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The STAR experiment has measured p�, p̄�̄, p̄�, and p�̄ femtoscopic correlation functions in central
Au + Au collisions at

√
sNN = 200 GeV. The system size extracted for p� and p̄�̄ is consistent with model

expectations and results for other pair types, while for p�̄ and p̄� it is not consistent with the other two and signifi-
cantly lower. In addition an attempt was made to extract the unknown parameters of the strong interaction potential
for this baryon-antibaryon (BB̄) pair. In this work we reanalyze the STAR data, taking into account residual
femtoscopic correlations from heavier BB̄ pairs. We obtain different estimates for the system size, consistent with
the results for p� and p̄�̄ pairs and with model expectations. We give these estimates for the strong interaction
potential parameters for p�̄ and show that similar constraints can be given for parameters for other, heavier BB̄

pairs.
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I. INTRODUCTION

Strong interaction in a two-baryon system is one of the
fundamental problems in QCD [1,2]. Such processes are
measured in dedicated experiments [3–5] and a significant
body of data exists for baryon-baryon (BB) interactions [6].
Baryon-antibaryon (BB̄) interaction includes a contribution
from matter-antimatter annihilation. This process for pp̄ was
studied in great detail theoretically [7–10] and is measured
with good precision [6]. However, no measurement exist for
any BB̄ system other than pp̄, pn̄, and p̄d. There is also little
theoretical guidance on what to expect for BB̄ interaction for
other baryon types. The standard hadronic rescattering code
used in heavy-ion collision modeling, UrQMD [11], assumes
that any BB̄ interaction has the same parameters as the pp̄,
expressed either as a function of relative momentum or

√
s of

the pair.
Correlations for p�̄ system have been studied in heavy-ion

collisions [12]. The STAR experiment has measured p�̄
femtoscopic correlation [13] in Au + Au collisions at

√
sNN =

200 GeV. In that work a method was proposed to determine
the parameters of the strong interaction potential for BB̄ pairs,
using such correlations [14]. An estimate for the real and
imaginary parts of the scattering length f0 was given, showing
a significant imaginary component, reflecting BB̄ annihilation
in this channel. At the same time femtoscopic system size
(radius) was extracted. Surprisingly it was 50% lower than the
one for regular BB pairs at similar pair transverse mass mT . It
was also inconsistent with hydrodynamic model predictions,
which give approximate scaling of the radii with 1/

√
mT .

This scaling is in agreement with all other femtoscopic
measurements performed at Relativistic Heavy Ion Collider
(RHIC), for meson and baryon pairs. Seen in this light, the
validity of the p�̄ analysis should be reconsidered if any
significant, previously unaccounted for effects contributing to
such functions are identified.

*kisiel@if.pw.edu.pl

The issue of the residual correlations (RC) in femtoscopic
correlations of BB pairs is mentioned in Ref. [13], but the
work explicitly states that it is not addressed and acknowledges
this fact as a weak aspect of the analysis method. In this
work we show that proper treatment of RC is of central
importance for any BB measurement, but in particular in the
BB̄ analysis. On the example of the STAR data we show how
the extracted radius and scattering length change when RC
are properly taken into account. We reanalyze the STAR data
with the formalism which includes the RC contribution. We
test whether the extracted radius is then compatible with other
measurements and model expectations. In the process we make
assumptions on the strong interaction parameters for several
BB̄ pairs and show if the extracted values are sensitive to those
assumptions. As a result we put constraints on the BB̄ strong
interaction parameters, particularly on the imaginary part of
the scattering length, which parametrizes the BB̄ annihilation
process at low relative momentum.

The paper is organized as follows. In Sec. II we describe
the femtoscopic formalism, including the RC treatment. In
Sec. III we discuss various theoretical assumptions needed for
the reanalysis of the data and define four reasonable parameter
sets for the theoretical description of the BB̄ interaction. In
Sec. IV we examine the STAR data from Ref. [13] and show
how they should be reanalyzed in the frame of the formalism
taking into account the RC. In Sec. V we apply the formalism
to the STAR data and discuss the results. In Sec. VI we
provide the conclusions and give recommendations for future
measurements.

II. FEMTOSCOPIC FORMALISM

The femtoscopic correlation function is defined as a ratio of
the conditional probability to observe two particles together,
divided by the product of probabilities to observe each of
them separately. Experimentally it is measured by dividing the
distribution of relative momentum of pairs of particles detected
in the same collision (event) by an equivalent distribution for
pairs where each particle is taken from a different collision.
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This is the procedure used by STAR; details are given in
Ref. [13]. The femtoscopy technique focuses on the mutual
two-particle interaction. It can come from wave-function
(anti-)symmetrization for pairs of identical particles, the
measurement in this case is sometimes referred to as “HBT
correlations.” Another source is the final-state interaction
(FSI), that is Coulomb or strong. In this work the Coulomb
FSI is only present for pp̄ pairs; all others are correlated
due to the strong FSI only. The interaction for pp̄ system is
measured in detail and well described theoretically; we use
existing calculations for this system and do not vary any of its
parameters in the fits. For details please see Ref. [15]. For all
other pairs the strong FSI is the only source of femtoscopic
correlation. Below we describe the formalism for the strong
interaction only, as it is the focus of this work.

In femtoscopy an assumption is made that the FSI of the
pairs of particles is independent from their production. The
two-particle correlation can then be written as [14]

C(k∗) =
∫

S(r∗,k∗)
∣∣�S(+)

−k∗ (r∗,k∗)
∣∣2

∫
S(r∗,k∗)

, (1)

where r∗ = x1 − x2 is a relative space-time separation of
the two particles at the moment of their creation. k∗ is the
momentum of the first particle in the pair rest frame (PRF),
so it is half of the pair relative momentum in this frame. S
is the source emission function and can be interpreted as
a probability to emit a given particle pair from a given set
of emission points with given momenta. The source of the
correlation is the Bethe-Salpeter amplitude �

S(+)
−k∗ , which in

this case corresponds to the solution of the quantum scattering
problem taken with the inverse time direction. When particles
interact with the strong FSI only it can be written as

�
S(+)
−k∗ (r∗,k∗) = e−ik∗·r∗ + f S(k∗)

eik∗r∗

r∗ , (2)

where f S is the S-wave strong interaction amplitude. In the
effective range approximation it can be expressed as

f S(k∗) =
(

1

f0
+ 1

2
d0k

∗2 − ik∗
)−1

, (3)

where f0 is the scattering length and d0 is the effective radius
of the strong interaction. These are the essential parameters
of the strong interaction, which can be extracted from the fit
to the experimental correlation function. Both are complex
numbers; the imaginary part of f0 is especially interesting
as it corresponds to the annihilation process. In the relative
momentum range where the effective range approximation is
valid they are also directly related to the interaction cross
section: σ = 4π |f S |2. Therefore, knowledge of them is of
fundamental importance.

For one-dimensional correlation function the source func-
tion S has one parameter. Usually a spherically symmetric
source in PRF with size r0 is taken:

S(r∗) ≈ exp

(
− r∗2

4r2
0

)
, (4)

which gives the final form of the analytical correlation function
depending on the strong FSI only [13,14]:

C(k∗) = 1 +
∑

S

ρS

[
1

2

∣∣∣∣f
S(k∗)

r0

∣∣∣∣
2(

1 − dS
0

2
√

πr0

)

+ 2�f S(k∗)√
πr0

F1(Qr0) − �f S(k∗)

r0
F2(Qr0)

]
, (5)

where Q = 2k∗, F1(z) = ∫ z

0 dxex2−z2
/z, and F2 = (1 −

e−z2
)/z. Summation is done over possible pair spin orienta-

tions, with ρS being the corresponding pair spin fractions.
Since the data considered in this work are always for
unpolarized pairs, the spin dependence of the correlation is
neglected. In this formula the dependence of the correlation
function on the real and imaginary part of the scattering length
f0 is expressed directly. For pairs where only the strong FSI
contributes to the correlation, such as p� and p�̄, this formula
can be fitted directly to extract the source size r0 as well as the
scattering length and effective radius. In realistic scenarios it
is rarely possible to independently determine all parameters.
In particular, in the case of the STAR data discussed here,
the d0 was fixed at zero and only the remaining three were
fitted.

A. Residual correlations

In experiments conducted at colliders such as STAR
experiment at RHIC, all particles propagate to the detector
radially from the interaction point located in the center of the
detector. A baryon coming from a weak decay often travels
in a direction very similar to the parent baryon. The particle’s
trajectory does not point precisely to the interaction point, but
this difference (called the distance of the closest approach,
or DCA) is often comparable to the spatial resolution of
the experiment. As a result a significant number of particles
identified as protons in STAR are not primary and come from
the decay of heavier baryons. The same mechanism applies
to � baryons. In particular protons can come from a decay of
� and �+ baryons, while � baryons can come from decays
of �0 or �0. The STAR experiment has applied the DCA cut
to reduce the number of such secondaries and has estimated
its effectiveness based on the Monte Carlo simulation of the
detector response. The fraction of true primary pairs, as well
as a fraction of all other parent particle pair combinations, is
taken from Ref. [13] and given in Table I. In addition to the
effect mentioned above it is also possible that a primary proton
is randomly associated to a pion and reconstructed as a fake �
baryon. For that reason a pair of two protons also appears in
Table I.

The strong FSI affects the behavior of the two particles in
the pair just after their production, on a time scale of fm/c.
For particles coming from a weak decay, which occurs on
time scales of 10−10 s, the FSI applies to the parent pair, not
the daughter. However, it is the daughters that are measured
in the detector. For such a scenario Eq. (1) cannot be used
directly. In this case � must be taken for the parent pair
and calculated for k∗ and r∗ between the parent particles.
Then one or both of the parent particles must decay and a
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TABLE I. List of possible parent pairs for the p� (and p�̄)
system, with their relative contribution to the STAR sample [13] and
the decay momenta values.

Pair Fraction Decay momenta (MeV/c)

p� 15% 0
�� 10% 101
�+� 3% 189
p�0 11% 74
��0 7% 101, 74
�+�0 2% 189, 74
p�0 9% 135
��0 5% 101, 135
�+�0 2% 189, 135
pp 7% 101

new k∗ must be calculated for the daughter pair. This one
is measured in the detector; the correlation is measured as a
function of this relative momentum. Such scenario is called
“residual correlations” (RC) [16,17]. Obviously the random
nature of the weak decay will dilute the original correlation.
However, if the decay momentum is comparable to the width of
the correlation effect in relative momentum, some correlation
might be preserved for the daughter particles. The RC are
important if three conditions are met simultaneously: (a)
the original correlation for parent particles is large, (b) the
fraction of daughter pairs coming from a particular parent
pair is significant, and (c) the decay momentum (or momenta)
are comparable to the expected correlation width in k∗. For
p�̄ pairs all three conditions are met. The strong FSI for
baryon-antibaryon pairs is dominated by annihilation, which
appears in Eq. (5) as �f S . It causes a negative correlation
(anticorrelation) [17], which is wide in k∗, even on the order
of 300 MeV/c. Decay momenta for all residual pairs listed in
Table I are of that order or smaller. Comparing contributions
to the sample from all pairs one can see that all listed are of
the same order as primary p�̄ pairs, which constitute only
15% of the sample. As for the strength of the correlation, it
is in principle unknown for all pairs, except pp̄. Estimating
its strength is one of the goals of this work. However, it is
often assumed that at least the annihilation cross section for
BB̄ pairs is very similar for all pairs, comparable to pp̄ [11].
In that case it is certainly strong enough to induce RC, and
contributions from all pairs listed in Table I must be considered
in the analysis of the p�̄ correlations.

The RC can be calculated for any combination of parent
and daughter pairs. The correlation is expressed as a function
of the relative momentum of the daughter pair; in our case it
is k∗

p�. However, Eq. (1) is then used for the parent pair (let
us call it XY ) and gives the correlation as a function of k∗

XY .
Baryon X is a proton or decays into a proton, and baryon Y is a
� or decays into a �. The daughter momenta will differ from
the parents’ by the decay momentum, listed in Table I. The
direction of the decay momentum is random in the parents’
rest frame, and it is independent from the direction of the k∗ of
the pair. Therefore k∗

p� will differ, in a random way for each
pair, from k∗

XY . The difference is limited by the value of the
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FIG. 1. (Color online) The unnormalized transformation matrix
W for �� (left) and �+�0 (right) pairs decaying into p� pairs, as a
function of relative momentum of both pair types.

decay momentum and is a nontrivial consequence of the decay
kinematics.

One can determine what is the probability that a parent
particle pair with a given k∗

XY will decay into a daughter pair
with a given k∗

p�. Let us call such a probability distribution
W (k∗

XY ,k∗
p�). In this work we have calculated it for all pairs

listed in Table I. We have used the Therminator model [18,19],
with parameters describing central Au + Au collisions at√

sNN = 200 GeV. All the pairs of type XY in a given
event were found and their relative momentum k∗

XY was
calculated. Then both baryons X and Y were allowed to
decay and k∗

p� was calculated for the daughters. The pair
was then inserted in a two-dimensional histogram. As a result
an unnormalized probability distribution W was obtained for
each pair type. Figure 1 shows two examples of this function,
one for a pair where only one particle decays and the other
for a pair where both particles decay. In the first case the
function has a characteristic rectangular shape at low relative
momentum [16]. It touches both axes at the value roughly
equal to half of the decay momentum. The vertical width of the
function is roughly equal to the decay momentum, as discussed
above. In the second case the shape at low momentum is not
as sharp, and the width is equal to the sum of decay momenta.
W depends only on decay kinematics, so it is the same for BB
and the corresponding BB̄ pair.

Having defined W one can write the formula for the RC
for any type of the parent pair XȲ , contributing to the p�̄
correlation function:

CXȲ→p�̄(k∗
p�̄

) =
∫

CXȲ (k∗
XȲ

)W (k∗
XȲ

,k∗
p�̄

)dk∗
XȲ∫

W (k∗
XȲ

,k∗
p�̄

)dk∗
XȲ

. (6)

Examples of correlation functions transformed in this way
are shown in Fig. 2. The p�̄ function for a given source
size, calculated according to Eq. (5), is given for comparison.
It has positive correlation at very low k∗ coming from the
positive real part of the scattering length f0 and a wide
anticorrelation coming from the positive imaginary part of f0.
This anticorrelation is wide, extending beyond 0.4 GeV/c, so
its width is larger than any combination of decay momenta
given in Table I. The residual correlations are calculated
for the same source size and radius parameters, so in their
respective k∗ variables they look identical to Cp�̄(k∗

p�̄
). After

the transformation given by Eq. (6) the correlation is diluted
at low k∗. However, at higher values the shape of the function
changes very little and is almost the same for the parent and
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FIG. 2. Theoretical correlation function for a given source size
for p�̄ and two examples of residual correlation functions for ��̄

and �+�̄0 pairs.

residual correlation. The spike at k∗ = 0 is transformed with
the matrix in Fig. 1 to a slight bump in k∗

p�̄
where W touches the

x axis, that is, around 50 MeV/c, half of the decay momentum
of � into proton. The same function is diluted twice as strong
at low k∗ for the pair where both particles decay (�+�̄0). This
difference persists up to around 100 MeV/c; above this value
both functions are similar to each other and to the original
correlation.

In terms of the physics picture the contribution of the pp̄
correlation to the p�̄ one is not RC; instead it comes from
fake association of primary proton to a � particle. However,
the formalism to deal with such situation is exactly the same
as in the case of RC, and Eq. (6) can be used. The difference is
that the pp̄ correlation function has a Coulomb FSI component
in addition to the strong FSI, which must be taken into account
when calculating Cpp̄. The W matrix for p� to pp pair
transformation can be used.

Once each of the RC components is determined, the
complete correlation function for the p�̄ system can be
written:

C(k∗
p�̄

) = 1 + λp�(Cp�̄(k∗
p�̄

) − 1)

+
∑
XȲ

λXY (CXȲ (k∗
p�̄

) − 1), (7)

where the λ values are equivalent to the pair fractions given in
Table I. It is an additional factor that decreases the correlation
for the RC; however, for some pairs it is almost as large as λ
for true p�̄ pairs. Equation (7) is the final formula that can
be fitted directly to experimental data. In principle each CXȲ

depends on four independent parameters: the source size r0,
real and imaginary parts of f0, and the value of d0, giving
37 independent parameters (f0 and d0 for the pp̄ pair is
known). Some assumptions are obviously needed to reduce
this number; we propose several options in Sec. III.

III. THEORETICAL SCENARIOS

Following the procedure employed by STAR in Ref. [13] we
put the effective range d0 = 0 fm for all calculations. Radius
for the various systems in central Au + Au collisions at RHIC
energies is expected to follow hydrodynamic predictions,
which give r0 ∼ 1/

√〈mT 〉, where mT is the transverse mass
of the pair. For baryons mT is large, and the decrease is not
expected to be steep (see Fig. 5 in Ref. [13] for illustration).
〈mT 〉 for a given pair depends on the momentum spectra of
particles taken for this analysis, which is not specified in
Ref. [13]. We expect that 〈mT 〉 for the pairs considered here
will be within 20% of each other, giving little variation of the
scaling factor. Therefore, we make a simplifying assumption
that system size r0 for each pair is the same.

With these assumptions 18 components of f0 remain for the
nine pairs. Little theoretical guidance is given for those values.
An approach adopted in Ref. [11] equates all annihilation cross
sections for the BB̄ pairs and assumes they are equal to the
one for pp̄. In Ref. [7] the value of �f0 = 0.88 ± 0.09 fm
is given. This value is used to calculate the pp̄ correlation
functions. No such assumption is made for �f0, which can
vary significantly between various BB̄ pairs. Therefore, we
make two assumptions. �f0 is assumed to be the same for all
BB̄ pairs, but it is not fixed to the pp̄ value—it is treated as
free in the fit. Similarly �f0 is also assumed to be the same
for all pairs and is free in the fit.

In Ref. [11] an alternative scenario for annihilation cross
sections is given; namely, that they are the same as in pp̄, but
at the same

√
s of the pair, not relative momentum. In UrQMD

these assumptions differ little; the majority of hadronic
rescatterings happen at large relative momentum, where the
difference between cross sections scaled with k∗ and

√
s is

small. However, in the case of femtoscopic correlations, which
by definition are concentrated at low relative momentum,
the two scenarios differ strongly. For example, a �+�0 pair
at k∗ = 10 MeV/c taken at the same

√
s corresponds to a

pp pair at k∗ = 831.6 MeV/c. This assumption would then
significantly decrease the correlation for higher mass pairs,
including p�̄. For the unknown baryon-baryon interactions in
UrQMD an additive quark model (AQM) is used to provide
the cross sections [11]. The predicted values decrease with
the increase of the number of strange quarks in the pair. We
use this as another plausible scenario for the scaling of BB̄
annihilation cross section, where the real and imaginary parts
of f0 for a given pair is scaled with a factor deduced from
Table V in Ref. [11]. We notice immediately that replacing
an up or down quark in one of the baryons with a strange
quark results in the increase of the pair mass. Therefore, in
both cases the proposed scalings result in the same ordering
of pairs listed in Table I: from the lightest pp pair with no
strange quarks to the heaviest �+�0 and �+�0 with three
strange quarks each. The cross sections for those pairs should
therefore change smoothly from the maximum value for the pp
pair to the smallest value for �+�0. Any nonmonotonic jump
of the cross section with increasing pair mass or strangeness
content will signal an internal inconsistency of the scenario.
The exact rate of the decrease of the cross sections in the
AQM scenario is smaller than in the

√
s scenario, but their
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general behavior is similar. The AQM can then be treated as
an intermediate scenario between k∗ and

√
s cases. We test if

the accuracy of STAR data allows us to distinguish between
them. We consider AQM and

√
s cases together as one scenario

and test whether it is consistent with data.
The next scenario comes from the fact that we have

just shown that both pp̄ and ��̄ RC contribute to the
p�̄ correlation function. One can then ask if it is possible
that the observed correlation is explained by annihilation
of particle-antiparticle pairs only, not all BB̄ pairs. In such
scenario the imaginary part of the scattering length should
be put to zero for all pairs except the ones in which the two
particles have exactly opposite quark content.

The last scenario is the repetition of the STAR procedure,
where no RC is included and correlation is present for p�̄
pairs only.

In each of these four scenarios, all CXȲ functions can be
calculated from Eq. (5). The last function remaining to be
calculated is then Cpp̄. A dedicated procedure is used. First
the relative momenta distributions are taken from Therminator,
from collisions simulated with parameters corresponding to
central Au + Au collision at

√
sNN = 200 GeV. Then a source

size is assumed, equal to the one used for all other pairs. This
allows the generation of r∗ for each pair, according to the
probability distribution from Eq. (4). This gives pairs, each
with its k∗ and r∗, which enables the calculation of �. It is
performed with a dedicated code from Lednicky [15], where
the known pp̄ interaction parameters are used. The resulting
correlation function is then calculated according to Eq. (1),
corresponding to the value of the source size r0. As mentioned
earlier, the W functions are also calculated from Therminator,
for all parent pair types.

IV. ANALYSIS OF STAR DATA

The STAR data on p�̄ correlation function [13] has been
corrected for several effects, most of them experimental
in nature. Two of those corrections must be re-examined
for this analysis. The correlation was normalized above
0.35 GeV/c [13]. As can be seen in Fig. 2 the femtoscopic
correlation is small but non-negligible in this region. However,
the upper range for the normalization is not given. The number
of pairs increases with k∗, so if the upper normalization range
is large, pairs with negligible correlation will dominate the
normalization factor. We assume this is the case, which means
that the experimental correlation is properly normalized.

The data was also corrected for “purity,” that is, the fraction
of true p�̄ pairs, given in Table I. The procedure used by STAR
is correct only if all other pairs are not correlated. In Eq. (7) it
would correspond to the scenario where all CXȲ are at 1.0 in
the full k∗ range. We have just shown that this assumption
is explicitly violated by the RC effect, which is expected
to be significant for p�̄ correlations measured by STAR.
Therefore, the experimental correlation function analyzed later
is uncorrected for purity, with the purity factor equal to 0.15,
taken from Table I, so that a fit according to Eq. (7) can be
properly applied.

The fitting range was set to 0.45 GeV/c, the maximum
range for which experimental data are available.
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FIG. 3. (Color online) Fit to the STAR p�̄ correlation func-
tion with Eq. (7), all residual correlation components included.
χ 2/n dof = 1.5.

V. FITTING THE EXPERIMENTAL
CORRELATION FUNCTION

Formula (7) is fitted to the STAR experimental data, with
the theoretical assumptions mentioned above. Standard χ2

minimization procedure is used. The result of the fit is shown
in Fig. 3; the χ2 values are on the order of 1.5 per dof
and are similar for all fits discussed below. The fit gives
the value of the source size r0 = 2.83 ± 0.12 fm, and the
scattering length f0 = 0.49 ± 0.21 + i(1.00 ± 0.21) fm. The
value of r0 is significantly larger than given in Ref. [13],
indicating that the RC plays a critical role in the extraction
of physical quantities. The value extracted here is in good
agreement with the values obtained for the p� system. This
consistency is naturally expected in practically all realistic
models of heavy-ion collisions, while the previous STAR
result was violating this consistency without providing any
viable explanation. It is also consistent with expectation from
hydrodynamical models, which are in good agreement with
all other femtoscopic measurements at RHIC. Taking all those
arguments into account we claim that the result presented in
this work is the correct one, and that the result for p�̄ from
Ref. [13] should be considered obsolete.

The extracted imaginary part of the scattering length is
significant and in agreement with the value given for the pp̄
system. This means that the assumption that the annihilation
process for any BB̄ system is similar to that process for pp̄,
taken at the same relative momentum, is consistent with data.

In Fig. 4 all the residual correlation components of the fit
are shown. The absolute value of the correlation effect 1 − C
is plotted, and the logarithmic scale is needed to distinguish
the small contributions. No single component is dominating
the function; all 10 components are needed to describe the
correlation. The largest ones are, as expected, the ones which
have large pair fractions and small decay momenta, that is,
p�̄, p�̄0, ��̄, and p�̄0. The systems where both particles
decay and the systems where the fraction is small contribute
less. All the RC contributions are relevant through the whole
k∗ range.
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FIG. 4. (Color online) Comparison of all residual correlation
components for the p�̄ correlation function (thin black line). For
better illustration unity minus the correlation effect is plotted in
logarithmic scale.

In order to validate the procedure and the important result,
several scenarios, described in Sec. III, have been tested. In
Fig. 5 the fit was performed where no residual correlations
were included. This is equivalent to the STAR procedure. The
result from Ref. [13] is reproduced, and the resulting radius is
small. �f0 changes sign with respect to the default case, but
interestingly �f0 is consistent with the full RC fit.

The next scenario assumes annihilation for particle-
antiparticle pairs only. By testing it we check if the annihilation
is really necessary for all BB̄ pairs, or if it is enough that it
happens only with baryons having exactly the opposite quark
content. A fit is performed, where only pp̄, ��̄, and ��̄0

RC is included, while for all other BB̄ pairs (including p�̄)
there is no correlation. Results similar to the previous test are
obtained—the radius is 1.5 ± 0.1 fm, while �f0 for the strange
pairs is twice the pp̄ value. Even though the results cannot be

k* (GeV/c)
0 0.2 0.4

C
(k

*)

0.9

1

 = 0.15
Λp

λ

 = 0.07ppλ

 = 0.00
ΛΛ

λ

 = 0.00
Λ+Σ

λ

 = 0.000Σp
λ

 = 0.000ΣΛ
λ

 = 0.000Σ+Σ
λ

 = 0.000Ξp
λ

 = 0.000ΞΛ
λ

 = 0.000Ξ+Σ
λ

 0.07 fm± = 1.56 0r

 0.12 fm±) = -0.21 
0

Re(f

 0.28 fm±) = 0.70 
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FIG. 5. (Color online) Fit to the STAR p�̄ correlation func-
tion with Eq. (7), no residual correlation components included.
χ 2/n dof = 1.5.

rejected based on the quality of the fit, the resulting radius
parameter is so small that it could be considered unphysical.
Both scenarios are therefore unlikely. In other words the
analysis gives a strong argument for the statement that the
annihilation happens between all BB̄ pairs, not just the ones
with exactly opposite quark content and that this effect must
be taken into account, via the RC formalism in any analysis of
BB̄ femtoscopic correlations.

In the last scenario, following the idea from Ref. [11] it
was proposed that the annihilation cross section for BB̄ pairs
is the same for all pairs, but taken at the same

√
s instead of

the relative momentum. In femtoscopy such scaling would be
reflected in Eq. (2) by taking f S at a different k∗. In this work
we treat the imaginary and real parts of f0 for the p�̄ system
as fit parameters and scale the f S for all other pairs, by taking
the same f0 parameters, but calculating f S at

k∗ =
(

s2 + m4
p + m4

� − 2sm2
p − 2sm2

� − 2m2
pm2

�

4s

)1/2

(8)

according to Eq. (3). s is the square of the total energy in PRF
for the pair XȲ . f S is a function rapidly decreasing with k∗.
By taking s for the baryon pair, where one or both baryons
have a mass higher than the proton or the �, one gets from
Eq. (8) k∗ higher than for the original pair, so f S will be
smaller. In Fig. 6 the result of such calculation is shown for a
pair with smallest and largest mass difference to the p�̄ pair.
The strength of the correlation is visibly decreased. However,
the shape is only slightly affected. In fact the functions can
be described by Eq. (5), with altered values of f0. The �f0

is scaled to approximately 20% of the original value, whereas
�f0 is scaled to 60% (32%) of the original value for the pair
with smallest (largest) mass difference, that is, p�̄0 (�+�̄0).
These scaling factors provide the needed constraints on the fit
parameters, and the fit can be performed as in the previous
cases.

Figure 7 shows the result of the fit, with the scaling of f S

with
√

s of the pair. The resulting source size is comparable
to the default case. �f0 is significantly larger than for the

k* (GeV/c)
0 0.2 0.4

C
(k

*)

0.9

1

1.1

Λp
 0Σp
0Σ+Σ

FIG. 6. (Color online) Calculation of correlation function, with
f S taken the same as the f S for p�̄ pair at the corresponding

√
s.
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FIG. 7. (Color online) Fit the the STAR p�̄ correlation function
with Eq. (7), all residual correlations included, and strength of the
interaction scaled according to the

√
s of the pair (see text for details).

χ 2/n dof = 1.5.

default fit and larger than the measured pp̄ value. While
this scenario is not ruled out by the data, it is internally
inconsistent. It would mean that by moving from the lightest
pp̄ pair with no strangeness content to the heavier p�̄ pair,
the cross section increases sharply, but if one moves to an
even heavier pair, it drops instead of increasing further. Such
nonmonotonic behavior explicitly violates the smooth scaling
of cross sections with

√
s assumed in this scenario. If one takes

the pp̄ f0 as the starting point, instead of p�̄ (which would
be a more literate implementation of the scenario proposed
in Ref. [11]), then f0 cannot be a free parameter. A fit gives
r0 = 2.23 ± 0.09 fm, which is lower than the expected value.
Such scenario cannot be ruled out, but is less likely, due
to the disagreement of this value with r0 for p� pairs. In
another version of the scenario cross sections are scaled with
predictions from AQM, giving a similar value of the radius
(2.83 ± 0.12 fm) and f0 = 0.51 ± 0.22 + i(1.04 ± 0.22) fm.
This also gives a nonmonotonic behavior of cross section with
the increase of the strange quark content; however, the results
are consistent with data within the current precision. So, as
expected, the AQM scenario is an intermediate case, lying
between k∗ and

√
s scalings.

The results discussed in this work rely on the comparison
between results for BB and BB̄ pairs. We show that RC
are important for BB̄ pairs and significantly influence the
extracted physics results. It is therefore natural to ask whether
RC have a similar effect for BB pairs. There are at least two
reasons to expect that the influence of RC on BB pairs, and
in particular p� correlations, will be small, and therefore the
comparisons drawn in this work are valid. In Sec. II A three
conditions are given that need to be met simultaneously for
RC to be important: Condition (a) requires that the interaction
for parent particles is strong. For BB pairs only the real
part of the scattering length is finite, and it is found to vary
strongly between pairs. AQM [11] predicts that it decreases
with the strange quark content of the pair. This is in contrast
to BB̄ pairs, where the �f0 potentially varies less between
pairs and may even be similar for all BB̄ pairs, as this work

suggests. In Eq. (5) the width of the correlation effect coming
from �f0 is limited, approximately 50 MeV/c for values of
r0 expected in heavy-ion collision. Therefore, in contrast to
the BB̄ case where a wide effect coming from �f0 gives
significant contribution at large q, the expected width of
the BB correlation effect is small with respect to the decay
momenta given in Table I. For illustration, see Ref. [20]. This
directly violates condition (c) given in Sec. II A. Therefore it is
reasonable to assume that the RC will have a smaller influence
on the p� results. The quantitative estimate of this influence is
beyond the scope of this paper and is planned for future works.

A. Systematic uncertainty discussion

All the values given above were obtained with certain
assumptions, spelled out above, both related to the STAR data
treatment as well as the methodology itself and the unknown
strong interaction parameters. By varying those assumptions in
a reasonable range one can estimate the systematic uncertainty
on the extracted parameters coming from the application of the
RC method and the assumptions made.

Restricting the fitting range to 0.35 GeV/c (beginning of the
normalization range) gives 5% variation in radius, while �f0

decreases to 0.6 ± 0.2 fm and �f0 is positive but consistent
with zero. Performing the fit separately for p�̄ and p̄� pairs
gives r0 statistically consistent with the default fit. �f0 varies
by up to 20%, and �f0 by up to 50%. That is expected:
�f0 affects the function mostly at low k∗, where data are
less precise, whereas �f0 produces the wide anticorrelation,
which is better constrained by the data. With the statistical
power of the STAR data we were unable to test the influence
of the d0 parameter variation or independent variation of f0

parameters for heavier BB̄ pair types. In conclusion the source
size r0 is well constrained and comparable to r0 measured
by STAR [13] for p� and p̄�̄ within the statistical and
systematic uncertainty of this work. �f0 is determined to be
finite and positive, consistent with the hypothesis that its value
for all BB̄ pairs considered is similar to the value for pp̄.
The systematic uncertainty of the method is at least 20%.
�f0 is consistent with being finite and positive, although the
systematic uncertainty of the method is at least 50%. There is
also no theoretical expectation that �f0 is similar for different
BB̄ pairs, so this measurement can be interpreted as “average
effective” �f0 for the considered BB̄ pairs.

Certain other systematic uncertainties depend on the details
of the experimental treatment. These include, among others,
the variation of the normalization range, variation of the pair
fractions, and the variation of the DCA cuts. Their estimation
is beyond the scope of this work, as it requires direct access to
experimental raw data and procedures.

VI. SUMMARY

We have presented the theoretical formalism for dealing
with residual correlations in baryon-antibaryon femtoscopic
correlations. We have shown that for realistic scenario of
heavy-ion collision at

√
sNN = 200 GeV such correlations are

critical for the correct interpretation of data. The formalism has
been applied to p�̄ and p̄� femtoscopic correlations measured
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by STAR [13]. Different estimates for system size r0 as well as
real and imaginary parts of the scattering length f0 have been
obtained. This system size is consistent with results for p�
and p̄�̄ pairs and model expectations. Therefore, the puzzle of
unexpectedly small p�̄ system size reported by STAR in [13]
is solved. In addition, more robust estimates for f0 parameter
are obtained, not only for the p�̄ system, but also for a number
of heavier BB̄ pairs. A scenario where all BB̄ pairs have
similar annihilation cross section (expressed as a function of
pair relative momentum) is judged to be most likely, as it gives
the expected source size and is internally consistent. Other
scenarios have been explored, but were judged to be less likely.

With this methodology it is possible to measure strong
interaction potential for a number of BB̄ pair types, including

� and � baryons. More precise data, differential in centrality
and pair momentum and obtained for other pair types (e.g.
p�0, ��, ��0), would help constrain these interesting,
unknown quantities. In particular high statistics runs of
Au + Au collisions at RHIC, as well as Pb–Pb collisions at
the LHC, promise better quality data and give hope for more
precise measurement in the near future.
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