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The relativistic point-form formalism that we proposed for the study of the electroweak structure of few-
body bound states is applied to calculate the elastic form factors of spin-1 mesons, such as the ρ, within
constituent-quark models. We treat electron-meson scattering as a Poincaré-invariant coupled-channel problem for
a Bakamjian-Thomas mass operator and extract the meson current from the resulting invariant 1-photon-exchange
amplitude. Wrong cluster properties inherent in the Bakamjian-Thomas framework are seen to cause spurious
contributions in the current. These contributions, however, can be separated unambiguously from the physical
ones and we end up with a meson current with all required properties. Numerical results for the ρ-meson
form factors are presented assuming a simple harmonic-oscillator bound-state wave function. The comparison
with other approaches reveals a remarkable agreement of our results with those obtained within the covariant
light-front scheme proposed by Carbonell et al. [Phys. Rep. 300, 215 (1998)].
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I. INTRODUCTION

Any proper description of a relativistic quantum-
mechanical system consisting of interacting particles (or
subsystems) should comply with Poincaré invariance. Another
essential requirement is the property of cluster separability. It
applies to systems in which subsystems can be isolated, which
then should behave independently of the other subsystems.
Both of these physical principles not only demand certain
properties from the Poincaré generators of the system, but also
constrain the electromagnetic current operator describing the
interaction of the system with an external field. Specifically, a
correct current must transform as a four-vector operator under
the Poincaré group. Further, cluster separability requires that
the current must become the sum of the subsystem currents if
all interactions between the subsystems are turned off. This is
also related to the constraint that the charge of the whole system
should be the sum of the subsystem charges, irrespective
of whether the interaction is present or not (for a detailed
and formal discussion of these conditions, see the work by
Lev [1]). The current should also be conserved. Satisfying all
these requirements makes the construction of a current for
an interacting few-body system a nontrivial problem, because
a bound-state current must depend, in one way or another,
on the interaction between its constituents. The main purpose
of the present work is to show for spin-1 two-body bound
states, in particular the ρ meson within the framework of
constituent-quark models, that such a current can actually be
derived from a Poincaré-invariant coupled-channel approach
to electron-meson scattering.

A particularly simple procedure for setting up a Poincaré-
invariant framework for a quantum-mechanical system
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consisting of a finite number of interacting particles is
the Bakamjian-Thomas (BT) construction [2]. The central
dynamical quantity in the BT framework is an invariant
mass operator, from which the dynamical Poincaré generators
follow. One advantage of the BT construction is that it still
allows for instantaneous interactions, like in nonrelativistic
quantum mechanics, without destroying Poincaré invariance.
Another favorable feature is its natural connection to Dirac’s
forms of relativistic Hamiltonian dynamics [3]; the instant,
the front, and the point form. These stand for the three most
simple, and yet the Poincaré algebra preserving, ways of
how to include interactions into a relativistic theory. Instant,
front, and point characterize three different hypersurfaces
in Minkowski space that are left invariant under the action
of corresponding sets of Poincaré transformations that are
not affected by interactions. These transformations, together
with their generators, are sometimes termed as kinematic,
whereas the remaining, interaction-dependent transformations
and generators are rather called dynamic.

It has been proved by Sokolov and Shatnyi [4] that the
three forms of relativistic dynamics are actually S-matrix
equivalent and therefore physically equivalent. However, they
still differ strongly in their Poincaré transformation properties
of operators and states. In the point form1 the transformation
behavior of states under Lorentz boosts and rotations is
relatively simple owing to the kinematic nature of the Lorentz
group that is characteristic for this form. This also results in
simple addition rules for angular momenta [6]. When quantum
systems with a finite number of degrees of freedom are treated
within a point-form BT framework, one commonly speaks of
point-form relativistic quantum mechanics. This constitutes
the theoretical framework we adopt in this paper.

1For a short review on the point form, we refer to Ref. [5].
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Point-form relativistic quantum mechanics has already
been used previously to analyze the electromagnetic structure
of simple hadronic few-body systems; see, for example,
Refs. [7–12]. These papers employ the point-form spectator
model to construct an electromagnetic current operator that
satisfies all the requirements such as Poincaré covariance,
current conservation, and cluster separability.

In the present work we also use the point form to study the
electromagnetic properties of vector mesons. However, we go
beyond making just an ansatz for the most general current on
which the necessary constraints are imposed and rather derive
a microscopic meson current compatible with a particular
interaction model that exhibits the required properties. Our
approach is based on the relativistic multichannel frame-
work proposed by Klink [13], with field-theoretical vertex
interactions that are appropriately adapted to fit into the BT
construction. By applying this framework to electron-meson
scattering we have developed a general formalism to calculate
electroweak meson currents. We have, for instance, already
successfully calculated the electromagnetic form factor of the
pion in Ref. [14] and electroweak form factors of heavy-light
systems in Ref. [15].

As a next step in this program we focus in the present
paper on the electromagnetic structure of vector mesons,
such as the ρ meson. The spin-1 case makes it necessary
to carefully address the cluster problem. It is known that in
a BT framework involving more than two particles one loses
the property of cluster separability (for a detailed discussion
of this problem, see Refs. [16–18]). Within our formalism,
this violation of cluster separability manifests itself in the
appearance of additional structures in the meson current and
additional dependencies in the meson form factors. Such
additional structures and dependencies do not only come
from the bound quark-antiquark system, but also from the the
scattering electron. Although these additional contributions
and dependencies show up already in the simple pion current,
they are quite easily removed to obtain the pion form factor
(see Ref. [14]). This is, however, not the case for the more
complex ρ meson, where the proper extraction of the ρ meson
form factors requires a careful analysis of the current structure.
Thereby, as shown in this paper, we find some quite remarkable
similarities between our point-form approach and the covariant
light-front approach of Refs. [19,20], an insight that was not
yet evident to us in our original work on the pion.

Formally it is known how to overcome the difficulties
associated with cluster separability within the BT framework.
For the three-particle case a solution to the cluster problem,
formulated in terms of S operators, has been given by Coester
in Ref. [21]. A general solution for an arbitrary number
of particles has been proposed by Sokolov by introducing
unitary operators, the Sokolov operators, that restore cluster
separability [16]. In a recent work [22] Keister and Polyzou
have tested—for the first time and using a simple model—to
what quantitative extent the BT approach violates cluster
separability. They have estimated the corrections from the
Sokolov construction needed to restore cluster separability.
These estimates suggest that such corrections are too small
for (weakly bound) nuclear systems to affect calculations of
observables.

Although a Sokolov construction constitutes the proper
solution to the cluster problem in the BT framework, it is rather
formal and cumbersome for practical purposes. Therefore, we
have chosen an alternative way out. The idea is to identify the
effects of wrong cluster properties that manifest themselves in
the electromagnetic currents and remove them in the sequel
to end up with a unique physical current that has all required
properties. Whether our procedure yields the identical results
for the form factors as a proper Sokolov-corrected version
of the BT approach is an interesting question that remains
unanswered until the Sokolov corrections have been calculated
explicitly for our model. This seems to be a quite intricate
task. The size of the unphysical contributions in our current,
however, will give us a good measure for the violation of
cluster separability for strongly bound systems like confined
quark-antiquark pairs.

This paper is structured as follows. Section II is devoted to
a brief review of our coupled-channel point-form formalism
for the derivation of electromagnetic meson currents. In
Sec. III the pion current is reexamined. This also serves as
a preparation for Sec. IV, where we derive and investigate
the structure of the ρ-meson current. In Sec. V the numerical
results for the ρ-meson form factors are presented. Section VI
contains the summary and an outlook.

II. MESON CURRENT FROM ELECTRON-MESON
SCATTERING

We summarize briefly how the invariant 1-photon-exchange
amplitude and the electromagnetic meson current is derived
within our point-form approach. The calculation is lengthy
and tedious and has already been given in detail in previous
work [14,15,23,24]; hence, we restrict ourselves to just
sketching it here.

A. Optical potential

We use the point-form formulation of the BT construction
for a Poincaré-invariant treatment of interacting quantum-
mechanical systems with a finite number of particles. In
this framework the total four-momentum operator P̂ μ of
the interacting system is obtained from the product of an
interacting mass operator M̂ and a free four-velocity operator
V̂

μ
free,

P̂ μ = M̂ V̂
μ

free = (M̂free + M̂int) V̂
μ

free, (1)

whereM̂free is the free mass operator andM̂int is an interaction
part that transforms like a Lorentz scalar and that commutes
with V̂

μ
free to ensure Poincaré invariance. M̂ contains all

information about the dynamics of the system and thus,
by separating the overall motion of the system associated
with V̂

μ
free, the eigenvalue problem for P̂ μ is reduced to an

eigenvalue problem for the internal motion associated with
M̂,

M̂ |ψ〉 = m |ψ〉, (2)

where |ψ〉 is the mass eigenstate of the system under
consideration. Because we want to account for the dynamics
of the exchanged photon, we treat electron scattering off
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a confined quark-antiquark pair (meson) as a two-channel
problem. The mass operator M̂ acts then on a Hilbert space
that is the direct sum of eqq̄ and eqq̄γ Hilbert spaces, where
e, q, q̄, and γ stand for electron, quark, antiquark, and photon,
respectively.2 As a consequence, Eq. (2) becomes a system
of two coupled equations for |ψeqq̄〉, the eqq̄ component,
and |ψeqq̄γ 〉, the eqq̄γ component of |ψ〉. After a Feshbach
reduction the equation for |ψeqq̄〉 reads [13][

M̂conf
eqq̄ + V̂opt(m)

]|ψeqq̄〉 = m|ψeqq̄〉, (3)

where

V̂opt(m) = K̂γ

(
m − M̂conf

eqq̄γ

)−1
K̂†

γ (4)

is the optical potential. Here K̂ (†)
γ is a vertex operator that

describes the absorption (emission) of the photon by the
electron, quark, or antiquark. M̂conf

eqq̄ and M̂conf
eqq̄γ are the invariant

mass operators of the eqq̄ and eqq̄γ systems, respectively.
They include an instantaneous confining interaction between
q and q̄. For instance, M̂conf

eqq̄ is defined by

M̂conf
eqq̄ = M̂eqq̄ + V̂ conf

eqq̄ , (5)

where M̂eqq̄ is the mass operator of the free eqq̄ system and
V̂ conf

eqq̄ denotes the embedding of the confining qq̄ potential

in the eqq̄ Hilbert space. M̂conf
eqq̄γ is defined analogously. The

optical potential V̂opt(m) consists of all possible exchanges of
the photon between the electron and the quarks including loop
contributions, i.e., reabsorption by the emitting particle. The
factor (M̂conf

eqq̄γ − m)−1 in Eq. (4) describes the propagation
of the eqq̄γ intermediate state and is thus responsible for
retardation effects.

B. Meson current

The electromagnetic meson current can be extracted from
the elastic electron-meson scattering amplitude calculated in
the 1-photon-exchange approximation. We do this in our point-
form BT formulation where the 1-photon-exchange amplitude
is obtained from appropriate matrix elements of the optical
potential (4) between, so-called, velocity states for the electron
and the confined qq̄ system. The basis of velocity states [6]
is a natural basis for multiparticle states in the point-form
BT framework, as the overall four-velocity is not affected
upon introducing interactions; see Eq. (1). An n-particle
velocity state, denoted by |v; �k1,μ1; . . . ; �kn,μn〉, is an n-
particle momentum state with rest-frame momenta �k1, . . . ,�kn

(satisfying
∑n

i=1
�ki = 0) and spin projections μ1, . . . ,μn that

is boosted to overall four-velocity v (with vμvμ = 1) by means
of a canonical-spin boost Bc(v) [18]. Velocity states form a
complete orthogonal basis, they are eigenstates of the invariant
n-particle (free) mass operator, and they have a rather simple
behavior under Lorentz transformations as compared to the
usual momentum states (details on the properties of velocity
states can be found, for instance, in Refs. [6,25]).

2q and q̄ are sometimes referred to collectively as “quarks”.

The relevant matrix elements of the optical potential, from
which the meson current is extracted, are

〈v′; �k′
e,μ

′
e
; �k′

α,μ′
α
,α| V̂opt(m)| v; �ke,μe

; �kα,μ
α
,α〉os. (6)

Here α is a shorthand notation for the discrete quantum
numbers necessary to uniquely specify the meson of interest.
v(′) is the incoming (outgoing) overall four-velocity of the

electron-meson system; �k(′)
e , �k(′)

α and μ(′)
e

, μ(′)
α

are the momenta
and spin projections of the incoming (outgoing) electron and
meson as defined in the electron-meson rest frame. Here
we have introduced the underlining of velocities, spins, and
momenta for states where the quark and the antiquark are
confined (forming the meson) to make a clear distinction from
states where the quark and the antiquark are free particles.
Because we consider elastic electron-meson scattering, we
can restrict our considerations to “on-shell” matrix elements
[denoted by the “os” subscript in Eq. (6)], for which the total
invariant mass of incoming and outgoing electron and meson
is the same, i.e.,

m = √
s = ωke

+ ωkα
= ωk′

e
+ ωk′

α
, (7)

ωke
= ωk′

e
, ωkα

= ωk′
α
, (8)

where ωki
=
√

�k2
i + m2

i with i = e, α.
The first step of evaluating the matrix elements (6) of the

optical potential (4) is a multiple insertion of completeness
relations for velocity eigenstates of M̂conf

eqq̄(γ ) and M̂eqq̄(γ ) at the
appropriate places, which gives rise to velocity-state matrix
elements of the form

〈v; �ke,μe; �kq,μq ; �kq̄ ,μq̄ | v; �ke,μe
; �kα,μ

α
,α〉, (9)

〈v; �ke,μe; �kq,μq ; �kq̄ ,μq̄ ; �kγ ,μγ | v; �ke,μe
; �kα,μ

α
,α; �kγ ,μ

γ
〉,

(10)

and

〈v′; �k′
e,μ

′
e; �k′

q,μ
′
q ; �k′

q̄ ,μ
′
q̄ ; �k′

γ ,μ′
γ | K̂† |v ; �ke,μe; �kq,μq ; �kq̄ ,μq̄〉,

(11)

together with their Hermitian conjugates, respectively. The
first two expressions are proportional to the wave function

ψαμ
α
μqμq̄

(�̃kq) of the confined qq̄ pair (meson). The tilde refers

to the rest frame of the qq̄ subsystem, i.e., k̃i = B−1
c (vqq̄)ki ,

with i = q, q̄, where vqq̄ = (kq + kq̄)/mqq̄ is the four-velocity
of the free qq̄ pair in the overall rest frame and

mqq̄ = ωk̃q
+ ωk̃q̄

=
√(

ωkq
+ ωkq̄

)2 − (�kq + �kq̄)2 (12)

is the invariant mass of the free qq̄ pair. Note that the center-
of-mass kinematics associated with the velocity states implies
�kα = �kq + �kq̄ and therefore �kα/mqq̄ ≡ �vqq̄ .

The third expression, Eq. (11), describes the transition
from the free eqq̄ state to the free eqq̄γ state by emission
of a photon. It is calculated from the usual field-theoretical
interaction density Lem

int (x) of spinor quantum electrodynamics
which involves the (conserved) pointlike current operators of
the quarks and the electron [13]. Explicit formulas for all ma-
trix elements (9)–(11) together with their Hermitian conjugates
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can be found in Refs. [14,23]. The necessary integrations and
sums from the multiple insertion of the completeness relations
in Eq. (6) can be done by means of the appropriate Dirac and
Kronecker δ’s, respectively. Neglecting the three contributions
where the photon is reabsorbed by the emitting particle and
another two where the photon is exchanged between quark
and antiquark, as these are just (electromagnetic) self-energy
corrections of electron and meson masses,3 the remaining four
time-ordered contributions can be combined to two covariant
contributions that correspond to photon exchange between
electron and either quark or antiquark. The final result for the
invariant 1-photon-exchange amplitude, as given by Eq. (6),
has the expected structure. It is a contraction of the (pointlike)
electron current −e ūμ′

e
(�k′

e)γ μuμ
e
(�ke) with the meson current

eJ ν
α [that contains the qq̄ bound-state wave function and

the (anti)quark current] multiplied with the covariant photon
propagator (−gμν)/Q2 [14,23]:

〈v′; �k′
e,μ

′
e
; �k′

α,μ′
α
,α| V̂opt(m)| v; �ke,μe

; �kα,μ
α
,α〉os

= v0δ
3(�v ′ − �v )

(2π )3√(
ωk′

e
+ ωk′

α

)3
√(

ωke
+ ωkα

)3
(−e2)

× ūμ′
e
(�k′

e)γ μuμ
e
(�ke)

(−gμν)

Q2
J ν

α (�k′
α,μ′

α
; �kα,μ

α
). (13)

The denominator of the photon propagator is given by Q2 =
−q

μ
qμ, with qμ = (k′

α − kα)μ denoting the four-momentum
transferred between electron and meson. The meson current
reads

J ν
α (�k′

α,μ′
α
; �kα,μ

α
) = √

ωkα
ωk′

α

∑
μ′

qμ′̄
q

⎡
⎣∫ d3k′

q

ωk′
q

1

ωk ′̄
q

1

ωkq

√
ωk̃′

q
ωk̃ ′̄

q

ωk̃′
q
+ ωk̃ ′̄

q

√
ωk̃q

ωk̃q̄

ωk̃q
+ ωk̃q̄

√
ωk′

q
+ ωk ′̄

q

√
ωkq

+ ωkq̄

×
∑
μq

ψ∗
αμ′

α
μ′

qμ′̄
q
(�̃k′

q) ψαμ
α
μqμ′̄

q
(�̃kq) Qq jν

q (�k′
q,μ

′
q ; �kq,μq) + (q ↔ q̄)

⎤
⎦ , (14)

with Qq denoting the charge of the quark in units of |e| and the (pointlike) currents for quark and antiquark being defined as

jν
q (�k′

q,μ
′
q ; �kq,μq) = ūμ′

q
(�k′

q) γ ν uμq
(�kq) and jν

q̄ (�k′
q̄ ,μ

′
q̄ ; �kq̄ ,μq̄) = v̄μq̄

(�kq̄) γ ν vμ′̄
q
(�k′

q̄), (15)

respectively. The meson wave function is given by

ψαμ
α
μqμq̄

(�̃kq) ≡ ψnjαμ
α
μqμq̄

(�̃kq)

:=
∑

lsμlμs μ̃q μ̃q̄

Ylμl

( �̃kq

|�̃kq |

)
C

sμs
1
2 μ̃q

1
2 μ̃q̄

C
jαμ

α

lμlsμs
u

jα

nls(|�̃kq |)D
1
2
μqμ̃q

{
RW

[
k̃q

mq

,Bc(vqq̄)

]}
D

1
2
μq̄ μ̃q̄

{
RW

[
k̃q̄

mq̄

,Bc(vqq̄)

]}
,

(16)

where n, jα, l, and s are the quantum numbers of radial
excitations, total angular momentum, orbital angular momen-
tum and total spin, respectively, with μ

α
, μl , and μs the

corresponding projections on the z axis. Ylμl
(�̃kq/|�̃kq |) and

u
jα

nls(|�̃kq |) are the usual spherical harmonics and the radial wave

functions, respectively. C
jαμ

α

lμlsμs
are the usual Clebsch-Gordan

coefficients. D
1
2
μiμ̃i

[RW (· · · )] are the Wigner D functions
where RW (· · · ) = RW

[
k̃i/mi,Bc(vqq̄ )

]
, with i = q, q̄ is the

Wigner rotation (associated with canonical-spin boosts),

RW

[
k̃i

mi

,Bc(vqq̄ )

]
= B−1

c

(
ki

mi

)
Bc(vqq̄ )Bc

(
k̃i

mi

)
. (17)

3Owing to instantaneous confinement, mass renormalization hap-
pens on the hadron rather than on the quark level.

The wave function is normalized to unity:∫
d3k̃q

∑
μqμq̄

ψ∗
njαμ

α
μqμq̄

(�̃kq)ψn′j ′
αμ′

α
μqμq̄

(�̃kq) = δnn′δjαj ′
α
δμ

α
μ′

α
.

(18)

In Eq. (14) the quark momenta with and without prime are
related by �k′

i = �ki + �q = �ki + �kγ where i denotes the active
quark (note that the inactive quark must satisfy spectator
conditions). This means three-momentum conservation at the
electromagnetic vertices, a property which one would not ex-
pect in point-form quantum mechanics. One should, however,
keep in mind that we are dealing with overall-center-of-mass
momenta when working with the velocity-state representation
and the energy is not conserved at the vertices. For the
physical momenta, i.e., the center-of-mass momenta boosted
by Bc(v), none of the four-momentum components is, in
general (if �v 
= 0), conserved at the electromagnetic vertices. It
should also be mentioned that, in general, the four-momentum
transfer between incoming and outgoing (active) quark qμ :=
(k′

q − kq)μ deviates from the four-momentum transfer between
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incoming and outgoing confined qq̄ pair qμ. While the
three-momentum transfers are the same, i.e., �q = �q owing
to the center-of-mass kinematics, the zero components differ,
q0 
= q0 = 0, because of Eq. (8) and ωk′

q

= ωkq

. Therefore, not
all the four-momentum that is transferred via the photon to the
qq̄ bound state is also transferred to the active quark.

In the present work we restrict ourselves to qq̄ mesons
consisting of quark and antiquark with equal masses mq = mq̄ .
In this case the quark and antiquark currents (15) are identical,
i.e., jν

q (�k′
q,μ

′
q ; �kq,μq) = jν

q̄ (�k′
q̄ ,μ

′
q̄ ; �kq̄ ,μq̄). For the treatment

of systems with unequal quark masses within the present
formalism, like heavy-light mesons, we refer to Refs. [15,24].

III. PION

In this section we consider the case of the qq̄ bound
state being a charged pseudoscalar meson with total angular
momentum jα = 0, such as the pion. The pion has already
been studied in this framework in Ref. [14]. The reason why
we review the jα = 0 case is to prepare the reader for the more
complex, but in some aspects similar, jα = 1 case of charged
vector mesons.

A positively (negatively) charged π+(π−) meson is de-
scribed in the constituent-quark model as a confined ud̄ (ūd)
pair. Assuming equal u- and d-quark masses and a pure s wave
(l = 0) the current (14) simplifies for the case of a pion to [23]

Jμ
π (�k′

α,�kα) =
√

ωkα
ωk′

α

8π

∫
d3k̃′

q

ωkq

√
mqq̄

m′
qq̄

√
ωkq

+ ωkq̄

ωk′
q
+ ωk ′̄

q

u∗
n0(|�̃k′

q |)un0(|�̃kq |)
∑
μqμ′

q

D
1
2
μqμ′

q

{
RW

[
k̃q

mq

,Bc(vqq̄ )

]

×R−1
W

[
k̃q̄

mq

,B−1
c (v′

qq̄ )Bc(vqq̄)

]
R−1

W

[
k̃′
q

mq

,Bc(v′
qq̄)

]}
(Qq + Qq̄)jμ

q (�k′
q,μ

′
q ; �kq,μq). (19)

In Ref. [23] fundamental properties of the current, like
Hermiticity, covariance, and continuity, have been investigated
in some detail (the corresponding proofs are rather lengthy and
can be found in Sec. 4.4 and Appendix D of Ref. [23]).

(i) The pion current satisfies the property of Hermiticity,
i.e., [Jμ

π (�k′
α,�kα)]† = Jμ

π (�kα,�k′
α).

(ii) The correct behavior under Lorentz transformations is
guaranteed by the current

Jμ
π ( �p′

α, �pα) := [Bc(v)]μνJ
ν
π (�k′

α,�kα) (20)

that depends on the physical pion momenta p(′)
α =

Bc(v)k(′)
α instead of k(′)

α , the momenta in the electron-
meson rest frame that originate from the velocity-state
representation.

(iii) The pion current is conserved, i.e.,
(p′

α − pα)μJμ
π ( �p′

α, �pα) = 0.

A. Covariant structure of the current

The correct physical pion current, denoted by Iμ
π ( �p′

α, �pα),
can be expressed in terms of only one covariant, the sum of
incoming and outgoing physical pion four-momenta, Pα =
pα + p′

α . This covariant is multiplied by the electromagnetic
pion form factor F , with F being a function of Mandelstam
t = −Q2. Correct cluster properties in this context means
that the current cannot depend on the presence of other
particles, like the projectile. It turns out, however, that this
is not the case for our electromagnetic pion current given by
Eqs. (19) and (20), as it exhibits an additional dependence
on the incoming and outgoing electron momenta p

e
and

p′
e
. The reason becomes clear by the following analysis.

For spinless particles, like the pion, we get four current
components Jμ

π ( �p′
α, �pα), μ = 0,1,2,3. Owing to rotational

invariance of our approach the scattering plane can be chosen
such that one of the (space) components vanishes. As a
consequence of current conservation only two of the remaining

three nonvanishing current components can be independent.
That there are indeed two independent current components
is revealed by the numerical analysis [14,23]. A covariant
decomposition of Jμ

π ( �p′
α, �pα) is thus accomplished by means

of two current-conserving four-vectors which are multiplied
with corresponding form factors f and b. The only current-
conserving four-vector that can be built from the incoming
and outgoing pion momenta is obviously P μ

α , the sum of both
momenta. Looking for a second covariant we have to recall that
our derivation of the current is based on the BT construction,
which is known to provide wrong cluster properties for more
than two particles [18]. This means that the physical properties
of our model pion may depend on the presence of an additional
particle, such as the electron. It is thus quite tempting to choose
as a second, current-conserving four-vector the sum of the
incoming and outgoing electron momenta Pe = p

e
+ p′

e
.

Wrong cluster properties do not only modify the covariant
structure of our model current, they also affect the coefficients
in front of the covariants, the form factors f and b. These do not
only depend on Mandelstam t = −Q2, the four-momentum-
transfer squared, but also on Mandelstam

s = (pα + pe)2 = (√
m2

π + �k2
α +

√
m2

e + �k2
α

)2
, (21)

the square of the invariant mass of the electron-pion system.
The s dependence can equivalently be expressed as a de-
pendence on the magnitude of the particle momenta (in the
electron-pion rest frame),

k := |�k′
α| = |�k′

e| = |�kα| = |�ke|, (22)

where we have used Eq. (8). Equation (21) can be inverted to
relate k and s:

k2 =
(
m2

π − m2
e

)2 + s
[
s − 2

(
m2

π + m2
e

)]
4s

. (23)

Using k instead of s turns out to be more convenient for
our purposes. At this point it should be mentioned that

055205-5



ELMAR P. BIERNAT AND WOLFGANG SCHWEIGER PHYSICAL REVIEW C 89, 055205 (2014)

Poincaré invariance of our BT type approach is not spoiled
by vertex form factors that are functions of a whole set
of independent Lorentz invariants involved in the process.
However, a reasonable microscopic model for electromagnetic
form factors should, of course, only depend on the momentum
transfer squared t and not on s. Fortunately, as discussed later,
the unwanted s dependence can be eliminated in a certain limit.

With these findings the general covariant decomposition of
our pion current reads

Jμ
π ( �p′

α, �pα) = f (Q2,k)P μ
α + b(Q2,k)P μ

e . (24)

This decomposition holds for arbitrary values of the pion
momenta pα and p′

α with one exception, the so-called Breit
frame which corresponds to �pα = − �p′

α (=− �pe = �p′
e). In this

frame the two covariants Pα and Pe become proportional,
which precludes the separation of the two form factors.

There seems to be an ambiguity in how to define the form
factors by expanding the current in terms of covariants. It
turns out, however, that only the form factor f (Q2,k) defined
via the expansion (24) provides the correct charge of the
pion at Q2 = 0, as required for the physical form factor.
This justifies to call f defined in Eq. (24) the physical form
factor of the pion. The remaining structure in Eq. (24) that
is proportional to the sum of electron momenta is referred
to as nonphysical (or spurious) contribution, with b being
the spurious form factor. Hence, only the expansion (24)
provides a sensible separation of the physical from the spurious
contribution. The separation of Eq. (24) suggests the following
definition: Spurious contributions to the current are defined as
all structures that depend on the sum of electron momenta.

The covariant structure of our current resembles the
corresponding one obtained in a covariant light-front ap-
proach [19,20]. In these papers the authors encounter a
spurious (unphysical) contribution to the current which is
associated with the lightlike four-vector ωμ that defines the
orientation of the light front (defined by the equality ω · x = 0).
Their spurious contribution is comparable to our spurious
contribution if ωμ is identified with P

μ
e . Our spurious terms

in the current can be traced back to the violation of cluster
separability in our point-form BT approach. In the covariant
light-front formalism the spurious ω-dependent contribution
is rather the consequence of the most general ansatz for a pion
current that has to include the orientation of the light front.

B. Electromagnetic form factor

The form factors are functions of the Lorentz invariants t
and s and can therefore be extracted in any inertial frame. For
simplicity we choose the electron-meson rest frame in which
�v = 0, and thus p(′)

α = k(′)
α with

�kα = −�ke =

⎛
⎜⎝

−Q
2

0√
k2 − Q2

4

⎞
⎟⎠ and �q =

⎛
⎝Q

0
0

⎞
⎠ . (25)

In this parametrization k is subject to the constraint that k � Q
2 .

The only nonvanishing components of the pion current in this
frame are J 0

π and J 3
π from which the form factors f (Q2,k)

and b(Q2,k) can be extracted by inserting our microscopic

expression for the pion current, Eq. (19), into the left-hand
side of Eq. (24). A numerical analysis of the resulting f (Q2,k)
and b(Q2,k), as presented in Ref. [23], confirms that both the
physical form factor f (Q2,k) and the spurious form factor
b(Q2,k) do not only depend on Q2, but they depend indeed
also on k. However, this k dependence of f (Q2,k) vanishes
rather quickly with increasing k (or equivalently increasing
Mandelstam s). At the same time the spurious form factor
b(Q2,k) is seen to vanish. It is thus suggestive to take the limit
k → ∞ to get a sensible result for the physical form factor
f (Q2,k) that only depends on Q2. As a further benefit of this
limit one gets rid of the unwanted spurious contribution on
the right-hand side of Eq. (24) since b(Q2,k) vanishes. After
analyzing the integrand on the right-hand side of Eq. (19) in
the limit k → ∞ (for details see Ref. [23]) we find for the pion
current [14]

Iμ
π := lim

k→∞
Jμ

π ( �p′
α; �pα) = F (Q2) lim

k→∞
P μ

α , (26)

because J 0
π → J 3

π in this limit (in the electron-pion rest frame)
with the pion form factor

F (Q2) := lim
k→∞

f (Q2,k)

= 1

4π

∫
d3k̃′

q

√
mqq̄

m′
qq̄

S u∗
n0 (|�̃k′

q |) un0 (|�̃kq |), (27)

where the spin-rotation factor reads

S = m′
qq̄

mqq̄

− 2k̃′1
q Q

mqq̄

(
m′

qq̄ + 2k̃′3
q

) . (28)

In Ref. [14] we found, after a simple change of integration
variables, that the pion form factor result (27) is actually
identical to the result obtained in the usual light-front approach
of Refs. [26,27]. Therein, use is made of q+ = q0 + q3 = 0
frames, which has the advantage that Z graphs are suppressed.
This remarkable equivalence between point-form and light-
front approaches can be better understood by first noting that
the usual light-front approach corresponds to the special case
of the covariant light-front approach where the orientation
of the light front is fixed by ω = (1,0,0,−1). In the usual
approach the pion form factor is then extracted from the
plus component J+

π of the current. Because ω+ = 0 for ω =
(1,0,0,−1), the spurious part of the current, proportional to ω,
does not contribute to J+

π and therefore also does not contribute
to the pion form factor extracted from J+

π [19]. Consequently,
the usual light-front and the covariant light-front dynamics
give the same pion form factor, which is in some way an
exception owing to the simplicity of spin-0 systems and does
not hold for the more complex spin-1 systems, as we will
see soon. In fact, taking the plus component of the current to
extract the form factor in the usual light-front approach plays
a similar role as the limit k → ∞ (or equivalently s → ∞)
in our approach. It removes the spurious contribution in the
current.

It is also possible to project out the form factor directly
from the current, as proposed in Refs. [19,20]. Contracting
the pseudoscalar bound-state current with the four-vector
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K
μ
e /(Kα · Ke) in the limit k → ∞ gives the form factor, i.e.,

F (Q2) = lim
k→∞

Keμ

Kα · Ke

Jμ
π (�k′

α,�kα). (29)

This prescription resembles the one used already previ-
ously [14], which differs in using the electron current instead
of Ke. In the k → ∞ limit both lead to the same result (27).

IV. ρ MESON

Next we discuss the treatment of jα = 1 qq̄ bound states
within our framework. We concentrate on the ρ meson,
although the formalism is general and applicable to any
relativistic spin-1 bound system of two equal-mass con-
stituents, with the most prominent example being the deuteron
with an instantaneous NN interaction [23]. The positively
charged ρ meson, ρ+, is like the π+, considered within a
constituent-quark model to be a confined pair of a u and a d̄
quark. Before discussing the ρ-meson current we note that the

Clebsch-Gordan coefficients in the wave functions of Eq. (16),
C

1μs
1
2 μ̃q

1
2 μ̃q

can be expressed in (2 × 2)-matrix form as [28]

C
1μs
1
2 μ̃q

1
2 μ̃q̄

= εμ
μs

(�0)

(
σμ

iσ2√
2

)
μ̃q μ̃q̄

, (30)

where σμ = (1,σ1,σ2,σ3), with σi the usual Pauli matrices and
εμ
μs

(�0) the polarization vectors for massive spin-1 particles at
rest,

ε1(�0) ≡ ε1 = − 1√
2

(0,1,i,0), (31)

ε−1(�0) ≡ ε−1 = 1√
2

(0,1,−i,0), (32)

ε0(�0) ≡ ε0 = (0,0,0,1). (33)

Assuming the ρ meson to be a pure s wave (l = 0, μ
α

= μs),
using Eq. (30) for the Clebsch-Gordan coefficients in Eq. (14)
and exploiting Lorentz invariance of the four-vector product
σμεμ

μ
α

, we get for the ρ-meson current,

Jμ
ρ (�k′

α,μ′
α
; �kα,μ

α
) =

√
ωkα

ωk′
α

8π
ε∗σ
μ′

α

(�k′
α)ετ

μ
α

(�kα)
[
B−1

c (v′
α)
]λ

σ

[
B−1

c (vα)
]ν

τ

∫
d3k̃′

q

ωkq

√
mqq̄

m′
qq̄

√
ωkq

+ ωkq̄

ωk′
q
+ ωk ′̄

q

u∗
n0(|�̃k′

q |)un0(|�̃kq |)

×
∑

μq,μ̃q ,...

(Qq + Qq̄)jμ
q (�k′

q,μ
′
q ; �kq,μq)D

1
2
μqμ̃q

{
RW

[
k̃q

mq

,Bc(vqq̄ )

]}
(σν)μ̃q μ̃q̄

×D
1
2

μ̃q̄ μ̃′̄
q

{
RW

[
k̃′
q̄

mq

,B−1
c (vqq̄)Bc(v′

qq̄ )

]}
(σλ)μ̃′̄

q μ̃′
q
D

1
2
μ̃′

qμ′
q

{
R−1

W

[
k̃′
q

mq

,Bc(v′
qq̄ )

]}
, (34)

where v(′)
α = k(′)

α /mρ is the four-velocity of the confined qq̄ pair in the electron-meson rest frame and εμ
μ

α

(�k(′)
α ) = [Bc(v(′)

α )]μνε
ν
μ

α

(�0)
is the boosted polarization vector. In the derivation of Eq. (34) we have used the properties of the Wigner D functions together
with σ2D

1
2 ∗(RW )σ2 = D

1
2 (RW ). It has been shown in Ref. [23] that this current satisfies Hermiticity, as in the pion case, i.e.,

[Jμ
ρ (�k′

α,μ′
α
; �kα,μ

α
)]† = Jμ

ρ (�kα,μ
α
; �k′

α,μ′
α
). Furthermore, the current with the correct covariance properties is obtained by going

to the physical particle momenta and corresponding spins by means of a canonical-spin boost with overall velocity v:

Jμ
ρ ( �p′

α,σ ′
α; �pα,σα)

=
∑
μ′

α
μ

α

[Bc(v)]μνJ
ν
ρ (�k′

α,μ′
α
; �kα,μ

α
)D1∗

μ′
α
σ ′

α

{
R−1

W [v′
α,Bc(v)]

}
D1

μ
α
σα

{
R−1

W [vα,Bc(v)]
}

=
√

ωkα
ωk′

α

8π

[
B−1

c (v)
]σ

κ
ε∗κ
σ ′

α
( �p′

α)
[
B−1

c (v)
]τ

ω
εω
σα

( �pα)
[
B−1

c (v′
α)
]λ

σ

[
B−1

c (vα)
]ν

τ

∫
d3k̃′

q

ωkq

√
mqq̄

m′
qq̄

√
ωkq

+ ωkq̄

ωk′
q
+ ωk ′̄

q

u∗
n0(|�̃k′

q |)un0(|�̃kq |)

×
∑

μq,μ̃q ,...

D
1
2
σq μ̃q

{
RW

[
k̃q

mq

,Bc(v)Bc(vqq̄ )

]}
(σν)μ̃q μ̃q̄

D
1
2

μ̃q̄ μ̃′̄
q

{
RW

[
k̃′
q̄

mq

,B−1
c (vqq̄ )Bc(v′

qq̄)

]}
(σλ)μ̃′̄

q μ̃′
q

×D
1
2
μ̃′

qσ ′
q

{
RW

[
p′

q

mq

,B−1
c (v′

qq̄)B−1
c (v)

]}
(Qq + Qq̄)jμ

q ( �p′
q,σ

′
q ; �pq,σq), (35)

where we have used the transformation properties of the quark current and the ρ-meson polarization vectors,

[Bc(v)]μνj
μ
q (�k′

q,μ
′
q ; �kq,μq) =

∑
σ ′

qσq

jμ
q ( �p′

q,σ
′
q ; �pq,σq)D

1
2 ∗
σ ′

qμ′
q

{
R−1

W

[
p′

q

mq

,B−1
c (v)

]}
D

1
2
σqμq

{
R−1

W

[
pq

mq

,B−1
c (v)

]}
, (36)
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and∑
μ

α

εμ
μ

α

(�kα)D1
μ

α
σα

{
R−1

W [vα,Bc(v)]
} = [

B−1
c (v)

]μ
ν
εν
σα

( �pα),

(37)

respectively. Current conservation does, in general, not hold for
the electromagnetic vector-meson current as given by Eq. (35),
i.e.,

(p′
α − pα)μJμ

ρ ( �p′
α,σ ′

α; �pα,σα) 
= 0. (38)

The formal reason for this failure is the fact that the product
of the three Wigner D functions together with the two
Clebsch-Gordan coefficients in Eq. (35) cannot be written as
one single Wigner D function that depends only on consecutive
Wigner rotations, as in the pseudoscalar case. Consequently,
the properties of the Wigner D functions necessary for showing

current conservation cannot be used (for a detailed analysis,
which is quite intricate, we refer to Appendix D.3 of Ref. [23]).
The nonvanishing of the left-hand side of Eq. (38) is supported
by the analysis of the covariant structure of the current in the
next section and by the numerical results.

Before discussing the current structure, we note that the
polarization vectors can be pulled out of the current (35),

Jμ
ρ ( �p′

α,σ ′
α; �pα,σα) = [Jρ( �p′

α, �pα)]μκωε∗κ
σ ′

α
( �p′

α)εω
σα

( �pα), (39)

leaving a rank-3 Lorentz tensor [Jρ]μστ that is independent
of the incoming and outgoing spin orientations, σα and σ ′

α ,
respectively. This current tensor is used, alternatively to the
current, to extract the form factors in a convenient way. Finally,
the microscopic expression of the current tensor can be easily
read off from Eq. (35) as

[Jρ( �p′
α, �pα)]μκω =

√
ωkα

ωk′
α

8π

[
B−1

c (v)
]σ

κ

[
B−1

c (v)
]τ

ω

[
B−1

c (v′
α)
]λ

σ

[
B−1

c (vα)
]ν

τ

∫
d3k̃′

q

ωkq

√
mqq̄

m′
qq̄

√
ωkq

+ ωkq̄

ωk′
q
+ ωk ′̄

q

u∗
n0(|�̃k′

q |)un0(|�̃kq |)

×
∑

μq,μ̃q ,...

D
1
2
σq μ̃q

{
RW

[
k̃q

mq

,Bc(v)Bc(vqq̄)

]}
(σν)μ̃q μ̃q̄

D
1
2

μ̃q̄ μ̃′̄
q

{
RW

[
k̃′
q̄

mq

,B−1
c (vqq̄ )Bc(v′

qq̄)

]}
(σλ)μ̃′̄

q μ̃′
q

×D
1
2
μ̃′

qσ ′
q

{
RW

[
p′

q

mq

,B−1
c (v′

qq̄ )B−1
c (v)

]}
(Qq + Qq̄)jμ

q ( �p′
q,σ

′
q ; �pq,σq). (40)

A. Covariant structure of the current

The correct electromagnetic ρ-meson current, which we denote by Iμ
ρ ( �p′

α,σ ′
α; �pα,σα), depends on three form factors, for which

we choose F1, F2, and GM . These are functions of Mandelstam t = −Q2 only. Its covariant structure is obtained by constructing
from the tensor ε

μ∗
σ ′

α
( �p′

α)εν
σα

( �pα) all Hermitian, current-conserving four-vectors by appropriate multiplication and contraction with
gμν , the sum P μ

α , and/or the difference dμ := p′μ
α − pμ

α of the incoming and outgoing bound-state four-momenta. However, as in
the pion case, the covariant structure of our ρ-meson current (35) cannot be solely built from the incoming and outgoing ρ-meson
momenta and spins. Owing to the violation of cluster separability in the BT framework, we expect that it exhibits an additional
dependence on the sum of the electron momenta Pe. Furthermore, unlike the pion case we cannot demand current conservation
[cf. Eq. (38)] and therefore we have to allow, in addition, for nonconserved Lorentz structures proportional to dμ.

The explicit construction of the covariant structure of Jμ
ρ ( �p′

α,σ ′
α; �pα,σα) is discussed in detail in Appendix D.4 of Ref. [23].

The analysis reveals that one can find 11 Hermitian covariants by contracting and/or multiplying the tensor ε
μ∗
σ ′

α
( �p′

α)εν
σα

( �pα) with
gμν and/or the available four-vectors P μ

α , dμ, and/or P
μ
e . Consequently, we can parametrize Jμ

ρ in terms of 11 form factors, the 3
physical form factors denoted by f1, f2, and gM and 8 spurious form factors denoted by b1, . . . ,b8. The form factors exhibit, owing
to the nonlocality of the electromagnetic vertex in the BT framework [14], an additional dependence on Mandelstam s which is
expressed, for convenience, in terms of k defined through Eqs. (21)–(23). Introducing the shorthand notation ε

μ∗
σ ′

α
( �p′

α) ≡ ε′μ∗ and

εμ
σα

( �pα) ≡ εμ and dropping the arguments of the form factors which depend on Q2 and k, the expansion of the current in terms
of the Hermitian covariants times the form factors reads

Jμ
ρ ( �p′

α,σ ′
α; �pα,σα) =

[
f1ε

′∗ · ε + f2
(ε′∗ · d)(ε · d)

2m2
ρ

]
P μ

α + gM [ε′μ∗(ε · d) − εμ(ε′∗ · d)] + m2
ρ

Pe · Pα

[
b1ε

′∗ · ε + b2
(ε′∗ · d)(ε · d)

m2
ρ

+ b3 4m2
ρ

(ε′∗ · Pe)(ε · Pe)

(Pe · Pα)2
+ b4

(ε′∗ · d)(ε · Pe)−(ε′∗ · Pe)(ε · d)

Pe · Pα

]
P μ

e

+ b5 4m2
ρ

(ε′∗ · Pe)(ε · Pe)

(Pe · Pα)2
P μ

α + b6
(ε′∗ · d)(ε · Pe)−(ε′∗ · Pe)(ε · d)

Pe · Pα

P μ
α

+ b7 2m2
ρ

ε′μ∗(ε · Pe)+εμ(ε′∗ · Pe)

Pe · Pα

+ b8
(ε′∗ · d)(ε · Pe) + (ε′∗ · Pe)(ε · d)

Pe · Pα

dμ. (41)
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As in the pion case there seems to be an ambiguity as to how to separate the physical from unphysical contributions. Again it
turns out, however, that only the above decomposition with the associated definition of form factors gives the correct charge
of the bound state at zero momentum transfer, as required for the physical charge form factor GC . Again this justifies defining
unphysical (or spurious) contributions as structures proportional to first or higher powers of Pe. These are the structures multiplied
by the spurious form factors b1, . . . , b8 in Eq. (41). By separation of the polarization vectors we find the covariant structure of
the current tensor:

[Jρ( �p′
α, �pα)]μστ

=
(

f1gστ + f2
dσ dτ

2m2
ρ

)
P μ

α + gM

(
gμ

σ dτ − gμ
τ dσ

)+
[
b1gστ + b2

dσ dτ

m2
ρ

+ b34m2
ρ

Peσ Peτ

(Pe · Pα)2
+ b4

Peτ dσ − Peσ dτ

Pe · Pα

]
m2

ρ

Pe · Pα

P μ
e

+ b5
Peσ Peτ

(Pe · Pα)2
4m2

ρP
μ
α + b6

Peτ dσ − Peσ dτ

Pe · Pα

P μ
α + b7 2m2

ρ

gμ
σ Peτ + gμ

τ Peσ

Pe · Pα

+ b8
dσPeτ + dτPeσ

Pe · Pα

dμ. (42)

The covariant structures of Jμ
ρ ( �p′

α,σ ′
α; �pα,σα) and

[Jρ( �p′
α, �pα)]μστ resemble the corresponding ones obtained

within the covariant light-front approach of Refs. [19,20] and
thus we have adopted their notation and normalizations for the
form factors. In this work the authors encounter eight spurious
contributions to the current that are associated with ωμ.
These ω-dependent spurious contributions correspond to our
Ke-dependent spurious contributions. As in the pseudoscalar
case, the spurious contributions of our vector-meson current
can be traced back to the violation of cluster separability.
The ω-dependent contributions of Ref. [20] are rather the
consequence of the most general ansatz for their current,
which has to include the orientation of the light front.

B. Electromagnetic form factors

1. F1, F2, and GM

The numerical analysis—the dynamical ingredients of
which are discussed in the next section—with the stan-
dard kinematics as introduced in Eq. (25) (�v = 0 and
thus p(′)

α = k(′)
α and σ (′)

α = μ(′)
α

) reveals that the micro-
scopic expression Jμ

ρ of Eq. (34) has indeed 11 inde-
pendent, nonvanishing matrix elements. Using the short-
hand notation Jμ

ρ (�k′
α,μ′

α
; �kα,μ

α
) ≡ J

μ
μ′

α
μ

α

they are given by

J 0
1−1, J

3
1−1, J

0
00, J

3
00, J

0
10, J

1
10, J

2
10, J

3
10, J

0
11, J

2
11, and J 3

11, with
all the remaining nonvanishing matrix elements related to
them owing to parity and time-reversal invariance. Of the 11
form factors only the 3 physical form factors f1, f2, and gM

are of interest. We extract them from Eq. (34) by using the
decomposition (41). As in the pion case we take the limit
k → ∞, where the form factors become independent of k, and
denote the limiting expressions by capital letters,

Fi(Q
2) = lim

k→∞
fi(Q

2,k), with i = 1,2, (43)

GM (Q2) = lim
k→∞

gM (Q2,k), (44)

and

Bj (Q2) = lim
k→∞

bj (Q2,k), with j = 1, . . . ,8. (45)

Furthermore, using our standard kinematics, we observe that
the zeroth and third components of the current become

identical in this limit, i.e., J 0
μ′

α
μ

α

k→∞−→J 3
μ′

α
μ

α

, which reduces the

number of independent matrix elements from 11 to 7. This
means, however, that 4 of the 8 spurious contributions cannot
be eliminated by simply taking the limit k → ∞. These are the
ones connected with B5, . . . ,B8. As in the pion case, taking
the limit k → ∞ in our formalism resembles the situation in
usual light-front dynamics with ω = (1,0,0,−1), in which the
extraction of the form factors is based on the plus component
of the current operator. By restricting to the plus component in
the usual approach the 4 spurious contributions containing
B1, . . . ,B4, which are proportional to ωμ, are eliminated.
However, the contributions associated with B5, . . . ,B8 survive,
similar to that in our case. In particular, using our standard
kinematics a numerical analysis shows that in the limit k → ∞
there is a nonvanishing contribution to the μ = 1 component
of the current, namely,

lim
k→∞

J 1
10 = −B7(Q2)

mρ√
2

+ B8(Q2)
Q2

2
√

2mρ

, (46)

which clearly violates current conservation [in our standard
kinematics qμ = (0,Q,0,0)μ]. This complication occurs ow-
ing to the increased complexity of spin-1 bound systems as
compared to the spin-0 case.

The physical ρ-meson current, denoted by I
μ
σ ′

ασα
, that

satisfies all required properties should depend only on the three
physical form factors F1, F2, and GM . Hence, the four matrix
elements, I 0

11, I 0
1−1, I 0

10, and I 0
00, which cannot be related by

parity or time-reversal invariance, should satisfy the so-called
angular condition (see, e.g., Refs. [20,29,30]),

(1 + 2η)I 0
11 + I 0

1−1 − 2
√

2ηI 0
10 − I 0

00 = 0, (47)

where η = Q2

4m2
ρ
. For our current matrix elements J 0

σ ′
ασα

, the

angular condition is, however, not satisfied—not even in the
limit k → ∞—due to the spurious contributions, in particular
the nonvanishing form factors B5 and B7:

lim
k→∞

1

2k

[
(1 + 2η)J 0

11 + J 0
1−1 − 2

√
2ηJ 0

10 − J 0
00

]
= −[B5(Q2) + B7(Q2)]. (48)

It is thus not possible to extract the three physical form factors
in an unambiguous way from J 0

11, J 0
1−1, J 0

10, and J 0
00, unless

the spurious parts of these current matrix elements are first sep-
arated. This problem occurs in the usual light-front approach as
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well (with the 0 replaced by the + component of the current).
Different triplets of current matrix elements have been chosen
in the literature to calculate the three physical form fac-
tors [29,31–33]. These different prescriptions lead, in general,
to different results for the form factors as soon as the angular
condition is violated, an example being the naive impulse
approximation. For a numerical and analytical comparison
of different approaches, see Refs. [20,34,35], respectively.

If the angular condition were satisfied, the different pre-
scriptions would lead to the same form factor results [20,36].
However, the magnetic form factor obtained from the plus
component of the current could still contain the spurious form
factor B6 depending on which current matrix elements are used
to calculate GM . Translating to our case, this means, e.g., that

lim
k→∞

1

k

(
J 0

10 − mρ

√
2

Q
J 0

11

)
= GM (Q2) − B6(Q2), (49)

which implies that GM cannot be directly extracted from
the matrix elements J 0

10 and J 0
11. As we see later by

a numerical analysis, the spurious contributions are alto-
gether relatively small, such that the different prescrip-
tions which do not separate them lead to rather similar
results.

Nonetheless, we have found an unambiguous way to cleanly
separate the physical from the unphysical contributions: A
careful analysis of the current matrix elements reveals that in
the limit k → ∞ the three matrix elements J 0

11, J 0
1−1, and J 2

11
do not contain spurious contributions in the leading order of a
1/k expansion (a similar analysis in the light-front formalism
can be found in Ref. [37]). These “good” matrix elements are
therefore appropriate for the extraction of the physical form
factors, which are then given by (for a derivation we refer to
Appendix F of Ref. [23])

F1(Q2) = − lim
k→∞

1

2k

[
J 0

11 + J 0
1−1

] = − 1

4π

∫
d3k̃′

q

√
mqq̄

m′
qq̄

u∗
n0(|�̃k′

q |)un0(|�̃kq |)(S+
11 + S+

1−1), (50)

F2(Q2) = −1

η
lim

k→∞
1

2k
J 0

1−1 = − 1

4πη

∫
d3k̃′

q

√
mqq̄

m′
qq̄

u∗
n0(|�̃k′

q |)un0(|�̃kq |)S+
1−1, (51)

and

GM (Q2) = − i

Q
lim

k→∞
J 2

11 = − i

4πQ

∫
d3k̃′

q

√
mqq̄

m′
qq̄

u∗
n0(|�̃k′

q |)un0(|�̃kq |)
m′

qq̄(
m′

qq̄ + 2k̃′3
q

) (k̃′2
q S+

11 + i Q

2
S−

11

)
. (52)

Here S+
μ′

α
μ

α

and S−
μ′

α
μ

α

are the spin rotation factors

S±
μ′

α
μ

α

:= lim
k→∞

1

2

∑
μq,μ̃q ,...

(±1)μq− 1
2 D

1
2
μqμ̃q

{
RW

[
k̃q

mq

,Bc(vqq̄)

]} (�εμ
α
· �σ )

μ̃q μ̃q̄
D

1
2

μ̃q̄ μ̃′̄
q

{
RW

[
k̃′
q̄

mq

,B−1
c (vqq̄)Bc(v′

qq̄ )

]}

×(�ε∗
μ′

α

· �σ )
μ̃′̄

q μ̃′
q
D

1
2
μ̃′

qμq

{
RW

[
k′
q

mq

,B−1
c (v′

qq̄)

]}
, (53)

where �εμ
α

and �ε∗
μ′

α

are the spin-1 polarization three-vectors in the rest frame [Eqs. (31)–(33)].
Another, equivalent prescription proposed in the covariant light-front approach of Refs. [19,20] to extract the physical form

factors can also be applied to our case owing to the similarities between both approaches. To this end we define appropriate
tensors Fστ

1μ , Fστ
2μ , and Gστ

Mμ that project out the form factors F1, F2, and GM , respectively, from the current tensor [Jρ( �p′
α, �pα)]μστ .

These projection tensors, fixed by the decomposition (42), read [19,20]

Fστ
1μ := Peμ

Pe · Pα

[
gστ − dσ dτ

d2
− P σ

α P τ
e + P τ

α P σ
e

Pe · Pα

+ P 2
α

P σ
e P τ

e

(Pe · Pα)2

]
, (54)

Fστ
2μ := − Peμ

(Pe · Pα)d2

[
gστ − dσ dτ

d2
− P σ

α P τ
e + P τ

α P σ
e

Pe · Pα

+ 4m2
α

P σ
e P τ

e

(Pe · Pα)2
− dσP τ

e − dτP σ
e

Pe · Pα

]
, (55)

and

Gστ
Mμ := 1

2

{
gσ

μdτ − gτ
μdσ

d2
+ gσ

μP τ
e + gτ

μP σ
e

Pe · Pα

+ Pαμ

[
dσP τ

e − dτP σ
e

d2(Pe · Pα)
− 2

P σ
e P τ

e

(Pe · Pα)2

]
− dμ

dσP τ
e + dτP σ

e

(Pe · Pα)d2

+ Peμ

Pe · Pα

[
−P 2

α

dσP τ
e − dτP σ

e

(Pe · Pα)d2
+ dσP τ

α − dτP σ
α

d2
+ 2P 2

α

P σ
e P τ

e

(Pe · Pα)2
− P σ

α P τ
e − P τ

α P σ
e

Pe · Pα

]}
. (56)
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Then the form factors are obtained by contraction of the projection tensors with the current tensor:

Fi(Q
2) = lim

k→∞
Fστ

iμ [Jρ( �p′
α, �pα)]μστ , with i = 1, 2, and GM (Q2) = lim

k→∞
Gστ

Mμ[Jρ( �p′
α, �pα)]μστ . (57)

These are finite expressions and independent of k. It has been shown that they are identical to the corresponding ones obtained
from the current matrix elements in Eqs. (50)–(52). The physical current that has all required properties is then

I
μ
σ ′

ασα
= lim

k→∞

{[
F1(Q2)(ε′∗ · ε) + F2(Q2)

(ε′∗ · d)(ε · d)

2m2
ρ

]
P μ

α + GM (Q2)[ε′μ∗(ε · d) − εμ(ε′∗ · d)]

}
, (58)

where the form factors F1, F2, and GM are given by
Eqs. (50)–(52) and ε′∗ = ε∗

σ ′
α
( �p′

α) and ε = εσα
( �pα).

Before we proceed we briefly point out the differences
between our approach and others that use the point form
of relativistic dynamics for the calculation of elastic form
factors of spin-1 two-particle bound states. The point form
has been used in Ref. [9] to calculate the deuteron elastic
form factors. In this work, similar to that in the point-form
spectator model [10,11], the BT construction is just applied
to obtain the bound-state wave function and its mass, but not
to calculate the bound-state current as in our case. Instead, a
general Lorentz-covariant ansatz is made for the bound-state
current with the wave function and the bound-state mass
serving as inputs. The advantage of this procedure is that
cluster separability is trivially satisfied [18]. Reference [9]
makes use of a spectator approximation and the fact that, after
imposing current conservation, the number of independent
nonvanishing current matrix elements in the Breit frame is
equal to the number of physical form factors which, in this
way, are uniquely determined [7].

Owing to the kinematic nature of Lorentz transformations
in the point form, the current can then be transformed
into arbitrary frames. This procedure ensures automatically
that the angular condition is satisfied. In all the point-
form approaches the four-momentum qμ transferred to the
constituent that is struck by the photon is not the same as the
four-momentum transfer qμ between incoming and outgoing
bound states. However, owing to the different procedures for
deriving the current, our qμ differs also from the one in the
point-form approaches of Refs. [9–11]. As a consequence
we get different boosts, Wigner rotations, and kinematical
factors, which explains partly why we are closer to light-front
results than to point-form calculations along the lines of
Refs. [9–11].

2. GC , G Q, and elastic scattering observables

The charge and quadrupole form factors GC and
GQ, respectively, are expressed through F1, F2, and GM

by

GC(Q2) = −F1(Q2) − 2η

3
[F1(Q2)

+GM (Q2) − F2(Q2)(1 + η)] (59)

and

GQ(Q2) = −F1(Q2) − GM (Q2) + F2(Q2)(1 + η). (60)
These form factors have the limits

lim
Q2→0

GC(Q2) = 1, (61)

lim
Q2→0

GM (Q2) = μρ, (62)

lim
Q2→0

GQ(Q2) = Qρ, (63)

where +1 is the charge in units of the fundamental charge |e|,
μρ the magnetic dipole moment in units of |e|/2mρ , and Qρ the
electric quadrupole moment in units of |e|/m2

ρ . For pointlike
spin-1 systems the magnetic dipole and the electric quadrupole
moments are μpoint = 2 and Qpoint = −1, respectively.

For the discussion of the high-Q2 behavior it is useful to
switch to the usual observables of elastic electron-ρ-meson
scattering, which are the structure functions A(Q2), B(Q2),
and the tensor polarization T20(Q2). A(Q2) and B(Q2) are
determined from the unpolarized laboratory frame differential
cross section using the Rosenbluth formula. We have

A(Q2) = G2
C(Q2) + 8

9η2G2
Q(Q2) + 2

3η G2
M (Q2) (64)

and

B(Q2) = 4
3η(1 + η)G2

M (Q2). (65)

The observable T20(Q2) for quadrupole polarization is ex-
tracted from the difference in the cross sections for target ρ
meson having canonical-spin polarizations σα = 1 and σα = 0.
In terms of form factors, it reads

T20(Q2) = −
√

2η

4
9η G2

Q(Q2) + 4
3GQ(Q2)GC(Q2) + 1

3

[
1
2 + (1 + η) tan2(θ/2)

]
G2

M (Q2)

A(Q2) + B(Q2) tan2(θ/2)
, (66)

where θ is the electron scattering angle in the laboratory frame.
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V. NUMERICAL RESULTS

A. ρ-meson wave function

For the numerical study of the ρ-meson form factors we
obviously have to specify the qq̄ bound-state wave function,
the constituent-quark masses, and the ρ-meson mass. For the
ρ-meson wave function we take a simple harmonic-oscillator
form:

u00(|�̃kq |) = 2

π
1
4 a

3
2

exp

(
−

�̃k2
q

2a2

)
. (67)

Such a wave function has also been used in light-front calcula-
tions [38,39], with which we want to compare. The numerical
values for the oscillator parameter and the constituent-quark
masses will thus be taken from these papers. For the ρ-meson
mass we adopt its physical value mρ = 0.77 GeV.

In addition we also use our own parametrization. The
wave function (67) can be considered as the eigenfunction
of a mass-eigenvalue problem in which a harmonic-oscillator
confinement potential is added to the square of the free qq̄
mass operator [25,40]. The mass eigenvalues are then

mnl =
√

8a2
(
2n + l + 3

2

)+ 4mq + c0, (68)

where we have allowed for an additional parameter c0 to
shift the spectrum. With mq = mu = md = 0.34 GeV prefixed
and the remaining two parameters chosen in such a way that
m00 and m10 agree with the masses of the ground and first
excited states of the ρ meson one finds a = 0.312 GeV and
c0 = −1.04 GeV2 [25,40]. The lowest eigenvalue m00 agrees
then with the ρ-meson mass and the first and second radial
excitations are about 10% too high as compared to experiment.

B. Predictions

Numerical results for the electromagnetic ρ-meson form
factors (50)–(52) evaluated with mu = md = 0.34 GeV, a =
0.312 GeV, and mρ = m00 = 0.77 GeV are depicted in Fig. 1.
The corresponding electric charge and quadrupole form factors
of the ρ meson, GC(Q2) and GQ(Q2), respectively, are plotted
in Fig. 2. From the top panel in Fig. 2 we read off the
correct ρ-meson charge GC(0) = 1 in units of the fundamental
charge |e|. This is ensured by the decomposition of the
ρ-meson current introduced in Eq. (41), which justifies this
particular way of separating the physical from the unphysical
contributions. Our predictions for the magnetic dipole and the
electric quadrupole moment, which are the Q2 → 0 limits of
GM (Q2) and GQ(Q2) [cf. Eqs. (62) and (63)], are μρ = 2.2
and Qρ = −0.47 (in units |e|/2mρ and |e|/m2

ρ), respectively.
The results for the elastic scattering observables A(Q2),
B(Q2), and T20(Q2) are depicted in Fig. 3.

It is also interesting to see how large are the spurious
contributions to the ρ-meson current that emerge from wrong
cluster properties within our approach. Of particular interest
are effects violating current conservation and the angular
condition, as well as the spurious form factor B6 that is
relevant in the context of GM . The ρ-meson current is not
conserved if the x component of the current does not vanish
when using our standard kinematics of momentum transfer
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0.2

0.0

F 1
Q
2

0 2 4 6 8
0.0
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0.6

0.7

F 2
Q
2

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

Q2 GeV2

Q2 GeV2

Q2 GeV2

G
M
Q
2

FIG. 1. The electromagnetic ρ-meson form factors F1(Q2)
(top panel), F2(Q2) (middle panel), and GM (Q2) (bottom panel)
for the harmonic-oscillator wave function, Eq. (67), and parameters
mq = 0.34 GeV, a = 0.312 GeV, and mρ = m00 = 0.77 GeV.

in the x direction. A measure for the violation of current
conservation is lims→∞ qμJμ

ρ ∼ QJ 1
10(Q2). This quantity is

depicted in the top panel of Fig. 4. We also give our result for
the violation of the angular condition, which can be quantified
by the sum of the spurious form factors B5 and B7 [cf. Eq. (48)].
The result is plotted in the middle panel of Fig. 4. Finally, we
have also calculated the spurious form factor B6(Q2) from
Eq. (49), which is shown in the bottom panel of Fig. 4.
All three cases demonstrate that the spurious contributions
cannot be neglected compared to the physical ones and they
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FIG. 2. The electric charge form factor GC(Q2) (top panel) and
electric quadrupole form factor GQ(Q2) (bottom panel) of the ρ

meson evaluated with the same parameters as in Fig. 1.

can contribute significantly to the current matrix elements.
Moreover, they are larger for strongly bound systems, such
as the ρ meson, and less important in weakly bound systems,
such as the deuteron [23]. Therefore, their separation is crucial
for the extraction of meaningful physical form factors within
our approach (and also within other approaches which violate
the angular condition).

C. Comparisons

To make sensible comparisons with other approaches to
ρ-meson form factors, we look particularly at calculations
that use the Gaussian form (67) for the ρ-meson wave
function. These are light-front calculations along the lines
of Refs. [20,31,38,39] which differ mainly in the way the
angular condition is dealt with.4 In Ref. [31] no attempt is
made to satisfy the angular condition. References [20,39] are
both based on the covariant light-front scheme, the difference
being that zero modes are, as additional ingredients, taken
into account in Ref. [39]. Reference [38], on the other hand,

4Numerical results for the ρ-meson form factors calculated with
the harmonic-oscillator wave function (67) along the lines of
Refs. [20,31] can be found in Ref. [39].
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FIG. 3. The elastic scattering observables A(Q2) (top panel),
B(Q2) (middle panel), and T20(Q2) (bottom panel) evaluated by
means of Eqs. (64)–(66) with the same parameters as in Fig. 1.

takes into account zero modes, but does not use the covariant
light-front approach with its spurious contributions.

For the quantitative comparison we adopt the values for the
two parameters mq and a of each approach and use them in our
calculation. The predictions for the magnetic dipole moment
μρ and the electric quadrupole moment Qρ are compared in
Table I. It turns out that our results for μρ and Qρ agree with
the calculation à la Carbonell et al. [20]. This is not surprising
owing to the resemblances between both approaches. Our
value for Qρ also coincides with the the one from Jaus [39];
however the values for μρ differ significantly. The reason is
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FIG. 4. The spurious contributions to the ρ-meson current. The
violation of current conservation given by QJ 1

10 (top panel), the
violation of the angular condition (middle panel) given by Eq. (48),
and the spurious form factor B6(Q2) (bottom panel), all calculated
with the same parameters as in Fig. 1.

that current matrix elements which are needed to calculate
μρ are affected by zero-mode contributions, whereas Qρ is
dominated by F2(0) for which zero modes do not play a
role. Considerable deviations from the results in Ref. [38]
are observed for both the magnetic dipole moment and the
electric quadrupole moment. These authors account for zero
modes, but do not employ the manifestly covariant light-front
approach of Ref. [20]. By comparison of our results with
the ones from Chung et al. [31], we find that their value for
μρ is about 0.0434 units of |e|/2mρ smaller than ours. This

TABLE I. Comparison of the magnetic dipole moment μρ

(in units |e|/2mρ) and the electric quadrupole moment Qρ (in
units |e|/m2

ρ) from different approaches using a harmonic-oscillator
confining potential.

Reference mq (GeV) a (GeV) μρ Qρ

This work 0.34 0.312 2.20 − 0.47
Choi and Ji [38] 0.22 0.3659 1.92 − 0.43
This work 0.22 0.3659 2.33 − 0.33
Jaus [39] 0.25 0.28 1.83 − 0.33
This work 0.25 0.28 2.25 − 0.33
Carbonell et al. [20] 0.25 0.262 2.23 − 0.005
This work 0.25 0.262 2.231 − 0.0058
Chung et al. [31] 0.25 0.316 2.23 − 0.19
This work 0.25 0.316 2.273 44 − 0.253 915

discrepancy is perfectly understood, as it is just the spurious
contribution −B6(Q2) + [B5(Q2) + B7(Q2)]/(1 + η) which
admixes to the magnetic form factor when using the usual light-
front prescription of Ref. [31] without separating spurious
contributions (see also Ref. [20]).

In Table II we give our predictions for μρ and Qρ using
our own parameter values (see Sec. V A) and compare with
results from different sources. Our predictions for μρ and Qρ

lie within the realm of values obtained by others. Our magnetic
moment agrees, in particular, with a recent analysis of Babar
data [48].

In Table III our form factor results for finite Q2 are
confronted with those of Choi and Ji [38], who also use a
harmonic-oscillator confining potential. For the purpose of
comparison we have again taken the same parameters as in
Ref. [38]. For Q2 � 1 GeV2 both calculations provide com-
parable results with the largest discrepancies being observed
for the charge form factor GC .

In Table IV we finally compare our predictions for the
ρ-meson form factors, which we have already plotted in
Sec. V B, with those of QCD sum rules [43,49] and Bethe-
Salpeter-Dyson-Schwinger methods [44,45]. We observe that
our electric charge form factor GC for Q2 = 1 GeV2 lies above
the predictions of these other approaches. For the higher Q2

it is somewhere between the values of the other approaches.
Our magnetic form factor GM lies above the values of the

TABLE II. Predictions of the magnetic dipole moment μρ (in
units |e|/2mρ) and the electric quadrupole moment Qρ (in units
|e|/m2

ρ) coming from different approaches.

Reference μρ Qρ

This work 2.20 − 0.47
Bagdasaryan et al. [41] 2.30 − 0.45
Samsonov [42] 2.00 ± 0.3 –
Aliev and Savci [43] 2.30 –
Cardarelli et al. [34] 2.23 − 0.61
Bhagwat and Maris [44] 2.01 − 0.41
Hawes and Pichowsky [45] 2.69 − 0.84
De Melo and Frederico [46] 2.14 − 0.79
QCDSF [47] 1.7(3) − 0.015(4)
Garcia Gudino and Toledo Sanchez [48] 2.1 ± 0.5 –
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TABLE III. Comparison of ρ-meson form factors obtained within
our approach and the one of Choi and Ji [38], for some fixed values of
Q2. Both calculations were done with the same harmonic-oscillator
model with the parameters mq = 0.22 GeV and a = 0.3659 GeV.

Q2 (GeV2) [38] This work

Q2 = 1 GC 0.38 0.29
GM 0.93 0.93
GQ − 0.23 − 0.21

Q2 = 2 GC 0.18 0.12
GM 0.59 0.58
GQ − 0.15 − 0.14

Q2 = 3 GC 0.08 0.05
GM 0.41 0.41
GQ − 0.10 − 0.10

other approaches in the whole range of Q2, whereas our
electric quadrupole form factor GQ is within the range of
sum-rule and Bethe-Salpeter-Dyson-Schwinger results. To
conclude, in view of the simplicity of our harmonic-oscillator
model the results for the ρ-meson form factors look quite
reasonable and fall within the range of other model predictions.
Experimentally, little is known about the electromagnetic
ρ-meson form factors which could be used to discriminate
between different models and approaches.

VI. SUMMARY AND CONCLUSIONS

The point form is the least utilized of Dirac’s forms of
relativistic dynamics, although it has several advantageous
features. Its key benefit is the property that Lorentz trans-
formations are kinematic and only space-time translations are
affected by interactions. This natural way of separating the
kinematic from the dynamic generators allows for a manifest
Lorentz covariant formulation of operator equations and yields
a simple behavior of wave functions under Lorentz transfor-
mations. In the present work we have exploited the virtues
of point-form relativistic quantum mechanics to analyze the
electromagnetic structure of qq̄ mesons within constituent-
quark models. Applying the coupled-channel formalism

TABLE IV. The ρ-meson form factors obtained with our own
parametrization in comparison with predictions from QCD sum
rules [43,49] and Bethe-Salpeter-Dyson-Schwinger methods [44,45].

Q2 (GeV2) This work [44] [45] [43] [49]

Q2 = 1 GC 0.29 0.22 0.17 0.25 0.10
GM 0.85 0.57 0.85 0.58 0.46
GQ − 0.21 − 0.11 − 0.51 − 0.49 − 0.16

Q2 = 2 GC 0.11 0.08 0.04 0.13 0.16
GM 0.47 0.27 0.45 0.28 0.27
GQ − 0.12 − 0.05 − 0.32 − 0.24 − 0.11

Q2 = 3 GC 0.05 0.11 0.08 − 0.03
GM 0.30 0.25 0.17 0.18
GQ − 0.07 − 0.23 − 0.15 − 0.10

developed earlier [14], we have derived an expression for the
electromagnetic ρ-meson current in terms of quark currents
and the ρ-meson wave function. Our current is Hermitian
and transforms correctly under Lorentz transformations. Its
Lorentz structure is, however, not completely determined by
the incoming and outgoing meson momenta and spins. It turned
out that additional, unphysical (or spurious) Lorentz-covariant
terms are necessary to parametrize the entire current. These
spurious contributions depend on the electron momenta and
they are a consequence of the violation of cluster separability
in the BT framework, which we used to ensure Poincaré
invariance. Furthermore, both the physical and the spurious
form factors (associated with the spurious contributions)
depend on the two independent Lorentz invariants that can
be constructed from the incoming and outgoing meson and
electron momenta, i.e., Mandelstam t , the four-momentum
transfer squared, and also Mandelstam s, the total invariant
mass squared of the electron-meson system.

For pseudoscalar mesons such as the pion, the current
derived along the same lines is conserved and can be
parametrized by one physical and one spurious form fac-
tor [50]. The structure of this current reveals an interesting
correspondence to the covariant light-front approach [19,20].
The electromagnetic pion current in the covariant light-front
formalism contains also a spurious contribution, which is asso-
ciated with an arbitrary lightlike four-vector ωμ that describes
the orientation of the light front. The dependence on this
light-front orientation is a consequence of demanding manifest
Lorentz covariance in the light-front approach. In our case, the
spurious contribution could be removed from the pion current
by taking the limit Mandelstam s → ∞. This limit abolishes
also the unwanted s-dependence of the pion form factor. The
resulting analytical expression is equivalent to the one that is
extracted from the plus component of a spectator current in
usual light-front dynamics in the q+ = 0 frame [26]. As in the
pseudoscalar case, the Lorentz structure of our vector-meson
current, which contains three physical and eight spurious
contributions, resembled the corresponding current of the
covariant light-front formalism. However, unlike the pion case,
by taking the limit s → ∞, only four spurious contributions,
proportional to 1/

√
s, were removed. The remaining four

spurious contributions violate current conservation and the
angular condition. This parallels again the situation of the co-
variant light-front approach after adopting the common choice
ω = (1,0,0,−1). The four spurious contributions that are
proportional to ωμ vanish in this case for the plus component
of the spin-1 spectator current from which the form factors are
usually extracted. As in our approach, the surviving four spuri-
ous contributions violate current conservation and the angular
condition. By means of the projection technique proposed by
Karmanov and Smirnov [19], it is, however, possible to neatly
separate the physical from the unphysical contributions. The
same projection technique is also applicable in our case. Alter-
natively, we can exploit the observation that one can find three
independent current matrix elements which are (to leading
order in a 1/

√
s expansion) free of spurious contributions and

can thus be taken to extract the physical form factors directly.
Our numerical studies for the ρ-meson magnetic dipole

moment and electric quadrupole moment with a simple
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harmonic-oscillator wave function showed agreement with the
corresponding results obtained from the covariant light-front
prescription. The results for the magnetic dipole moment
obtained from the usual light-front prescription differed from
our results precisely by the value of the spurious contribution
that is ignored when extracting the magnetic form factor within
the usual (noncovariant) light-front approach. It seems to us
quite remarkable that point-form and (covariant) light-front
dynamics give the same results. This is what one would
expect for physical reasons without approximations. Here,
however, we are dealing with simple spectator currents in
both approaches which lead to unphysical contributions in
the currents. These unphysical contributions are of different
origin, namely wrong cluster properties in our approach and
an unwanted dependence on the light-front orientation in the
covariant light-front approach. Nevertheless, after getting rid
of the spurious contributions we end up with the same current.
As a byproduct the size of the spurious contributions gives
us a measure for the violation of cluster separability, which
turned out to be, by far, non-negligible in strongly bound
systems.

With the present study of electromagnetic vector-meson
form factors we have extended the scope of the employed
relativistic coupled-channel formalism. In foregoing work this
formalism has been applied to investigate the electroweak

properties of heavy-light mesons [15] and to prove that the cor-
rect heavy-quark-symmetry properties emerge in the heavy-
quark limit. Furthermore, the form factors of the deuteron
have been calculated within a Walecka-type model [51,52]
for the NN interaction with instantaneous [23] and also dy-
namical [24] σ - and ω-meson exchanges. Dynamical particle
exchange between the bound-state constituents gives rise to ex-
change currents. These can also be accommodated within our
coupled channel framework. Ongoing studies, e.g., deal with
the effect of dynamical pion exchange between constituent
quarks on the electromagnetic nucleon form factors [53].
Nonvalence components in hadrons can also be treated and
their role in hadron decay form factors is a further subject of
investigations [54].
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