
PHYSICAL REVIEW C 89, 055203 (2014)
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The complete-experiment problem in the truncated partial-wave analysis (PWA) of pseudoscalar meson
photoproduction with suppressed t-channel exchanges is investigated. The focus is set to ambiguities of the
group S observables with the unpolarized differential cross section, σ0, and the three single-spin observables, �,
T , and P . For this purpose, the approach and formalism already worked out by Omelaenko [Sov. J. Nucl. Phys. 34,
406 (1981)] is revisited in this work. A numerical study using multipoles of the PWA solution MAID2007 shows
how only one additional double polarization observable can resolve all ambiguities. Therefore, the possibility
emerges to perform a complete experiment with only five observables.
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I. INTRODUCTION

The nucleon and its excitation spectrum is of fundamental
interest for our understanding of the visible nature in terms
of quantum chromodynamics (QCD) in the nonperturbative
regime. Whereas the nucleon itself is mainly investigated in
electron scattering by its form factors and densities as well as in
Compton scattering by polarizabilities, the excitation spectrum
is traditionally explored in elastic and inelastic pion nucleon
scattering and meson photo- and electroproduction. While
the electromagnetic excitation of nucleon resonances was for
a long time just the source for obtaining the photon decay
amplitudes and the transition form factors, in recent years, the
accuracy of data in photo- and electroproduction has increased
so much that this reaction has now also become a source for
possible observations of new resonances or for confirmations
and establishments of such resonances that have only been
“seen” in other reactions with rather uncertain parameters in
the Particle Data Listings. Just recently, in the 2012 issue of
the listings of the Particle Data Group (PDG), a series of N∗
resonances has been established mainly owing to precise data
in kaon photoproduction [1,2].

The simplest process to detect and to study nucleon
resonances is the elastic pion nucleon scattering. It has
the largest cross sections, it is a two-body process with a
simple kinematical structure, and it is described by only
two spin degrees of freedom, giving rise to two scattering
amplitudes and four polarization observables. This field was
pioneered by Hoehler [3] and Cutkosky et al. [4] and led
to the detection of most of the N∗ and � resonances. Their
determinations of masses, widths, partial decay widths, pole
positions, and residues are still considered to be of high
quality in the PDG. After the shutdown of the pion beams,
experimental activities in pion nucleon scattering practically
stopped about 20 yr ago. Nevertheless, impressive progress
has been achieved in the past decade, mostly by improving the
analyzing tools and developments of various models, primarily
the dynamical models, some of them with eight and more
coupled channels [5–11].

However, the construction of modern electron accelerators,
new detector systems, and polarized targets led to enormous

progress in experiments in photo- and electroproduction.
Next to pion nucleon scattering, the photoproduction of
pseudoscalar mesons (π,η,η′,K) is the simplest process to
analyze. It is described by four spin degrees of freedom with
four complex amplitudes, usually given as CGLN (Chew,
Goldberger, Low, and Nambu [12]), invariant, helicity, or
transversity amplitudes, all of them linearly related to each
other. With these four amplitudes, 16 polarization observables
are defined and can be measured with linearly or circularly po-
larized photon beams, polarized targets, and recoil polarization
detection.

Already around the year 1970 people started to think about
how to determine the four complex helicity amplitudes for
pseudoscalar meson photoproduction from a complete set of
experiments. In 1975 Barker, Donnachie, and Storrow pub-
lished their classical paper on “Complete Experiments” [13].
After reconsiderations and careful studies of discrete am-
biguities, in the 1990s [14,15] it became clear that such a
model-independent amplitude analysis would require at least
eight polarization observables (including the unpolarized cross
section), which have to be carefully chosen. There are a
large number of possible combinations, but all of them would
require a polarized beam and target and, in addition, recoil
polarization measurements. Technically this was not possible
until very recently, when transversely polarized targets came
into operation at Mainz, Bonn, and JLab and, furthermore,
recoil polarization measurements by nucleon rescattering have
been shown to be doable.

A complete experiment is a set of measurements that is
sufficient to predict all other possible experiments, provided
that the measurements are free of uncertainties. Therefore,
it is first of all an academic problem, which can be solved
by mathematical algorithms. In practice, however, it will
not work in the same way and either a very high statistical
precision would be required, which is very unlikely, or further
measurements of other polarization observables are necessary.
This has been studied by Ireland [16] with information entropy,
by a joint Mainz/GWU collaboration [17] with event-based
pseudodata generated from the MAID model [6], by a JLab
collaboration with both experimental and pseudodata for kaon
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photoproduction [18] and in a very recent work by the Ghent
group [19] with a combination of kaon photoproduction
data measured at GRAAL and additional pseudodata from
a theoretical model. In fact, photoproduction of K� and
K� are ideal for the complete-experiment analysis, as the
necessary recoil polarization observables can be obtained from
the self-analyzing decay of the hyperons. In case of pion and
η photoproduction this is very different and recoil polarization
can only be detected by an additional elastic scattering of
the outgoing nucleon on a spin-zero nucleus as 12C [20].
This reduces already very much the count rates, but even
more, it does only allow a measurement of the transverse
component of the recoil polarization in the laboratory frame.
In this way, the necessary recoil polarization observables in
the center-of-mass-system (CMS) frame cannot be measured.

However, even for kaon photoproduction, where the first
complete-experiment analysis is only a question of time,
an important problem remains with the unknown overall
phase. Any set of quadratic equations must suffer from the
problem that the underlying amplitudes can only be solved
up to an overall phase. For the four complex amplitudes
in pseudoscalar photoproduction, this means that the full
solution gives just four absolute magnitudes and three relative
phases. The residual overall phase remains undetermined. In
the literature, two methods have been discussed, which are
both highly academic and cannot be used in practice. The first
goes back to Goldberger [21] in 1963 with a Hanbury-Brown
and Twiss experiment; the second was recently published
by Ivanov [22] in 2012, using vortex beams to measure the
phase of a scattering amplitude. Even though the missing
overall phase is no problem for reconstructing all 16 possible
polarization observables, it does not make it possible to
perform a partial-wave expansion, because this phase is a
function of both energy and angle [23,24]. Nevertheless, if the
complete experiment can be performed, it will be the optimal
condition for a partial-wave analysis.

To obtain the partial-wave amplitudes and subsequently
the information on nucleon resonances, another approach
has to be undertaken, the truncated partial-wave analysis
(TPWA). In this method, all 16 polarization observables are
expanded in a partial-wave series up to a given maximal
angular momentum �max, where all partial-wave amplitudes
are only functions of the energy. In 1981 Omelaenko [25]
showed that such a complete TPWA is possible with even
less than eight observables. In fact, he proved that with only
four observables—unpolarized cross section σ0, photon beam
asymmetry �, target polarization T , and recoil polarization
P —the sets of quadratic equations with multipoles can be
solved up to a discrete ambiguity for any given �max. To
resolve this final ambiguity, only one more double polarization
is needed, e.g., F,G,Cx ′ ,Ox ′ ,Cz′ ,Oz′ , while a measurement
of E or H would not suffice. This is a rather surprising
result, as it even allows a complete analysis for pion or
η photoproduction without the need of recoil polarization
observables. The single recoil polarization P can more easily
be measured in a beam-target double polarization experiment.

As in the previous case, the full solution will determine
all partial waves only up to an overall phase; however, this
phase is now only dependent on the energy, and with some

theoretical assumptions, e.g., unitarity and Watson theorem,
this phase can be constructed. This was first performed for
�max = 1 in 1989 by Grushin et al. [26] for a complete TPWA
in the � region.

The aim of this paper is to revisit the Omelaenko paper [25],
published more than 30 yr ago. The formalism of this paper is
not so easy to follow in the shortness of the original publication
and the paper never gained much attention. We have extended
and further clarified the formalism and have applied the method
of ambiguities to modern partial-wave analyses (PWAs) as
MAID [27], SAID [28], and BnGa [29]. Furthermore, we have
also considered truncations beyond S + P waves and discuss
also higher partial waves. We also investigate the possibilities
for unique numerical solutions with current PWAs.

The work of Omelaenko is based on investigations on
ambiguities arising in the analysis of πN scattering that were
performed by Gersten [30] in 1969. Both approaches proceed
via appropriately representing the spin amplitudes describing
the process by products. For the sake of completeness, it
should also be mentioned that for πN scattering an alternative
scheme for obtaining product representations was proposed by
Barrelet [31] in 1972 (see Ref. [32] for a brief treatment on
this subject). The latter approach is generally referred to as the
method of Barrelet zeros.

After a general introduction to the basics of the pseu-
doscalar meson photoproduction process, in Sec. III we derive
the ambiguities of the group S observables (unpolarized cross
section σ0, photon beam asymmetry �, target asymmetry T ,
and nucleon recoil polarization P ) for reconstructing e.m.
multipoles following the method of Omelaenko. In Sec. IV
we discuss the behavior of double polarization observables
and their ability to resolve ambiguities in the partial-wave
solutions. In Sec. V we present a detailed study of the example
with �max = 1. At the end we give a short summary and an
outlook for applications with experimental data in the near
future. In the appendixes we finally collect somewhat lengthy
but useful mathematical formalism.

II. BASIC DEFINITIONS

For photoproduction of pseudoscalar mesons on the nu-
cleon,

γN → ϕB, (1)

where ϕ denotes the pseudoscalar meson and B the recoil
baryon in the final state, the amplitude can be written in a
general form [12],

F = χ †
msf

FCGLN χmsi
. (2)

The spinors χmsi
and χmsf

describe the initial nucleon as well
as the recoil baryon in the final state. The spin operator FCGLN

appearing in Eq. (2) has the following expansion into spin
momentum terms [12]:

FCGLN = i �σ · ε̂ F1 + �σ · q̂ �σ · k̂ × ε̂ F2 + i �σ · k̂ q̂ · ε̂ F3

+ i �σ · q̂ q̂ · ε̂ F4. (3)

In Eq. (3), ε̂ denotes the polarization unit vector of the
incoming photon and k̂ = �k/|�k| as well as q̂ = �q/|�q| are
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the normalized 3-momenta of the incoming and outgoing
particles in the CMS. The complex coefficients {Fi(W, θ ),i =
1, . . . ,4}, carrying dependencies on the total CMS energy W
and the CMS scattering angle θ are called CGLN amplitudes.
Once they are known, the photoproduction process is described
completely. The angular dependence of the Fi(W, θ ) is given
in terms of the multipole expansion [12,18],

F1(W,θ ) =
∞∑

�=0

{[�M�+(W ) + E�+(W )]P ′
�+1(cos θ )

+ [(� + 1)M�−(W ) + E�−(W )]P ′
�−1(cos θ )}, (4)

F2(W,θ ) =
∞∑

�=1

[(� + 1)M�+(W ) + �M�−(W )]P ′
�(cos θ ), (5)

F3(W,θ ) =
∞∑

�=1

{[E�+(W ) − M�+(W )]P ′′
�+1(cos θ )

+ [E�−(W ) + M�−(W )]P ′′
�−1(cos θ )}, (6)

F4(W,θ ) =
∞∑

�=2

[M�+(W ) − E�+(W ) − M�−(W ) − E�−(W )]

×P ′′
� (cos θ ), (7)

where the electric and magnetic multipoles E�± and M�±
describe transitions induced by electric and magnetic photons,
respectively. The summation index � quantizes the orbital
angular momentum of the final ϕB system, which has a
total angular momentum J = � ± 1/2, and P�(cos θ ) are the
Legendre polynomials.

For certain photoproduction channels (γp → π0p is an
important example but γp → ηp is also applicable), close
to production thresholds, and in the low-energy region, a
truncation of the infinite series (4) to (7) at a finite value �max =
L already yields a good approximation for the Fi [18]. Those
channels are at the center of attention in this work. Besides the
CGLN amplitudes Fi , also other sets of amplitudes, helicity,
transversity, and invariant amplitudes are commonly used. The
transversity amplitudes {bi(W, θ ),i = 1, . . . ,4} are defined by
a rotation of the spin quantization axis of the target nucleon
and recoil baryon to the normal of the reaction plane [13,33],

b1(W,θ ) = −b3(W,θ ) + iC sin θ
[
F3(W,θ )e−i θ

2

+F4(W,θ )ei θ
2
]
, (8)

b2(W,θ ) = −b4(W,θ ) − iC sin θ
[
F3(W,θ )ei θ

2

+F4(W,θ )e−i θ
2
]
, (9)

b3(W,θ ) = C[
F1(W,θ )e−i θ

2 − F2(W,θ )ei θ
2
]
, (10)

b4(W,θ ) = C[
F1(W,θ )ei θ

2 − F2(W,θ )e−i θ
2
]
. (11)

In the following, we drop the W dependence of the amplitudes
and all further considerations and analyses will be single-
energy analyses, where the energy W is kept fixed. C is a
complex factor depending on the convention chosen for the
definition of amplitudes. The value C = i/

√
2 is consistent

with this work. The convention for the definition of the bi

is consistent with Ref. [33]. Inspection of Eqs. (4) to (7), as
well as the fact that the function cos θ is symmetric under the
angular reflection θ → −θ , leads to the following symmetry
of the CGLN amplitudes

Fi(θ ) = Fi(−θ ), i = 1, . . . ,4 . (12)

The combination of this symmetry property with the defi-
nitions of transversity amplitudes (8) to (11) deduces the
following relations valid for the bi

b1(θ ) = b2(−θ ), b3(θ ) = b4(−θ ). (13)

It appears now that only two complex amplitudes are necessary
to describe the photoproduction process. While the CGLN
amplitudes are even functions in θ , the transversity amplitudes
do not have a definite symmetry and, as it is shown, by ex-
tending the functions to negative values, two of them give just
redundant information. Therefore, in the following it is enough
to consider just only two transversity functions b2 and b4.

It should be noted that the equations relating transversity to
CGLN amplitudes are linear, i.e.,

bi =
4∑

j=1

T̂ijFj . (14)

This means that once a particular system of spin amplitudes is
known, the other one is as well.

For pseudoscalar meson photoproduction, there are, in
principle, 16 measurable polarization observables. These
observables group into the four classes of group S observables
{σ0,�,T ,P } containing also the unpolarized cross section
σ0 = dσ/d�, beam-target (BT) observables {E,F,G,H },
beam-recoil (BR) observables {Cx ′ ,Cz′ ,Ox ′ ,Oz′ }, and target-
recoil (TR) observables {Tx ′ ,Tz′ ,Lx ′ ,Lz′ } [13,34].

Table I summarizes the definitions of observables used in
this work. Because transversity amplitudes are used in the
following discussion, the observables are tabulated exclusively

TABLE I. Polarization observables listed with sign choices that
are consistent with the MAID PWA [13,27]; for other conventions,
see Ref. [34]. Observables are written using transversity amplitudes.

Observable Transversity representation Type

I (θ ) = σ0/ρ
1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2)

�̌ 1
2 (−|b1|2 − |b2|2 + |b3|2 + |b4|2) S

Ť 1
2 (|b1|2 − |b2|2 − |b3|2 + |b4|2)

P̌ 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2)

Ǧ Im[−b1b
∗
3 − b2b

∗
4]

Ȟ −Re[b1b
∗
3 − b2b

∗
4] BT

Ě −Re[b1b
∗
3 + b2b

∗
4]

F̌ Im[b1b
∗
3 − b2b

∗
4]

Ǒx′ −Re[−b1b
∗
4 + b2b

∗
3]

Ǒz′ Im[−b1b
∗
4 − b2b

∗
3] BR

Čx′ Im[b1b
∗
4 − b2b

∗
3]

Čz′ Re[b1b
∗
4 + b2b

∗
3]

Ťx′ −Re[−b1b
∗
2 + b3b

∗
4]

Ťz′ −Im[b1b
∗
2 − b3b

∗
4] TR

Ľx′ −Im[−b1b
∗
2 − b3b

∗
4]

Ľz′ Re[−b1b
∗
2 − b3b

∗
4]
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in terms of the bi . Independently of the system of spin
amplitudes used, every observable � is defined by a profile
function �̌ that is a bilinear Hermitian form of the amplitudes.
To obtain an observable from the corresponding profile
function, the latter has to be divided by the unpolarized cross
section. The conventions for observables used in this work are
consistent with those of Refs. [13] and [27].

III. FORMALISM FOR THE STUDY OF AMBIGUITIES OF
THE GROUP S OBSERVABLES FOR A TPWA WITH � � L

This section presents an ambiguity study of the group S
observables. The fundamental idea for this study, as presented
in Refs. [25] and [30], consists of exchanging the angular
variable cos θ present in the multipole expansion of Eqs. (4)
to (7) for t = tan θ/2.

The fundamental trigonometric functions sin θ and cos θ
expressed in terms of tan θ/2 read [30]

sin θ = 2 tan θ
2

1 + tan2 θ
2

, cos θ = 1 − tan2 θ
2

1 + tan2 θ
2

. (15)

The relation for cos θ can be formally inverted as follows:

tan
θ

2
=

⎧⎨
⎩

+
√

1−cos θ
1+cos θ

, θ ∈ [0,π ] ,

−
√

1−cos θ
1+cos θ

, θ ∈ [−π,0] .
(16)

Therefore, cos θ and t = tan θ/2 are recognized as fully
equivalent angular variables. As shown in Ref. [25] and
Appendix A, the multipole expansions of the transversity
amplitudes b2 and b4 up to a finite truncation angular
momentum L take the form

b4(θ ) = C exp
(
i θ

2

)
(1 + t2)L

A′
2L(t), (17)

b2(θ ) = −C exp
(
i θ

2

)
(1 + t2)L

[A′
2L(t) + tD′

2L−2(t)], (18)

when written in terms of t . A′
2L(t) and D′

2L−2(t) are polyno-
mials in t with generally complex coefficients. The definition
of B ′

2L(t) = A′
2L(t) + tD′

2L−2(t) simplifies Eq. (18). Once the
amplitudes b2 and b4 are known, the remaining functions
b1 and b3 can be obtained from Eq. (13). This fact is used
repeatedly in the remaining discussion. Appendix A contains
a derivation of the expression for A′

2L(t) that reads

A′
2L(t) = 1

2

L∑
�=0

{
f

(1)
� (� + 1)(� + 2)(1 + t2)L−�

2F1(−�, − � − 1; 2; −t2)

+ f
(2)
� �(� − 1)(1 + t2)L−�+2

2F1(−� + 2, − � + 1; 2; −t2)

+ f
(3)
� �(� + 1)(t + i)2(1 + t2)L−�

2F1(−� + 1, − �; 2; −t2)
}
, (19)

containing hypergeometric functions 2F1(a,b; c; Z) (see also [25] and [30]).
B ′

2L(t) composes by adding a similarly looking expansion, i.e., D′
2L−2(t),

B ′
2L(t) = A′

2L(t) + t

4

L∑
�=0

{(
if

(4)
�

)
�(� + 1)(� + 2)(� + 3)(1 + t2)L−�

2F1(−� + 1, − � − 1; 3; −t2)

+ (
if

(5)
�

)
(� − 2)(� − 1)�(� + 1)(1 + t2)L−�+2

2F1(−� + 3, − � + 1; 3; −t2)

− (
if

(6)
�

)
(� − 1)�(� + 1)(� + 2)(t + i)2(1 + t2)L−�

2F1(−� + 2, − �; 3; −t2)
}
, (20)

with the definitions of six partial-wave coefficients (see
Appendix A):

f
(1)
� = �M�+ + E�+, (21)

f
(2)
� = (� + 1)M�− + E�−, (22)

f
(3)
� = (� + 1)M�+ + �M�−, (23)

f
(4)
� = E�+ − M�+, (24)

f
(5)
� = E�− + M�−, (25)

f
(6)
� = M�+ − E�+ − M�− − E�− . (26)

Once the expressions (19) and (20) are evaluated for a specific
L, both reduce to polynomials in the variable t having the finite

order 2L and complex coefficients a�,b�,

A′
2L(t) =

2L∑
�=0

a�t
�, (27)

B ′
2L(t) =

2L∑
�=0

b�t
�. (28)

There appear 4L + 2 expansion coefficients in Eqs. (27)
and (28) that have to contain the same information content
as the 4L multipoles for a finite L [see Eqs. (4) to (7)]. This
counting suggests that not all of the coefficients a� and b� are
independent. This can be seen by first investigating Eq. (18)
and noting that the polynomial D′

2L−2(t) only has order
2L − 2, which means that the leading coefficients of A′

2L(t)
and B ′

2L(t) are equal [see also (20)]. The term tD′
2L−2(t) is zero
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for t = 0 and for every order in L. Therefore, also the free terms
of A′

2L(t) and B ′
2L(t) are equal, i.e., A′

2L(t = 0) ≡ B ′
2L(t = 0).

Both facts are expressed in the relations

a2L = b2L, a0 = b0. (29)

A next convenient step is taken in Ref. [25] by defining
normalized versions of A′

2L(t) and B ′
2L(t) by

A′
2L(t) = a2LA2L(t), (30)

B ′
2L(t) = a2LB2L(t), (31)

where the first identity a2L = b2L of Eq. (29) is already
invoked. In terms of the normalized polynomials A2L(t) and
B2L(t) the amplitudes b2 and b4 take the form

b4(θ ) = C a2L

exp
(
i θ

2

)
(1 + t2)L

A2L(t), (32)

b2(θ ) = −C a2L

exp
(
i θ

2

)
(1 + t2)L

B2L(t), (33)

and both normalized polynomials can be written as

A2L(t) = t2L +
2L−1∑
�=0

â�t
�, (34)

B2L(t) = t2L +
2L−1∑
�=0

b̂�t
�, (35)

with new coefficients {â� = a�/a2L|� = 0, . . . ,2L − 1} and
{b̂� = b�/b2L|� = 0, . . . ,2L − 1}. The equality of the free
terms also survives for the normalized polynomials, i.e.,

â0 = b̂0. (36)

The number of independent complex coefficients in the present
formulation consisting of a2L, â0 and {â�|� 
= 0} and {b̂�|� 
=
0} counts as 4L as it should. It is now crucial to note [25]
that because A2L(t) and B2L(t) are complex polynomials, the
fundamental theorem of algebra holds and both decompose
into products of their linear factors as

A2L(t) =
2L∏
k=1

(t − αk), B2L(t) =
2L∏
k=1

(t − βk), (37)

with {αk ∈ C| k = 1, . . . ,2L} and {βk ∈ C| k = 1, . . . ,2L}
the complex roots of A2L(t) and B2L(t), respectively. In terms
of a linear factorization (37), the transversity amplitudes b4

and b2 become

b4(θ ) = C a2L

exp
(
i θ

2

)
(1 + t2)L

2L∏
k=1

(t − αk), (38)

b2(θ ) = −C a2L

exp
(
i θ

2

)
(1 + t2)L

2L∏
k=1

(t − βk). (39)

The equality of the free terms, i.e., A2L(t = 0) ≡ B2L(t = 0),
yields [see Eq. (37)]

2L∏
k=1

αk =
2L∏
k=1

βk, (40)

which will become an important relation in the following.
Equation (40) is used to test if possible ambiguities of the group
S observables are consistent with the underlying formalism.
Therefore, it is named the consistency relation.

Another important object introduced in Ref. [25] is the root
function f (θ,α) defined by

f (θ,α) = f (θ,α1, . . . ,α2L) =
∏2L

k=1

(
tan θ

2 − αk

)
(
1 + tan2 θ

2

)L
(41)

and f (θ,β) = f (θ,β1, . . . ,β2L), accordingly. The following
useful facts are valid for the root function:

f (θ,α)|θ=0 =
2L∏
k=1

αk, (42)

lim
θ→π

f (θ,α) = 1. (43)

When expressed using the root function, the amplitudes b4 and
b2 acquire the simple form

b4(θ ) = C a2L exp

(
i
θ

2

)
f (θ,α), (44)

b2(θ ) = −C a2L exp

(
i
θ

2

)
f (θ,β). (45)

To obtain expressions for the remaining amplitudes b3 and b1,
the angular reflection θ → −θ , as well as Eq. (13), have to be
invoked. Under reflection, the root functions behave as

f (−θ,α) =
∏2L

k=1

[
tan

( − θ
2

) − αk

]
[
1 + tan2

( − θ
2

)]L

=
∏2L

k=1

( − tan θ
2 − αk

)
[
1 + ( − tan θ

2

)2]L

= (−)2L

∏2L
k=1

(
tan θ

2 + αk

)
(
1 + tan2 θ

2

)L

= f (θ, − α). (46)

Therefore, the remaining transversity amplitudes can also be
written in compact form as

b3(θ ) = b4(−θ ) = C a2L exp

(
−i

θ

2

)
f (θ, − α), (47)

b1(θ ) = b2(−θ ) = −C a2L exp

(
−i

θ

2

)
f (θ, − β). (48)

For the remaining discussion, it is important to consider the
behavior of the root functions under simultaneous complex
conjugation of all roots α → α∗ or β → β∗:

f (θ,α∗) =
∏2L

k=1

(
tan θ

2 − α∗
k

)
(
1 + tan2 θ

2

)L
=

∏2L
k=1

(
tan θ

2 − αk

)∗
[(

1 + tan2 θ
2

)∗]L

=
[∏2L

k=1

(
tan θ

2 − αk

)
(
1 + tan2 θ

2

)L

]∗

= f ∗(θ,α). (49)
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Preceding the discussion of the ambiguity study of group
S observables, it is reasonable to compare the number of
independent real parameters in an ordinary TPWA and the
reformulated version. In an energy-independent fit, the number
of independent real parameters for every order in L counts as

8L − 1, (50)

i.e., 4L complex multipoles with an undetermined overall
phase. There should be an equal number of parameters in
the reformulated version of the problem. The counting of the
real degrees of freedom represented by the roots {αk} and {βk}
gives 8L. Equation (40), reformulated as

2L∏
k=1

αk

/
2L−1∏
k′=1

βk′ = β2L, (51)

reduces the number of independent real degrees of freedom of
the roots to 8L − 2. There is one additional unknown complex
variable in the reformulation, a2L. The modulus |a2L| can be
determined from the forward-scattering cross section I (π )
(see discussion below). The phase φ2L of a2L = |a2L|eiφ2L

cannot be obtained by multipole analysis. This leaves the
anticipated number of 8L − 1 independent real parameters
for the reformulation of the multipole expansion.

What remains to be done before the ambiguities of the
group S observables are discussed is to establish a connection
among the complex coefficient a2L and the forward-scattering
cross section I (π ). Utilizing the symmetry relation (13), the
observable I (θ ) takes the form (see Table I)

I (θ ) = 1
2 [|b2(−θ )|2 + |b2(θ )|2 + |b4(−θ )|2 + |b4(θ )|2].

(52)

In the limit θ → π , all root functions are unity [see Eq. (43)].
Therefore,

I (θ )|θ→π = I (π ) = 2|C|2|a2L|2. (53)

In this work, the consistent value for C is i/
√

2 and
Eq. (53) yields I (π ) = |a2L|2. This is the anticipated relation
connecting the modulus |a2L| to the unpolarized cross section
for forward scattering.

With everything assembled until now, the possible ambi-
guities of multipole solutions for the group S observables can
be discussed. Once the transversity amplitudes written in root
functions [i.e., Eqs. (44), (45), (47), and (48)] are inserted into
the group S observables of Table I, the latter take the form

I (θ ) = I (π )

4
[|f (θ, − β)|2 + |f (θ,β)|2

+ |f (θ, − α)|2 + |f (θ,α)|2], (54)

�̌(θ ) = I (π )

4
[−|f (θ, − β)|2 − |f (θ,β)|2

+ |f (θ, − α)|2 + |f (θ,α)|2], (55)

Ť (θ ) = I (π )

4
[|f (θ, − β)|2 − |f (θ,β)|2

− |f (θ, − α)|2 + |f (θ,α)|2], (56)

P̌ (θ ) = I (π )

4
[−|f (θ, − β)|2 + |f (θ,β)|2

− |f (θ, − α)|2 + |f (θ,α)|2]. (57)

It can now be seen by inspection of the rule (49) that the
group S observables as written above are invariant under the
replacement

α → α∗, β → β∗, (58)

or, in more detail,

αi → α∗
i , βj → β∗

j , i,j = 1, . . . ,2L. (59)

In Ref. [25], this replacement rule was named the double
ambiguity. Once the newly obtained roots are resolved for the
multipoles, the new solution will generally be distinct from
the original one, but yield the same group S observables. Also,
the new solutions obtained via the double ambiguity trans-
formation automatically fulfill the consistency relation (40).
Complex conjugation of both sides of Eq. (40) yields

2L∏
k=1

α∗
k =

2L∏
k=1

β∗
k , (60)

which proves the latter claim.
However, the double ambiguity is not the only possible

ambiguity of the group S observables, but every replacement
similar to Eq. (59) with arbitrary subsets of indices {i,j}
conjugated and all remaining indices not conjugated leaves
the group S observables invariant. The only possibility to rule
out those extra ambiguities is to check whether or not they
fulfill the consistency relation (40). This fulfillment then would
correspond to a numerical accident and cannot be predicted.
The complex roots expressed in terms of phases read

αk = |αk|eiϕk , βk = |βk|eiψk . (61)

Using the quantities ϕk and ψk , the fact that an arbitrary
combination of complex conjugations of the roots fulfills the
consistency relation (40) is equivalent to the validity of the
equation

±ϕ1 ± · · · ± ϕ2L = ±ψ1 ± · · · ± ψ2L, (62)

for an arbitrary choice of sign combinations. The number
of candidates of additional solutions that can be formed by
complex conjugation of the roots {αk} and {βk}, because 22L

additional sets of {αk} and 22L sets of {βk} are possible, is
42L. Therefore, the number of 42L new potentially ambiguous
solutions has to be tested whether or not they fulfill the
consistency relation (40).

The sets of objects and formulas introduced until now
facilitate an ambiguity study of the group S observables.
This procedure consists of first beginning using a specific
starting solution for multipoles (for example, taken from a
PWA program) and then computing the roots α and β. Once the
roots are calculated, additional sets of solutions are obtained
by complex conjugation, leaving the group S observables
invariant. Next, for all of these additional solutions, including
the double ambiguity, the behavior of the double polarization
observables of the groups BT, BR, and TR under these new
solutions has to be investigated. This investigation should then
yield a set of double polarization observables that can remove
all of the remaining ambiguities.
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IV. BEHAVIOR OF DOUBLE POLARIZATION
OBSERVABLES

First, the behavior of the BT observables shall be in-
vestigated. Inserting the transversity amplitude form of
Eqs. (44), (45), (47), and (48) into the definitions (Table I)
yields the expressions

Ě(θ ) = −I (π )

2
Re[−f (θ, − β)f ∗(θ, − α)

− f (θ,β)f ∗(θ,α)], (63)

F̌ (θ ) = I (π )

2
Im[−f (θ, − β)f ∗(θ, − α)

+ f (θ,β)f ∗(θ,α)], (64)

Ǧ(θ ) = I (π )

2
Im[f (θ, − β)f ∗(θ, − α)

+ f (θ,β)f ∗(θ,α)], (65)

Ȟ (θ ) = −I (π )

2
Re[−f (θ, − β)f ∗(θ, − α)

+ f (θ,β)f ∗(θ,α)]. (66)

TABLE II. Angular boundary values of all double polarization
observables.

E F G H Cx′ Cz′ Ox′ Oz′ Tx′ Tz′ Lx′ Lz′

θ = 0 1 0 0 0 0 +1 0 0 0 0 0 −1
θ → π 1 0 0 0 0 −1 0 0 0 0 0 +1

First of all, it is important to note that the response of the
BT observables to the double ambiguity transformation (58)
can be predicted. Consulting the rule (49) describing the
transformation of the root functions under the double am-
biguity, it is evident that the observables F̌ as well as Ǧ,
whose definition involves the imaginary part, change sign in
Eqs. (64) and (65). The observables defined via real parts, i.e.,
Ě and Ȟ , are invariant under the double ambiguity. Therefore,
they cannot resolve it. For the angular boundary values θ = 0
and π the root functions behave as f (θ,α)|θ=0 = ∏

k αk and
f (θ,α)|θ→π = 1. Therefore, consulting Eqs. (63) to (66), the
values taken by the BT observables on the angular boundaries
can be summarized, as is done in Table II.

Second, the BR observables (Table I) expressed by the root
function f read

Čx ′ (θ ) = I (π )

2
{cos θ Im[f (θ, − β)f ∗(θ,α) − f (θ,β)f ∗(θ, − α)]

+ sin θ Re[−f (θ,β)f ∗(θ, − α) − f (θ, − β)f ∗(θ,α)]}, (67)

Čz′(θ ) = I (π )

2
{cos θ Re[f (θ, − β)f ∗(θ,α) + f (θ,β)f ∗(θ, − α)]

+ sin θ Im[f (θ, − β)f ∗(θ,α) − f (θ,β)f ∗(θ, − α)]}, (68)

Ǒx ′ (θ ) = −I (π )

2
{cos θ Re[f (θ, − β)f ∗(θ,α) − f (θ,β)f ∗(θ, − α)]

+ sin θ Im[f (θ, − β)f ∗(θ,α) + f (θ,β)f ∗(θ, − α)]}, (69)

Ǒz′(θ ) = −I (π )

2
{cos θ Im[f (θ, − β)f ∗(θ,α) + f (θ,β)f ∗(θ, − α)]

+ sin θ Re[f (θ,β)f ∗(θ, − α) − f (θ, − β)f ∗(θ,α)]}. (70)

Because all of them involve terms with real and imaginary parts, they all change under the complex conjugation and, therefore,
they all can resolve the double ambiguity. Furthermore, the values of the observables on the angular boundaries can be predicted.
They are listed in Table II.

Finally, the TR observables (Table I) are also expressed in terms of the root function

Ťx ′ (θ ) = −I (π )

2
{cos θ Re[f (θ, − β)f ∗(θ,β) − f (θ, − α)f ∗(θ,α)]

+ sin θ Im[f (θ, − β)f ∗(θ,β) − f (θ, − α)f ∗(θ,α)]}, (71)

Ťz′ (θ ) = I (π )

2
{cos θ Im[f (θ, − β)f ∗(θ,β) − f (θ, − α)f ∗(θ,α)]

+ sin θ Re[−f (θ, − β)f ∗(θ,β) + f (θ, − α)f ∗(θ,α)]}, (72)

Ľx ′ (θ ) = I (π )

2
{cos θ Im[f (θ, − β)f ∗(θ,β) + f (θ, − α)f ∗(θ,α)]

+ sin θ Re[−f (θ, − β)f ∗(θ,β) − f (θ, − α)f ∗(θ,α)]}, (73)

Ľz′ (θ ) = I (π )

2
{cos θ Re[−f (θ, − β)f ∗(θ,β) − f (θ, − α)f ∗(θ,α)]

+ sin θ Im[−f (θ, − β)f ∗(θ,β) − f (θ, − α)f ∗(θ,α)]}. (74)
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FIG. 1. Real (solid curves) and imaginary (dashed curves) parts of the S- and P -wave multipoles of the MAID2007 solution. All quantities
are plotted versus the photon laboratory energy ELAB

γ .

Again, all of them change under the complex conjugation
and are able to resolve the double ambiguity. On the angular
boundaries θ = 0 and π they take the values given in Table II.

V. A COMPARATIVE NUMERICAL STUDY FOR L = 1

This section contains the depiction of a numerical ambi-
guity study performed using the formalism of Sec. III (see
Ref. [25] for a similar study). The case L = 1 is considered.
As input for the study, multipoles are needed. The set of
multipoles used in this case originates from the MAID solution
MAID2007 (see Ref. [27]), more precisely the channel γp →
π0p. The multipoles corresponding to the S- and P -wave
approximation discussed here are

{E0+, E1+, M1+, M1−}. (75)

For the starting MAID solution, the real and imaginary parts
are plotted in Fig. 1. The task now consists of finding all
possible sets of additional solutions that leave the group
S observables invariant and that are consistent with the
underlying formalism, i.e., fulfill the consistency relation (40).
The procedure starts with the MAID solution. For L = �max =
1, i.e., S and P waves, the normalized polynomials A2L(t) and
B2L(t) from Eqs. (30) and (31) become, with t = tan θ/2,

A2(t) = t2 + â1t + â0

= t2 + 2i
2M1+ + M1−

E0+ − 3E1+ − M1+ + M1−
t

+ E0+ + 3E1+ + M1+ − M1−
E0+ − 3E1+ − M1+ + M1−

, (76)

B2(t) = t2 + b̂1t + b̂0

= t2 + 2i
3E1+ − M1+ + M1−

E0+ − 3E1+ − M1+ + M1−
t

+ E0+ + 3E1+ + M1+ − M1−
E0+ − 3E1+ − M1+ + M1−

. (77)

For this case the normalization coefficient is a2 = b2 = E0+ −
3E1+ − M1+ + M1−. The modulus of the normalization fac-
tor, or coefficient a2, is given by

|a2|2 = I (π ). (78)

Therefore, as mentioned in Sec. III, in this reformulation
using polynomials, a2 carries the undeterminable overall phase
of the multipoles. Once all coefficients, i.e., a2, â1, â0, b̂1,
and b̂0 are evaluated for each energy bin using the solution
MAID2007, the next step is to find the roots {α1,α2} for the
polynomial (76) and {β1,β2} for Eq. (77). This task, as well
as every other numerical calculation mentioned in this section,
was performed using the computer algebra tool MATHEMATICA.
The polynomials A2 and B2 in this case acquire the linear factor
decomposition

A2(t) = (t − α1)(t − α2),
(79)

B2(t) = (t − β1)(t − β2).

With the obtained roots it is easy to check that the consistency
relation (40) for the case L = 1 reads

α1α2 = β1β2, (80)

which is fulfilled for every energy bin by the starting
MAID solution. As mentioned in Sec. III, all candidates for
ambiguous solutions are constructed by complex conjugation
of roots. However, the argument in this section shall be made
in an equivalent way by using the phases of the roots [25]. For
the latter, the consistency relation, defining αk = |αk|eiϕk and
βl = |βl|eiψl , reads

ϕ1 + ϕ2 = ψ1 + ψ2. (81)

The search for ambiguous solutions now consists of checking
which different choices of the signs in Eq. (81) also yield a
valid equality. The arising possibilities can, for the case L = 1,
be summarized by means of the equation

± ϕ1 ± ϕ2 = ±ψ1 ± ψ2. (82)
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FIG. 2. Ambiguity diagram for the S- and P -wave multipoles
(i.e., L = �max = 1) of the MAID2007 solution as explained in the
text. Plotted are different sign choices for linear combinations of
phases {ϕ1,ϕ2} and {ψ1,ψ2}, respectively. The scheme of labeling
the different linear combinations is the following: ◦ (ϕ1 + ϕ2),
� (ϕ1 − ϕ2),  (−ϕ1 + ϕ2), � (−ϕ1 − ϕ2), + (ψ1 + ψ2), ∗ (ψ1 −
ψ2), � (−ψ1 + ψ2), × (−ψ1 − ψ2).

Before the above-mentioned procedure is described further,
it is worth mentioning the way in which one can calculate
the corresponding multipoles, once new sets of phases and
therefore also roots are obtained. Phases and roots can yield
the polynomial coefficients. All that has to be done is to fully
expand the linear factorization (79). The result, relating roots
and normalized polynomial coefficients, reads

â1 = −α1 − α2, â0 = α1α2, (83)

b̂1 = −β1 − β2, b̂0 = β1β2. (84)

For the connection between coefficients and multipoles
there exist linear relations, as can be anticipated by inspection
of Eqs. (76) and (77). For the case L = 1 the following
identities hold:

E0+ = 1
2a2(1 + â0), (85)

E1+ = 1
12a2(â0 − 1 − ib̂1), (86)

M1+ = 1
12a2(â0 − 1 − 2iâ1 + ib̂1), (87)

M1− = 1
6a2(1 − â0 − iâ1 − ib̂1). (88)
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FIG. 3. S- and P -wave multipole ambiguities of the group S observables extracted from Fig. 2. The starting solution is given by the solid
black curves, the double ambiguity by the solid gray curves. The accidental ambiguities owing to Eqs. (90) and (91) are plotted as dashed black
and dashed gray curves, respectively.
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FIG. 4. Results of BT observables using the four different solutions deduced from Fig. 2. Therefore, only S- and P -wave multipoles
contribute. The starting solution is given by the solid black curves, the double ambiguity by the thick dashed gray curves. The accidental
ambiguities (90) and (91) are represented by the solid gray and thick dashed black curves, respectively. For the observables F and G, all
solutions are discriminable, which is not true for E and H . All observables are plotted versus the angular variable cos θ . The energy bin of
ELAB

γ = 253 MeV was chosen for this picture.

For L = 2, Appendix B contains the corresponding rela-
tions as a more extensive example. However, relations similar
in structure to the examples in this section can be derived
for every finite order in L. Because roots and multipoles
are now established as fully equivalent sets of complex
variables, the description of the numerical ambiguity study
is continued. For each energy bin and for each combination
of phases appearing in Eq. (82), the consistency relation has
to be checked separately. The result of this procedure can be
summarized by a plot that from now on is referred to as the
ambiguity diagram, given in Fig. 2 (this type of diagram is
also given in Ref. [25]). In this plot every possible case of
sign choices in the linear combinations of the phases {ϕ1,ϕ2}
and {ψ1,ψ2} is drawn versus photon laboratory energy ELAB

γ .
The caption of Fig. 2 provides the legend for the symbols
used in the ambiguity diagrams. Once a symbol representing
the left-hand side of Eq. (82) coincides with one representing
the right-hand side, the consistency relation is fulfilled and
an ambiguity of the group S observables has to be expected.
For the starting solution this criterion is naturally fulfilled for
every energy bin, as depicted by the symbols ◦ and + in Fig. 2
[see Eq. (81)]. Once all roots are conjugated simultaneously,
i.e.,

α → α∗, β → β∗, (89)

the predicted double ambiguity is obtained (see Sec. III). It
corresponds to the symbols � and × in Fig. 2. In addition to the
predictable ambiguities, numerically accidental ambiguities
are also possible. The remaining sign choices (+,−) and (−,+)
are also given by their corresponding symbols in Fig. 2. As can
be observed, symbols in these two cases exactly coincide only
for three cases at roughly 220, 515, and 615 MeV. Looking at
the remaining energy bins, however, it can be observed that
the symbols are getting quite close. Therefore, two additional

ambiguous solutions can be expected for the cases

ϕ1 − ϕ2 ≈ −ψ1 + ψ2, (90)

as well as

−ϕ1 + ϕ2 ≈ ψ1 − ψ2. (91)

Using Eqs. (83) to (88), the predicted as well as the accidental
ambiguities deduced from Fig. 2 can be translated into
multipoles. The results are shown and explained in Fig. 3.
As can be observed, all solutions are smooth and distinct from
each other. Therefore, in case of a model-independent TPWA,
the expectation is that for an S- and P -wave truncation the
group S observables will not be able to distinguish among
the four solutions plotted in Fig. 3. Once Eqs. (54) to (57)
are used to calculate group S observables, it can be seen that
the results for the four different solutions exactly coincide
(this can also be seen from the formalism of Sec. III).
The ingredient that is needed to decide which of the four
solution candidates is the correct one are double polarization
observables. Because the observables of the class BT are the
most experimentally accessible ones, the focus is drawn to
them. Figure 4 shows plots that result from the application
of Eqs. (63) to (66) to the four ambiguous solutions deduced
in this study. The BT observables are calculated and drawn
such that they can be graphically distinguished from each
other. The energy bin ELAB

γ = 253 MeV was chosen as an
example. As can be observed, for the observables E and
H , the starting solution and the double ambiguity as well
as both accidental ambiguities exactly coincide. Therefore, it
is expected that in a TPWA, data for both observables will not
be able to distinguish among the corresponding ambiguities,
in particular, not between the double ambiguity and the
starting solution. F and G, however, show differing curves
for all four solutions, which means that both observables
should be capable of yielding the correct unique solution
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FIG. 5. Ambiguity diagrams for the S- and P -wave multipoles of different PWAs. The left and right panels are obtained by using the CM12
solution of the SAID group and the BG2011-02 solution of the Bonn-Gatchina group, respectively. The symbols chosen are as in Fig. 2.

in the performed fit. Another feature that can be observed
for the observable G is that both solutions corresponding to
the accidental ambiguities postulated in this section show a
behavior that contradicts the rules deduced in Sec. IV, i.e., G
does not approach 0 for cos θ → 1. Inspecting the ambiguity
diagram for ELAB

γ = 253 MeV, the phases are close but do not
completely overlap and the consistency relation is not exactly
fulfilled. With high-precision data this can be distinguished; for
data with sizable errors it could well show up as an additional
ambiguity.

As a result of the ambiguity study presented until now,
it should be stated that in the context of a TPWA with L =
1, i.e., S and P waves, the following minimum subsets of
observables already form complete sets that exclude the need
for experimental information on recoil polarization:

{σ0,�,T ,P,F }, {σ0,�,T ,P,G}. (92)

The numerical input for the ambiguity study performed in
this work consists of a solution for multipoles given by the
MAID PWA [27]. Because it is well known that the current
state-of-the-art PWAs show quite some deviations [35] already
for S- and P -wave multipoles, it is interesting to compare the
ambiguity diagrams for different solutions. Figure 5 shows the
diagrams obtained from multipoles of the SAID group [28] as
well as of the Bonn-Gatchina group [29].

For all three PWAs, the diagrams show a similar structure.
Symbols referring to the starting solution as well as the double
ambiguity in each case inhabit the same areas in the plot.
The most visible differences are seen in the closeness of the
symbols defining the possible accidental ambiguities at lower
energies as well as the possible appearance of intersections for
higher energies. At low energies, symbols are most nearby
for the MAID2007 solution, for which the corresponding
ambiguities have already been ruled out. Therefore, it is
expected that any possible accidental ambiguities are also
negligible at low energies for the SAID and BnGa solutions.
This comparison of different PWAs concludes the discussion
on the S- and P -wave truncation in this section.

VI. CONCLUSION AND OUTLOOK

This work contains a treatment of the ambiguity problem
that arises in the TPWA of pseudoscalar meson photo-
production in a consideration of single channels that have
highly suppressed t-channel exchanges. For this purpose,

the approach of Omelaenko from 1981 [25] was revisited
and supplemented by more information on intermediate
calculational steps. This above-mentioned approach consists
of first searching for all possible ambiguities of the group S
observables and then selecting appropriate double polarization
measurements that can remove all additional solutions. One
ambiguity, called the double ambiguity, can be predicted just
by the formalism. It can be removed for all energy regions
and all orders in the truncation angular momentum L by a
measurement of the observables G and F or any BR as well
as TR double polarization observable. However, there can
also exist numerically accidental ambiguities that may require
information on additional double polarization observables.

As a numerical application of the presented formalism, the
investigation of an S- and P -wave truncation (i.e., L = 1)
also executed similarly in Ref. [25] was done using multipoles
of the PWA solution MAID2007 [27] as input. It was found
that for this situation, i.e., in a treatment that disregards mea-
surement uncertainty, accidental ambiguities can be neglected
and only the double ambiguity has to be removed. Therefore,
in this case the sets of five observables

{σ0,�,T ,P,F }, {σ0,�,T ,P,G},
can be postulated as complete sets of observables for this
simplest case in the context of the study. As derived in
Sec. IV, the double polarization observables F or G can also
be replaced by any one of the recoil observables of the groups
BR and TR.

The development of the situation for increasing L is as
follows. The number of new sets of potentially ambiguous
solutions is 24L for every L. Although not all of these
solutions have to fulfill all of the consistency requirements to
be regarded as realistic ambiguities, the number of candidates
that potentially could fulfill all those requirements is vastly
increasing. This increasing difficulty with growing angular
momentum L is also described in Ref. [25]. It is therefore
likely that, at least as soon as real data are fitted, the complete
sets given above have to be extended by additional observables
for higher values of L.

As an outlook it is interesting whether the results found in
this work apply to the numerical fitting of data. The following
procedure is proposed for these fits. First, numerical precision
data for polarization observables generated by use of existing
PWA solutions should be fitted. These data do not carry
statistical fluctuations and have numerical uncertainties given
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by the number of digits in the tables. In this case it is expected
that the accidental ambiguities are not significant, because only
precise equalities of phases are relevant, which are relatively
infrequent. The numerical precision data could then be used
to generate pseudodata that are closer to the realistic situation
by carrying adjustable uncertainties [17]. Fits to these data
then have to show how significant the impact of varying
uncertainties is on the appearance of additional ambiguous
solutions. However, both fitting procedures proposed until now
are only preparatory steps. The final goal is to investigate
the fitting to real data from the world database of a specific
photoproduction channel, for example, γp → π0p.

It remains to be seen whether it will be possible to arrive
at a final unique multipole solution by using only group S and
BT double polarization observables, exclusively.
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APPENDIX A: DERIVATION OF EXPLICIT EXPRESSIONS
FOR ANGULAR POLYNOMIALS

The multipole expansion of Eqs. (4) to (7) can be written
in a more convenient form for a truncation at finite L,

F1(W,θ ) =
L∑

�=0

{
f

(1)
� (W )P ′

�+1(x) + f
(2)
� (W )P ′

�−1(x)
}
,

(A1)

F2(W,θ ) =
L∑

�=1

f
(3)
� (W )P ′

�(x), (A2)

F3(W,θ ) =
L∑

�=1

{
f

(4)
� (W )P ′′

�+1(x) + f
(5)
� (W )P ′′

�−1(x)
}
,

(A3)

F4(W,θ ) =
L∑

�=2

f
(6)
� (W )P ′′

� (x), (A4)

with x = cos θ and the following six energy-dependent func-
tions:

f
(1)
� (W ) = �M�+(W ) + E�+(W ), (A5)

f
(2)
� (W ) = (� + 1)M�−(W ) + E�−(W ), (A6)

f
(3)
� (W ) = (� + 1)M�+(W ) + �M�−(W ), (A7)

f
(4)
� (W ) = E�+(W ) − M�+(W ), (A8)

f
(5)
� (W ) = E�−(W ) + M�−(W ), (A9)

f
(6)
� (W ) = M�+(W ) − E�+(W ) − M�−(W ) − E�−(W ).

(A10)

It is useful to introduce the Pochhammer symbols [30],

(a)m := a(a + 1) · · · (a + m − 1), (a)0 := 1. (A11)

For the special cases (a)1 and (1)m this definition yields

(a)1 = a, (1)m = m!. (A12)

The symbols (a)m appear in the expansion of the hypergeo-
metric function [30,36],

2F1(a,b; c; Z) :=
∞∑

m=0

(a)m(b)m
(c)mm!

Zm, (A13)

for real quantities a, b, c and a generally complex argument
Z ∈ C. Equation (A13) corresponds to a particular choice of
indices in the definition of the generalized hypergeometric
function,

nFm(a1, . . . ,an; b1, . . . ,bm; Z) :=
∞∑

k=0

(a1)k · · · (an)k
(b1)k · · · (bm)kk!

Zk.

(A14)

It is important to note that the Legendre polynomials P�(cos θ )
can be expressed in terms of hypergeometric functions (i.e.,
Ref. [30]),

P�(cos θ ) = 2F1

(
−�,� + 1; 1;

1 − c

2

)
, (A15)

where on the right-hand side the abbreviation c = cos θ
was chosen in the argument of 2F1. This work features an
exchange of the angular variable c = cos θ for t = tan θ/2.
Equation (A15), with the right-hand side rewritten in terms of
t , takes the form [30]

P�(cos θ ) = (1 + t2)−�
2F1(−�, − �; 1; −t2). (A16)

The idea is to rewrite all derivatives of Legendre polynomials
appearing in Eqs. (A1) to (A4) in terms of hypergeometric
functions 2F1 depending on t . To do this, a relation is needed
that can be inferred from Eq. (15.2.7) of Ref. [36]

d

dZ
[(1 − Z)a 2F1(a,b; c; Z)]

= (−)
a(c − b)

c
(1 − Z)a−1 × 2F1(a + 1,b; c + 1; Z).

(A17)

This identity is necessary for the determination of the deriva-
tive of P�(cos θ ). The first-order derivative P ′

�(cos θ ) can be
rearranged as

P ′
�(cos θ ) = d

d cos θ
P�(cos θ )

= d

d cos θ
[(1 + t2)−�

2F1(−�, − �; 1; −t2)]

= d

dt2
[(1 + t2)−�

2F1(−�, − �; 1; −t2)]× dt2

d cos θ
.

(A18)

055203-12



THE COMPLETE-EXPERIMENT PROBLEM OF . . . PHYSICAL REVIEW C 89, 055203 (2014)

Inspection of Eq. (16) facilitates the evaluation of the second
factor in the relation given above, i.e.,

dt2

d cos θ
= d

d cos θ
tan2 θ

2
= d

d cos θ

[
1 − cos θ

1 + cos θ

]

= − 2

(1 + cos θ )2
= −1

2
(1 + t2)2. (A19)

The identity (A17) yields the first factor on the right-hand side
of Eq. (A18), so that the final result becomes

P ′
�(cos θ ) = 1

2�(� + 1)(1 + t2)−�+1
2F1(−� + 1, − �; 2; −t2).

(A20)

The same procedure also yields an expression for the second
derivative of P�(cos θ )

P ′′
� (cos θ ) = 1

8 (� − 1)�(� + 1)(� + 2)(1 + t2)−�+2

× 2F1(−� + 2, − �; 3; −t2). (A21)

Everything assembled until now facilitates the evaluation of
the polynomial A′

2L(t) that appears in the amplitude b4 of
Eq. (17). First of all, the term [F1(θ ) − (cos θ − i sin θ )F2(θ )]
that can be deduced from Eq. (11), when written in terms of
the variable t reads [see Eq. (15)][

F1(θ ) + 1

(1 + t2)
(t + i)2F2(θ )

]
. (A22)

Insertion of the multipole expansions (A1) and (A2) yields

L∑
�=0

[
f

(1)
� P ′

�+1(cos θ ) + f
(2)
� P ′

�−1(cos θ )

+ (t + i)2

(1 + t2)
f

(3)
� P ′

�(cos θ )

]
. (A23)

Usage of (A20) and pulling out an overall factor (1 + t2)−L

out of the sum already gives the result for b4 given in the main
text

b4(θ ) = C
4

exp[iθ/2]

(1 + t2)L

L∑
�=0

{
f

(1)
� (� + 1)(� + 2)(1 + t2)L−�

2F1(−�, − � − 1; 2; −t2)

+ f
(2)
� �(� − 1)(1 + t2)L−�+2

2F1(−� + 2, − � + 1; 2; −t2)

+ f
(3)
� �(� + 1)(t + i)2(1 + t2)L−�

2F1(−� + 1, − �; 2; −t2)
}
. (A24)

To determine the polynomial B ′
2L(t) = A′

2L(t) + tD′
2L−2(t) of the amplitude b2 of Eq. (18), it is sufficient to infer the form of

D′
2L−2(t) by inspection of the formula (9). It is therefore necessary to rewrite the term

i sin θ [F3(θ ) + (cos θ − i sin θ )F4(θ )] (A25)

in terms of the variable t ,

2it

(1 + t2)

[
F3(θ ) − 1

(1 + t2)
(t + i)2F4(θ )

]
. (A26)

Invoking the multipole expansions (A3) and (A4) yields

2it

(1 + t2)

L∑
�=0

[
f

(4)
� P ′′

�+1(cos θ ) + f
(5)
� P ′′

�−1(cos θ ) − (t + i)2

(1 + t2)
f

(6)
� P ′′

� (cos θ )

]
. (A27)

Usage of (A21) in a similar way yields the expression for D′
2L−2(t) that is already given in Eq. (18) of the main text,

D′
2L−2(t) = 1

4

L∑
�=0

{(
if

(4)
�

)
�(� + 1)(� + 2)(� + 3)(1 + t2)L−�

2F1(−� + 1, − � − 1; 3; −t2)

+ (
if

(5)
�

)
(� − 2)(� − 1)�(� + 1)(1 + t2)L−�+2

2F1(−� + 3, − � + 1; 3; −t2)

− (
if

(6)
�

)
(� − 1)�(� + 1)(� + 2)(t + i)2(1 + t2)L−�

2F1(−� + 2, − �; 3; −t2)
}
. (A28)

Furthermore, the expressions for A′
2L(t) and B ′

2L(t) given in this appendix can be further simplified and be brought into the form

A′
2L(t) =

2L∑
�=0

a�t
�, (A29)

B ′
2L(t) =

2L∑
�=0

b�t
�, (A30)

with explicit formulas for the complex expansion coefficients a� and b� in terms of multipoles (see Ref. [30], where similar
expressions are given for πN scattering).
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APPENDIX B: LINEAR RELATIONS AMONG {ai , bi } AND {E�±, M�±} FOR L = 1 AND L = 2

Following are linear relations among multipoles and complex polynomial coefficients for L = 1:⎡
⎢⎢⎢⎣

E0+
E1+
M1+
M1−

⎤
⎥⎥⎥⎦ = a2

2

⎡
⎢⎢⎢⎣

1 1 0 0

− 1
6

1
6 0 − i

6

− 1
6

1
6 − i

3
i
6

1
3 − 1

3 − i
3 − i

3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1

â0

â1

b̂1

⎤
⎥⎥⎥⎦ . (B1)

Similar relations for the case L = 2 are as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E0+
E1+
M1+
M1−
E2+
E2−
M2+
M2−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= a4

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3

2
3 0 1

6 0 0 1
6 0

− 1
6

1
6 0 0 0 − i

12 0 − i
12

− 1
6

1
6 − i

6 0 − i
6

i
12 0 i

12
1
3 − 1

3 − i
6 0 − i

6 − i
6 0 − i

6
1

45
1

45 0 0 0 − i
45 − 1

45
i

45
1

30
1

30 0 1
12 0 i

20 − 7
60 − i

20
1

45
1

45 − i
30 − 1

30
i

30
i

90
1
90 − i

90

− 1
30 − 1

30 − i
30

1
20

i
30 − i

60 − 1
60

i
60

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

â0

â1

â2

â3

b̂1

b̂2

b̂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B2)
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