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Effect of Coulomb screening length on nuclear “pasta” simulations
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We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in
conditions according to those in a neutron star’s crust. Calculations were made with a semiclassical molecular
dynamics model, studying isospin symmetric matter at subsaturation densities and low temperatures. The
electrostatic interaction between protons is included as a screened Coulomb potential in the spirit of the
Thomas–Fermi approximation, but the screening length is artificially varied to explore its effect on the formation
of the nonhomogeneous nuclear structures known as “nuclear pasta.” As the screening length increases, we can
see a transition from a one-per-cell pasta regime (due exclusively to finite-size effects) to a more appealing
multiple pasta per simulation box. This qualitative difference in the structure of neutron star matter at low
temperatures shows that special caution should be taken when the screening length is estimated for numerical
simulations.
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I. INTRODUCTION

At densities and temperatures expected to exist in neutron
star crusts (ρ � ρ0 and T � 1.0 MeV, with ρ0 denoting
the normal nuclear density), nucleons form structures that
are substantially different from the “normal,” quasispherical
nuclei we are familiar with. Such structures, which have
been dubbed “nuclear pasta,” have been investigated using
various models [1–12] which have shown them to be the
result of the interplay between nuclear and Coulomb forces
in an infinite medium. The structure of the nuclear pasta is
expected to play an important role in the study of neutrino
opacity in neutron stars [13], neutron star quakes, and pulsar
glitches [14]. In neutron stars, apart from protons and neutrons,
there is an all-embedding electron gas. This electron gas
screens the electrostatic long-range proton-proton interaction.
This screening effect is often modeled within the Thomas–
Fermi approximation, according to which the interaction
between protons is a Yukawa-like potential with a screening
length λ:

VT F (r) = q2 e−r/λ

r
.

According to quantum field theory calculations [15],
pp. 175–180, the screening length at the densities of interest
is λ ≈ 100 fm. For numerical simulations, such a long-range
interaction poses a problem since, to perform correct particle-
based simulations, the simulation domain (or cell) should be
much larger than the length of the interaction potentials [16].
Using the correct value for λ would then require working
with O(106) particles and it would be computationally very
exhaustive. Facing this issue, pioneering authors [13,17]
decided to work with a much smaller λ = 10 fm, hoping
to retain the main qualitative phenomenological aspects of
the system (competing interactions of different length) when
dealing with smaller systems. Even if they were indeed capable
of producing “pasta-like” structures, the particular choice of
the value for the screening length was arbitrary and based
almost solely on computational details. Notably, this particular

value of the screening length was used by every author using
a screened Coulomb potential for particle-based simulations
ever since [7,12,13]. This paper will focus on studying to which
extent this arbitrary choice is physically relevant, expanding
previous works.

The role of the length of the screening has been narrowly
explored by several authors in other models. For example, in
a 2003 investigation [11], the screening effect of an electron
gas on cold nuclear structures was investigated using a static
liquid-drop model, and it was found that main effect of the gas
screening was to extend the range of densities where bubbles
and clusters appear and to reduce the range of stability of
homogeneous phases. While the screening was found to be
of minor importance, the study, being static, did not include
any spatial or dynamical effect. Another 2005 study [18] used
a density functional method to investigate charge screening
on nuclear structures at subnuclear densities but still at zero
temperature; in particular, cases with and without screening
were directly compared. The main results of the study
were nucleon density profiles used to quantify the spatial
rearrangement of the proton- and electron-charge densities.
Once again, it was found that the density region in which
the pasta exists becomes broader when Coulomb screening
is taken into account, mainly due to the rearrangement of the
protons; the authors remark the importance of extending such a
study to finite temperatures and with dynamical models. It was
also observed [19], regarding the screening effect, that a very
short screening length would mean a non-negligible coupling
between protons and electrons. Under such conditions, the
electrons would not be uniformly distributed and any eventual
energy calculations neglecting the extra energy due to the
electrons nonuniformity would be wrong. This, however, is
far beyond the scope of this work.

More recently, some works [20,21] began studying the
effect that Coulomb interaction has on the pasta formation by
using dynamical models. The main findings are that artificial
one-per-cell pasta (pseudopasta) could exist even when the
Coulomb interaction was absent, and that they exist due to
periodic boundary conditions and finite size [22].
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In previous studies, it has been shown that a combination
of molecular dynamics, fragment recognition algorithms, and
a set of topological tools [10,12,23,24] was very effective in
the study of the pasta structures. In particular, we showed that
topological observables can be used to classify the different
structures into recognizable patterns; this allows for cross-
model comparison between structures obtained with different
approaches and to a quantifiable analysis of the effect the
nuclear and Coulomb energy have on the pasta formation and
properties. We will study the extent to which the screening
length λ affects the morphology of the ground states at zero
temperature of nuclear pasta. To this effect, semiclassical
molecular dynamic simulations with a screened Coulomb
potential and values of λ from 0 to 50 fm were performed. The
model used is described in Sec. II, and in Sec. II A numerical
aspects of the Coulomb model used are discussed. Topological
tools were used to quantitatively analyze that the effect the
nuclear and Coulomb energies have on the pasta formation, and
its properties are introduced in Sec. II C. Results are presented
and discussed in Sec. III.

II. CLASSICAL MOLECULAR DYNAMICS MODEL

The model used here was developed to study nuclear reac-
tions from a semiclassical, particle-based point of view [25].
The justification for using this model in stellar crust environ-
ments was presented elsewhere [12]; here we simply mention
some basic ingredients of the model.

The classical molecular dynamics model (CMD), as in-
troduced in Ref. [26], is retrofitted with cluster recognition
algorithms and a plethora of analysis tools. It has been suc-
cessfully used in heavy-ion reaction studies to help understand
experimental data [27], identify phase-transition signals and
other critical phenomena [28–31], and explore the caloric
curve [32,33] and isoscaling [34,35]. Synoptically, CMD uses
two two-body potentials to describe the motion of nucleons
by solving their classical equations of motion. The potentials,
developed phenomenologically by Pandharipande [25], are

Vnp(r) = vr exp(−μrr)/r − va exp(−μar)/r,

Vnn(r) = v0 exp(−μ0r)/r,

where Vnp is the potential between a neutron and a proton,
and Vnn is the repulsive interaction between either nn or
pp. The cutoff radius is rc = 5.4 fm and for r > rc both
potentials are set to zero. The Yukawa parameters μr , μa ,
and μ0 were determined to yield an equilibrium density of
ρ0 = 0.16 fm−3, a binding energy E(ρ0) = 16 MeV/nucleon
and a compressibility of 250 MeV [25].

The main advantage of the CMD model is the possibility
of knowing the position and momentum of all particles at all
times. This allows the study of the structure of the nuclear
medium from a particle-wise point of view. The output of
CMD; namely, the time evolution of the particles in (r,p), can
be used as input in any one of the several cluster-recognition
algorithms that some of us have designed for the study of
nuclear reactions [36–38].

As explained elsewhere [12,39,40], the lack of quantum
effects such as Pauli blocking—perhaps the only serious caveat

in classical models—ceases to be relevant in conditions of high
density and temperature (such as in heavy-ion reactions) or
in the low-density and low-temperature stellar environments,
when momentum transfer between particles ceases to be
important.

To simulate an infinite medium, systems with thousands
of nucleons were constructed using CMD under periodic
boundary conditions. Cases symmetric in isospin (i.e., with
x = Z/A = 0.5, 2500 protons, and 2500 neutrons) were con-
structed in cubical boxes with sizes adjusted to have densities
between ρ = 0.005 fm−3 � ρ � 0.08 fm−3. Although in the
actual neutron stars the proton fraction is low (x < 0.5), we
chose to work with symmetric matter because that way we
could study the Coulomb term without having a symmetry
term in the energy.

A. Coulomb interaction in model

To take into account the Coulomb interaction, which is
formally of infinite range, in molecular dynamics simulations
with periodic boundary conditions, it is necessary to use
some approximation. The two most common approaches are
the Thomas–Fermi screened Coulomb potential (used with
various nuclear models, e.g., in CMD [12], quantum molecular
dynamics [7] and simple semiclassical potential [13]) and the
Ewald summation procedure [23]. Theoretical estimations for
the screening length λ are λ ∼ 100 fm, but in the previously
mentioned works, due to computational limitations, a value of
λ = 10 fm was chosen. Our goal on this work is to understand
the effect this a priori arbitrary choice has on the properties of
the ground states of neutron star matter within the framework
of CMD.

In this work, we used values of λ ranging from λ =
0 fm (formally, no Coulomb interaction) and λ = 20 fm, for
densities ρ = {0.005 fm−3, 0.03 fm−3, 0.05 fm−3, 0.08 fm−3},
and the cutoff length was chosen at rc = λ. In particular, for
ρ = 0.005 fm−3d, where “gnocchi” are formed, we extended
the analysis to λ = 30 fm and λ = 50 fm to perform a
quantitative analysis on the physical properties of the clusters.

B. Simulation procedure

The trajectories of the nucleons are then governed by
the Pandharipande and the screened Coulomb potentials.
The nuclear system is cooled from T = 1.6 MeV to T =
0.001 MeV using isothermal molecular dynamics with the
Nosé-Hoover thermostat procedure [41], using the LAMMPS

package [42]. Systems are cooled in small temperature steps
(�T ≈ 0.02), decreasing the temperature once both the energy
and the temperature are stable.

C. Analysis tools

The first of the analysis tools used is the pair correlation
function g(r), which gives information about the spatial
ordering of the nuclear medium. In the previous study, g(r)
showed that nucleons in clusters have an interparticle distance
of about 1.8 fm at all studied densities for λ = 10 fm. It is
interesting to know if the nearest-neighbor distance changes
with screening length.
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TABLE I. Classification breadth: Euler.

Breadth < 0 Breadth ∼ 0 Breadth > 0

Euler > 0 Anti-gnocchi (bubbles) Gnocchi
Euler ∼ 0 Anti-spaghetti (tunnels) Lasagna Spaghetti
Euler < 0 Anti-jungle-gym Jungle gym

Beyond local measures, the shapes of nuclear structures
can be characterized by a set of morphological and topological
observables: their volume, surface area, mean breadth (area-
averaged curvature), and Euler characteristic χ . These four
objects comprise the “Minkowski functionals” and com-
pletely describe all morphological and topological properties
of any three-dimensional object [43]. The computation of
the mean breadth and χ can be accomplished through the
Michielsen–De-Raed algorithm but requires the mapping of
the nuclear clusters into a polyhedra; a procedure described in
Ref. [12].

In Ref. [12] it was shown that generic structures, such as
gnocchi (droplets), “spaghetti” (rods), “lasagna” (slabs) and
“crossed lasagnas” or a set of intertwined rods that resemble
Schwartz P surface, that we call “jungle gym” and their inverse
structures (with voids replacing particles and vice versa), all
have well-defined and distinct values of the mean breadth and
χ with magnitudes dictated by the overall size of the structure,
i.e., by the number of particles used. For structures with
near-zero Euler number, which signal spaghetti, lasagna, and
their complementary structures, the values of the Minkowski
functionals are sensitive to the choice of two parameters:
the size given to each particle and the size of the cells in
which we partition the space. This classification is shown in
Table I.

III. RESULTS AND DISCUSSION

As observed in previous works [20,21], in absence of any
Coulomb interaction (what would be equivalent to λ = 0),
pasta-like structures can be seen, although only one per cell.
These pseudopastas are also shaped in spheres, rods, slabs,
antirods, and antispheres, just like the pasta with Coulomb
interactions. The main difference is that, without the Coulomb
interaction, we always find one structure per cell, giving the
hint that its structure is related to the periodic boundary
condition imposed on the box. The pseudopasta exists due
to finite size effects and, if the box was not to exist, the
solution would be an infinite droplet. We notice, however, that
when there is Coulomb interaction, the competition between
opposing interactions gives rise to a characteristic length. At
subsaturation densities, this competition is responsible for the
pasta phases, and in the limit of very-low densities (and no
screening) it shapes the nuclei we are used to.

By increasing the value of λ, starting from 0 fm, we aim
to explore the transition from artificial one-per-cell pasta to
more realistic situations with more than one structure per cell.
Moreover, this enables us to assess the physical implications
of the arbitrary and traditional λ = 10 fm value.

FIG. 1. (Color online) Pressure as a function of λ for different
densities. We see that, for λ < 10 fm, the pressure is negative, imply-
ing that periodic boundary conditions are affecting the morphology
of the solution.

A. “Critical” screening length

A first approach to analyze the nature of the pasta obtained
is given by taking a quick glance as the pressure of the different
configurations.

The pressure is computed by the virial formula

P = NkBT

V
+ 1

3

�N
i ri · Fi

V
,

where N is the number of nucleons in the system and F is
the force exerted upon each nucleon. The terms in the virial
formula apply only to the interactions specific to the model,
not contemplating the electron-gas pressure. This pressure is
not to be mistaken with the pressure expected in neutron star
crusts (since electrons should be considered explicitly in order
to calculate it correctly); it is merely a test of the mechanical
stability of the configurations obtained within this model. In
Fig. 1, we see that for all λ < 10 fm the pressure is negative.

The negative pressure is a signal that the nonhomogeneous
structures found are artificial and that the structures found
can only exist under periodic boundary conditions (see
Refs. [20,22]). This may be better understood by picturing
the primitive cell of the simulation as being under the stress
caused by its periodic replicas. This means that for such small
screening lengths the overall effective interaction is mostly
attractive and periodic boundary conditions are still playing a
major role in shaping the ground state.

For λ > 10 fm the pressure becomes positive, meaning that
the structures formed in these configurations are not only due
to periodic boundary conditions, but the Coulomb interaction
is beginning to play its intended role. The configurations for
these values of λ indeed show density fluctuations of length
smaller than the size of the cell, which can only be attributed to
the Coulomb-nuclear competition. However, the morphology
of the structures, as characterized by the topological measures
described in Sec. II C, changes drastically with λ.

In order to classify the low temperature (T = 0.001 MeV)
structures for each value of λ, we study their morphology with
the analysis tools for the spatial distribution of the particles;
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(a) Surface

(b) Mean Breadth

(c) Euler number

FIG. 2. (Color online) Minkowski functionals dependence on λ.
We can see that there is a transition regime between λ = 7 fm and
λ = 15 fm where the Minkowski functionals are changing.

namely, the Minkowski functionals. In Fig. 2 we can see the
surface, mean breadth, and Euler number for the ground states,
and their dependence on λ for different densities.

As stated in Table I, we expect lasagna and spaghetti to
have an Euler number χ = 0. In the gnocchi case, however,

each one of them contributes with χgn = 2. This means that
the Euler number for the whole system of Ngn gnocchi will
be χ = 2Ngn. As the configurations break up into multiple
structures per cell with increasing λ, we expect the surface
to increase as well. As for the mean breadth, the behavior
described in Table I (positive for spaghetti and gnocchi, zero
for lasagna, and negative for tunnel) is only observed for
λ = 20 fm. Between λ = 7 fm and λ = 10 fm all three of
the Minkowski functionals change drastically before reaching
well-defined values. This indicates that there is a transition
regime where the structures cannot be described as any of
the traditional pasta. For this model of nuclear interaction and
Coulomb treatment, it seems the usual λ = 10 fm value is
actually too small.

B. One vs many

To better understand how the ground state at low tem-
peratures varies through the transition regime from without
Coulomb interaction to the λ = 20 fm screening length, we
show in Fig. 3 visual representations of the results obtained at a
set of chosen densities, with λ = 0, λ = 10 fm, and λ = 20 fm.
We see here that we get very exotic and amorphous structures
for λ = 10 fm in all three cases, and they are variations from
the typical pasta structure, which can be due to the very rough
energy landscape for this values of λ.

As an example, we show the pair distribution function
g(r) for ρ = 0.05 fm−3 in Fig. 4. In it we see that the first
peaks of the distribution remain at the same distances of
r = 1.7 fm, 1.9 fm. This shows that the short-range structure
is governed by the nuclear potential even at λ = 20 fm, which
is evident simply by comparing the orders of magnitude of
Vn−n and VCoulomb at such short ranges.

At density ρ = 0.005 fm−3, for screening lengths λ <
10 fm, there is a single gnocchi. However, when increasing
from λ = 15 fm to λ = 20 fm at ρ = 0.005 fm−3, although
qualitatively we see the same behavior (both show gnocchi),
the average size of clusters is different for these two values
of screening length. This implies that the number of clusters
is different; hence the difference observed in the Minkowski
functionals. To study this result further, we plot the gnocchi
size as a function of λ in Fig. 5. We see that, when we consider
the standard deviation in the mass distribution, it remains
unchanged for λ � 20 fm. The average relative error on this
graph is e ≈ 8%.

We can see here, however, that although every structure
without the Coulomb interaction is indeed one of the known
pasta structures, once we turn on the Coulomb interaction
(by making λ �= 0) the original λ = 0 pseudopasta splits up:
from one structure per cell to multiple structures per cell.
For intermediate to low values of λ < 20 fm, the effect of
the periodic boundary conditions is still observable for some
densities, and more exotic structures which can be confused
with “true” pasta may exist.

C. Transition regime

We now turn to analyze the structures found in the transition
regime.
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FIG. 3. (Color online) Difference between pasta with and without the Coulomb interaction. We can see that the Coulomb interaction splits
up the pasta, converting one structure per cell to multiple structures per cell.

We take, as an example, the lowest density (ρ =
0.005 fm−3). As can be seen in Fig. 6, for λ = 0 only one
droplet is formed, as expected. For λ = 10 fm, we can see
that many gnocchi exist, but some of them stick to their
neighbors forming prolates of different sizes. Although the
Coulomb interaction is now strong enough to break the one
pasta found with λ = 0 into many, the resulting droplets are
not fully fledged gnocchi that can be arranged in a regular
lattice such as those found for λ = 20 fm.

IV. DISCUSSION AND CONCLUDING REMARKS

The effect of the screening length of the Coulomb interac-
tion in simulations of neutron star matter was studied at densi-
ties comparable to that of neutron stars crusts. Throughout the
literature we can find that the value of the screening length in
the Thomas–Fermi approximation is λ ≈ 100 fm. For particle-
based simulations, due to computational limitations, this value
was historically and arbitrarily reduced to λ ≈ 10 fm. This was
done expecting to maintain the basic phenomenology when
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(a) Multiple lasagna

(b) Single lasagna

FIG. 4. Examples of the radial correlation function for ρ =
0.05 fm−3 and two screening lengths: λ = 20 fm (top panel) and
λ = 0 fm (lower panel). Please notice the difference in the y scales
of the graphs.

FIG. 5. Average size of nuclei depending on screening length.
We can see that, when considering the standard deviation, the mass
remains the same.

FIG. 6. (Color online) Different structures obtained while vary-
ing the λ parameter for ρ = 0.005 fm−3. In the transition regime,
we find, at λ = 10 fm, that the structure breaks down to many
short-spaghetti-like parts.

simulating small systems. We found, though, that there is a
critical screening length λc at which the structure of the ground
state drastically changes. For the Pandharipande potential it
lies between 10 and 15 fm (depending on the density). For
λ < λc, the Coulomb interaction is barely acting and the
nonhomogeneous structures emerging from the simulations
are due to finite-size effects, as made evident from the negative
pressure of such structures and the fact that there is only one
structure per cell. For λ > λc, the pressure becomes positive
and the systems present density fluctuations at a scale smaller
than that of the cell, but not well shaped. This transition regime
is characterized by large fluctuations in the surface, mean
breadth, and Euler characteristic χ of the structures. It is only
for λ = 20 fm that the morphology of the structures formed
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stabilizes and ceases to depend on λ. Moreover, the structures
in this regime are the usual pasta phases.

Because of this, we believe extreme caution should be taken
when choosing an arbitrary value for λ, since even though
some results at λ = 10 fm can look like the expected pasta, the
results obtained for that particular choice of λ may be quite
different from those in the true Thomas–Fermi approximation.
In conclusion, we find the choice of a good value for λ that is
computationally manageable and can still adequately recover
the physics of the Thomas–Fermi approximation is no trivial
task, and a rigorous study needs to be done prior to the choice

of the value. A good value for λ must lie in the λ > λc region
which is bound to be dependent on the model used for the
nuclear interaction.
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222 (2007).
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69, 014601 (2004).
[34] C. O. Dorso, C. R. Escudero, M. Ison, and J. A. López, Phys.
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