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Neutrino diffusive transport in hot quark matter: A detailed analysis
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We perform an extensive analysis of neutrino diffusion in quark matter within the MIT bag model at arbitrary
temperature and degeneracy. We examine in detail the contribution of each of the relevant weak interaction
processes to the total neutrino opacity and evaluate the effect of the strange quark mass, the bag constant, and
the QCD perturbative corrections to the MIT bag model. We also investigate the anisotropic contribution to the
neutrino distribution function in scatterings, the mean energy transfer, and the mean scattering angle. The density
and temperature dependence of the diffusion coefficients Dn that govern the cooling and deleptonization of a
compact star is shown in detail. Finally, our numerical results for the neutrino mean free paths are compared
against known analytic approximations. We conclude that neutrino scattering constitutes a significant portion of
the total neutrino opacity in leptonized quark matter, and neutrino-quark scattering is, in general, very similar to
neutrino-electron scattering with respect to both mean energy transfer per scattering and mean scattering angle.
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I. INTRODUCTION

Compact stellar objects containing deconfined quark matter
have been envisaged since long ago [1–5]. According to
theoretical studies, such objects could be formed if the density
inside a purely hadronic star goes beyond a critical density [6].
This may happen due to accretion onto a cold hadronic star in
a binary system, as a consequence of cooling, deleptonization,
and fallback accretion during the protoneutron star phase
of a just-born compact star, due to spin-down of a fast
rotating star, or by more exotic mechanisms such as strangelet
contamination [7–9]. The conversion of the star presumably
begins through the formation of a small quark matter seed that
grows at the expenses of the gravitational energy extracted
from the contraction of the object and/or through strongly
exothermic combustion processes [10–14]. All these scenarios
lead to the formation of hot and neutrino rich quark matter
occupying the whole compact object (strange star) or its core
(hybrid star).

A full comprehension of the above mechanisms requires
detailed knowledge of the neutrino transport in quark matter.
In fact, neutrino interactions in neutron star matter have
been studied in detail for a long time now. Most of the
early contributions were given in the form of approximate
treatments focused on a particular state of neutrino degeneracy:
neutrinos were considered to be either nondegenerate or highly
degenerate. From these works, those that are particularly
important for the present analysis have been summarized by
Iwamoto [15], with emphasis on neutrino interactions in quark
matter.

Extensive numeric analyses for arbitrary temperatures,
densities, and neutrino level of degeneracy, however, are not
so abundant. In this case, we may cite the works of Reddy and
Prakash [16] and Reddy, Prakash, and Lattimer [17], where
neutrino interactions in hadronic neutron star matter with the
possible presence of hyperons have been studied.
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Works focused on neutrino interactions in quark matter at
arbitrary conditions are even rarer, and the reference for this
topic is usually the paper of Steiner, Prakash, and Lattimer
[18]. In that work, the authors analyze the neutrino diffusion
coefficients in the interior of a hybrid star containing a mixed
quark-hadron phase, and quark matter was described using the
MIT bag model with a fixed bag constant B = 200 MeV/fm3.

In the present work, we intend to fill the gap in the literature
represented by the lack of studies exploring general aspects
of neutrino interactions and diffusive neutrino transport in
quark matter in general conditions. We describe quark matter
using the MIT bag model and analyze the influence of its
three possible free parameters—the bag constant B, the mass
of the strange quark ms , and the strong coupling constant
αc—on the neutrino mean free paths and energy-averaged
diffusion coefficients. We pay particular attention to the
relative contributions of absorption and scattering to the total
neutrino opacity, and how neutrino-quark scattering com-
pares to neutrino-electron scattering. Having time-consuming
simulations in mind, we explore different expressions for
the neutrino scattering opacity and the possible penalties in
precision associated with more simplified treatments. We also
explore here the actual range of validity of the known analytic
approximate forms for the neutrino mean free paths.

II. BOLTZMANN TRANSPORT IN THE DIFFUSIVE
REGIME

Neutrino transport is described in terms of the Boltzmann
transport equation for massless particles, which dictates the
kinetic evolution of its invariant distribution function f =
f (x,p):

pα Df

dxα
=

(
df

dτ

)
coll.

, (1)

where, in the general relativistic case, D/dxα denotes the op-
erator ∂/∂xα − �β

αγ pγ ∂/∂pβ , with �β
αγ being the Christoffel

symbols. The right-hand side of Eq. (1) designates the changes
in f due to particle interaction processes (“collisions”) and it
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can be separated into different contributions(
df

dτ

)
coll.

= BAE[f ] + BS[f ] + · · · , (2)

where AE stands for absorption/emission of neutrinos and S
designates all forms of scattering. Here, we will focus only
on these two kind of processes, since those are the dominant
ones on neutron star matter at the typical values of temperature
and lepton degeneracy we are interested in. For processes of
the form ν + 2 → 3 + 4, each contribution to Eq. (2) can be
explicitly written in the generic “collision integral”

B[f ] = −
∫

d3p2

(2π )3

∫
d3p3

(2π )3

∫
d3p4

(2π )3
{gνg2f (Eν)

× f2(E2)[1 − f3(E3)][1 − f4(E4)]Wf i

− g3g4[1 − f (Eν)][1 − f2(E2)]f3(E3)f4(E4)Wif }
(3)

where fi denotes the distribution function for particle species
i, f is the complete neutrino distribution function, and gi

denotes the phase-space spin degeneracy for each particle.
Here, Wf i represents the transition rate between the initial and
the final states for the given process. We can define the neutrino
emissivity ja and the absorptivity 1/λa through

BAE[f ] = [1 − f (Eν)]ja − f (Eν)

λa

, (4)

and the scattering contribution to the collision integral can be
written as

BS[f ] = [1 − f (Eν)]
∫

d3p4

(2π )3
f (E′

ν)Rin

− f (Eν)
∫

d3p4

(2π )3
[1 − f (E′

ν)]Rout, (5)

where Rin/out(Eν,E
′
ν, cos θ ) are the scattering kernels, θ

being the scattering angle. When the pairs of reactions of
emission/absorption and scattering in/out are balanced, the
transition rates satisfy the reciprocity relations gνg2Wif =
g3g4Wif and we have the relations of detailed balance

1

λa

= e(Eν−μν )/T ja, Rin = e(E′
ν−Eν )/T Rout, (6)

i.e., Eqs. (4) and (5) have only one independent contribution
each.

The diffusive approximation consists of assuming that
matter is at thermodynamic equilibrium and neutrinos are only
slightly out of equilibrium. Since the equilibrium states of our
MIT bag model are those of a gas of noninteracting fermions,
we automatically set each fi in Eq. (3) to the corresponding
Fermi-Dirac distribution function, f0. In this regime, neutrinos
are expected to relax in a very short time scale, and their
distribution function differs from its equilibrium value only by
a small anisotropic factor. In terms of a Legendre expansion
of f , the diffusion approximation can be written as

f (Eν) � f0(Eν) + μf1(Eν), (7)

where μ is the cosine of the angle between the neutrino
propagation direction and the radial vector, and |f1(Eν)| � 1.

All the quantities we are interested in, in the study of
neutrino transport, will be defined in terms of f and its angular
moments of the form 1

2

∫ 1
−1 dμμif [19–21]. With the use of

the approximation given by Eq. (7), it is possible to write
the angular moments of Eq. (2) in a very convenient form.
The zeroth moment will be associated with neutrino source
terms [21] and, since we are assuming the detailed balance of
Eqs. (6), it is identically zero. The first moment, on the other
hand, contains the traditional opacities and it is given by

1

2

∫ 1

−1
μB[f ]dμ = −f1(Eν)

3

(
ja + 1

λa

+ κ1

)
, (8)

where

κ1 = 1

(2π )2

∫ ∞

0
dE′

νE
′2
ν

{
[1 − f0(E′

ν)]

[1 − f0(Eν)]
Rout

0

− f0(Eν)

f1(Eν)

f1(E′
ν)

f0(E′
ν)

Rout
1

}
. (9)

We have defined here the Legendre moments of the scattering
kernel in terms of the scattering angle θ ,

Rout
l =

∫ 1

−1
d cos θPl(cos θ )Rout(Eν,E

′
ν, cos θ ), (10)

with cos θ = μμ′ +
√

(1 − μ2)(1 − μ′2) cos φ, where φ is
the azimuthal angle between the incoming neutrino and the
outgoing one.

The first term between the curly braces in Eq. (9) gives the
inverse neutrino scattering mean free path when neutrinos are
in thermodynamic equilibrium with the rest of the matter, and
we denote it here by 1/λs :

1

λs

= [1 − f0(Eν)]−1

(2π )2

∫ ∞

0
dE′

νE
′2
ν [1 − f0(E′

ν)]

×
∫ 1

−1
d cos θRout(Eν,E

′
ν, cos θ ). (11)

Equation (11) is just Eq. (3) with f0 for the neutrino distribution
function and it can be written without one explicitly defining
the scattering kernel Rout.

When the scattering process is isoenergetic (meaning that
neutrinos and matter do not exchange energy), regardless the
actual neutrino distribution function, Eq. (9) specializes to

κ IS
1 = E2

ν

(2π )2

∫ 1

−1
d cos θ (1 − cos θ )Rout(Eν,Eν, cos θ ), (12)

which is a common form of scattering opacity used in different
applications. In a general situation, however, κ1 depends
explicitly on f1, which is a priori unknown.

From the energy-dependent diffusion coefficient D(Eν) =
(ja + 1/λa + κ1)−1, we define the energy-averaged coeffi-
cients [21]

Dn =
∫ ∞

0
dx xnf0(Eν)[1 − f0(Eν)]D(Eν), (13)

where x = Eν/T . In particular, the Rosseland energy-
averaged neutrino mean free path [17,22] can be defined as

λR = D4∫ ∞
0 dx x4f0(Eν)[1 − f0(Eν)]

. (14)
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III. NEUTRINO INTERACTIONS

All neutrino processes under consideration are listed in
Table I. Electron neutrino absorption on quarks d and s
involves the exchange of a W boson, while neutrino scattering
on quarks or on leptons may involve the exchange of either W
or Z bosons. At the energy density regime we are interested
in, the neutrino energy is always much smaller than the W and
Z, masses and the interactions may be described in terms of
current-current couplings [15,17,23]. Weak charged currents
are associated with both neutrino absorption and neutrino
scattering on leptons of the same generation, while weak
neutral currents take part in neutrino scattering on either
leptons or quarks. Given that it is possible to write the charged
current contribution of a scattering process in terms of a neutral
current (and vice versa), we may write the current-current
interaction Lagrangian in a combined form as

Lint = GF√
2

[ū(ν)γμ(1 − γ5)u(4)]

× [ū(2)γ μ(CA − CV γ5)u(3)] + H.c., (15)

with CA and CV being the appropriate axial and vector
coupling constants to be read from Table I, and GF is the Fermi
weak coupling constant (GF /c�

3 = 1.664 × 10−5 GeV−2).
The transition rates Wif appearing in Eq. (3) are obtained

from the matrix element by means of Femi’s golden rule:

Wif = (2π )4δ4(pν + p2 − p3 − p4)
〈|M|2〉

24EνE2E3E4
, (16)

where
〈|M|2〉 denotes the squared matrix element summed

over final spins and averaged over the initial spins. From
Eq. (15) we may then derive an expression for Wif , also valid
for both absorption and scattering processes:

Wf i = G2
F

EνE2E3E3
[(CV + CA)2(pν · p2)(p3 · p4)

+ (CV − CA)2(pν · p3)(p2 · p4) − (
C2

V − C2
A

)
m2m3

× (pν · p4)](2π )4δ4(pν + p2 − p3 − p4), (17)

where mi is the mass of the corresponding particle.

TABLE I. Vector and axial-vector coupling constants for the
charged and neutral currents under consideration. We use the values
cos θC = 0.973 and sin2 θW = 0.231. The corresponding scattering
of antineutrinos involves only the substitution CA → −CA.

ν + 2 → 3 + 4 CV CA

νe + d → u + e− cos θC cos θC

νe + s → u + e− sin θC sin θC

ν̄e + u → d + e+ cos θC − cos θC

ν̄e + u → s + e+ sin θC − sin θC

νl + u → u + νl
1
2 − 4

3 sin2 θW
1
2

νl + d → d + νl − 1
2 + 2

3 sin2 θW − 1
2

νl + s → s + νl − 1
2 + 2

3 sin2 θW − 1
2

νe + e− → e− + νe
1
2 + 2 sin2 θW

1
2

νμ,τ + e− → e− + νμ,τ − 1
2 + 2 sin2 θW − 1

2

The explicit form of the expressions used for the inverse
mean free paths and for the scattering kernels can be found on
Appendices A and B, respectively.

IV. QUARK MATTER EQUATION OF STATE

We describe quark matter constituted of u, d, and s quarks,
plus electrons and electron-neutrinos in terms of the MIT
bag model [24]. The thermodynamics follows from the Grand
potential (per unit volume)

� =
∑

i=u,d,s,e,ν

�i, (18)

where �i is the thermodynamic potential for a gas of ideal
fermions

�i(T ,μi) = −giT

2π2

∫
dk k2 ln[1 + e−(Ek−μi )/T ]. (19)

Antiparticles are included through �i(T , − μi) and all de-
rived thermodynamic quantities must be understood as net
quantities, containing the contributions of both particles and
antiparticles.

The inclusion of the vacuum energy density B (the bag
constant), requires that both the pressure and energy density
are modified according to

P = −� − B, (20)

ρ = � +
∑

i

(T si + μini) + B, (21)

where the entropy density, si , and the particle number densities,
ni , are derived from � by the usual thermodynamic relations.

The five chemical potentials (μu,μd,μs,μe,μνe
) at given

temperature, baryon number density, nB = (nu + nd + ns)/3,
and fixed net electron-type lepton fraction, YL = (ne +
nνe

)/nB , are determined by means of the conditions of β
equilibrium,

μd = μu + μe − μνe
, (22)

μs = μd, (23)

and electric charge neutrality

ne = 2
3nu − 1

3 (nd + ns). (24)

When quark matter does not have trapped neutrinos, or
when the trapped neutrinos are nondegenerate, the electron
chemical potential is always much smaller than those of
quarks. Quark matter in these circumstances requires only
a small fraction of electrons to be electrically neutral. When
the rate of occurrence of the weak interaction processes is
high enough for neutrinos to become trapped and degenerate
in quark matter, an increase in the abundance of electrons
follows, as can be seen from the behavior of the electron
chemical potential in Fig. 1. In fact, as shown in Fig. 1, the
degeneracy of electrons in quark matter follows closely that
of neutrinos. This moderate uniformity between the electron
and electron-neutrino chemical potentials allows us to use the
total electron-type lepton fraction YL as an indicator of both
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Μ i

FIG. 1. Equilibrium chemical potentials of quark matter consti-
tuted only of the three lightest quarks at T = 30 MeV as a function
of the baryon number density. The panel at the left corresponds to
neutrino-free quark matter. The panel at the right represents quark
matter with trapped neutrinos, corresponding to a total electron-type
lepton fraction of YL = 0.4. For this figure, B = 60 MeV/fm3 and
ms = 150 MeV.

the electron and electron-neutrino states of degeneracy, as we
show in Fig. 2.

QCD corrections to the thermodynamic potential of Eq. (19)
for arbitrary temperatures, quark masses, and chemical po-
tentials have been derived for the orders of αc and α

3/2
c in

perturbation theory [25]. Closed-form expressions are known

Μ i

FIG. 2. Electron and electron-neutrino equilibrium chemical po-
tentials in quark matter with trapped neutrinos at nB = 2n0 for two
different temperatures. The smallest value of YL shown in this figure
always represent neutrino-free quark matter, for which YL = Ye.
The largest value of YL has been chosen to be YL = 0.4 in both
panels. Note how an increasing neutrino degeneracy is followed by
an increasing electron degeneracy for fixed temperature and baryon
density. For this figure, B = 60 MeV/fm3 and ms = 150 MeV.

only in the approximate regimes. For degenerate massless
quarks, one has, to first order in αc = g2/4π [26],

�(2) =
∑

f =u,d,s

[
7

60
π2T 4

(
50

21

αc

π

)

+
(

1

4π2
μ4

f + 1

2
T 2μ2

f

)(
2
αc

π

)]
, (25)

and the thermodynamic potential to second order is obtained
through � → � + �(2). In the context of the MIT bag model,
the strong coupling constant, αc, is regarded as a numeric
constant. Together, B, ms and αc constitute the three free
parameters of the model.

Throughout this paper we use mainly the set of parameters
B = 60 MeV/fm3, ms = 150 MeV, and αc = 0, which falls
inside the stability window of Ref. [24] and, consequently,
describes absolutely stable (strange) quark matter, with an en-
ergy per baryon at zero pressure and temperature smaller than
the neutron’s mass. However, we employ also other parameter
sets, some of which represent standard (not absolutely stable)
quark matter. In particular, at the end of Sec. V A, we show
how each of B, ms , and αc affect the neutrino mean free paths
through their influence on the equilibrium chemical potentials.

V. RESULTS

A. Neutrino inverse mean free paths and diffusion coefficients

Our results are shown separately in terms of either non-
degenerate or highly degenerate neutrinos. To nondegenerate
neutrinos we associate a chemical potential μν = 0. Degen-
erate neutrinos, on the other hand, must have μν 
 T . We
represent the latter category in terms of a high net electron-
neutrino lepton fraction YL = (ne + nνe

)/nB , where ne and
nνe

represent, respectively, electron and electron-neutrino net
number densities (number density of particles minus number
density of the corresponding antiparticles) and nB is the baryon
number density.

In Fig. 3 we show the inverse neutrino mean free paths
associated with the six electron-neutrino processes listed in
Table I. It must be noted that the factor [1 − f0(Eν)]−1

present in Eq. (11) has been kept so the curves can be better
distinguished in the region Eν < T .

When neutrinos are nondegenerate, neutrino-quark scatter-
ing dominates the scattering opacity with respect to neutrino-
electron scattering by orders of magnitude. This discrepancy
can be explained by the tiny density of electrons present in
quark matter. The presence of trapped degenerate neutrinos
also increases the electron density and hence the neutrino-
electron contribution to the scattering opacity also increases,
as can be seen in the lower panel at the left. In both the upper
and the lower panels at the left in Fig. 3, it can be seen
that neutrino-strange quark scattering differs from the other
scatterings mainly at lower neutrino energies. In the panels at
the right in Fig. 3 we show the neutrino inverse mean free paths
associated with absorption. In general, the process of neutrino
absorption on d quarks dominates the opacity. The contribution
of neutrino absorption on s quarks, on the other hand, tends to
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FIG. 3. Inverse neutrino mean free paths, Eq. (A1), in quark matter at two times nuclear saturation density and T = 5 MeV. In the upper
panels, we have μνe = 0 representing nondegenerate neutrinos. At the left, we have included muon neutrino-electron scattering for comparison.
In the lower panels, YL = 0.4 represents highly degenerate neutrinos and matter. Results for degenerate neutrinos have been divided by
[1 − f0(Eν)], so the curves can be better seen in the range Eν < μν .

be smaller than that of scatterings, with exception of the very
low neutrino energy regime, in which this process dominates
the opacity. These results are in agreement with the results
found in Ref. [18].

The behavior of the neutrino inverse mean free paths with
respect to baryon number density for fixed neutrino energies
is shown in Figs. 4 and 5. It can be seen that the contribution
of neutrino-electron scattering is always small in comparison
with that of neutrino-quark scattering when neutrinos are
nondegenerate. It is only when neutrinos are trapped and highly
degenerate, also implying a higher abundance of electrons, that
neutrino-electron scattering becomes an important contribu-
tion to the total opacity, as shown in the lower panels of Fig. 5.
We notice that, for fixed T , the inverse mean free paths vary
within one order of magnitude in the baryon number density
range of interest. In contrast, the temperature dependence is
stronger; e.g., there is a variation of more than two orders of
magnitude when T goes from 5 MeV to a value above 30 MeV.

The combined scattering processes amount to at least 10%
of the total Rosseland mean free path, as shown in Fig. 6.
In the case of leptonized quark matter, neutrino scattering
represents ∼40% of the total neutrino opacity. It is only
when neutrinos are less degenerate in colder quark matter that
neutrino absorption becomes dominant. Even in this case, as
we already mentioned, neutrino scattering will contribute to at

least ∼10% of the total opacity in lower density regions of the
star where neutrinos are completely nondegenerate.

In Figs. 7 and 8 we show the diffusion coefficients D2, D3,
and D4 for both electron-neutrinos and electron-antineutrinos.
When neutrinos are nondegenerate, all diffusion coefficients
decrease with increasing density. As it can be seen in the panels
at the middle, the combined coefficient D3 = D3,νe

− D3,ν̄e

will be negative. In Fig. 8 it can be seen that the behavior of
D2, D3, and D4 for degenerate neutrinos is not the same with
respect to increasing density. Notoriously, D2 decreases, while
D4 increases. This behavior can be anticipated by means of
analytic approximations for degenerate neutrinos, as we show
in Appendix D.

In Figs. 9 through 11 we analyze separately how ms , B, and
αc indirectly influence the neutrino Rosseland mean opacity
through their effects on the equilibrium composition of quark
matter as a function of pressure for a given temperature. In
Eq. (20), it is seen that, for a given P , a larger B will imply in
a larger absolute value of �. For fixed ms and αc, it follows that
the equilibrium chemical potentials will increase accordingly.
As verified in Fig. 9, this implies in smaller mean free paths.
From Eq. (25), it follows that the same reasoning applies for
increases in αc and this is shown in Fig. 10. Finally, we analyze
the influence of the strange quark mass on the neutrino mean
free paths. Since ms enters not only in the equation of state
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FIG. 4. Inverse mean free paths of nondegenerate neutrinos (μν = 0) in quark matter as a function of baryon density. In this figure,
Eν = 3T . In the lower panels, neutrino-down quark scattering was omitted since the corresponding curve superposes that of neutrino-strange
quark scattering.

but also directly in the computation of the mean free paths
in a nontrivial way, its influence is inferred directly from the
numeric results shown in Fig. 11, where it can be seen that an
increase in ms leads to larger mean free paths.

It follows then that increases in both B and αc lead to
decreases in the neutrino mean free paths. The effect of
increasing αc, however, is distinct from that of increasing B in
the sense that its effect is more prominent at higher pressures. It
can also be noted that the mean free paths of highly degenerate
neutrinos in highly degenerate quark matter are less sensitive
to changes in ms or αc, since in these situations the chemical
potentials are already very high.

B. Error estimate associated with the disregard of the
anisotropic contribution to the neutrino distribution

function in scatterings

We have seen that scattering may represent a considerable
fraction of the total neutrino opacity in quark matter. It is
evident then that neutrino scattering must be treated with
proper care. Now we wish to derive an estimate of the error
committed when the term containing f1 in Eq. (9) is neglected
and Eq. (11) is used as the neutrino inverse scattering mean
free path. Even though we do not know an explicit form for
f1, it is expected to be much smaller than f0 in magnitude on
the regions of higher density, where we expect neutrinos to be

almost in thermodynamic equilibrium with the remaining of
the matter. In this case, the ratio λ−1

s /κ1 tends to unity, given
that the term containing f1 in Eq. (9) becomes vanishingly
small compared to the first term and Eq. (9) tends to Eq. (11).
On the other hand, in the regions of extremely small neutrino
opacity, neutrinos will stream almost freely and, in the limit of
free stream, f1(Eν) ∼ 3f0(Eν) and the ratio λ−1

s /κ1 deviates
maximally from unity.

A fairly general expression relating f1 and f0 on the surface
of a stellar core may be written in the form [19]

f1(Eν) = Kf0(Eν), (26)

where K is responsible for smoothly shifting the neutrino
flux from isotropic to radially outward as the optical depth
increases. In fact, as the optical depth becomes larger, Eq. (26)
will hold not only on the stellar surface but in a whole thick
layer where neutrinos stream freely. In principle, K should
depend on the neutrino energy; however, to avoid further
complications we consider it as a constant geometric factor. In
this case, Eq. (9) reduces to

κ free
1 = 1

λs

− 1

(2π )2

∫ ∞

0
dE′

νE
2
ν

∫ 1

−1
d cos θ cos θRout

= 1

λs

− 1

(2π )2

∫ ∞

0
dE′

νE
2
νR

out
1 (Eν,E

′
ν), (27)
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FIG. 5. Inverse mean free paths of degenerate neutrinos (YL = 0.4) in quark matter as a function of baryon density. For this figure, Eν = μν .
The curves associated with neutrino scattering on u and s quarks lie between the curves shown in the lower panels and have been omitted.

and the ratio λ−1
s /κ free

1 represents a bound to the maximum
deviation from unity possible. In other words, the ratio
λ−1

s /κ1 will always be closer to 1 than λ−1
s /κ free

1 is. This

FIG. 6. Scattering contribution to the total Rosseland mean free
path as a function of baryon density at several temperatures for
both nondegenerate and degenerate neutrinos. All electron-neutrino
processes of Table I have been included in the total opacity.

information can be used as an estimate of the largest pos-
sible error committed in the computation of the scattering
contribution to the opacity when λ−1

s is used in the place
of κ1.

When neutrinos are nondegenerate, it can be seen in Fig. 12
that,between λ−1

s and κ free
1 , which is greater depends on the

incident neutrino energy. For Eν < T , λ−1
s tends to be ∼20%

smaller than κ free
1 . For Eν 
 T , we see that the contribution

of the term containing Rout
1 in Eq. (27) becomes larger and

κ free
1 becomes many times smaller than λ−1

s as the energy
of the incident neutrino increases. In Fig. 13 we see that,
when neutrinos are degenerate, there is almost no distinction
between the two calculated scattering opacities when Eν �
μν . However, for neutrinos with Eν � μν , there is a noticeable
difference that increases with increasing neutrino degeneracy.
For instance, when T = 5 MeV, λ−1

s is ∼30% smaller than
κ free

1 for YL = 0.4. For higher neutrino energies with respect
to μν , λ−1

s becomes several times greater than κ free
1 , similarly

to what happens when neutrinos are nondegenerate.
In diffusive transport schemes, one is generally interested in

the energy-averaged diffusion coefficients as in Eqs. (13) and
(14), whose integrands are weighted with the factor f0(1 − f0),
which quickly cuts off the higher energies, and features a
peak centered at Eν = μν when neutrinos are degenerate. It
means that in practice, λ−1

s will give scattering opacities at
most ∼20% smaller than the the ones that would be obtained
if κ1 was used. We have seen that the scattering contribution
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FIG. 7. Diffusion coefficients vs baryon density for nondegenerate (μν = 0) electron-neutrinos (upper panels) and antineutrinos (lower
panels) at different temperatures. The temperatures indicated in the panel at the top left are the same for all the other panels.

to the total Rosseland mean opacity is in the range 10–30 %
for temperatures in the range 5–60 MeV when neutrinos are
nondegenerate (Fig. 6). It follows then that the error committed
in the total neutrino opacity, may be estimated to have an upper
bound in the range 2–6%. In regions where neutrinos are very
close to thermodynamic equilibrium, and the anisotropy in the
neutrino distribution function is vanishingly small, this error
is expected to be much smaller.

The situation is very similar when neutrinos are degenerate.
In this case, the largest errors will be associated to those shown
in Fig. 13 for Eν � μν , which we see to be of about 30% when
T = 5 MeV and smaller for larger temperatures. In this case,
neutrino scattering amounts to about 40% of the total neutrino
opacity (Fig. 6) and the error committed may be estimated
to have an upper bound in the range 12–4% for temperatures
increasing in the range T = 5–60 MeV. If neutrinos are not
expected to be too strongly degenerate in quark matter with
temperatures as low as 5 MeV, then in this case the estimated
upper bound for the error will be closer to 4%.

C. Mean energy transfer and mean scattering angle

Neutrino-electron scattering has long been known to be
an important thermalizing agent in neutron star matter matter
[23,27], while neutrino-baryon scattering is usually regarded
as an isoenergetic process [19,21]. In Ref. [16], Prakash and
Lattimer work in detail on neutrino scattering in neutron

star matter with and without hyperons; nevertheless, no
attention has been paid to the aspects of neutrino/matter energy
exchange or neutrino mean scattering angles.

A detailed analysis of neutrino scattering in quark matter,
however, is missing in the literature. Given that quarks are very
degenerate in quark matter and considering, for instance, the
large mass of the strange quark with respect to that of electrons,
it remains a question whether neutrino-quark scattering is
similar to neutrino-baryon or to neutrino-electron scattering
with respect to neutrino-matter energy transfer and mean
scattering angles. In this section we show that neutrino-quark
scattering is always similar to neutrino-electron scattering with
respect to energy exchange, and hence is non-isoenergetic.
Both the mean energy transfer and the mean scattering angle
are defined in Appendix C.

The first thing to be noticed in Figs. 14 and 15, is that
neutrino-matter energy exchange vanishes on average for a
particular incident neutrino energy, E0, depending on both
the neutrino and matter state of degeneracy. For Eν < E0,
neutrinos tend to gain energy on average, while for Eν > E0,
they tend to lose energy. This is not to say that neutrinos
with Eν = E0 do not exchange energy with matter, but
rather that the net energy exchange vanishes on average.
We see that the energy exchange in neutrino-strange quark
scattering is very similar to that in neutrino-electron scattering.
The curves representing neutrino–up-quark and neutrino–
down-quark scattering have been omitted since the difference
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FIG. 8. Diffusion coefficients vs baryon density for degenerate (YL = 0.4) electron-neutrinos (upper panels) and antineutrinos (lower
panels) at different temperatures. The temperatures indicated in panel at the top left are the same for all the other panels.

between those and that of neutrino-electron scattering would
be barely visible.

When neutrinos are nondegenerate, E0 lies between 4T and
5T . When neutrinos are degenerate, E0 lies between μν and

FIG. 9. Influence of the bag constant, B, on the total Rosseland
neutrino mean free path of degenerate neutrinos (YL = 0.4) in quark
matter. Here, B60 and B200 represent B = 60 MeV/fm3 and B =
200 MeV/fm3, respectively.

6T . The exact value depends on the state of degeneracy of the
matter, which determines both the mean energy of the particles

FIG. 10. Influence of the strong coupling constant, αc, on the total
Rosseland neutrino mean free path of nondegenerate (left panel) and
of degenerate neutrinos (right panel, YL = 0.4) in quark matter. In the
panel at the right, only the cases αc = 0 and αc = 0.6 are considered.
The curves corresponding to αc = 0.2 and αc = 0.4 lie between the
two curves shown and have been omitted for clarity purposes.
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FIG. 11. Influence of the strange quark mass, ms , on the total
Rosseland neutrino mean free path of nondegenerate neutrinos in
quark matter with B = 60 MeV/fm3.

participating in the reaction and the phase space available for
the scattered particles [23,27,28].

Regardless of the neutrino/matter particular state of de-
generacy, it is a general result that highly energetic neutrinos
(Eν 
 E0) will lose on average half their initial energy in each
scattering process, a result previously known for the case of
neutrino-electron scattering when neutrinos are nondegenerate
[23,29], and which we extend here for degenerate neutrinos
as well. On the other hand, very low-energetic neutrinos
can gain on average several times their initial energy in
a given scattering process, and it is in this energy regime
that neutrino–strange-quark and neutrino-electron scatterings
differ. It can be seen that low-energetic neutrinos tend to gain

FIG. 12. Ratio between 1/λs given by Eq. (11) and κ1, Eq. (9),
with the limiting approximation f1(Eν) ∝ f0(Eν) for nondegenerate
neutrinos (μνe = 0).

FIG. 13. The same as Fig. 12 but for degenerate neutrinos (YL =
0.4).

more energy from electrons (and from up and down quarks)
than from strange quarks.

Figures 16 and 17 show the neutrino mean scattering angle.
Less energetic neutrinos will scatter on average by an angle
of about 120 degrees. In association with Figs. 14 and 15,
this indicates not only high energy transfer but also high
momentum transfer. The mean scattering angle decreases
as the energy of the incident neutrino increases, as shown
in Fig. 16, meaning a more isotropic scenario. When Eν

approaches the target’s chemical potential, we see a local
peak in 〈θ〉. More highly energetic neutrinos will on average
scatter almost equally in any direction, resulting in small mean
scattering angles.

D. Comparison with analytic approximations

When the matter is known to be completely degenerate, it
is possible to find approximate expressions for the neutrino
mean free paths with respect to the processes of absorption
and of scattering, considering that the momenta of all matter
constituents are fixed at their Fermi surface values. Neutrinos,
on their turn, are considered to be either completely degenerate
or nondegenerate.

For the absorption of degenerate neutrinos, it is found
[15,22]

1

λD
a

= 4G2
F

π3
cos2 θc

p2
Fu

p3
Fe

μ2
ν

[(Eν − μν)2 + (πT )2]

×
[

1 + 1

2

pFe

pFu

+ 1

10

(
pFe

pFu

)2]
, (28)

where pFi
is the Fermi momentum of particle species i.

Eq. (28) is suitable for the case |pFu
− pFe

| � |pFd
− μν |. In

the opposite situation, i.e., when |pFu
− pFe

| � |pFd
− μν |,

the appropriate mean free path is obtained through the
replacements pFu

→ pFd
and pFe

→ μν . For the absorption
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FIG. 14. Fractional mean energy transfer between nondegenerate neutrinos (μν = 0) and matter at different temperatures. The energy
transfer vanishes on average at Eν � 4T .

of nondegenerate neutrinos, it is found

1

λND
a

= 16

π4
αcG

2
F cos2 θcpFu

pFd
pFe

E2
ν + (πT )2

1 + e−Eν/T
. (29)

The strong coupling constant, αc, makes it appearance in
Eq. (29) through the lowest-order corrections to the quarks’
chemical potentials due to quark-gluon strong interaction,

μi =
(

1 + 8

3π
αc

)
pFi

. (30)

This is necessary to make the reaction kinematically allowed,
since the masses of the u and d quarks are small and the
neutrino momentum is not expected to play any significant
role in the momentum conservation when the neutrinos are
nondegenerate, and hence, excluded from the momentum-
conservation delta function [15].

The influence of the neutrino state of degeneracy on
neutrino-electron scattering has been analyzed to a great
extent. The inverse neutrino mean free path for degenerate
neutrinos for this process has been found to be approximately

[15,30,31]

1

λD
s

= niσ0

20m2
e

[(Eν − μν)2 + (πT )2]
√

μν

pFe

xe

× [(
C2

V,e + C2
A,e

)(
10 + x2

e

) + 10CV,eCA,exe

]
, (31)

for Eν 
 T . Here, σ0 = 4G2
F m2

e�
2/πc2 � 1.74 × 10−44 cm2

and xe = min(μν,pFe
)/max(μν,pFe

).
Approximate expressions for neutrino-electron scattering

for nondegenerate neutrinos were found for different neutrino
energy regimes [23]:

1

λND
s

= [
C2

V,e + C2
A,e + CV,eCA,e

]neσ0

6m2
e

EνpFe
(32)

for Eν 
 pFi
, and

1

λND
s

= [
C2

V,e + C2
A,e

] niσ0

40m2
e

E3
ν

pFe

, (33)

for Eν � pFe
.

FIG. 15. Fractional mean energy transfer between degenerate neutrinos and quark matter at different temperatures. For very high degeneracy,
the energy transfer vanishes on average at Eν � μν . For T = 60 MeV, both neutrinos and quark matter are slightly less degenerate, and the
energy transfer vanishes on average at Eν between μν and 6T . The curves associated with neutrino–up-quark and neutrino–down-quark
scatterings are identical to the curves shown for neutrino-electron scattering and have thus been omitted.
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FIG. 16. Mean scattering angle 〈θ〉 of nondegenerate neutrinos
in quark matter. Here, u, d , s, and e indicate the target particle.

Neglecting the quark masses, the same results of Eqs. (31)–
(33) are expected to be valid for neutrino-quark scattering,
with appropriate coupling constants. It is important to note
that in all of Eqs. (28)–(33) it is assumed that also electrons
are completely degenerate. Tubbs and Schramm show approx-
imations for neutrino-electron scattering when both neutrinos
and electrons are nondegenerate [23].

In Fig. 18 we show a comparison between full numeric
results and analytic approximations of Eqs. (28) and (29)

FIG. 17. The same as Fig. 16 but for YL = 0.4.

FIG. 18. Electron-neutrino inverse absorption mean free paths in
quark matter at two times nuclear saturation density. Dashed lines
indicate the approximations given in Eqs. (28) (right panel) and (29)
(left panel).

for the process νe + d → e− + νe. In the case of degenerate
neutrinos, we have divided the numeric results by the factor
1 − f0(Eν), already included in the analytic results. In the
nondegenerate case, we have used αc = 0.1 in Eq. (29) (with
αc = 0 in the thermodynamic potential of quark matter).
Larger values for αc may result in better agreement with the
numeric results for Eν 
 T for this particular combination
of temperature and density, but the same value for the strong
coupling constant will not always give the better results for
higher temperatures or densities for a given bag constant.

Using Eq. (29) requires then fixing αc to an optimal value,
whenever this is physically acceptable, so the approximation
may give the best results in its domain of validity.
Equation (28), for absorption of degenerate neutrinos, on the
other hand is shown to give good results only on the vicinity
of Eν = μν , and the results are better the higher the neutrino
degeneracy is.

In the upper panels of Fig. 19 we compare the results given
by Eqs. (32) and (33) with the numeric results for the indicated
scattering processes of nondegenerate neutrinos. It is clear that
the range of energies Eν � T is in general not covered by the
approximations. For the case of neutrino-electron scattering,
Eq. (32) gives better results for the whole range of energies,
even though its domain of validity is Eν 
 pFe

. Nonetheless,
it must be noticed that, in this case, results share only the
same order of magnitude and, roughly, the same qualitative
behavior.

In the lower panels of of Fig. 19, we show how the results
of Eq. (31) compare to the exact results. As in the case of
absorption, the results are better for Eν near μν ; nonetheless,
the approximate results are in good qualitative agreement and
are same order of magnitude as the exact results also for Eν <
μν . In the middle panel, we show how the strange quark mass
affects the scattering cross section.
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FIG. 19. Neutrino inverse scattering mean free paths. Upper panels: dashed lines indicate the approximations given in Eq. (32) and dotted
lines are the results of Eq. (33). Lower panels: dashed lines indicate the results of Eq. (31). For comparison purposes, all quark masses have
been neglected in the numeric integrations. In the lower part of the middle panel, the dotted line corresponds to the numeric result when ms =
150 MeV.

Using the approximate mean free paths given by Eqs. (28)–
(33), we calculate the neutrino Rosseland mean free path
and compare the results against exact calculations. Since
we considered only the cases of either highly degenerate
or completely nondegenerate neutrinos, we did not use any
interpolating procedure to join the different regimes, such
as the one suggested by [32]. Also, it must be noted that,
for scatterings of nondegenerate neutrinos, only Eq. (33) was
used. Even though an interpolating scheme to join smoothly
Eqs. (32) and (33) can be proposed, this is not expected
to improve the results too much, since this energy range is
strongly cut off by the factor 1/ [1 − f0(Eν)].

The results shown in Fig. 20 reflect the fact that the
approximations are, in general, good only in a limited range
of neutrino energies. As one would expect, the analytic
approximations of Eqs. (28)–(33) imply generally poor
agreement with the exact results of energy-averaged opacities.
Notoriously, the results are better for degenerate neutrinos.
This can be understood from the fact that the approximations
to the mean free paths tend to be better for neutrino energies
near μν , and the integrands of Eq. (14) are highly weighted
in the same region. Nevertheless, even in this case, the results
agree only by order of magnitude, and they share roughly the
same qualitative behavior.

VI. SUMMARY AND CONCLUSIONS

We have analyzed in detail the neutrino mean free paths in
quark matter. All the electron-neutrino weak interaction pro-
cesses listed in Table I were considered. We have shown that,
when neutrinos are nondegenerate, neutrino-quark scattering
dominates the scattering contribution to the total neutrino
opacity with respect to neutrino-electron scattering. On the
other hand, when neutrinos are degenerate, the different
scattering processes contribute almost the same, given that
in this case quark matter has a larger abundance of electrons.

In general, neutrino absorption constitutes the largest con-
tribution to the neutrino opacity. However, neutrino scattering
can represent a considerable fraction, amounting to about
40% in the highly leptonized scenario. When neutrinos are
nondegenerate, scattering represents no less than 10% of the
total opacity, for temperatures in the range 5–60 MeV and
baryon number densitiy in the range 1–12 n0.

We estimate that using 1/λs given in Eq. (9) instead of κ1

given by Eq. (11) in the computation of the neutrino scattering
mean free paths will represent an error of less than 10% in
the total neutrino opacity. This upper bound is associated
with the threshold of neutrino free-streaming, where f1 is
known to be proportional to f0 and both 1/λs and κ1 can

055803-13
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FIG. 20. Rosseland mean free paths for neutrinos in quark matter at different temperatures. “Analytic” results mean numeric integration
over the incident neutrino energies using the energy-dependent approximations of Eqs. (28)–(33).

be calculated and compared. In regions where neutrinos are
closer to thermodynamic equilibrium, and f1 is vanishingly
small, this error is expected to be much smaller.

For baryon number densities in the range 1–12 n0, the
energy-averaged diffusion coefficients Dn, show a greater
dependency on temperature than on density when T varies
in the range 5–60 MeV. When neutrinos are nondegenerate,
all of D2, D3, and D4 decrease with baryon density, while
when neutrinos are degenerate they show different behaviors.
In this case, D2 decreases, while D3 show no significant
variation, and D4 increases with increasing density. We have
also shown that the diffusion coefficients associated with
antineutrinos are larger than those of neutrinos when the latter
are nondegenerate. When neutrinos are degenerate, on the
other hand, the diffusion coefficients of neutrinos are greater
than those of antineutrinos.

Since we have not considered the presence of muons and
taus in quark matter, the corresponding curves associated
with the diffusion of muon and tau neutrinos have been
left outside of the present work. Nevertheless, the following
general remarks are worth addressing. Considering muon and
tau neutrinos present in quark matter only in the form of
thermally produced pairs, this type of neutrinos can take part
only in the neutral-current scattering processes listed in Table I,
given that the corresponding charged-current processes are
kinematically suppressed. It follows then that the total muon

and tau neutrino mean free paths are generally increased in
comparison with the total electron neutrino mean free paths.
In particular, considering that the scattering opacity is the
same for both muon and tau neutrinos, their contribution to
the combined diffusion coefficient D4 = D

νe

4 + D
ν̄e

4 + 4D
νμ

4
makes explicit their role in the energy transport in neutron stars,
mainly in the regime of nondegenerate electron neutrinos, as
we show in Fig. 21.

The influence of free parameters of the MIT bag model on
the neutrino mean free paths have been analyzed. It is verified
that increases in B and αc lead to in increases in the total
neutrino opacity, while a higher ms decreases it. In general,
when neutrinos are nondegenerate, increasing B from 60 to
200 MeV/fm3 or increasing ms from 0 to 150 MeV will affect
more the neutrino opacity than does increasing αc from 0 to
0.6 in the approximation of massless quarks. The same occurs
when neutrinos are degenerate, with the difference that the
effects are less prominent.

It should be noted that we have not considered here
how many-body interactions may alter the neutrino cross
sections through correlations or collective behavior in general.
Specifically, we have neglected the possibility of quark pairing
and color superconductivity and how the neutrino mean
free paths are altered by it. In fact, at asymptotically high
densities it has been shown from first principles that color
superconductivity occurs in QCD. However, in the density
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FIG. 21. Diffusion coefficient D4 for electron neutrinos (full
lines) and muon neutrinos (dashed lines). The topmost pairs of curves
correspond to T = 5 MeV and those at the bottom correspond to
T = 60 MeV. Note that μν = 0 and YLe = 0.4 correspond to electron
neutrinos. Muon neutrinos always have μνμ = 0 here.

regime relevant for neutron star physics such weak-coupling
calculations are unreliable, and most conclusions are obtained
from phenomenological models that are claimed to capture
the essential physics of QCD. As a consequence, the actual
occurrence of color superconductivity inside neutron stars is
still an open question. Nevertheless, it is important to examine
the impact of color superconductivity on the neutrino mean
free paths, and in fact this has been addressed in several
works. For more details on the subject, we refer the reader
to Refs. [33–38].

Finally, neutrino-quark scattering shares remarkable simi-
larities with neutrino-electron scattering with regard to neu-
trino/matter energy transfer and mean scattering angles. The
general scenario is that low-energetic neutrinos tend to gain
large amounts of energy and to scatter by larger angles. On the
other hand, high-energetic neutrinos will lose on average half
their initial energy and scatter almost isotropically.
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APPENDIX A: NEUTRINO INVERSE MEAN FREE PATH

With Wf i given in Eq. (17), Eq. (3) can be cast into several
different forms for integration. To calculate the absorption
mean free paths and the scattering mean free paths as in
Eq. (11), it is convenient to use the total momentum as an
integration variable. With that, all angular integrations can be
performed and there remains only a double integration to be

performed numerically [15,18,39,40]:

1

λ
= gG2

F

32π5
E−2

ν

∫ ∞

m2

dE2

∫ ∞

m3

dE3E3S
[
(CV + CA)2Ia

+ (CV − CA)2Ib − (
C2

V − C2
A

)
Ic

]
, (A1)

where S = f0(E2)[1 − f0(E3)][1 − f0(E1 + E2 − E3)] and
the integrals Ia , Ib and Ic are given by

Ia = π2

15

[
3
(
P 5

max−P 5
min

)−10(kν2
+ +k34

+ )
(
P 3

max − P 3
min

)
+ 60kν2

+ k34
+ (Pmax − Pmin)

]
, (A2)

Ib = Ia(E2 ↔ −E3), (A3)

Ic = 2π2

3
m2m3

[(
Q3

max − Q3
min

)+6kν3
− (Qmax−Qmin)

]
,

(A4)

with

k
ij
± = EiEj ± 0.5

(
p2

i + p2
j

)
, (A5)

Pmin = max(|Eν − p2|,|p3 − p4|), (A6)

Pmax = min(Eν + p2,p3 + p4), (A7)

Qmin = |Eν − p4|, (A8)

Qmax = min(Eν + p4,p2 + p3). (A9)

Here, p4 = √
E2

4 − m2
4 and the particle labels follow the

convention of Table I.

APPENDIX B: SCATTERING KERNELS

We define the neutrino scattering kernels Rout as

Rout = g

∫
d3p2

(2π )3

∫
d3p3

(2π )3
f (E2)[1 − f (E3)]Wf i, (B1)

where g denotes the total phase-space degeneracy factor and
the integrations involve only the target particles. With Wf i

given in Eq. (17), all integrations except one can be performed
exactly. The results can be found in Refs. [41,42] (with the
remark that our definition of Rout does not carry the overall
E′2

ν ):

Rout =
∫ ∞

Emin

dE2S ′(Eν + E2 − E′
ν)

[
(CV + CA)2ha

+ (CV − CA)2hb − (
C2

V − C2
A

)
hc

]
, (B2)

where S ′ = f (E2)[1 − f (Eν + E2 − E′
ν)] and the integrals

ha , hc, and hc are given by

ha = gG2
F

(2π )EνE′
ν

[
AE2

2 + BE2 + C
]
, (B3)

hb = ha(Eν ↔ −E′
ν), (B4)

hc = gG2
F

(2π )EνE′
ν

m2
2EνE

′
ν(1 − cos θ )

α1/2
, (B5)
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where α = E2
ν + E′2

ν − 2EνE
′
ν cos θ , θ is the scattering angle.

The quantities A, B, and C are given by

A = γ 2

α5/2

[
E2

ν + E′2
ν + (3 + cos θ )EνE

′
ν

]
, (B6)

B = γ 2

α5/2
Eν

[
2E2

ν + (3 − cos θ )EνE
′
ν

− (1 + 3 cos θ )E′2
ν

]
, (B7)

C = γ 2

α5/2
E2

ν

[
(Eν − E′

ν cos θ )2 − E′2
ν sin2 θ

2

− m2
2(1 + cos θ )

2E2
ν (1 − cos θ )

α

]
, (B8)

where we have also defined γ = EνE
′
ν(1 − cos θ ). The lower

integration limit in Eq. (B2) is given by

Emin = E′
ν − Eν

2
+ α1/2

2

√
1 + 2m2

2

γ
. (B9)

APPENDIX C: MEAN ENERGY TRANSFER PER
SCATTERING AND MEAN SCATTERING ANGLE

From Fermi’s golden rule, the neutrino interaction cross
section can be written in terms of the squared matrix element,
summed over final spins and averaged over the initial spins

σ = (2π )−6

4(pν · p2)

∫
d3p3

2E3

∫
d3p4

2E4
〈M〉2

× (2π )4δ(pν + p2 − p3 − p4), (C1)

for interactions happening in the vacuum. In thermodynamic
systems, the particles involved in such scattering reactions
have specific energy distributions and we must average
the cross sections over their distribution functions and the
availability of the initial and final states. In this case, we write

σ̄ = (2π )−5g

∫
d3p2

2E2

∫
d3p3

2E3

∫
d3p4

2E4
f0(E2)[1 − f0(E3)]

× [1 − f0(E4)]
〈M〉2

4(pν · p2)
δ(pν + p2 − p3 − p4). (C2)

We define the mean energy transfer per collision between
neutrinos and matter and the mean scattering angle as the
averages

δEν = g(2π )−3

σ̄

∫
d3p2

2E2

∫
dE′

νS(Eν − E′
ν)

(
∂σ

∂E′
ν

)
, (C3)

and

〈1 − cos θ〉 = g(2π )−3

σ̄

∫
d3p2

2E2

∫
dE′

νS

×
∫

d cos θ (1 − cos θ )

(
∂2σ

∂E′
ν∂ cos θ

)
, (C4)

where we have defined

S = f0(E2)[1 − f0(Eν + E2 − E′
ν)][1 − f0(E′

ν)]. (C5)

Note that we have added the blocking factor 1 − f0(E′
ν),

to account for neutrino degeneracy, in contrast to the results
of [23]. Also, our definition of σ̄ is only a shorthand for
the quantity defined in Eq. (C2) and not a properly averaged
statistical cross section as the one found in the same reference.
For convenience, we have added a minus overall sign in
Eq. (C3) for the mere fact that we want negative values to
represent energy loss.

Substituting 〈M〉2 on Eqs. (C3) and (C4), we obtain Eqs.
of the form

δEν = 1

σ̄

[
(CV +CA)2W1 + (CV −CA)2W2 + (

C2
A−C2

V

)
W3

]
(C6)

and

〈1 − cos θ〉 = 1

σ̄

[
(CV + CA)2U1 + (CV − CA)2U2

+ (
C2

A − C2
V

)
U3

]
(C7)

with the Ws and Us given by Eqs. (21a)–(22c) of [23] with
the inclusion of [1 − f0(ω + ε − ε′)] in all ε′ integrations of
the cited reference.

We would like to point out slightly different definitions for
δEν and 〈1 − cos θ〉 that may be derived directly from Eq. (11):

δEν = −λs

∫ ∞

0
dE′

ν(Eν − E′
ν)

[
∂(1/λs)

∂E′
ν

]
, (C8)

and

〈1 − cos θ〉 = λs

∫
dE′

ν

∫
d cos θ

× (1 − cos θ )

[
∂2(1/λs)

∂E′
ν∂ cos θ

]
. (C9)

Eqution (C9) can then be written in terms of the Legendre
moments of the scattering kernel Rout:

〈1 − cos θ〉 = 1 − λs

(2π )2

∫
dE′

νE
′2
ν [1 − f0(E′

ν)]Rout
1 .

(C10)

Even though Eqs. (C8) and (C10) differ from Eqs. (C3) and
(C4) by the lack of the factor (pν · p2)−1 on the integrands
(coming from the definition of cross section), they give fairly
similar results and they can be more easily evaluated when
Rout is available.

APPENDIX D: ANALYTIC APPROXIMATION TO THE
DIFFUSION Dn COEFFICIENTS

FOR DEGENERATE NEUTRINOS

In the case of highly degenerate neutrinos, the analytic
approximations to the neutrino mean free paths with respect
to both the neutral and charged currents, Eqs. (28)–(31), can
be combined in the form

1

λT

= [(x − ην)2 + π2]
1

g(ην)
, (D1)

where
1

g(ην)
= 1

η2
ν

(
a + bη3

ν + cη4
ν + dη5

ν

)
(D2)
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with the coefficients given by

a =
[

G2
F T 5

3π3(c�)7

]
12 cos2 θcη

2
uη

3
e

[
1 + 1

2

ηe

ηu

+ 1

10

(
ηe

ηu

)2]
, (D3)

b =
[

G2
F T 5

3π3(c�)7

] ∑
i=u,d,s,e

gi

(
C2

V,i + C2
A,i

)
η2

i , (D4)

c =
[

G2
F T 5

3π3(c�)7

] ∑
i=u,d,s,e

giCV,iCA,iηi, (D5)

d =
[

G2
F T 5

3π3(c�)7

]
1

10

∑
i=u,d,s,e

gi

(
C2

V,i + C2
A,i

)
. (D6)

In these equations, ηi = pFi
/T . Coefficients b to d are related

only to the scattering reactions. Coefficient a has a counterpart
as mentioned after Eq. (28); however, |pF (u) − pF (e)| �
|pF (d) − μν |, tends to be the case when neutrinos are highly
degenerate. Note also that we used xi = μν/pFi

in Eq. (31).
In this regime, the diffusion coefficients Dn read

Dn = g(ην)
∫ ∞

0
dx xn

{
f0(Eν)[1 − f0(Eν)]

(x − ην)2 + π2

}
. (D7)

The expression between curly braces can be approximated by

f0(Eν)[1 − f0(Eν)]

(x − ην)2 + π2
� e−(x−ην )2/4

4π2
, (D8)

and so Eq. (D7) can be solved by gamma functions. One then
arrives at

Dn = g(ην)
1

4π2

n∑
k=0

(
n

k

)
4k/2[1 + (−1)k]

×�

(
k + 1

2

)
ηn−k

ν . (D9)

Explicitly,

D2 = 1

2π3/2

(
2η2

ν + η4
ν

a + bη3
ν + cη4

ν + dη5
ν

)
, (D10)

D3 = 1

2π3/2

(
6η3

ν + η5
ν

a + bη3
ν + cη4

ν + dη5
ν

)
, (D11)

D4 = 1

2π3/2

(
12η2

ν + 12η4
ν + η6

ν

a + bη3
ν + cη4

ν + dη5
ν

)
. (D12)

To perform a quick analysis, we assume, for simplicity,
that ηu � ηd � ηe � ην (which is, in fact, a reasonable
assumption when neutrinos are highly degenerate). With this,
the denominator in Eqs. (D10)–(D12) reduces to

a + bη3
ν + cη4

ν + dη5
ν �

[
G2

F T 5

3π3 (c�)7

]
19.78η5

ν . (D13)

It is clear then that coefficients D2, D3, and D4 have different
behavior with respect to ην and, in particular, D4 will increase
with increasing neutrino degeneracy.
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