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the Chapman-Enskog and Grad methods
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Derivations of relativistic second-order dissipative hydrodynamic equations have relied almost exclusively on
the use of Grad’s 14-moment approximation to write f (x,p), the nonequilibrium distribution function in the
phase space. Here we consider an alternative Chapman-Enskog-like method, which, unlike Grad’s, involves a
small expansion parameter. We derive an expression for f (x,p) to second order in this parameter. We show
analytically that while Grad’s method leads to the violation of the experimentally observed 1/

√
mT scaling of the

longitudinal femtoscopic radii, the alternative method does not exhibit such an unphysical behavior. We compare
numerical results for hadron transverse-momentum spectra and femtoscopic radii obtained in these two methods,
within the one-dimensional scaling expansion scenario. Moreover, we demonstrate a rapid convergence of the
Chapman-Enskog-like expansion up to second order. This leads to an expression for δf (x,p) which provides a
better alternative to Grad’s approximation for hydrodynamic modeling of relativistic heavy-ion collisions.
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I. INTRODUCTION

The standard model of relativistic heavy-ion collisions re-
lies on relativistic hydrodynamics to simulate the intermediate-
stage evolution of the high-energy-density fireball formed in
these collisions [1]. Recent simulations generally make use of
some version of the Müller-Israel-Stewart second-order theory
of causal dissipative hydrodynamics [2,3]. Hydrodynamics
has achieved remarkable success in explaining, for example,
the observed mass ordering of the elliptic flow [4–6], higher
harmonics of the azimuthal anisotropic flow [7,8], and the ridge
and shoulder structure in long-range rapidity correlations [9].
The recently measured correlators between event planes of
different harmonics [10] too can be understood qualitatively
within event-by-event hydrodynamics [11]. Notwithstanding
these successes, the basic formulation of the dissipative hydro-
dynamic equations continues to be an area of considerable ac-
tivity, largely because of the ambiguities arising due to the va-
riety of ways in which these equations can be derived [12–18].

For a system that is out of equilibrium, the existence of
thermodynamic gradients results in thermodynamic forces,
which give rise to various transport phenomena. To quantify
these nonequilibrium effects, it is convenient to first specify
the nonequilibrium phase-space distribution function f (x,p)
and then calculate the various transport coefficients. In the
context of hydrodynamics, two most commonly used methods
to determine the form of the distribution function close to
local thermodynamic equilibrium are (1) Grad’s 14-moment
approximation [19] and (2) the Chapman-Enskog method
[20]. Although both the methods involve expanding f (x,p)
around the equilibrium distribution function f0(x,p), there are
important differences.

In the relativistic version of Grad’s 14-moment approxima-
tion, the small deviation from equilibrium is usually approxi-
mated by means of a Taylor-like series expansion in momenta
truncated at quadratic order [2,17]. Further, the 14 coefficients
in this expansion are assumed to be linear in dissipative fluxes.
However, it is not apparent why a power series in momenta

should be convergent and whether one is justified in making
such an ansatz, without a small expansion parameter.

The Chapman-Enskog method, on the other hand, aims at
obtaining a perturbative solution of the Boltzmann transport
equation using the Knudsen number (ratio of mean free path to
a typical macroscopic length) as a small expansion parameter.
This is equivalent to making a gradient expansion about the
local equilibrium distribution function [21]. This method of
obtaining the form of the nonequilibrium distribution function
is consistent [16] with dissipative hydrodynamics, which is
also formulated as a gradient expansion.

The above two methods have been compared and short-
comings of Grad’s approximation have been pointed out in the
literature [22–24]. In spite of these shortcomings, the deriva-
tions of relativistic second-order dissipative hydrodynamic
equations, as well as particle-production prescriptions, rely
almost exclusively on Grad’s approximation. The Chapman-
Enskog method, on the other hand, has seldom been employed
in the hydrodynamic modeling of the relativistic heavy-ion
collisions. The focus of the present work is to explore the
applicability of the latter method.

In this paper, the Boltzmann equation in the relaxation-
time approximation is solved iteratively, which results in
a Chapman-Enskog-like expansion of the nonequilibrium
distribution function. Truncating the expansion at the second
order, we derive an explicit expression for the viscous cor-
rection to the equilibrium distribution function. We compare
the hadronic spectra and longitudinal Hanbury-Brown-Twiss
(HBT) radii obtained using the form of the viscous correction
derived here and Grad’s 14-moment approximation, within
a one-dimensional scaling expansion. We find that at large
transverse momenta, the present method yields smaller hadron
multiplicities. We also show analytically that while Grad’s
approximation leads to the violation of the experimentally
observed 1/

√
mT scaling of HBT radii [25–29], the viscous

correction obtained here does not exhibit such unphysical
behavior. Finally, we demonstrate the rapid convergence of
the Chapman-Enskog-like expansion up to second order.

0556-2813/2014/89(5)/054903(9) 054903-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.89.054903


BHALERAO, JAISWAL, PAL, AND SREEKANTH PHYSICAL REVIEW C 89, 054903 (2014)

II. RELATIVISTIC VISCOUS HYDRODYNAMICS

Within the framework of relativistic hydrodynamics, the
variables that characterize the macroscopic state of a system
are the energy-momentum tensor, T μν , particle four-current,
Nμ, and entropy four-current, Sμ. The local conservation of
net charge (∂μNμ = 0) and energy-momentum (∂μT μν = 0)
lead to the equations of motion of a relativistic fluid, whereas
the second law of thermodynamics requires ∂μSμ � 0. For
a system with no net conserved charges, hydrodynamic
evolution is governed only by the conservation equations for
energy and momentum.

The energy-momentum tensor of a macroscopic system
can be expressed in terms of a single-particle phase-space
distribution function and can be tensor decomposed into
hydrodynamic degrees of freedom [21]. Here we restrict
ourselves to a system of massless particles (ultrarelativistic
limit) for which the bulk viscosity vanishes, leading to

T μν =
∫

dp pμpν f (x,p) = εuμuν − P�μν + πμν. (1)

Here dp ≡ gdp/[(2π )3|p|], where g is the degeneracy factor,
pμ is the particle four-momentum, and f (x,p) is the phase-
space distribution function. In the tensor decomposition, ε,
P , and πμν are energy density, thermodynamic pressure,
and shear stress tensor, respectively. The projection operator
�μν ≡ gμν − uμuν is orthogonal to the hydrodynamic four-
velocity uμ defined in the Landau frame: T μνuν = εuμ. The
metric tensor is Minkowskian, gμν ≡ diag(+, − , − ,−).

The evolution equations for ε and uμ,

ε̇ + (ε + P )θ − πμν∇(μuν) = 0,
(2)

(ε + P )u̇α − ∇αP + �α
ν ∂μπμν = 0,

are obtained from the conservation of the energy-momentum
tensor. We use the standard notation Ȧ ≡ uμ∂μA for co-
moving derivative, θ ≡ ∂μuμ for expansion scalar, A(αBβ) ≡
(AαBβ + AβBα)/2 for symmetrization, and ∇α ≡ �μα∂μ for
spacelike derivatives. In the ultrarelativistic limit, the equation
of state relating energy density and pressure is ε = 3P ∝ β−4.
The inverse temperature, β ≡ 1/T , is determined by the
Landau matching condition ε = ε0, where ε0 is the equilibrium
energy density. In this limit, the derivatives of β,

β̇ = β

3
θ − β

12P
πργ σργ , (3)

∇αβ = −βu̇α − β

4P
�α

ρ∂γ πργ , (4)

can be obtained from Eq. (2), where σργ ≡ ∇(ρuγ ) −
(θ/3)�ργ is the velocity stress tensor [30]. The above identities
are used later in the derivations of viscous corrections to the
distribution function and shear evolution equation.

For a system close to local thermodynamic equilibrium,
the phase-space distribution function can be written as f =
f0 + δf , where the deviation from equilibrium is assumed to
be small (δf � f ). Here f0 represents the equilibrium distri-
bution function of massless Boltzmann particles at vanishing
chemical potential, f0 = exp(−β u · p), where u · p ≡ uμpμ.
From Eq. (1), the shear stress tensor, πμν , can be expressed in

terms of the nonequilibrium part of the distribution function,
δf , as [17]

πμν = �
μν
αβ

∫
dp pαpβ δf, (5)

where �
μν
αβ ≡ �

μ
(α�ν

β) − (1/3)�μν�αβ is a traceless symmet-
ric projection operator orthogonal to uμ. To make further
progress, the form of δf has to be determined. In the
following, we adopt a Chapman-Enskog-like expansion for the
distribution function, to obtain δf order-by-order in gradients,
by solving the Boltzmann equation iteratively in the relaxation-
time approximation.

III. CHAPMAN-ENSKOG EXPANSION

Determination of the nonequilibrium phase-space distri-
bution function is one of the central problems in statistical
mechanics. This can be achieved by solving a kinetic equation
such as the Boltzmann equation. The relativistic Boltzmann
equation with the relaxation-time approximation for the
collision term is given by [31],

pμ∂μf = C[f ] = −(u·p)
δf

τR

, (6)

where τR is the relaxation time. We recall that the zeroth
and first moments of the collision term, C[f ], should vanish
to ensure the conservation of particle current and energy-
momentum tensor [21]. This requires that τR is independent
of momenta, and uμ is defined in the Landau frame [31].
Therefore, within the relaxation-time approximation, Landau
frame is mandatory and not a choice. Momentum-dependent
τR was considered in Ref. [32] where the authors also studied
the consequences of different momentum dependencies of δf
for the heavy-ion observables.

Exact solutions of the Boltzmann equation are possible
only in rare circumstances. The most common technique of
generating an approximate solution to the Boltzmann equation
is the Chapman-Enskog expansion, where the distribution
function is expanded about its equilibrium value in powers
of space-time gradients [20]

f = f0 + δf, δf = δf (1) + δf (2) + · · · , (7)

where δf (n) is nth-order in derivatives. The Boltzmann
equation can be solved iteratively by rewriting Eq. (6) in the
form f = f0 − (τR/u · p) pμ∂μf [16,33,34]. We obtain

f1 = f0 − τR

u · p
pμ∂μf0, f2 = f0 − τR

u · p
pμ∂μf1, · · ·

(8)

where fn = f0 + δf (1) + δf (2) + · · · + δf (n). To first- and
second-orders in derivatives, we have

δf (1) = − τR

u · p
pμ∂μf0, (9)

δf (2) = τR

u · p
pμpν∂μ

(
τR

u · p
∂νf0

)
. (10)

In the next section, the above expressions for δf along with
Eq. (5) are used in the derivation of the evolution equation for
the shear stress tensor.
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IV. VISCOUS EVOLUTION EQUATION

In order to complete the set of hydrodynamic equations,
Eq. (2), we need to derive an expression for the shear stress
tensor, πμν . The first-order expression for πμν can be obtained
from Eq. (5) using δf = δf (1) from Eq. (9),

πμν = �
μν
αβ

∫
dp pαpβ

(
− τR

u · p
pγ ∂γ f0

)
. (11)

Using Eqs. (3) and (4) and keeping only those terms which
are first-order in gradients, the integral in the above equation
reduces to

πμν = 2τRβπσμν, (12)

where βπ = 4P/5 [16].
The second-order evolution equation for shear stress tensor

can also be obtained in a similar way by using δf = δf (1) +
δf (2) from Eqs. (9) and (10) in Eq. (5). Performing the
integrations and using Eqs. (3), (4) and (12), we get [16,30]

π̇ 〈μν〉 + πμν

τR

= 2βπσμν + 2π 〈μ
γ ων〉γ − 10

7
π 〈μ

γ σ ν〉γ − 4

3
πμνθ,

(13)

where ωμν ≡ (∇μuν − ∇νuμ)/2 is the vorticity tensor, and
we have used Eq. (12). It is clear from the form of the above
equation that the relaxation time τR can be identified with
the shear relaxation time τπ . By comparing the first-order
evolution Eq. (12) with the relativistic Navier-Stokes equation
πμν = 2ησμν , we obtain τπ = η/βπ , where η is the coefficient
of shear viscosity.

V. CORRECTIONS TO THE DISTRIBUTION FUNCTION

In this section, we derive the expression for the nonequi-
librium part of the distribution function, δf , up to second
order in gradients of uμ. For this purpose, we employ Eqs. (9)
and (10), which were obtained using a Chapman-Enskog-like
expansion. We then recall the derivation of the standard Grad’s
14-moment approximation for δf , and compare these two
expressions.

Using Eqs. (3) and (4) for the derivatives of β, and Eq. (13)
for σμν , in Eqs. (9) and (10), we arrive at the form of the
second-order viscous correction to the distribution function:

δf = f0β

2βπ (u · p)
pαpβπαβ − f0β

βπ

[
τπ

u · p
pαpβπγ

α ωβγ

− 5

14βπ (u · p)
pαpβπγ

α πβγ + τπ

3(u · p)
pαpβπαβθ

− 6τπ

5
pαu̇βπαβ + (u · p)

70βπ

παβπαβ + τπ

5
pα(∇βπαβ)

− 3τπ

(u · p)2
pαpβpγ παβu̇γ + τπ

2(u · p)2
pαpβpγ (∇γ παβ)

− β + (u · p)−1

4(u · p)2βπ

(pαpβπαβ)2

]
+ O(δ3), (14)

≡ δf1 + δf2 + O(δ3). (15)

The first term on the right-hand side of Eq. (14) corresponds
to the first-order correction, δf1, whereas the terms within
square brackets are of second order, δf2 (see Appendix A).
Note that δf1 	= δf (1) and δf2 	= δf (2), due to the nonlinear
nature of Eqs. (3), (4), and (13). It is straightforward to
show that the form of δf in Eq. (14) is consistent with the
definition of the shear stress tensor, Eq. (5), and satisfies the
matching condition ε = ε0 and the Landau frame definition
uνT

μν = εuμ [21], i.e.,∫
dp (u · p)2 δf = 0,

∫
dp �μαuβ pαpβ δf = 0, (16)

order-by-order in gradients (see Appendix A).
On the other hand, Grad’s 14-moment approximation for

δf can be obtained from a Taylor-like expansion in the powers
of momenta [2,17]

δfG = f0[ε(x) + εα(x)pα + εαβ(x)pαpβ], (17)

where ε’s are the momentum-independent coefficients in the
expansion, which, however, may depend on thermodynamic
and dissipative quantities. For a system of massless particles
with no net conserved charges, i.e., in the absence of bulk
viscosity and charge diffusion current, the above equation
reduces to

δfG = f0β
2

10βπ

pαpβπαβ, (18)

where the coefficient is obtained using Eq. (5). We observe
that unlike Eq. (14) for the Chapman-Enskog case, Eq. (18)
for Grad’s is linear in shear stress tensor. However, it is
important to note that both the forms of δf , i.e., δf1 and
δfG, lead to identical evolution equations for the shear stress
tensor, Eq. (13), with the same coefficients [13,30].

VI. BJORKEN SCENARIO

In order to model the hydrodynamical evolution of the
matter formed in the heavy-ion collision experiments, we use
the Bjorken prescription [35] for one-dimensional expansion.
We consider the evolution of a system of massless particles
(ε = 3P ) at vanishing net baryon number density. In terms
of the Milne coordinates (τ,r,ϕ,ηs), where τ = √

t2 − z2,
r =

√
x2 + y2, ϕ = tan−1(y/x), and ηs = tanh−1(z/t),

and with uμ = (1,0,0,0), evolution equations for ε and
� ≡ −τ 2πηsηs become

dε

dτ
= − 1

τ
(ε + P − �), (19)

d�

dτ
= − �

τπ

+ βπ

4

3τ
− λ

�

τ
. (20)

The transport coefficients appearing in the above equation
reduce to [16]

τπ = η

βπ

, βπ = 4P

5
, λ = 38

21
. (21)

In (τ,r,ϕ,ηs) coordinates, the components of particle four-
momenta are given by

pτ = mT cosh(y − ηs), pr = pT cos(ϕp − ϕ),
(22)

pϕ = pT sin(ϕp − ϕ)/r, pηs = mT sinh(y − ηs)/τ,
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where m2
T = p2

T + m2, pT is the transverse momentum, y
is the particle rapidity, and ϕp is the azimuthal angle in
the momentum space. We note that for the Bjorken expan-
sion, θ = 1/τ , u̇μ = 0, ωμν = 0 and pμd�μ = mT cosh(y −
ηs)τdηsrdrdϕ. In this scenario, the nonvanishing factors
appearing in Eq. (14) reduce to u · p = mT cosh(y − ηs),
παβπαβ = 3�2/2, and

pαpβπαβ = �

2
p2

T − �m2
T sinh2(y − ηs),

pαpβπγ
α πγβ = −�2

4
p2

T − �2 m2
T sinh2(y − ηs),

(23)

pαpβpγ ∇απβγ = 2
�

τ
m3

T sinh2(y − ηs) cosh(y − ηs),

pα∇βπαβ = −�

τ
mT cosh(y − ηs).

Within the framework of the relativistic hydrodynamics, ob-
servables pertaining to heavy-ion collisions are influenced by
viscosity in two ways: first through the viscous hydrodynamic
evolution of the system and second through corrections to the
particle production rate via the nonequilibrium distribution
function [36]. Hydrodynamic evolution and the nonequilib-
rium corrections to the distribution function were considered
in the previous sections; in the following sections, we focus on
two observables, namely transverse-momentum spectra and
HBT radii of hadrons.

VII. HADRONIC SPECTRA

The hadron spectra can be obtained using the Cooper-Frye
freezeout prescription [37]

dN

d2pT dy
= g

(2π )3

∫
pμd�μf (x,p), (24)

where pμ is the particle four-momentum, d�μ represents
the element of the three-dimensional freeze-out hypersurface,
and f (x,p) represents the phase-space distribution function at
freeze-out.

For the ideal freeze-out case (f = f0), we get

dN (0)

d2pT dy
= g

4π3
mT τ A⊥ K1, (25)

where A⊥ denotes the transverse area of the overlap zone
of colliding nuclei and Kn ≡ Kn(zm) are the modified Bessel
functions of the second kind with argument zm ≡ mT /T . In
Eq. (25) and hereafter, the hydrodynamical quantities such
as T ,τ,�,P , etc., correspond to their values at freeze-out.
The expression for hadron production up to first order (f =
f0 + δf1) is obtained as

dN (1)

d2pT dy
=

[
1 + �

4βπzm

{
z2
p

K0

K1
− 2zm

}]
dN (0)

d2pT dy
, (26)

where zp ≡ pT /T . Here we have used the recurrence rela-
tion Kn+1(z) = 2nKn(z)/z + Kn−1(z). The derivation of the
hadron spectra up to second order, dN (2)/d2pT dy (by setting
f = f0 + δf1 + δf2), is presented in the Appendix B.

For comparison, we also present the result for hadron
production obtained using Grad’s 14-moment approximation
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FIG. 1. (Color online) Pion spectra as a function of the trans-
verse momentum pT , obtained with the second-order hydrodynamic
evolution, followed by freeze-out in various scenarios: ideal, Grad’s
14-moment approximation, and first- and second-order Chapman-
Enskog. Inset: Pion yields in the above four cases scaled by the
corresponding values in the ideal case.

(f = f0 + δfG) [36,38]

dN (G)

d2pT dy
=

[
1 + �

20βπ

{
z2
p − 2zm

K2

K1

}]
dN (0)

d2pT dy
. (27)

We solve the evolution equations (19) and (20) with initial
temperature T0 = 360 MeV, time τ0 = 0.6 fm/c, and isotropic
pressure configuration �0 = 0, corresponding to central (b =
0) Au-Au collisions at the Relativistic Heavy-Ion Collider.
The system is evolved with shear viscosity to entropy density
ratio η/s = 1/4π corresponding to the Kovtun-Son-Starinets
(KSS) lower bound [39], until the freeze-out temperature
T = 150 MeV is reached. In order to study the effects of
the various forms of δf via the freeze-out prescription, Eq.
(24), we evolve the system using the second-order viscous
hydrodynamic equations (19) and (20) in all the cases.

In Fig. 1, we present the pion transverse-momentum spectra
for the four freeze-out conditions discussed above, namely
ideal, first- and second-order Chapman-Enskog, and Grad’s
14-moment approximation. We observe that nonideal freeze-
out conditions tend to increase the high-pT particle production.
While the Chapman-Enskog corrections are small, Grad’s 14-
moment approximation results in rather large corrections to
the ideal case. This is clearly evident in the inset where we
show the pion yields in the four cases scaled by the values
in the ideal case. These features can be easily understood
from Eqs. (26) and (27): The first-order Chapman-Enskog
correction is essentially linear in pT whereas that due to Grad
is quadratic. The second-order Chapman-Enskog correction
is small, indicating rapid convergence of the expansion up to
second order.
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VIII. HBT RADII

HBT interferometry provides a powerful tool to unravel the
space-time structure of the particle-emitting sources in heavy-
ion collisions, because of its ability to measure source sizes,
lifetimes, and particle emission durations [40]. The source
function, S(x,K), for on-shell particle emission is defined such
that it satisfies

dN

d2KT dy
≡

∫
d4x S(x,K). (28)

By comparing the above equation with Eq. (24), we see that
the source function is restricted to the freeze-out hypersurface
and is given by

S(x,K) = g

(2π )3

∫
pμd�μ(x ′)f (x ′,p)δ4(x − x ′). (29)

At relatively small momenta, certain space-time variances of
the source function can be obtained, to a good approximation,
from the correlation between particle pairs [41]. Space-time
averages with respect to the source function are defined as

〈α〉K ≡
∫

d4x S(x,K)α∫
d4x S(x,K)

=
∫

Kμd�μf (x,K)α∫
Kμd�μf (x,K)

, (30)

where Kμ is the pair four-momentum.
The longitudinal HBT radius, RL, is calculated in terms of

the transverse momentum, KT , of the identical-particle pair
[41]:

R2
L(KT ) =

∫
Kμd�μf (x,K)z2∫
Kμd�μf (x,K)

. (31)

In the central-rapidity region, the pair four-momentum is given
by Kμ = (Kτ ,Kr,Kϕ,Kηs ) = (mT ,KT ,0,0). The integration
measure is given by Kμd�μ = mT cosh(ηs)τdηsrdrdϕ with

mT =
√

K2
T + m2

p, mp being the particle mass. Using the
relation z = τ sinh(ηs), we get

R2
L(KT ) = τ 2

[∫
Kμd�μf (x,K)cosh2(ηs)∫

Kμd�μf (x,K)
− 1

]
,

≡ τ 2

[
N [f ]

D[f ]
− 1

]
. (32)

Note that the integral, D[f ], in the denominator in the above
equation is the same as that occurring in the Cooper-Frye
prescription for particle production, Eq. (24), and was already
calculated in the previous section. We next calculate the
integral, N [f ], in the numerator.

In the ideal case, f = f0, we have

N [f0] = 2A⊥τzm

4β
(K3 + 3K1) . (33)

This leads to the well-known result of Hermann and Bertsch
[42]

(
R2

L

)(0) = τ 2

zm

K2

K1
, (34)

which for large values of zm results in the Makhlin-Sinyukov
formula (R2

L)(0) = τ 2T/mT [43,44]. Thus in the ideal case,
(RL)(0) exhibits the so-called 1/

√
mT scaling.

The first-order calculation requires N [δf1], which is given
by

N [δf1] = 2A⊥τ�

16ββπ

[(
2z2

p + z2
m

)
K0 + 2z2

pK2 − z2
mK4

]
. (35)

The second-order calculation requires N [δf2], which is given
in the Appendix B. For comparison we also calculate RL

in Grad’s 14-moment approximation. This requires N [δfG],
which we obtain as

N [δfG] = 2A⊥τ�zm

160ββπ

[(
2z2

p − 6z2
m

)
K1

+ (
2z2

p − z2
m

)
K3 − z2

mK5
]
. (36)

In the following, we show that the viscous correction to
RL due to Grad’s 14-moment approximation violates the
experimentally observed 1/

√
mT scaling [25–29], whereas

it is preserved in the Chapman-Enskog case. To this end,
we calculate the first-order viscous correction to RL in both
the cases. Expanding the RL in Eq. (31) to first order in
δf and using the relation z = τ sinh(ηs) we obtain the ideal
contribution

(
R2

L

)(0) =
∫

Kμd�μ f0 τ 2 sinh2(ηs)∫
Kμd�μ f0

, (37)

and the first viscous correction in the two cases

(
δR2

L

)(1,G) = −(
R2

L

)(0)
(

dN (1,G)

d2KT

− dN (0)

d2KT

)/
dN (0)

d2KT

+
∫

Kμd�μ τ 2 sinh2(ηs) δf1,G∫
Kμd�μ f0

. (38)

The ideal radius (R2
L)(0) was obtained in Eq. (34). Viscous

corrections due to the Chapman-Enskog method and Grad’s
14-moment approximation can be obtained similarly. By
substituting the viscous correction, δf1, from Eq. (14) into
Eq. (38), using the results for the particle spectra, Eqs. (25)
and (26), and the ideal radius, Eq. (34), and performing the ηs

integrals, we obtain(
δR2

L

)(1)(
R2

L

)(0) = − �

16βπ

[
16 + 4z2

p

zm

(
K0

K1
− K1

K2

)]
. (39)

Similarly, for Grad’s approximation, Eq. (18), we obtain(
δR2

L

)(G)(
R2

L

)(0) = − �

20βπ

[
20 − 2zm

(
K0

K1
− K1

K2

)
+ 4zm

K1

K2

]
.

(40)

Using the asymptotic expansion of modified Bessel func-
tions of the second kind [45],

Kn(zm) =
(

π

2zm

) 1
2

e−zm

[
1 + 4n2 − 1

8zm

+ · · ·
]

, (41)

for large zm, we have

K0

K1
− K1

K2
= 1

zm

+ O
(

1

z2
m

)
. (42)
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FIG. 2. (Color online) Longitudinal HBT radius as a function
of the transverse momentum KT of the pion pair, obtained with
the second-order hydrodynamic evolution, followed by freeze-out
in various scenarios: ideal, Grad’s 14-moment approximation, and
first- and second-order Chapman-Enskog. Inset: HBT radius in the
above cases scaled by the corresponding values in the ideal case.

Hence, for large values of zm, we find

(
δR2

L

)(1) = −5τ 2T �

4βπmT

, (43)

(
δR2

L

)(G) = − τ 2T �

5βπmT

(
3 + mT

T

)
. (44)

It is clear from the above two equations that the viscous
correction to RL in the Chapman-Enskog case preserves the
1/

√
mT scaling, whereas in Grad’s 14-moment approximation

it grows as mT /T relative to the ideal result, and thus violates
the scaling [36].

Results for the longitudinal HBT radius, RL, for identical-
pion pairs in central Au-Au collisions, for the four cases
discussed above, are displayed in Fig. 2. We note that while
there is no noticeable difference between first- and second-
order Chapman-Enskog results compared to the ideal case,
they predict a slightly smaller value for RL. On the other
hand, RL corresponding to Grad’s approximation exhibits a
qualitatively different behavior and even becomes imaginary
for KT � 0.9 GeV/c, which is clearly unphysical. More
importantly, the ratio RL/R

(0)
L shown in the inset of Fig. 2

illustrates that the 1/
√

mT scaling, which is violated in Grad’s
approximation, survives in the Chapman-Enskog case.

IX. SUMMARY AND CONCLUSIONS

We derived the form of the viscous correction to the
equilibrium distribution function, up to second order in
gradients, by employing a Chapman-Enskog-like iterative

solution of the Boltzmann equation in the relaxation-time
approximation. This approach is in accordance with the
formulation of hydrodynamics, which is also a gradient
expansion. We used this form of the viscous correction
to calculate the hadronic transverse-momentum spectra and
longitudinal Hanbury-Brown-Twiss radii and compared them
with those obtained in Grad’s 14-moment approximation
within the one-dimensional scaling expansion. These results
demonstrate the rapid convergence of the Chapman-Enskog
expansion up to second order, and thus it is sufficient to retain
only the first-order correction in the freeze-out prescription.
We found that the Chapman-Enskog method results in softer
hadron spectra compared with Grad’s approximation. We
further showed that the experimentally observed 1/

√
mT

scaling of HBT radii, which is also seen in the ideal freeze-out
calculation, is maintained in the Chapman-Enskog method. In
contrast, the Grad’s 14-moment approximation leads to the
violation of this scaling as well as an imaginary value for RL

at large momenta. For initial conditions typical of heavy-ion
collisions at the Large Hadron Collider (T0 = 500 MeV and
τ0 = 0.4 fm/c), we have found that the above conclusions
remain unchanged.

We conclude by recalling the well-known form of the
viscous correction due to Grad’s 14-moment approximation,

δfG = f0f̃0

2(ε + P )T 2
pαpβπαβ, (45)

and the alternate form due to Chapman-Enskog method
proposed here,

δfCE = 5f0f̃0

8PT (u · p)
pαpβπαβ, (46)

where f̃0 ≡ 1 − rf0, with r = 1, − 1,0 for Fermi, Bose, and
Boltzmann gases, respectively. In view of the arguments
presented in this paper, we advocate that the form of δfCE

proposed here should be a better alternative for hydrodynamic
modeling of relativistic heavy-ion collisions.

APPENDIX A: CONSTRAINTS ON THE VISCOUS
CORRECTION TO THE DISTRIBUTION FUNCTION

In this appendix, we show that the form of the viscous
correction to the distribution function, δf , given in Eq. (14)
satisfies the matching condition ε = ε0 and the Landau frame
definition uνT

μν = εuμ, at each order in gradients [21]. We
also show that δf is consistent with the definition of the shear
stress tensor, Eq. (5).

The first- and second-order viscous corrections to the
distribution function can be written separately using Eq. (14).
The first-order correction is given by

δf1 = f0β

2βπ (u · p)
pαpβπαβ, (A1)

whereas the second-order correction is

δf2 = −f0β

βπ

[
τπ

u · p
pαpβπγ

α ωβγ − 5

14βπ (u · p)
pαpβπγ

α πβγ

+ τπ

3(u · p)
pαpβπαβθ − 6τπ

5
pαu̇βπαβ + (u · p)

70βπ

παβπαβ
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+ τπ

5
pα(∇βπαβ) − 3τπ

(u · p)2
pαpβpγ παβu̇γ + τπ

2(u · p)2

×pαpβpγ (∇γ παβ) − β+(u · p)−1

4(u · p)2βπ

(pαpβπαβ)2

]
. (A2)

In the following, we show that the δfi given in Eqs. (A1)
and (A2) satisfies the conditions

L1[δfi] ≡
∫

dp (u · p)2 δfi = 0, (A3)

corresponding to ε = ε0, and

L2[δfi] ≡
∫

dp �μαuβ pαpβ δfi = 0, (A4)

corresponding to uνT
μν = εuμ.

At first order, we obtain

L1[δf1] = β

2βπ

παβuγ I
αβγ
(0) , L2[δf1] = β

2βπ

παβ�μγ I
αβγ
(0) ,

(A5)

where we define the integral

I
μ1μ2···μn

(r) ≡
∫

dp

(u · p)r
pμ1pμ2 . . . pμnf0. (A6)

The above momentum integral can be decomposed into
hydrodynamic tensor degrees of freedom as

I
μ1μ2...μn

(r) = I
(r)
n0 uμ1uμ2 . . . uμn + I

(r)
n1

(A7)
× (

�μ1μ2uμ3 . . . uμn + perms
) + · · · ,

where we readily identify I
(0)
20 = ε and I

(0)
21 = −P . Using the

above tensor decomposition for I
αβγ
(0) in Eq. (A5), we obtain

L1[δf1] = 0, L2[δf1] = 0. (A8)

Similarly, for second-order corrections given in Eq. (A2),
we obtain

L1[δf2] = 0 + 5β

14β2
π

παβπαβI
(0)
31 + 0 + 0 − β

70β2
π

παβπαβI
(0)
30

− βτπ

5βπ

(∇απαβ)I (0)
30 uβ + 0 − βτπ

βπ

(∇γ παβ)I (0)
31

× u(α�β)γ + β

2β2
π

παβπαβ
(
βI

(0)
42 + I

(1)
42

)
. (A9)

Using the identities

I (r)
nq = − 1

2q + 1
I

(r−1)
n−1,q−1, (A10)

I (0)
nq = 1

β

[−I
(0)
n−1,q−1 + (n − 2q)I (0)

n−1,q

]
, (A11)

and Eq. (12), we obtain

L1[δf2] = − 25

14βπ

παβπαβ − 3

14βπ

παβπαβ + 12

8βπ

παβπαβ

− 5

2βπ

παβπαβ + 3

βπ

παβπαβ

= 0. (A12)

A similar calculation leads to

L2[δf2] = 0 + 0 + 0 + 6βτπ

5βπ

I
(0)
31 �α

μu̇βπαβ + 0

− βτπ

5βπ

I
(0)
31 �α

μ(∇βπαβ) − 6βτπ

5βπ

I
(0)
31 �α

μu̇βπαβ

− βτπ

βπ

I
(1)
42 �α

μ(∇βπαβ) + 0

= 0. (A13)

To obtain the second equality, we have used Eq. (A10) to
replace I

(1)
42 = −I

(0)
31 /5.

Next we show that the form of the viscous correction to
the distribution function, δf = δf1 + δf2 given in Eqs. (A1)
and (A2), is consistent with the definition of the shear stress
tensor given in Eq. (5). In other words, we show that πμν =
L3[δf1] + L3[δf2], where

L3[δfi] ≡ �
μν
αβ

∫
dp pαpβ δfi. (A14)

At first order, we get

L3[δf1] = β

2βπ

�
μν
αβ πγ δ I

αβγ δ
(1) . (A15)

Using the tensor decomposition for I
αβγ δ
(1) in the above

equation, we obtain

L3[δf1] = β

βπ

I
(1)
42 πμν = πμν. (A16)

Here we have used I
(1)
42 = βπ/β, obtained by employing the

recursion relations, Eqs. (A10) and (A11).
Similarly, for the second-order correction δf2 given in

Eq. (A2), we obtain

L3[δf2] = −2τππ 〈μ
γ ων〉γ + 5

7βπ

π 〈μ
γ πν〉γ − 2

3
τππμνθ + 0

+ 0 + 0 + 0 +
(

1

βπ

π 〈μ
γ πν〉γ + 2τππ 〈μ

γ ων〉γ

+ 2

3
τππμνθ

)
− 12

7βπ

π 〈μ
γ πν〉γ

= 0. (A17)

Hence L3[δf ] = L3[δf1] + L3[δf2] = πμν . This result was
expected because no second-order term (e.g., ππ , πω, etc.)
or their linear combinations, when substituted in Eq. (5), can
result in a first-order term (π ) which we have on the left-hand
side of Eq. (5). In fact, each higher-order correction (δfn)
when substituted in Eq. (5) will vanish. The fact that δf given
in Eq. (14) satisfies the constraints, as demonstrated in this
appendix, shows that our method of obtaining the viscous
corrections to the distribution function is quite robust.

APPENDIX B: SECOND-ORDER VISCOUS
CORRECTIONS TO HADRON SPECTRA AND HBT RADII

Within the one-dimensional scaling expansion, u̇ = 0 =
ωμν , which reduces the number of terms in Eq. (A2). The
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nonvanishing terms can be simplified using Eq. (23) as

δf2 = f0β

βπ

[
−5�2mT

{
p2

T

/(
4m2

T

) + sinh2(y − ηs)
}

14βπ cosh(y − ηs)

− τπ�mT

{
p2

T

/(
2m2

T

) − sinh2(y − ηs)
}

3τ cosh(y − ηs)

− 3�2mT cosh(y − ηs)

140βπ

+ τπ�mT cosh(y − ηs)

5τ

− τπ�mT sinh2(y − ηs)

τ cosh(y − ηs)
+ �2β

4βπ cosh2(y − ηs)

×
{

1 + (βmT )−1

cosh(y − ηs)

}{
p2

T

2m2
T

− sinh2(y − ηs)

}2 ]
.

(B1)

The contribution to the hadronic spectra resulting from
these second-order terms is calculated using Eq. (24) as

δdN (2)

d2pT dy
≡ g

(2π )3

∫
mT cosh(y − ηs)τdηsrdrdϕ δf2

= g τ A⊥
4π3ββπ

[−5�2

56βπ

(
z2
p K0 + 4zm K1

)

− �τπ

6τ

(
z2
pK0 − 2zmK1

) − 3�2z2
m

280βπ

(
K0 + K2

)

+ �τπz2
m

10τ
(K0 + K2) − �τπzm

τ
K1 + �2z2

m

4βπ

×
{
zmX2I1 − 2zmXK1 + zm

4
(K3 + 3K1)

+X2I2 − 2XK0 + 1

2
(K0 + K2)

}]
, (B2)

where X ≡ z2
p/(2z2

m) + 1, Kn(zm) are the modified Bessel
functions of the second kind

Kn(z) ≡
∫ ∞

0
dt e−z cosh(t) cosh(nt), (B3)

and In are the integrals defined as

In(z) ≡
∫ ∞

0
dt e−z cosh(t) sechn(t), (B4)

with the following properties:

dnIn(z)

dzn
= (−1)n K0(z), I0(z) = K0(z). (B5)

The expression for hadron spectra up to second order, by
setting f = f0 + δf1 + δf2 in the freeze-out prescription,
Eq. (24), becomes

dN (2)

d2pT dy
= dN (1)

d2pT dy
+ δdN (2)

d2pT dy
. (B6)

Similarly, within the Bjorken model, one can calculate
the longitudinal HBT radii by including the second-order
viscous corrections in Eq. (32) using Eq. (B1). To this end,
we calculate N [δf2] by setting f = f0 + δf1 + δf2 in Eq. (32)
and performing the integrations

N [δf2] =
∫

mT cosh3(y − ηs)τdηsrdrdϕ δf2

= 2A⊥τ

ββπ

[ −5�2

112βπ

{(
z2
p − z2

m

)
K0 + z2

p K2

+ z2
m K4

}
− �τπ

24τ

{(
2z2

p + z2
m

)
K0 + 2z2

p K2

− z2
m K4

}
− 3�2z2

m

1120βπ

(3K0 + 4K2 + K4)

+ �τπz2
m

40τ
(3K0 + 4K2 + K4) − �τπz2

m

8τ

(
K4

−K0
) + �2z2

m

4βπ

{(
X2 − X + 3

8

)
K0 +

(
zmX2

− 3

2
zmX + 5

8
zm

)
K1 +

(
1

2
− X

)
K2 +

(
5

16
zm

− 1

2
zmX

)
K3 + 1

8
K4 + 1

16
zmK5

}]
. (B7)
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