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We solve the one-dimensional boost-invariant kinetic equation for a relativistic massive system with the
collision term treated in the relaxation time approximation. The result is an exact integral equation which can
be solved numerically by the method of iteration to arbitrary precision. We compare predictions for the shear
and bulk viscosities of a massive system with those obtained from the exact solution. Finally, we compare the
time evolution of the bulk pressure obtained from our exact solution with results obtained from the dynamical
equations of second-order viscous hydrodynamics.
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I. INTRODUCTION

In order to properly understand the data generated in rela-
tivistic heavy-ion collisions it is necessary to have dynamical
models that can accurately describe the time evolution of
the system from the moment after the Lorentz-contracted
nuclei pass through one another to the final production of
the hadrons that are detected. To date, the primary tool used
for describing the time evolution of the matter created in
heavy-ion collisions has been relativistic viscous hydrody-
namics [1–25]. Originally, most practitioners relied on the
Israel–Stewart framework for obtaining the necessary viscous
hydrodynamic equations; however, recently there have been
efforts to provide more complete formulations of second- and
third-order viscous hydrodynamics which should, in principle,
more accurately describe the time evolution of the system. In
addition to these developments, recently a framework called
dissipative anisotropic hydrodynamics has been developed
which attempts to improve upon standard relativistic viscous
hydrodynamics approximations by relaxing the assumption
that the system is approximately isotropic in momentum
space [26–38].

If one wants to assess how well these various dissipa-
tive relativistic hydrodynamics approaches describe the true
nonequilibrium evolution of the system, it is necessary to have
some exactly solvable cases that can be used to discriminate
the various approaches. One possible avenue for doing this
is to compare predictions of hydrodynamic models with exact
solutions of the underlying kinetic theory. Doing this in general
is not possible; however, there are some cases in which this
can be done. Recently it was shown that it was possible to
exactly solve the Boltzmann equation in the relaxation time
approximation for a system of massless particles which is

transversely homogeneous and boost invariant [39,40]. In this
paper we generalize the results obtained in Refs. [39,40] to
a system of massive particles. This generalization allows us
to directly test various predictions available in the literature
for the massive near-equilibrium transport coefficients now
including bulk viscous effects.

The structure of the paper is as follows: In Sec. II we
present the kinetic equation we solve, list the thermodynamic
functions for an equilibrium massive Boltzmann gas, specify
the boost-invariant variables we will use for the exact solution,
and discuss the constraint implied by energy-momentum
conservation. In Sec. III we present our exact solution and
associated quantities. In Sec. IV we collect results for the
shear and bulk viscosities of a massive Boltzmann gas and
compute some asymptotic limits of these transport coefficients.
In this section we also list three evolution equations for
the bulk pressure which can be found in the literature.
In Sec. V we present a numerical evaluation of our exact
solution and compare the results obtained with the massless
limit and various results available from relativistic viscous
hydrodynamics. In Sec. VI we briefly discuss the implications
of having a fixed shear viscosity to entropy density ratio on the
equilibration of the system. Finally, in Sec. VII we conclude
and give an outlook for the future.

II. BOLTZMANN EQUATION IN RELAXATION
TIME APPROXIMATION

In this paper we consider the relativistic Boltzmann
equation

pμ∂μf (x,p) = C[f (x,p)], (1)
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where f (x,p) is the one-particle distribution function, and
C is the collision term which we treat in the relaxation time
approximation [41],

C[f ] = −p · u

τeq
(f − feq), (2)

where p · u ≡ pμuμ and τeq is the relaxation time. Herein, we
will take the background equilibrium distribution function feq

to be a classical Boltzmann distribution

feq = 2

(2π )3
exp

(
−p · u

T

)
. (3)

However, we note that the results contained herein can be
straightforwardly generalized to the case of Bose–Einstein
or Fermi–Dirac distributions. The factor of two in Eq. (3)
accounts for spin degeneracy. The temperature T is obtained
from the Landau matching condition which demands that the
energy density calculated from the distribution function f is
equal to the energy density obtained from the equilibrium
distribution feq. We will provide the details of how this is
accomplished in practice below. If the system is close to
thermal equilibrium, then T can be interpreted as the true
temperature of the system; however, since we consider a
nonequilibrium system, T should be interpreted as an effective
temperature which is related to the nonequilibrium energy
density of the system. The quantity uμ in Eq. (3) is the flow
velocity of matter with u

μ
LRF = (1,0) in the local rest frame

(LRF) of the matter.
We note that the simple forms of Eqs. (1)–(3) used herein

are motivated in large part by the fact that there are many
results which have been obtained with these assumptions and,
as a consequence, this allows us to make direct comparisons
with other approaches. In particular, we note that there exist
several calculations of the relaxation time approximation
kinetic coefficients using this setup; see, e.g., Refs. [18,42–47].

A. Equilibrium thermodynamic functions

For massive particles obeying classical Boltzmann statistics
the equilibrium particle density, entropy density, energy
density, and pressure can be expressed as [48,49]

Neq(T ) = g0m
2T

π2
K2

(
m

T

)
, (4a)

Seq(T ) = g0m
2

π2

[
4T K2

(
m

T

)
+ mK1

(
m

T

)]
, (4b)

Eeq(T ) = g0m
2T

π2

[
3T K2

(
m

T

)
+ mK1

(
m

T

)]
, (4c)

Peq(T ) = g0m
2T 2

π2
K2

(
m

T

)
, (4d)

where Kn are modified Bessel functions and g0 is a degeneracy
factor which accounts for all internal degrees of freedom
except the spin, which we have included separately in Eq. (3).

B. Boost-invariant variables

As mentioned previously, in this paper we consider the
case of a transversely homogeneous boost-invariant system.

For one-dimensional boost-invariant expansion, all scalar
functions of space and time can depend only on the proper time
τ = (t2 − z2)1/2. In addition, in this case the hydrodynamic
flow uμ should have the Bjorken form in the laboratory
frame uμ = (t/τ,0,0,z/τ ) [50]. As usual, the phase-space
distribution function f (x,p) itself transforms as a scalar under
Lorentz transformations. In this case, the requirement of boost
invariance implies that f (x,p) can depend only on τ , w, and
�pT with [51,52]

w = tpL − zE. (5)

By using w and pL one can define another boost-invariant
variable:

v(τ,w,pT ) = Et − pLz =
√

w2 + (
m2 + �p 2

T

)
τ 2. (6)

From Eqs. (5) and (6) one finds the energy and the longitudinal
momentum of a particle:

E = p0 = vt + wz

τ 2
, pL = wt + vz

τ 2
. (7)

The momentum-space integration measure can be expressed
in terms of these variables as

dP = 2d4pδ(p2 − m2)θ (p0) = d2pT

dpL

p0
= d2pT

dw

v
. (8)

Using the boost-invariant variables introduced above, the
kinetic equation may be written in the simple form:

∂f

∂τ
= feq − f

τeq
, (9)

where the boost-invariant form of the equilibrium distribution
function (3) is

feq(τ,w,pT ) = 2

(2π )3
exp

⎡
⎣−

√
w2 + (

m2 + p2
T

)
τ 2

T (τ )τ

⎤
⎦ .

(10)

Below, we assume that f (τ,w, �pT ) is an even function of w and
depends only on the magnitude of the transverse momentum
�pT ; namely,

f (τ,w,pT ) = f (τ, − w,pT ). (11)

C. Energy-momentum conservation

The energy-momentum tensor can be obtained via

T μν(τ ) = g0

∫
dPpμpνf (τ,w,pT ). (12)

By using Eq. (11) one can express the energy-momentum
tensor (12) in the form [31,32]

T μν = (E + PT )uμuν − PT gμν + (PL − PT )zμzν, (13)
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where the energy density E , the longitudinal pressure PL, and
the transverse pressure PT , can be obtained via

E(τ ) = g0

τ 2

∫
dPv2f (τ,w,pT ), (14a)

PL(τ ) = g0

τ 2

∫
dPw2f (τ,w,pT ), (14b)

PT (τ ) = g0

2

∫
dPp2

T f (τ,w,pT ), (14c)

and zμ = (z/τ,0,0,t/τ ) is a four-vector which defines the
beam direction. Energy-momentum conservation requires that

∂μT μν = 0. (15)

For a one-dimensional boost-invariant system, the four equa-
tions implicit in Eq. (15) reduce to a single equation

dE
dτ

= −E + PL

τ
. (16)

We note that the structure of the energy-momentum tensor (13)
and the explicit representations given in Eqs. (14) are typ-
ical for a momentum-space anisotropic system. The energy
conservation equation (15) is satisfied if the energy densities
calculated with the nonequilibrium distribution functions f
or the equilibrium distribution function feq are equal, which
requires that

E(τ ) = g0

τ 2

∫
dPv2f (τ,w,pT )

= g0

τ 2

∫
dPv2feq(τ,w,pT )

= g0m
2T

π2

[
3T K2

(
m

T

)
+ mK1

(
m

T

)]
. (17)

This requirement represents the so-called dynamical Landau
matching condition and can be used to define the effective
temperature T at any proper time.

III. SOLUTIONS OF KINETIC EQUATION

We now proceed to solve the kinetic equation (1) for a
transversely homogenous boost-invariant system.

A. General form of solutions

The general form of solutions of Eq. (1) can be expressed
as [39,40,53–56]

f (τ,w,pT ) = D(τ,τ0)f0(w,pT )

+
∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ,τ ′)feq(τ ′,w,pT ), (18)

where we have introduced the damping function

D(τ2,τ1) = exp

[
−

∫ τ2

τ1

dτ ′′

τeq(τ ′′)

]
. (19)

For the purposes of this paper, we will assume that at τ = τ0

the distribution function f can be expressed in Romatschke–
Strickland form with an underlying Boltzmann distribution as

the isotropic distribution [57]:

f0(w,pT ) = 2

(2π )3
exp

[
−

√
(p · u)2 + ξ0(p · z)2

	0

]

= 1

4π3
exp

⎡
⎣−

√
(1 + ξ0)w2 + (

m2 + p2
T

)
τ 2

0

	0τ0

⎤
⎦ .

(20)

This form simplifies to an isotropic Boltzmann distribution
if the anisotropy parameter ξ0 is zero, in which case the
transverse momentum scale 	0 can be identified with the
system’s initial temperature T0.

B. Dynamical Landau matching

By multiplying Eqs. (10) and (20) by g0v
2/τ 2 and integrat-

ing over momentum one obtains

g0

τ 2

∫
dPv2feq(τ ′,w,pT ) = g0T

4(τ ′)
2π2

H̃2

[
τ ′

τ
,

m

T (τ ′)

]
, (21)

g0

τ 2

∫
dPv2f0(w,pT ) = g0	

4
0

2π2
H̃2

[
τ0

τ
√

1 + ξ0
,
m

	0

]
, (22)

where the function H̃2(y,z) is defined by the integral

H̃2(y,z) =
∫ ∞

0
duu3H2

(
y,

z

u

)
exp(−

√
u2 + z2), (23)

with

H2(y,ζ ) = y

∫ π

0
dφ sin φ

√
y2 cos2 φ + sin2 φ + ζ 2. (24)

We note that Eqs. (21) and (22) are equal if τ = τ ′ = τ0

and the system is initially isotropic (ξ0 = 0). In this case the
parameter 	0 can be identified with the system’s temperature
T (τ ) and the expressions on the left-hand sides of Eqs. (21)
and (22) become the equilibrium energy density Eeq(T (τ )).

In general, the integral appearing in Eq. (24) can be
performed analytically, with the result being

H2(y,ζ ) = y

⎛
⎝√

y2 + ζ 2 + 1 + ζ 2√
y2 − 1

tanh−1

√
y2 − 1

y2 + ζ 2

⎞
⎠ .

(25)

However, the remaining integration over u in Eq. (23) must
be performed numerically. We note that the function H2(y,0)
reduces to the function H(y) introduced in Ref. [40] and,
hence, H̃2(y,0) = 6H(y).

By using Eqs. (17), (18), (21), and (22) to implement the
dynamical Landau matching, we obtain our main result:

2m2T (τ )

[
3T (τ )K2

(
m

T (τ )

)
+ mK1

(
m

T (τ )

)]

= D(τ,τ0)	4
0H̃2

[
τ0

τ
√

1 + ξ0
,
m

	0

]

+
∫ τ

τ0

dτ ′

τeq
D(τ,τ ′)T 4(τ ′)H̃2

[
τ ′

τ
,

m

T (τ ′)

]
. (26)
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This is an integral equation for the effective temperature T (τ ).
It can be solved by using the iterative method [58]. In the
massless limit (m → 0), Eq. (27) reduces to Eq. (38) of
Ref. [40].

C. Transverse and longitudinal pressures

A sensitive measure of the degree of equilibration can be
obtained by computing the system’s transverse and longitudi-
nal pressures. One can calculate the transverse and longitudinal
pressures using Eqs. (14). Similarly to Eqs. (21) and (22) one
obtains

g0

2

∫
dPp2

T feq(τ ′,w,pT ) = g0T
4(τ ′)

4π2
H̃2T

[
τ ′

τ
,

m

T (τ ′)

]
, (27)

g0

2

∫
dPp2

T f0(w,pT ) = g0	
4
0

4π2
H̃2T

[
τ0

τ
√

1 + ξ0
,
m

	0

]
, (28)

where we have introduced the new function

H̃2T (y,z) =
∫ ∞

0
duu3H2T

(
y,

z

u

)
exp(−

√
u2 + z2), (29)

with

H2T (y,ζ ) = y

∫ π

0

dφ sin3 φ√
y2 cos2 φ + sin2 φ + ζ 2

= y

(y2 − 1)3/2

[
(ζ 2 + 2y2 − 1) tanh−1

√
y2 − 1

y2 + ζ 2

−
√

(y2 − 1)(y2 + ζ 2)

]
. (30)

Equations (27)–(30) allow us to write a compact formula for
the transverse pressure:

PT (τ ) = g0

4π2
D(τ,τ0)	4

0H̃2T

[
τ0

τ
√

1 + ξ0
,
m

	0

]

+ g0

4π2

∫ τ

τ0

dτ ′

τeq
D(τ,τ ′)T 4(τ ′)H̃2T

[
τ ′

τ
,

m

T (τ ′)

]
. (31)

In order to calculatePT (τ ) using Eq. (31), one has to determine
the proper-time dependence of T (τ ) by solving the integral
equation (26). Once T (τ ) is obtained, the integral over τ ′ in
Eq. (31) can be performed. Similarly to the functions H̃2(y,z)
and H2(y,ζ ), the functions H̃2T (y,z) and H2T (y,ζ ) satisfy the
relations H2T (y,0) = HT (y) and H̃2T (y,0) = 6HT (y), where
HT (y) is defined in Ref. [40].

In the case of the longitudinal pressure, one can follow a
similar procedure. Once again, one calculates the appropriate
moments of the distribution functions

g0

τ 2

∫
dPw2feq(τ ′,w,pT ) = g0T

4(τ ′)
2π2

H̃2L

[
τ ′

τ
,

m

T (τ ′)

]
, (32)

g0

τ 2

∫
dPw2f0(w,p⊥) = g0	

4
0

2π2
H̃2L

[
τ0

τ
√

1 + ξ0
,
m

	0

]
, (33)

where the function H̃2L is defined by

H̃2L(y,z) =
∫ ∞

0
duu3H2L

(
y,

z

u

)
exp(−

√
u2 + z2), (34)

with

H2L(y,ζ ) = y3
∫ π

0

dφ sin φ cos2 φ√
y2 cos2 φ + sin2 φ + ζ 2

= y3

(y2 − 1)3/2

[√
(y2 − 1)(y2 + ζ 2)

− (ζ 2 + 1) tanh−1

√
y2 − 1

y2 + ζ 2

]
. (35)

Using Eqs. (32)–(35) one finds

PL(τ ) = g0

2π2
D(τ,τ0)	4

0H̃2L

[
τ0

τ
√

1 + ξ0
,
m

	0

]

+ g0

2π2

∫ τ

τ0

dτ ′

τeq
D(τ,τ ′)T 4(τ ′)H̃2L

[
τ ′

τ
,

m

T (τ ′)

]
, (36)

where, once again, if the function T (τ ) is known, Eq. (36)
can be used to calculate the longitudinal pressure as a function
of proper time. As before, one finds that H2L(y,0) = HL(y)
and H̃2L(y,0) = 6HL(y), where HL(y) has been defined in
Ref. [40].

IV. SHEAR AND BULK VISCOSITIES OF A
RELATIVISTIC MASSIVE GAS

In the results section we will compare the results of the
exact solution with near-equilibrium expansions provided by
first- and second-order viscous hydrodynamics. In preparation
for this, in this section we collect formulas for the shear and
bulk viscosities of relativistic massive systems and discuss
their asymptotic limits.

A. Shear viscosity

The shear viscosity of a classical massive gas in the
relaxation time approximation (2) was obtained originally by
Anderson and Witting [42]:

η(T ) = τeqPeq(T )

15
γ 3

[
3

γ 2

K3

K2
− 1

γ
+ K1

K2
− Ki,1

K2

]
, (37)

where all functions above are understood to be evaluated at
γ ≡ m/T and the function Ki,1 is defined by the integral

Ki,1(γ ) =
∫ ∞

0

e−γ cosh t

cosh t
dt, (38)

which can be expressed as

Ki,1(γ ) = π

2
[1 − γK0(γ )L−1(γ ) − γK1(γ )L0(γ )], (39)

where Li is a modified Struve function. Equation (37) gives
the proper-time dependence of the shear viscosity coefficient
since, using the exact solution, one can determine T (τ ). This
result will be compared with the kinetic estimate of the shear
viscosity which can be obtained from

ηkin(τ ) = 1
2τ (PT (τ ) − PL(τ )). (40)

The form (40) follows from the structure of the energy-
momentum tensor in boost-invariant first-order viscous hy-
drodynamics. Therefore, one expects that the results obtained
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using Eqs. (37) and (40) will agree only at late times, τ 	 τeq,
when the system approaches equilibrium.

Since the temperature goes to zero at large times, proper
understanding of the late-time asymptotic behavior of the
system requires understanding of the γ → ∞ limit of this
quantity. In this limit, Eq. (37) becomes

lim
γ→∞ η = τeqPeq + O(γ −1), (41)

where we have used the fact that

lim
γ→∞

Ki,1

K2
= 1 − 5

2γ
+ 39

8γ 2
+ 45

8γ 3
+ 885

128γ 4
+ O(γ −5).

(42)

As a consequence, in this limit η̄ = η/Seq becomes

lim
γ→∞ η̄ ≈ τeq

Peq

Seq
≈ τeq

T 2

m
. (43)

B. Bulk viscosity

The bulk viscosity for a massive Boltzmann gas can be
found in Refs. [18,46,47]1

ζ (T ) = τeq
g0m

2

3π2T

∫ ∞

0
p2e−

√
m2+p2

T

[
c2
s (T )− p2

3(m2 + p2)

]
dp.

(44)

The integral over momentum in Eq. (44) can be performed,
giving

ζ (T ) = τeqPeq
γ 2

3

[(
c2
s (T ) − 1

3

)
+ γ

3

(
K1

K2
− Ki,1

K2

)]

= τeqPeq
γ 2

3

[
− γK2

3(3K3 + γK2)
+ γ

3

(
K1

K2
− Ki,1

K2

)]
.

(45)

Since there are similar terms in the expressions for the shear
and bulk viscosities (proportional to the difference K1 − Ki,1)
one may find a relationship between ζ and η; namely,

ζ (T ) = 5

3
η(T ) − τeqPeq

γ 3

9

(
K2

3K3 + γK2
+ 3K3

γ 2K2
− 1

γ

)
.

(46)

In the limit of large masses (or, alternatively, low temperatures)
one may use Eq. (41) and expand the Bessel functions on the
right-hand side of Eq. (46) to obtain

lim
γ→∞ ζ (T ) = 2

3τeqPeq + O(γ −1). (47)

Below, we present the numerical evidence that Eq. (44) and
its equivalent forms (45) or (46) are the correct results for

1Anderson and Witting [42] also derived an expression for the bulk
viscosity for a massive Boltzmann gas; however, it does not match
the result obtained by others. In addition, their expression does not
agree with our numerical results at late times, so we do not consider
it here.

the bulk viscosity of a massive system. Our considerations are
based on the analysis of the bulk viscous pressure �kin

ζ which
may be obtained directly from our exact solution by computing

�kin
ζ (τ ) = 1

3 [PL(τ ) + 2PT (τ ) − 3Peq(τ )]. (48)

This expression follows from the energy-momentum tensor
used in boost-invariant viscous hydrodynamics and is not
restricted to the first-order scheme. Only when the system
approaches equilibrium at proper times τ 	 τeq can the bulk
viscous pressure be determined by the bulk viscosity ζ (T )
through the relation

�kin
ζ (τ ) ≈ −ζ (T (τ ))

τ
. (49)

C. Second-order viscous hydrodynamic equations
for bulk viscous pressure

Our exact computation of the bulk viscous pressure can
be compared with second-order viscous hydrodynamic pre-
dictions for the time dependence of this quantity. Below we
consider three possibilities for the evolution equation which
appear in the literature:

τeq
d�

hyd
ζ

dτ
+ �

hyd
ζ = −ζ

τ
− τeq�

hyd
ζ

2

(
1

τ
− 1

ζ

dζ

dτ
− 1

T

dT

dτ

)
,

(50)

τeq
d�

hyd
ζ

dτ
+ �

hyd
ζ = −ζ

τ
− 4τeq�

hyd
ζ

3τ
, (51)

τeq
d�

hyd
ζ

dτ
+ �

hyd
ζ = −ζ

τ
. (52)

These three forms appear in Refs. [4,5], [25], and [5],
respectively. The final expression (52) is an approximation
to the first expression (50) which is obtained by discarding
the second term on the right-hand side. In the subsequent
results section we numerically solve Eqs. (50)–(52) using the
proper-time dependence of the effective temperature T (τ )
obtained from the exact solution and then compare to the
bulk pressure extracted directly from the exact solution using
Eq. (48).2

V. RESULTS

In this section we present results of our exact solution for
a specific initial condition and set of physical parameters.
We compare the massless and massive exact solutions to
determine what effect the mass has on the evolution of the
system. We then compare the shear and bulk viscosities from
the literature with those extracted from the exact solution
by considering the late-time near-equilibrium evolution of
the solutions. Finally, we compare the evolution of the bulk

2We have checked explicitly that using the proper-time dependence
of the temperature from second-order viscous hydrodynamics yields
the same result for the bulk pressure to within a fraction of a percent
for the values of τeq used herein.
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pressure from the exact solution with the evolution predicted
by three different viscous hydrodynamics approaches.

A. Initial conditions

We perform our numerical calculations for two fixed values
of the initial effective temperature: T0 = 600 MeV and T0 =
300 MeV. The equilibration time τeq is kept constant and equal
to 0.5 fm/c. The integral equation (26) is solved by the iterative
method. The initial time is taken to be τ0 = 0.5 fm/c and we
continue the evolution until τ = 10 fm/c. In order to identify
the mass effects more clearly, we consider the case of a fixed
mass with m = 300 MeV.3 The degeneracy factor g0 is taken
to be 16; however, the specific value of g0 is irrelevant for
our conclusions since it either cancels in ratios we consider or
appears as an overall scaling.

The initial distribution function is assumed to be of
Romatschke–Strickland form [57] with the initial anisotropy
parameter ξ0 ∈ {0,100}, corresponding to an initially isotropic
or oblate initial configuration, respectively. The transverse-
momentum scale 	0 is chosen in such a way that the initial
energy density of an anisotropic system coincides with the
energy density of an equilibrium system with temperature T0:

2m2T0

[
3T0K2

(
m

T0

)
+ mK1

(
m

T0

)]

= 	4
0H̃2

[
1√

1 + ξ0
,
m

	0

]
, (53)

which is simply the Landau matching condition (27) at τ = τ0.
We note that for fixed T0 and ξ0 the value of 	0 depends on
m. In the special case m = 0, Eq. (53) reduces to the form

2T 4
0 = 	4

0H
(

1√
1 + ξ0

)
, (54)

where, as mentioned previously, H is defined in Ref. [40].

B. Effective temperature

In Fig. 1 we plot the time dependence of the effective
temperature T obtained by iterative solution of Eq. (26). In
the top panel we show the results obtained for an initially
isotropic system and in the bottom panel we show the case of
a highly oblate initial anisotropy. In both the top and bottom
panels, the solid lines are the solution for m = 0 and the dashed
lines are the solution for m = 300 MeV. Also, in both the top
and bottom panels, the upper set of curves corresponds to T0 =
600 MeV, while the bottom set of curves correspond to T0 =
300 MeV. As we can see from this figure, the primary effect
of the mass on the effective temperature is to cause it decrease
more slowly as a function of proper time. This behavior is
consistent with what one expects from hydrodynamics since,
as the mass increases, the speed of sound decreases causing
the energy density (and hence the effective temperature) to
decrease more slowly as a function of proper time. We also

3In the context of quasiparticle models which assume a gluon mass
mg ∼ gT , with g ∼ 2 at phenomenologically relevant temperatures,
such a mass might even be a bit small.

FIG. 1. (Color online) Time dependence of the effective temper-
ature T . Solid lines are the solution for m = 0 and dashed lines are
the solution for m = 300 MeV. In both the top and bottom panels, the
upper set of curves corresponds to T0 = 600 MeV, while the bottom
set of curves corresponds to T0 = 300 MeV.

note that the effect of adding a mass is larger for lower initial
temperatures, as one would expect based on general arguments.

C. Pressure anisotropy

In Fig. 2 we plot the time dependence of the ratio of
the longitudinal and transverse pressures PL/PT obtained by
using the iterative solution of Eq. (26) to evaluate Eqs. (31)

FIG. 2. (Color online) The time dependence of the ratio of the
longitudinal and transverse pressures. The initial temperature was
taken to be T0 = 600 MeV. The top panel shows the case of an
initially isotropic system and the bottom panel shows the case of an
initially oblate system.
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FIG. 3. (Color online) The effective shear viscosity ηkin (solid
line) compared with ηhyd (dashed line) obtained from Eq. (37). The
system was assumed to be initially isotropic, i.e., ξ0 = 0. The top
panel shows the results obtained for T0 = 600 MeV and the bottom
panel shows the results obtained for T0 = 300 MeV.

and (36). The initial temperature was taken to be T0 =
600 MeV; however, we note that this ratio depends very
weakly on the initial temperature when the relaxation time
is a constant. In the top panel of Fig. 2 we show the case of an
initially isotropic system and in the bottom panel we show the
case of an initially oblate system. As before, the solid lines are
the solution for m = 0 and the dashed lines are the solution
for m = 300 MeV. As we can see from these figures, having a
nonzero mass seems to have very little effect on the pressure
anisotropy.

D. Shear viscosity

We now turn to a comparison of the effective shear viscosity
extracted from our exact solution using Eq. (40) with the near-
equilibrium behavior predicted by viscous hydrodynamics.
In Figs. 3 and 4 we plot the resulting ηkin compared with
ηhyd obtained from Eq. (37). Figure 3 shows the case ξ0 = 0
and Fig. 4 shows the case ξ0 = 100. In both figures the top
panel shows the results obtained for T0 = 600 MeV and the
bottom panel shows the results obtained for T0 = 300 MeV.
As we can see from these figures, after some initial transient
nonequilibrium evolution during which the effective shear
viscosity deviates from the near-equilibrium value, the results
converge and the exact solution is well approximated by the
near-equilibrium shear viscosity (37).

E. Bulk viscosity and pressure

We now turn to the comparison of the proper-time de-
pendence of the bulk pressure and associated bulk viscosity
extracted from our exact solution using Eq. (48). In Figs. 5–8
we plot the bulk pressure times τ for five different cases. The
solid line is the result obtained using the exact solution and

FIG. 4. (Color online) Same as Fig. 3 except with ξ0 = 100.

Eq. (48). The other curves shown correspond to the first-order
solution (49) indicated by a thick dashed line and the solutions
to Eqs. (50), (51), and (52) indicated by a thin dashed line, a
dot-dashed line, and a dotted line, respectively. As we can see
from these figures, the exact solution and all second-order
viscous hydrodynamics variations tend toward the first-
order solution at late times. However, none of the second-
order viscous hydrodynamics variations seems to accurately
describe the early time evolution of the bulk viscous pressure
in all cases. Paradoxically, the simple approximate form
(52) seems to provide the best approximation when the
system initially possesses a highly oblate momentum-space
anisotropy; however, it provides the worst approximation if the
system is initially isotropic in momentum space. These results
indicate that there may be something incomplete in the manner
in which second-order viscous hydrodynamics treats the bulk

FIG. 5. (Color online) Proper-time dependence of the bulk pres-
sure times τ for ξ0 = 0 and T0 = 600 MeV. Solid line is the exact
solution obtained from Eq. (48). The other curves correspond to the
first-order solution (49) and the solutions of Eqs. (50), (51), and (52).
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FIG. 6. (Color online) Same as Fig. 5 except with ξ0 = 100.

pressure. One possibility is that the evolution equations for
the bulk pressure used herein have neglected to include the
possibility of shear-bulk coupling which appears, for example,
in the complete expansion derived in Ref. [23].

VI. TEMPERATURE-DEPENDENT RELAXATION TIME

Before concluding, we would like to point out that in the
previous section we considered numerical results obtained
using a time-independent relaxation time τeq; however, our
exact solution (26) is not limited to this case. If one wanted
to study the case, for example, that the ratio of the shear
viscosity to entropy density were held fixed, this would imply a
temperature-dependent, and hence time-dependent, relaxation
time. For general masses one could use Eq. (37) expressed
in terms of η̄ = η/Seq and then solve for τeq as function of
the mass and temperature. If this were done, one would find
that the relaxation time depends nontrivially on the assumed
mass. The relation becomes particularly transparent in the limit
of large masses, in which case one can use the asymptotic
form (43) to obtain limγ→∞ τeq = mη̄/T 2, which implies that,
for fixed temperature, the relaxation time goes to infinity. In
practice, this means that for a massive system one will see

FIG. 7. (Color online) Same as Fig. 5 except with T0 = 300 MeV.

FIG. 8. (Color online) Same as Fig. 5 except with T0 = 300 MeV
and ξ0 = 100.

larger deviations from equilibrium than for a massless system
if one fixes η̄ and compares the two.

VII. CONCLUSIONS

In this paper we generalized the results of Refs. [39,40] to
a system of massive particles obeying Boltzmann statistics.
Our main result is an integral equation (26) that can be
solved to arbitrary numerical precision by using the method
of iteration. Based on this solution one can obtain the
proper-time dependence of the full one-particle distribution
function and, as a consequence, one can numerically obtain all
thermodynamic functions to arbitrary numerical precision. We
presented explicit expressions for the transverse pressure (31)
and longitudinal pressure (36). We then presented the results
of numerical solution of the integral equation for the effective
temperature, the pressure anisotropy, the effective shear
viscosity, and the bulk pressure. We found that the effect
of finite masses on the effective temperature is to cause it
to decrease more slowly in proper time, which is consistent
with hydrodynamic expectations. We found that the pressure
anisotropy depends very weakly on the mass in the case
that τeq is assumed to be independent of the temperature.
Finally, we compared our exact results with results obtained
from relativistic hydrodynamics. We found that the standard
expressions available in the literature for the mass and
temperature dependence of the shear and bulk viscosities
correctly describe the evolution of the system well for τ 	 τeq.

Looking forward it will be interesting to compare results
obtained by using anisotropic hydrodynamics for the massive
case with the exact solution obtained herein. There are now
two formulations of leading-order anisotropic hydrodynamics
on the market: one which uses the zeroth moment of the
Boltzmann equation to obtain an equation of motion [27]
and one which uses the second moment of the Boltzmann
equation to obtain an equation of motion [37]. The exact
solution continued here can be used to determine which
scheme provides the best approximation. We leave this for
future work [59].
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