms, as would be required if we were to drop the Dirac indices [with the indices shown, the transpose symbol
is not necessary].

The requirement that the current be conserved [qμJμ(q) = 0] converts Eq. (A1) into a constraint on the divergence of the
interaction current. In the first term [arising from the divergence of diagram (A)] we use the two-body CST equation (2.11) to
remove the inverse propagators. Writing this equation and its conjugate in terms of the reduced kernel defined in Eq. (2.21)

S−1
αα′ (p−) �λ′

α′λn
(k,P−) = −h(p−)

∫
k′

Ṽλnλ′
n,αα′ (k,k′; P−) h(p′

−)�λ′
α′λ′

n
(k′,P−)

(A2)

�
λ

λ′
nα

(k′,P+) S−1
αα′ (p′

+) = −
∫

k

�
λ

λnα
(k,P+) h(p+) Ṽλnλ′

n,αα′ (k,k′; P+) h(p′
+),

pulling out the on-shell spinors from the kernels from Ṽλnλ
′
N ,αα′ using

Ṽλλ′,αα′ (k,k′; P ) = ūβ(k,λ) Ṽββ ′,αα′ (k,k′; P ) uβ ′ (k′,λ′), (A3)

gives the following contribution from diagram (A)

qμJμ(q)|(A) = e0

∫
k

∫
k′

�
λ

λnα
(k,P+) uβ(k,λn)h(p+) �Ṽ

(A)
ββ ′,αα′ (kP+; k′P−) h(p′

−) uβ ′ (k′,λ′
n)�λ′

α′λ′
n
(k′,P−). (A4)

with

�Ṽ
(A)
ββ ′,αα′ (kP+; k′P−) ≡ Ṽββ ′,αα′ (k,k′; P+) − Ṽββ ′,αα′ (k,k′; P−). (A5)

Note that, if the reduced kernel is independent of the total four-momentum P (not generally the case), diagram (A) is conserved.
In the last two terms of (A1) [which arise from the (B) diagrams] we shift k+ → k in the first term (which also shifts k̂+ → k

and k− → k − q), and k− → k in the second term (which also shifts k̂− → k and k+ → k + q), giving

qμJμ(q)|(B) = e0

{ ∫
k

�
λ

λnα
(k,P+)

Gλ′
αβ(k − q,P−)

h(k − q)
ūT

β (k,λn) − uT
β ′ (k,λn)

Gλ

β ′α′(k + q,P+)

h(k + q)
�λ′

α′λn
(k,P−)

}
. (A6)
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- -+
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FIG. 10. (Color online) Diagrammatic representation of the two-body WT identity (A11). Momentum q flows into each diagram (as
illustrated by the arrow) at the location of the red dot. The momenta are defined in the text.

Next, use the generalization of (A2) to the cases when both nucleons are off shell to express G in terms of V �. The equations
we need, factoring out the on-shell spinors, are

Gλ′
αβ(k − q,P−) ūT

β (k,λn) = − h(k − q)h(p+)
∫

k′
ūβ(k,λn)Ṽββ ′,αα′ (k − q,k′; P−) h(p′

−) uβ ′ (k′,λ′
n)�λ′

α′λ′
n
(k′,P−)

(A7)

uT
β ′ (k,λ′)Gλ

β ′α′(k′ + q,P+) = −
∫

k

�
λ

αλ(k′,P+)ūβ(k,λn) h(p+) Ṽββ ′,αα′ (k,k′ + q; P+)uβ ′ (k,λ′
n) h(k′ + q)h(p′

−),

where p± = P∓ − (k ∓ q) = P± − k for both primed and unprimed variables. In both equations the transpose label on the
spinors on the left-hand side of each equation can be dropped because the order of the terms is already appropriate for matrix
multiplication. Substituting the relations (A7) into (A6) makes it possible to write the divergence of the interaction current as an
operator relation. Requiring qμJμ(q) = 0, and reorganizing Eq. (A1), gives∫

k

∫
k′

�
λ

λα(k,P+) ūβ(k,λ) h(p+)
[
qμṼ

μ
ββ ′,αα′ (k P+; k′ P−)

]
h(p′

−) uβ ′(k′,λ′) �λ′
α′λ′(k′,P−)

= e0

∫
k

∫
k′

�λ
λα(k,P+)ūβ(k,λ) h(p+)

[
�Ṽ

(A)
ββ ′,αα′ (kP+; k′P−) − �Ṽ

(B)
ββ ′,αα′ (kP+; k′P−)

]
h(p′

−) uβ(k′,λ′)�λ′
α′λ′(k′,P−), (A8)

where the new �Ṽ from diagram (B) is

�Ṽ
(B)
ββ ′,αα′ (kP+; k′P−) ≡ Ṽββ ′,αα′ (k,k

′ + q; P+) − Ṽββ ′,αα′ (k − q,k′; P−) (A9)

and in every term k2 = m2 and k′2 = m2, so that the off-shell momenta are clearly identified. In operator form this gives Eq. (2.51),
one form of the two-body WT identity.

Alternatively, writing the kernels in terms of the four-momenta of particles 1 and 2, {k,p}, in both the initial and final state,
so that the three independent momenta are expressed in terms of four dependent momenta

V (k,k′; P ) ≡ V (k,p; k′,p′) (A10)

the identity (2.51) can be written in a second form

qμṼ
μ
ββ ′,αα′ (k,p+; k′,p′

−) = e0[Ṽββ ′,αα′ (k,p−; k′,p′
−) − Ṽββ ′,αα′ (k p+; k′,p′

+)

+ Ṽββ ′,αα′ (k − q,p+; k′,p′
−) − Ṽββ ′,αα′ (k,p+; k′ + q,p′

−)], (A11)

which is illustrated in Fig. 10.

APPENDIX B: EVALUATION OF THE DERIVATIVE TERM IN EQ. (2.54)

Expanding the derivative term in Eq. (2.54) (relabeling k̃ → k and p̃ → p for convenience and recalling that ∂/∂k0 = −∂/∂p0)

J 0
λλ′ (0)

∣∣
B±

=
∫

k

m

Ek

{
�̃

λ

βα(k,P )
∂

∂p0
[h2(p)S(p)]αα′ �̃λ′

α′β ′(k,P ) [�(−k) e0γ
0 �(−k)]ββ ′

− ∂

∂k0

[
�̃λ

βα(k,P )
]

[h2(p)S(p)]αα′ �̃λ′
α′β ′(k,P ) [�(−k) e0γ

0 �(−k)]ββ ′

− �̃λ
βα(k,P ) [h2(p)S(p)]αα′

∂

∂k0
[�̃λ′

α′β ′(k,P )] [�(−k) e0γ
0 �(−k)]ββ ′

− Ek �̃λ
βα(k,P ) [h2(p)S(p)]αα′ �̃λ′

α′β ′(k,P )
∂

∂k0

[
�(−k) e0γ

0 �(−k)

k0

]
ββ ′

}∣∣∣∣
k2=m2

. (B1)
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The first term gives a contribution equal to the RIA. To see this, recall Eq. (2.28) and note that

∂

∂p0
[h2(p)S(p)] = ∂

∂p0
Sd (p) = Sd (p)

1

h2

[
γ 0 + 2m

h2

∂h2

∂p0
�(p)

]
Sd (p) =

(
1

e0

)
h2(p) S(p)j 0(p,p)S(p), (B2)

and use (true when k2 = m2)

[�(−k) γ 0 �(−k)]ββ ′ = −Ek

m
�ββ ′(−k), (B3)

to reduce the first term to (absorbing one factor of h(p) into �̃ converting it to �)

J 0
λλ′ (0)

∣∣1stterm
B±

= −
∫

k

�
λ

βα(k,P ) [S(p)j 0(p,p)S(p)]αα′ �λ′
α′β ′ (k,P )�β ′β(−k), (B4)

which is identical to the RIA [Eq. (2.45) when q → 0], if we recall the definition (2.9).
Next show that the last term is zero. For k2 �= m2, use

�(−k)γ 0�(−k) = −k0

m
�(−k) + m2 − k2

4m2
γ 0 (B5)

so that

∂

∂k0

[
�(−k) γ 0 �(−k)

k0

]∣∣∣∣
k2=m2

= γ 0

2m2
− γ 0

2m2
= 0. (B6)

Finally, using (B3) the remaining two terms reduce to

J 0
λλ′(0)

∣∣2+3 terms
B±

= e0

∫
k

{
∂

∂k0

[
�̃λ

βα(k,P )
]
h2(p)Sαα′ (p) �̃λ′

α′β ′(k,P ) �β ′β(−k)

+ �̃λ
βα(k,P ) h2(p)Sαα′ (p)

∂

∂k0

[
�̃λ′

α′β ′ (k,P )
]
�β ′β(−k)

}∣∣∣∣
k2=m2

. (B7)

Now use (2.13) and the properties of the charge conjugation matrix to replace the projection operator �(−k) by the sum over
positive energy spinors

�β ′β(−k) = −Cβ ′γ ′�T
γ ′γ (k) Cγβ = −

∑
λn

Cβ ′γ ′uT
γ ′ (k,λn)ūT

γ (k,λn) Cγβ . (B8)

This expression can be written

J 0
λλ′(0)

∣∣∣2+3 terms

B±
= −e0

∫
k

{
∂

∂k0

[G̃λ
λnα

(k,P )
]
h2(p)Sαα′ (p) G̃λ′

α′λn
(k,P )

+ G̃λ
λnα

(k,P ) h2(p)Sαα′(p)
∂

∂k0

[G̃λ′
α′λn

(k,P )
]}∣∣∣∣

k2=m2

. (B9)

Now, using Eq. (A7) for the vertex functions (removing external factors of h and relabeling some of the variables with an eye to
the final result)

G̃λ′
αλn

(k,P ) = −
∫

k′
Ṽλnλ′

n,αα′ (k,k′; P ) h(p′) �λ′
α′λ′

n
(k′,P )

(B10)

G̃λ
λ′

nα
′(k′,P ) = −

∫
k

�
λ

λnβ
(k,P ) h(p) Ṽλnλ′

n,αα′ (k,k′; P ),

to rewrite (B9)

J 0
λλ′(0)

∣∣2+3 terms
B±

= e0

∫
k

∫
k′

�
λ

λnα
(k,P ) h(p)

[(
∂

∂k′
0

+ ∂

∂k0

)
Ṽλnλ′

n,αα′ (k,k′; P )

]
αα′

h(p′) �λ′
α′λ′(k′,P ). (B11)

Note that these terms cancel the corresponding derivatives in the interaction current giving the result reported in
Eq. (2.54).
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APPENDIX C: ALTERNATIVE TREATMENTS OF THE NORMALIZATION CONDITION

Expanding the first term in Eq. (2.55) using (2.29) gives

2e0

∫
k

�λ
λnα

(k,P )

{
γ 0

αα′ + 4m

h

∂h

∂P0
�αα′ (p)

}
�λ′

α′λn
(k,P )

= 2e0

∫
k

{
�λ

λnα
(k,P ) γ 0

αα′ �
λ′
α′λn

(k,P ) + 1

h

∂h

∂P0

(
�λ

λnα
(k,P )Gλ′

αλn
(k,P ) + Gλ

λnα
(k,P )�λ′

αλn
(k,P )

)}

= 2e0

∫
k

{
�λ

λnα
(k,P ) γ 0

αα′ �
λ′
α′λn

(k,P ) −
∫

k′

(
�λ

λnα
(k,P )

[
∂h(p)

∂P0
Ṽλnλ′

n,αα′ (k,k′; P )h(p′)
]
�λ′

α′λ′
n
(k′,P )

+�λ
λ′

nα
′ (k,P )

[
h(p′)Ṽλ′

nλn,α′α(k′,k; P )
∂h(p)

∂P0

]
�λ′

αλn
(k,P )

)}
, (C1)

where use has been made of the fact that p = P − k to replace ∂/∂p0 → ∂/∂P 0. In the second line we used the definition of
G [recall Eq. (2.8)] and in the third line we replaced the reduced G̃ = G/h by the integral equation from which it is calculated.
Finally, renaming some repeated indices, and defining the derivative of the kernel with the reduced part held constant

∂

∂P 0

∣∣∣∣
Ṽ

V λnλ′
n,αα′ (k,k′; P ) = ∂h(p)

∂P0
Ṽλnλ′

n,αα′ (k,k′; P ) h(p′) + h(p) Ṽλnλ′
n,αα′ (k,k′; P )

∂h(p′)
∂P0

(C2)

gives

2e0

∫
k

�λ
λnα

(k,P ) j 0
αα′ (p,p) �λ′

α′λn
(k,P )

= 2e0

∫
k

�λ
λnα

(k,P ) γ 0
αα′ �

λ′
α′λn

(k,P ) − 2e0

∫
k

∫
k′

�λ
λnα

(k,P )
∂

∂P 0

∣∣∣∣
Ṽ

V λnλ′
n,αα′ (k,k′; P )�λ′

α′λ′
n
(k′,P ). (C3)

Using this result, and adding in the second term from Eq. (2.55), which together with (C2) gives the derivative of the full kernel
V , gives the alternate form for the normalization condition

2md ed = 2e0

∫
k

�λ
λnα

(k,P ) γ 0
αα′ �

λ′
α′λn

(k,P ) − 2e0

∫
k

∫
k′

�λ
λnα

(k,P )
∂

∂P 0

[
V λnλ′

n,αα′ (k,k′; P )
]
�λ′

α′λ′
n
(k′,P ). (C4)

The implications of the equivalence this form of the normalization condition with Eq. (2.55) has already been discussed in
Sec. II H.

APPENDIX D: CANCELLATIONS FOR TERMS DEPENDING ONLY ON MOMENTUM TRANSFER

As stated in Sec. III A any kernel that depends only on the exchanged momentum will not contribute to the right-hand side of
the two-body WT identity (A11). To prove this statement, use (3.1) to write the interaction as

Ṽββ ′,αα′ (k,p; k′,p′) = 1
2 [Vββ ′,αα′ (k,p; k′,p′) ± Vαβ ′,βα′ (p,k; k′,p′)]

= 1
2 [Vββ ′,αα′ (qd ) ± Vαβ ′,βα′ (qe)], (D1)

where the first term is the direct term (with momenta and Dirac indices labeled as in Ṽ ) and the second is the exchange term
(with momenta and Dirac indices of the final-state particles exchanged from Ṽ ). Because four-momentum is conserved in the
CST, the momentum transfer for the direct and exchange terms can be written in two different ways

qd = k′ − k = p − p′ qe = k′ − p = k − p′. (D2)

Using this property we see immediately that the following relations hold (where the Dirac indices, the same for all terms, are
suppressed, but the momentum labeling shows that the first two lines are for direct terms and the last two for exchange terms)

V (k,p−; k′,p′
−) = V (k,p+; k′,p′

+) = V (k′ − k)

V (k − q,p+; k′,p′
−) = V (k,p+; k′ + q,p′

−)

= V (k′ − k + q)

V (p−,k; k′,p′
−) = V (p+,k; k′ + q,p′

−) (D3)

= V (k′ + k − P−)

V (p+,k − q; k′,p′
−) = V (p+,k; k′,p′

+)

= V (k′ + k − P+).
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Denoting the indices {ββ ′,αα′} by d (for direct), and {αβ ′,βα′} by e (for exchange), and using the relations (D3), the two-body
WT identity (A11) can be written

qμṼ
μ
ββ ′,αα′ (k,p+; k′,p′

−) =e0

2
[Vd (k,p−; k′,p′

−) ± Ve(p−,k; k′,p′
−) − Vd (k,p+; k′,p′

+) ∓ Ve(p+,k; k′,p′
+)

+ Vd (k − q,p+; k′,p′
−) ± Ve(p+,k − q; k′,p′

−) − Vd (k,p+; k′ + q,p′
−) ∓ Ve(p+,k; k′ + q,p′

−)]

=e0

2
[Vd (k′ − k) ± Ve(k′ + k − P−) − Vd (k′ − k) ∓ Ve(k′ + k − P+)

+ Vd (k′ − k + q) ± Ve(k′ + k − P+) − Vd (k′ − k + q) ∓ Ve(k′ + k − P−)] = 0, (D4)

where, in the last expression, the four terms in the first line come from diagram (A) and the last four from diagrams (B)±.
Both direct and exchange terms cancel in pairs, but the direct terms from diagrams (A) and (B) cancel separately, while the
cancellation of the exchange terms requires contributions from both diagrams. Note that this cancellation takes place even though
the exchange terms depend on the total momentum P+ and P−.

APPENDIX E: q → 0 LIMIT OF EQ. (3.19)

The q → 0 limit of (3.19) follows straightforwardly from the limit j
μ
0 (0) = e0γ

μ. Letting P+ and P− approach P gives

Ṽ
μ
ββ ′,αα′ (kP ; k′P ) = e0

2m

{
V 2i

ββ ′,αγ (k,k′; P ) γ
μ
γα′ + γ μ

αγ V
2f
ββ ′,γ α′ (k,k′; P ) + V 1i

βγ,αα′ (k,k′; P ) γ
μ
γβ ′ + γ

μ
βγ V

1f
γβ ′,αα′ (k,k′; P )

}
. (E1)

To demonstrate that this is equivalent to (2.52), consider the derivatives of the reduced kernel. Introducing the operator

Dμ = −2e0
∂

∂Pμ

− e0
∂

∂kμ

− e0
∂

∂k′
μ

. (E2)

and using the fact that the action of this operator on any terms that depend only on the momentum of the exchanged meson [for
example (k′ − k)2 for the direct terms or (P − k − k′)2 for exchange terms] will give zero, means that only the terms with a
factor of � will contribute. Furthermore, using the fact that

Dμ�(k) = Dμ�(k′) = Dμ�(P − k) = Dμ�(P − k′) = e0
γ μ

2m
(E3)

permits the result to be written directly in terms of the truncated kernels. If k and k′ are off-shell, so that the kernel Ṽ includes
the factors of �(k) and �(k′), then the result is

DμṼββ ′,αα′ (k,k′; P )
∣∣
k,k′off

= e0

2m

{
V 2i

ββ ′,αγ (k,k′; P ) γ
μ
γα′ + γ μ

αγ V
2f
ββ ′,γ α′ (k,k′; P ) + V 1i

βγ,αα′ (k,k′; P ) γ
μ
γβ ′ + γ

μ
βγ V

1f
γβ ′,αα′ (k,k′; P )

}
, (E4)

proving that (3.19) and (2.52) are identical. However, if particle 1 is on-shell, the kernel will not include any factors of �(k) and
�(k′), so that the result is

DμṼββ ′,αα′ (k,k′; P )
∣∣
k,k′on = e0

2m

{
V 2i

ββ ′,αγ (k,k′; P ) γ
μ
γα′ + γ μ

αγ V
2f
ββ ′,γ α′ (k,k′; P )

}
. (E5)
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