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We study the heavy-quark scattering on partons of the quark-gluon plasma (QGP), being especially interested
in the collisional (elastic) scattering processes of heavy quarks Q on light quarks q and gluons g. We calculate
the different cross sections for perturbative partons (massless on-shell particles in the vacuum) and for dynamical
quasiparticles (off-shell particles in the QGP medium as described by the dynamical quasiparticles model
“DQPM”) using the leading-order Born diagrams. Our results show clearly the effect of a finite parton mass
and width on the perturbative elastic [q(g)Q → q(g)Q] cross sections which depend on temperature T , energy
density ε, the invariant energy

√
s, and the scattering angle θ . Our detailed comparisons demonstrate that the finite

width of the quasiparticles in the DQPM—which encodes the multiple partonic scattering—has little influence on
the cross section for qQ → qQ as well as gQ → gQ scattering, except close to thresholds. Thus, when studying
the dynamics of energetic heavy quarks in a QGP medium the spectral width of the degrees-of-freedom may be
discarded. We have, furthermore, compared the cross sections from the DQPM with corresponding results from
hard-thermal-loop (HTL) approaches. The HTL-inspired models—essentially fixing the regulators by elementary
vacuum cross sections and decay amplitudes instead of properties of the QGP at finite temperature—provide
quite different results, especially with respect to the temperature dependence of the qQ and gQ cross sections
(in all settings). Accordingly, the transport properties of heavy quarks will be very different as a function of
temperature when compared to DQPM results.
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I. INTRODUCTION

The ultimate aim of strongly interacting physics is to study
the properties of the quark-gluon plasma (QGP) produced
in relativistic heavy-ion collisions (HICs). The heavy quarks
Q = b,c (and correspondingly charm and beauty mesons)
are considered to be one of the best probes for such a
study. Owing to their large mass in HICs they are produced
dominantly by hard binary initial collisions between the
incoming nucleons during the early stage of the reaction when
the QGP is formed. Heavy quarks have initially a transverse
momentum spectrum which can be calculated perturbatively
and which is very different from a thermal spectrum. Their
cross section with partons of the plasma is not strong enough
to thermalize the heavy quarks during the expansion of the
plasma. Therefore, they provide an important observable
that probes some properties of the QGP. To this aim, it is
useful to study theoretically the heavy-quark dynamics from
their production until hadronization and freeze-out to obtain
information on the properties of the plasma from the finally
observed spectra.
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The interaction of heavy quarks with the plasma particles
is described by (elastic and inelastic) cross sections. Their
knowledge in a finite temperature medium allows for the
evaluation of several physical quantities, like the collisional
and radiative energy loss of heavy quarks, the interaction
rates, diffusion coefficients, viscosity, etc. Ultimately, the
scattering of heavy quarks with the QGP particles represents
the first step to the explicit microscopic dynamics of heavy
flavors in the QGP and the hadronic phase. Such a study
of the heavy-quark propagation can be performed within the
microscopic parton-hadron-string-dynamics (PHSD) transport
approach [1,2], which incorporates explicit partonic degrees of
freedom in terms of strongly interacting quasiparticles (quarks
and gluons) in line with an equation of state from lattice QCD,
as well as dynamical hadronization and hadronic collision
dynamics in the final reaction phase.

For the QGP phase the natural starting point to calculate
the interactions of heavy quarks with the constituents of the
plasma, the light quarks and gluons, is perturbative QCD
(pQCD). A comparison with data on RAA and the elliptic
flow v2 shows that the interaction has to be much stronger
than obtained in standard pQCD calculations using a constant
coupling constant, zero-mass plasma constituents, and the
Debye mass as an infrared regulator of the cross section.
This motivates the study of heavy-quark scattering in a finite
temperature QCD medium.

In this study—by dressing the quark and gluon lines
with the effective propagators—we derive the off-shell cross
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sections for the reactions qQ → qQ and gQ → gQ, taking
into account the quasiparticle nature of the quarks and gluons
based on the dynamical quasiparticle model (DQPM) [1,3,4].
These cross sections are compared with standard pQCD
cross sections. We find that the finite mass of the effective
quasiparticles does not only screen the singularities typical for
the perturbative cross sections with massless quarks, but also
modifies the shape of the scattering cross sections, especially
at low momentum transfer Q and at the edges of the phase
space.

This paper aims at an effective-theory approach for the
derivation of the off-shell cross sections for the interaction of
massive dynamical quasiparticles as constituents of the finite-
temperature strongly interacting medium (sQGP). Therefore,
and to fix the notion of off-shell particles in our calculation,
we start out in Sec. II with a presentation of the description of
massive and off-shell particles in the DQPM. We describe
the parton spectral function by a finite mass and width
in the hot QCD medium. Sections III and IV present the
differential cross sections for heavy-quark Q elastic scattering
on light dressed quarks q (and gluons g) in the on-shell and
off-shell limits. In these sections we compare the qQ and
gQ elastic scatterings in vacuum with those in the QGP
medium, considering both the on-shell and off-shell limits,
as well as light and heavy quarks and gluons as collision
partners. For completeness the case of on-shell partons will
include also massless light quarks and gluons. We start
in these sections by demonstrating that we reproduce the
well-known pQCD qQ and gQ elastic cross sections, as well
as those determined by Gossiaux and Aichelin following a
hard-thermal-loop-inspired approach (HTL-GA) [5–11] for
massless light quarks and gluons. Then, these particles are
dressed by effective masses and the elastic qQ and gQ cross
sections are evaluated (this approach is called “DpQCD” for
dressed pQCD). We end by addressing the case of off-shell qQ
and gQ elastic scattering, where the DQPM quark, antiquark
and gluon masses, nonperturbative spectral functions, and
self-energies for different temperatures of the medium are
employed. For this purpose, we use parametrizations of the
quark and gluon propagators provided by the DQPM matched
to reproduce lattice quantum chromodynamics (lQCD) data.
The corresponding cross sections are labeled by “IEHTL” for
“infrared enhanced hard thermal loop.”

The off-shell cross sections are compared to the perturbative
ones throughout Secs. III and IV, where in the limit of a
high hard scale Q2 the off-shell cross sections are shown to
approach the perturbative ones. Finally, in Sec. V, we present
our conclusions, summarize the main results, and point out
future applications. In Table I we present the outline of our
systematic study in compact form.

II. PERTURBATIVE PARTONS VERSUS DYNAMICAL
QUASIPARTICLES

A. Perturbative partons

The scattering of heavy quarks in vacuum and in a QGP
medium in lowest-order QCD perturbation theory (pQCD)
has extensively been studied in the literature [12,13]. The

TABLE I. Overview of the on-shell and off-shell heavy-quark
elastic cross sections following the different approaches studied in
this article.

qQ qQ gQ gQ

(On-shell) (Off-shell) (On-shell) (Off-shell)

Naive pQCD Sec. III A Sec. IV A
HTL-GA Secs. III A, III B Secs. IV A, IV B
DpQCD Secs. III B, III C Secs. IV B, IV C
IEHTL Sec. III C Sec. IV C

application of the lowest-order QCD perturbation theory
(pQCD) to these collisions [13] has been motivated by the low
value of the effective coupling (which has been considered as
constant or running for moderate values of Q2) at a time when
the QGP has been considered as a system of weakly interacting
partons.

In the last decade, experiments at BNL Relativistic Heavy
Ion Collider (RHIC) and CERN Large Hadron Collider (LHC)
have shown that the QGP, produced in ultrarelativistic HICs,
is a strongly interacting system and recent theoretical and
experimental studies have improved our understanding of
its properties. On the theoretical side, the estimates of the
temperatures T , which are expected to be currently achieved
in HICs at RHIC and LHC, are not large compared to the
QCD scale �QCD [14]. This has the peculiar consequence
that the coupling cannot be considered as small anymore.
The experimental studies at RHIC have indicated that the
new medium created in ultrarelativistic Au + Au collisions
is a strongly interacting many-body system, interacting even
stronger than hadronic matter. In addition, lattice QCD results
[15] have also shown that the high-temperature plasma phase
is a medium of interacting partons which are strongly screened
and influenced by nonperturbative effects even at temperatures
as high as 10Tc. From these observations, the concept of
perturbatively interacting massless quarks and gluons as
constituents of the QGP, which scatter according to the leading
(Born) diagrams, had to be reconsidered.

A first development—aiming to treat nonperturbative ef-
fects in heavy-quark scattering–was given by Braaten et al.
[16,17] using a powerful resummation technique based on
reordering perturbation theory by expanding correlation func-
tions in terms of effective propagators and vertices instead
of bare ones [18]. In this approach, the singularities in the
cross-section calculation are regularized by the thermal masses
of quarks and gluons, which are, in turn, determined by the
one-loop leading-order result in thermal perturbation theory,
denoted as the hard-thermal-loop (HTL) approach. Later,
Gossiaux et al. extended this approach [5–11].

Following the latter direction and to consider all the effects
of the nonperturbative nature of the sQGP constituents, i.e.,
the large coupling, the multiple scattering etc., we refrain from
a fixed-order thermal-loop calculation relying on perturbative
self-energies (calculated in the limit of infinite temperature)
to fix the in-medium masses of the quarks and gluons and
pursue instead a more phenomenological approach. The
multiple strong interactions of quarks and gluons in the sQGP
are encoded in their effective propagators with broad spectral
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functions. The effective propagators, which can be interpreted
as resummed propagators in a hot QCD environment, have
been extracted from lattice data in the scope of the DQPM
[1,2,19].

We note that the majority of previous studies of
heavy-quark scattering have considered the QGP partons as
massless [12]. Only heavy quarks have been massive [13] in
the scattering processes qQ → qQ, gQ → gQ. Therefore,
divergence problems are encountered especially in the t
channel (cf. Secs. III and IV). Several attempts have been
advanced to remedy this problem, either by introducing an
infrared cutoff in the integration over the momentum transfer
squared t [13] or by generating a finite mass for the exchanged
gluon [6,16,17], as in the HTL approach. The value of
the introduced cutoff or of the gluon mass has been fixed
according to phenomenological considerations. Therefore,
the uncertainty in these scales is large, which also leads to
corresponding uncertainties in the cross sections.

B. Partons in the dynamical quasiparticle model

The DQPM describes QCD properties in terms of the
single-particle Green’s functions [in the sense of a two-
particle irreducible (2PI) approach] and leads to the notion
of the constituents of the sQGP being strongly interacting
massive effective quasiparticles with broad spectral functions
(owing to the interaction rates). The strategy for the determina-
tion of parton masses and widths within the DQPM approach is
to fit the analytical expression of the dynamical quasiparticle
entropy density sDQP to the lQCD entropy density “s lQCD”
determined numerically. Based on the studies of Peshier [3,4]
and Cassing [1,19], the first step of the DQPM in calculating
sDQP is well determined for the case of a scalar theory
with (retarded) scalar gluon and fermion propagators. The
dynamical quasiparticle entropy density sDQP is then fitted to
lQCD data, which makes it possible to fix the few parameters
present in sDQP, which is given by

sDQP = −
∑

i=g,q,q̄

∫
dω

2π

d3p

(2π )3

∂nB/F,F̄

∂T

× [� ln
(−�−1

i

)+ �	i ��i

]
, (2.1)

where nB , nF (nF̄ ) denote the Bose and Fermi distribution
functions for gluons and quarks (antiquarks), respectively,
while �i (	i) is the retarded propagator (self-energy) of the
particle i. The first part in Eq. (2.1) gives the quasiparticle
contribution to the entropy density, whereas the second part
∼�	i is the interaction contribution. With the restriction
to scalar degrees of freedom we explicitly discard the lon-
gitudinal gluon. This might be legitimate because at finite
temperature the contribution of the longitudinal gluon to the
general thermodynamic potential is subdominant compared
to the contribution from the transverse gluons. In the future,
however, the full Lorentz structure of the gluon propagator
will have to be considered.

The variation of parton masses as a function of the medium
properties is described by the spectral functions, which are
(except of a factor) identical to the imaginary part of the

retarded propagator. These are no longer δ functions in the
invariant mass squared (as in the case for bare masses) [2]
but (in the more general case) related to the imaginary part of
the trace of the effective propagator Dν

μ and to the partonic
self-energies �μ

ν as

A(p) ∝ �Dμ
μ(p) ∝ ��μ

μ(p)[
p2 − ��

μ
μ(p)

]2 + [��
μ
μ(p)

]2 , (2.2)

where �∑
and �∑ denote the real and imaginary parts of

the (4 × 4) self-energy. For the current analysis, we use the
approximation of momentum-independent real and imaginary
parts of the self-energy, which are—for a given temperature
T —proportional to the parton mass and width, respectively
(cf. [1]). The propagator � is expressed in the Lehmann repre-
sentation in terms of the spectral function �(p) = ∫

dω
2π

A(ω, p)
p0−ω

,
which allows finally the evaluation of the entropy functional
sDQP (2.1) for a given form of the spectral function.

An often-used ansatz to model a nonzero width is obtained
by replacing the free spectral function A0(p) = 2π [δ(ω −
p2)2 − δ(ω + p2)2] by a Lorentzian form. This Lorentzian
parametrization of the partonic spectral functions Ai(ωi),
where i is the parton species and ω2

i = m2
i + p2

i , is given by

AL
i (ωi) = γi

Ẽi

[
1

(ωi − Ẽi)2 + γ 2
i

− 1

(ωi + Ẽi)2 + γ 2
i

]

≡ 4ωiγi(
ω2

i − p2
i − M2

i

)2 + 4γ 2
i ω2

i

, (2.3)

with Ẽ2
i ( pi) = p2

i + M2
i − γ 2

i and i ∈ [g,q,q̄,Q,Q̄]. The
spectral functions AL

i (ωi) are antisymmetric in ωi and
normalized as∫ +∞

−∞

dωi

2π
ωi AL

i (ωi, p) =
∫ +∞

0

dωi

2π
2ωi AL

i (ωi, pi) = 1,

(2.4)

where Mi , γi are the dynamical quasiparticle mass (i.e., pole
mass) and width of the spectral function for particle i, respec-
tively. They are directly related to the real and imaginary parts
of the related self-energy, e.g., 	i = M2

i − 2iγiωi , [2]. In the
off-shell approach, ωi is an independent variable and related
to the “running mass” mi by: ω2

i = m2
i + p2

i . Therefore, one
has

∑
i

∫
d4pi

(2π )4
Ai(pi) =

∑
i

∫ +∞

0

dωi

2π

∫
d3pi

(2π )3
AL

i (ωi, pi).

(2.5)

The mass (for gluons and quarks) is assumed to be given
by the thermal mass in the asymptotic high-momentum
regime. By considering the effect on the entropy, which is
known from lattice calculations, the width of the partons,
which in the perturbative limit is given by γ ≈ g2 ln(g−1T ),
should be sizable at intermediate temperatures [2–4,16].
Hence, the functional forms of Mg , Mq , γg , and γq

are given by (γg and γq are given here for zero quark
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potential μq = 0)

M2
g (T ) = g2(T/Tc)

6

[(
Nc + 1

2
Nf

)
T 2 + Nc

2

∑
q

μ2
q

π2

]
,

M2
q (T ) = N2

c − 1

8Nc

g2(T/Tc)

(
T 2 + μ2

q

π2

)
,

(2.6)

γg(T ) = 1

3
Nc

g2(T/Tc)T

8π
ln

[
2c

g2(T/Tc)
+ 1

]
,

γq(T ) = 1

3

N2
c − 1

2Nc

g2(T/Tc)T

8π
ln

[
2c

g2(T/Tc)
+ 1

]
.

The physical processes contributing to the width γg are both
gg → gg, gq → gq scattering, as well as splitting and fusion
reactions gg → g, gg → ggg, ggg → gggg, or g → qq̄,
etc. On the fermion side elastic fermion-fermion scattering
ff → ff , where f stands for a quark q or antiquark q̄,
fermion-gluon scattering fg → fg, gluon bremsstrahlung
ff → ffg, or quark-antiquark fusion qq̄ → g, etc. Note,
however, that the explicit form of Eq. (2.6) is derived for hard
two-body scatterings only. It is worth pointing out that the
ratio of the masses to their widths γ /M ∼ g ln(2c/g2 + 1)
approaches zero only asymptotically for T → ∞ such that
the width of the quasiparticles is smaller but comparable to
the pole mass slightly above Tc up to all HIC energy scales.

The coupling constant g2(T/Tc) in Eq. (2.6) is considered
here as depending on the medium temperature and for T > Ts

is given by

g2(T/Tc) = 48π2

(11Nc − 2Nf ) ln
[
λ2
(

T
Tc

− Ts

Tc

)2]
T > T � = 1.19Tc,

g2(T/Tc) → g2(T �/Tc)

(
T �

T

)3.1

T < T � = 1.19Tc. (2.7)

We mention that the form of the running coupling specified in
Eq. (2.7) for low temperatures (T < 1.19Tc) is fully introduced
by hand to fit the equation of state of lattice QCD for
2 + 1 flavors from Refs. [20,21] also down to temperatures
of 120 MeV, where partonic degrees of freedom are no
longer expected to persist. For our actual studies we only
address temperatures above Tc. Once the three free parameters
in Eq. (2.7) are fixed, the resulting coupling constant may
tentatively be employed for a model study of heavy-quark
scattering.

The DQPM quark mass and width in Eq. (2.6) are fixed for
the u and d light quarks. For the other flavors (especially s and
c quarks), one adopts [2]

Ms(T ) = Mu,d (T ) + 0.045 GeV,

Mc(T ) = Mu,d (T ) + 1.3 GeV, (2.8)

γs(T ) = γu,d (T ) = γc(T ),

where the assumption γu,d (T ) = γc(T ) is not extracted from
lattice QCD and is expected to represent an upper limit for
the width of the c quark. Because γc  Mc the charm quark
should be considered as a “good quasiparticle.” The actual
value for the s quark has been fixed by the kaon-to-pion ratio
at top CERN Super Proton Synchrotron (SPS) energy using
PHSD calculations in comparison to experimental data [2].
The transverse momentum spectra are compatible with using
the same width for u,d,s quarks. This assumption then has
been used also for all heavy-ion studies from low SPS to LHC
energies in the PHSD transport model and lead to a good
description of the strange hadron multiplicities and spectra.

Using the expressions (2.3) and (2.6)–(2.8), the analytical
expression of the dynamical quasiparticle entropy density
sDQP—to be fitted to the lQCD entropy density “s lQCD”—is
given explicitly as [1,4]

sDQP = s(0),DQP + �sDQP, (2.9)

with

s(0),DQP = dg

1

T

∫
d3p

(2π )3

[−T ln(1 − e−ωmg /T ) + ωmg
nB

(
ωmg

/T
)]+ dq

1

T

∫
d3p

(2π )3

[
T ln(1 − e−ωmq /T ) + ωmq

nF

(
ωmq

/T
)]

+ dq̄

1

T

∫
d3p

(2π )3

[
T ln(1 − e−ωmq̄ /T ) + ωmq̄

nF̄

(
ωmq̄

/T
)]

, (2.10)

and

�sDQP = dg

∫
dω

(2π )

d3p

(2π )3

∂nB

∂T

⎡
⎣arctan

(
2γω

ω2
mg

− ω2

)
−

2γω
(
ω2

mg
− ω2

)
(
ω2 − ω2

mg

)2 + (2γω)2

⎤
⎦

+ dq

∫
dω

(2π )

d3p

(2π )3

∂nF

∂T

⎡
⎣arctan

(
2γω

ω2
mq

− ω2

)
−

2γω
(
ω2

mq
− ω2

)
(
ω2 − ω2

mq

)2 + (2γω)2

⎤
⎦

+ dq̄

∫
dω

(2π )

d3p

(2π )3

∂nF̄

∂T

⎡
⎣arctan

(
2γω

ω2
mq̄

− ω2

)
−

2γω
(
ω2

mq̄
− ω2

)
(
ω2 − ω2

mq̄

)2 + (2γω)2

⎤
⎦ , (2.11)
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FIG. 1. (Color online) The fit of the DQPM entropy density
sDQP [Eqs. (2.9)–(2.11)] to lattice data of Refs. [20,21] for the
entropy density s lQCD. Here eQP stays for the effective quasiparticle
contribution where sDQP = s(0),DQP and DQP for the total dynamical
quasiparticle entropy density, including the (subleading) contribution
from the finite width.

where di is the degeneracy factor of the particle and ω2
i =

m2
i + p2

i . The contribution s(0),DQP has the form of the entropy
for a massive quasiparticle while the (subleading) contribution
�sDQP is attributable to a nontrivial imaginary part of the
self-energy.

The fit of the DQPM entropy density sDQP (2.9)–(2.11) to
lattice data for the entropy density s lQCD is shown in Fig. 1
and suggests for Nc = Nf = 3 the following values of the
parameters contained in the expressions (2.6) and (2.7) [2]:

Tc = 158 MeV; Ts = 0.56 Tc; c = 14.4; λ = 2.42.

(2.12)

The parametrization of the light quark and gluon DQPM
widths given by Eq. (2.6) with the parameters (2.12) is obtained
by fitting the lattice data of Refs. [20,21]. This parametrization
has been used in the PHSD calculations in Ref. [22]. However,
one has to keep in mind that earlier fits to the lattice data
from Refs. [23–25] have led to different parametrizations of
the DQPM widths which had been used in Refs. [1,2].

The running coupling constant α = αs is presented in
Fig. 2 as a function of T/Tc. One sees that αs is much
larger than 1 near Tc and nonperturbative effects are most
pronounced at these temperatures. The DQPM provides a good
parametrization of the QCD running coupling as a function of
temperature in the nonperturbative regime for temperatures
at least up to 10Tc. Note that close to Tc the full coupling
calculated on the lattice increases with decreasing temperature
much faster than the pQCD regime.

The DQPM masses and widths for the light quarks and
gluon, given by Eq. (2.6), are presented in Fig. 3. Because
the width is found to be much smaller as the pole mass,
the excitations can well be considered as quasiparticles. This
could be expected from the general parametric behavior
γ ∼ g2 ln(g−1 + 1) when extrapolating to larger coupling “g”.

FIG. 2. (Color online) The running coupling constant αs =
g2/(4π ) (2.7) as a function of T/Tc in the lQCD for Nf = 0 (red
spheres) [23] and in the DQPM for Nf = 0 (black line) and Nf = 3
(dashed brown line).

For larger T , after a shallow minimum at T ≈ 1.2Tc, the
width γ increases very slowly with T even for very large
T it is to a good accuracy proportional to the temperature
(and also to the mass). This underlines the fact that in this
range of temperatures quasiparticle models can provide an
effective description. However, up to rather large temperatures
the coupling is large: Terms of higher order in g contribute
significantly in the resummed entropy. We note additionally
that a couple of correlators have been computed in the
last years within the DQPM to find further constraints in
comparison to lQCD, i.e., the shear and bulk viscosities, the
heat conductivity, and the electric conductivity [26], as well
as the electromagnetic correlator in comparison to lQCD. All
studies indicate that the effective model assumptions inherent
in the DQPM (with only three parameters) appear to match
rather well a variety of QCD properties from lQCD.

0 1 2 3 4 5 60.0

0.5

1.0

1.5

2.0

T Tc

M
�
Γ
D
Q
PM
�G
eV
� Γq

Γg
Mq

Mg

FIG. 3. (Color online) The DQPM pole masses and widths for
the light quarks (Mq , γq ) and gluons (Mg , γg) given by Eq. (2.6).
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FIG. 4. (Color online) The Lorentzian spectral functions for
charm quarks using the parameters (2.8) for T/Tc = 1.2,1.5,3 [ω
and p = ‖ p‖ are in units of T and AL

c (ω,p) in units of T −2]. Shown
here is the full phase space although the present approach can make
statements only for momenta of the order of a few times T .

Using the pole masses and widths (2.6) and the running
coupling (2.7) with the parameters (2.8), the Lorentzian
spectral function for the different QGP species is completely
determined. Figure 4 gives a three-dimensional (3D) visual-
ization of the heavy-quark Lorentzian spectral function as a
function of ω/T and p/T for three different temperatures
(1.2Tc, 1.5Tc, and 3Tc). When increasing the temperature, the
peaks of the spectral functions are approaching the ω = ‖ p‖
region. Owing to the high mass of the charm quark the different
spectral functions are almost entirely in the timelike region for

the temperatures shown in Fig. 4, which again points out the
quasiparticle nature of the charm quark.

From Fig. 4 we see that the Lorentzian-ω spectral function
peaks at small values of p/T at the pole mass of the
charm quark “Mc(T )” [Mc(1.2Tc) = 1.8 GeV, Mc(1.5Tc) =
1.75 GeV, Mc(3Tc) = 1.9 GeV]. Therefore, a nonrelativistic
(NR) approximation, where ω =

√
m2 + p2 ≈ m for m � p,

is a good approximation. Thus, we can define a Breit-Wigner-
m spectral function as a NR approximation to the Lorentzian-ω
form (neglecting ‖ p‖ compared to m, m � ‖ p‖), where the
running parameter is the mass m and not the energy ω anymore.
The Breit-Wigner-m spectral function ABW

i (mi) is defined by

ABW
i (mi) = 2

π

m2
i γ

�
i(

m2
i − M2

i

)2 + (miγ
�
i )2

, with

(2.13)∫ ∞

0
dmi Ai(mi,T ) = 1,

where Mi and γ �
i are again the dynamical quasiparticle

mass (i.e., pole mass) and width, respectively, where γ �
i =

2
√

M2
i +p2

i

Mi
γi ≈ 2γi for pi  Mi . Thus, the three DQPM

parameters (Ts,λ,c) defined for AL(ω) do not need to be
readjusted and can be used for the ABW(m) Breit-Wigner-m
spectral function, too. In Eq. (2.13), m ≡ mi is the independent
variable and related to ω by ω2 = m2 + p2. The integration
over m changes, however, and Eq. (2.5) becomes

∑
i

∫
d4pi

(2π )4
Ai(pi)

=
∑

i

∫
midmi

2π

√
m2

i + p2
i

∫
d3pi

(2π )3
ABW

i (mi, pi). (2.14)

The condition m2 = ω2 − p2 > 0 used in Eq. (2.14) is valid
only for the timelike part of the Lorentzian spectral function
AL(ω). In fact, the Lorentzian spectral function AL(ω), in
principle, contains timelike (t) and spacelike (s) information.
Generally, one can have (t) + (s) or (s) + (s) interactions
going to final (t) + (s) or (s) + (s) states. Purely spacelike
processes should contribute to the potential energy of the
degrees of freedom and not for real scatterings of (t) + (t) →
(t) + (t). Because we propagate only timelike particles, we
can deal with the spectral function ABW(m) because a small
spacelike part of AL(ω) should contribute to the evaluation of
the potential energy (which we discard). Finally, let us point
out that by using the Breit-Wigner spectral function ABW(m),
we deal only with the scatterings of initial timelike particles
to final timelike particles, i.e., (t) + (t) → (t) + (t).

Now, having fixed the parton masses and widths as well as
the effective coupling g2(T/Tc) by fitting the lQCD results, we
can evaluate the qQ and gQ cross sections for finite partons
masses at different invariant energy

√
s and temperature T

without encountering divergence problems.

C. Cross sections for off-shell partons

In our calculation of the qQ and gQ elastic cross sections
for dynamical quasiparticles with a finite width in the spectral
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function, we also consider the scattering of on-shell massive
quasiparticles as well as massless particles for comparison.
Depending on what we consider as pQCD or DQPM particles
(in and out particles), we have the following situations when
studying the process (1)m

(1) + (2)m
(2) → (3)m

(3) + (4)m
(4)

and

deduce the corresponding quasielastic infrared enhanced hard
thermal loop (IEHTL) cross section σ IEHTL by convolution
of the modified pQCD cross section σ , where complex
propagators are considered in the transition matrix elements,
with the spectral functions, i.e.,

(i) σ IEHTL(s,m(1),m(2)) =
∫

dm(3) dm(4) σ (s,m(1),m(2),m(3),m(4)) A(3)(m
(3)) A(4)(m

(4)),

(ii) σ IEHTL(s,m(3),m(4)) =
∫

dm(1) dm(2) σ (s,m(1),m(2),m(3),m(4)) A(1)(m
(1)) A(2)(m

(2)), (2.15)

(iii) σ IEHTL(s) =
∫

dm(1) dm(2) dm(3) dm(4) σ (s,m(1),m(2),m(3),m(4))A(1)(m
(1)) A(2)(m

(2)) A(3)(m
(3)) A(4)(m

(4)),

where in the case (i) the initial particles are considered as on-
shell particles while the final particles are off-shell particles.
In the case (ii) we consider the inverse situation of (i) i.e.,
σ IEHTL(s,m(1),m(2)) ≡ σ IEHTL(s,m(3),m(4)). The third case (iii)
considers all interacting particles (initial and final) as DQPM
(off-shell) particles. We then convolute the elementary subpro-
cess cross sections (describing heavy-quark–light-quark and
gluon interactions) with the spectral functions that characterize
the properties of the plasma, the particle virtualities, and their
evolution in the finite temperature medium.

For this purpose, we derive the off-shell cross sections for
qQ, gQ scattering in the sQGP using the DQPM parametriza-
tions for the quark (gluon) self-energies, spectral functions,
and interaction strength. We note that approaches similar in
spirit have not yet been performed in the past for the study of
heavy-quark scattering in the partonic medium.

In the context of the hot QGP, the perturbative diagrams
for the qQ (or gQ) scattering at order O(αs) are illustrated in
Fig. 5 (and Fig. 15). Let us briefly summarize the differences
of our approach from the standard pQCD as follows:

(i) The full off-shell kinematics—which is different from
the on-shell one—is taken into account in particular
virtualities (masses and widths) of the partons.

(ii) Internal and external lines of light and heavy quarks
as well as gluons are dressed with nonperturbative

FIG. 5. (Color online) Feynman diagram for the elastic qQ →
qQ process. Latin (Greek) subscripts denote color (spin) indices. ki

and pi (kf and pf ) denote the initial (final) 4-momentum of the light
quark and heavy quark, respectively.

spectral functions: The cross sections derived for arbi-
trary masses of all external parton lines are integrated
over these virtualities weighted with spectral functions
(in line with Refs. [27–29] for the study of off-shell
dilepton production).

(iii) qgq and QgQ vertices are modified compared to
pQCD vertices by replacing the perturbative coupling
(either taken as constant or running with respect to the
momentum transfer) with the full running coupling
that depends on the medium temperature g2(T/Tc)
according to the DQPM parametrization of lattice data
(see discussion above). Concerning the three-gluon
vertex ggg, the reader is referred to Sec. IV for more
details.

III. q Q → q Q SCATTERING

The processes qQ → qQ, gQ → gQ, i.e., the scattering
of a heavy quark (Q) on light quarks (q) and gluons (g), of the
medium are essential for the study of heavy-quark propagation
and thermalization in the QGP. The processes qQ → qQ,
gQ → gQ describe as well the eventual knockout of a heavy
sea quark of one of the incoming hadrons by a hard collision
with a quark (q) or a gluon (g) from the other. In this case, these
processes (called flavor-excitation processes; see Combridge
[13]) contribute to the production of heavy flavor states (in
addition to the usual heavy flavor creation processes qq̄ →
QQ̄ and gg → QQ̄). These processes might not be negligible
compared to the flavor-creation processes by the fusion of
quarks or gluons (qq̄ → QQ̄, gg → QQ̄) [13]. In this study,
however, we do not consider production channels and focus
on the heavy-quark scattering.

The matrix elements for the qQ → qQ, gQ → gQ chan-
nels have been calculated for the case of massless partons
in Refs. [12,13]. These pQCD cross sections have to be
supplemented by two parameters to allow for a quantitative
evaluation: the value of the coupling constant α = αs and the
infrared regulator (IR) which renders the cross section infrared
finite. In our study we present values for these two parameters
which are based on theoretical considerations. Moreover, we
take into account the quasiparticle nature of the incoming and
outgoing particles by incorporating spectral functions. In this
way we are able to test to what extent the quasiparticle nature
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of quarks and gluons will influence the heavy-quark scattering,
either attributable to large phase-space corrections, attributable
to the width of the spectral function, or attributable to a
different dependence of the strong coupling on the temperature
of the medium.

The elastic scattering of a heavy quark with a light quark
qQ → qQ is described by the t-channel Feynman diagram
given in Fig. 5.

The process qQ → qQ is calculated here to lowest order
in the perturbation expansion using the Feynman rules for
massless quarks in Politzer’s review [30]. The color sums
are evaluated using the techniques discussed in Ref. [30]; the
spin sums are discussed below. The “Feynman gauge” is used
throughout this section for the case of massless gluons; the case
of massive gluons is addressed later. The t-channel invariant
amplitude Mt is given by

Mt ≡ Mt

(
qi

αQk
β → qj

αQl
β

)
= g2

t

(
T a

ij T
a
kl

)
ūj

α(kf )γ νgμνu
i
α(ki) ūl

β(pf )γ μuk
β(pi),

(3.1)

where the color matrices T a
ij ≡ 1

2λa
ij are given in Ref. [30],

while the Latin (Greek) subscripts denote color (spin) indices
assigned as in Fig. 5. The λ matrices are the Gell-Mann SU(3)
matrices.

We work in the center-of-mass (c.m.) of the q-Q system and
choose the (Oz) axis to be along the Q axis. The Mandelstam
variables are defined as

s = (pi + ki)
2 = (pf + kf )2;

u = (pi − kf )2 = (pf − ki)
2; (3.2)

t = (ki − kf )2 = (pi − pf )2.

We start with the formula for the unpolarized cross section,

dσ = 2π
∑ |M̄i→f |2√

(piki)2 − (
mi

qM
i
Q

)2

d3pf

(2π )3

d3kf

(2π )3

× δ4(pi + ki − pf − kf ), (3.3)

where pi and ki are the incoming light- and heavy-quark 4-
momenta with masses mi

q and Mi
Q, respectively; pf , kf are

the 4-momenta of the outgoing particles. The differential cross
sections dσ/dt and dσ/d� then read

dσ

dt
= 1

64πs

1

| pi,c.m.|2
∑

|M|2 (3.4)

and
dσ

d�
= dσ

dt
× dt

d�
= 1

64π2s

∑
|M|2, (3.5)

where pi,c.m. is the initial momentum of the quarks in the
c.m. reference frame. The total cross section—obtained by
integrating Eq. (3.4) over t or by integrating Eq. (3.5) over
�—is given by

σqQ =
∫ tmax

tmin

1

64πs

1

| pi,c.m.|2
∑

|M|2 dt,

(3.6)

σqQ =
∫

1

64π2s

∑
|M|2 d�.

Before computing our new results for off-shell massive degrees
of freedom we briefly recall the known cases for comparison
(and completeness).

A. Massless light quark and massive heavy quark of zero widths

In this section, we recall the cross section and kinematics
of the qQ mechanism in the standard pQCD. For massless
light quarks and a massive heavy quark the square of the
matrix element (3.1) gives—after summing (averaging) over
final (initial) colors and spins—the well-known expression
[13]

〈∣∣M(
qi

αQk
β → qj

αQl
β

)∣∣2〉
= 1

9

∑
color

1

4

∑
spin

|Mt |2

= 4g4

9

(
M2

Q − u
)2 + (

s − M2
Q

)2 + 2M2
Qt

t2
. (3.7)

The Mandelstam variables in this case (mq = 0, MQ �= 0) are
given in the c.m. reference frame by

s = M2
Q + 2

[
p

√(
M2

Q + p2
)+ p2

]
;

t = −2p2 (1 − cos θ ) ;
(3.8)

u = M2
Q − 2

[
p

√
M2

Q + p2 + p2 cos θ
]
,

s + t + u = 2M2
Q.

For this case, one has | pi,c.m.|2 = (s − M2
Q)2/4s, tmin =

−(s − M2
Q)2/s, and tmax = 0. Again, the total cross section

σqQ—obtained by integration of dσ/dt (3.4) over t—diverges
because of the pole at tmax = 0 in the expression (3.6), which
corresponds to ultrasoft qQ interactions in the graphs of Fig. 5.
To render the cross section finite we introduce an infrared
regulator tmax = −Q2

0 in the upper limit of integration in
Eq. (3.6) following Refs. [13,31]. For the case of a heavy quark
and especially for q(g)Q → q(g)Q processes, we assumed Q2

0
to be the value of Q2 for which the heavy-quark sea starts to
be generated from zero, i.e., to be proportional to M2

Q. To
reproduce the Combridge results [13] for the case (mq = 0,
MQ �= 0), we adopted Q2

0 = 1.8( MQ

1.87 )2 � 0.51M2
Q [13]. We

note in passing that only in this limiting case do we have to
introduce the regulator Q0, whereas within the other limits
addressed in this section there is no longer a need for such an
explicit regulator.

The kinematical limits for the process qQ → qQ are
s = Q2. Note that in pQCD, both collinear and intrinsic kT

approaches, the partons are bound by the on-shell condition
p2 = E2 − p2 = 0. In Sec. III C, we depart from the on-
shellness and also consider light and heavy quarks and
gluons as dynamical quasiparticles that can assume arbitrary
virtualities as distributed according to the DQPM spectral
functions.
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Performing the integration (3.6) with tmax = −Q2
0, we

finally obtain

σqQ(s) = 4πα2

9(s − M2)2

{(
1 + 2s

Q2
0

)[
(s − M2)2

s
− Q2

0

]

× 2s ln
(s − M2)2

Q2
0s

}
. (3.9)

One should note that the cut in the integration has the effect of
enhancing the threshold from s � M2

Q to s � M2
Q + 1

2Q2
0 +√

M2
QQ2

0 + 1
4Q4

0. Again, to compare to the Combridge results
[13] for the case (mq = 0, MQ �= 0) we consider the case of a
fixed and of a running coupling αs(Q2), taken as

αs(Q
2) = 12π

27 ln(Q2/�2)
, (3.10)

which is the asymptotic form appropriate for three colors and
three flavors. Note that in Ref. [13] the computations have
been carried out for Nf = 4, which only modifies αs(Q

2)
marginally. The parameter � is taken as � = 300 MeV as in
Ref. [13]. To study the influence of the infrared cut off Q2

0 we
present our calculations for two different choices: Q2

0 = M2
Q

or Q2
0 = 0.51M2

Q. Because the effective mass of the heavy
quark and the choice of the cutoff Q2

0 are uncertain in this
regularization scheme, this introduces also some uncertainty
in the calculation of σqQ(s). We see later that it is possible
to regularize σqQ(s) also by introducing a finite mass of the
exchanged gluon in the t channel (cf. Fig. 5). In principle, such
an effective gluon mass has to be considered as an alternative
“free” parameter; however, this mass may be fixed in some
dynamical approximation scheme (as, e.g., in the DQPM).

B. Massive light and heavy quarks of zero widths

Introducing also a mass for the light quark, mi
q , for the initial

q and m
f
q for the final q and allowing for different masses of

the heavy quark, Mi
Q, for the initial Q and M

f
Q for the final

Q, the squared amplitude—averaged over the initial spin and
color degrees of freedom and summed over the final-state spin
and color—gives∑

|M|2 = 2g4

9t2
tr
[
γ μ
(
/pi

+ Mi
Q

)
γ ν
(
/pf

+ M
f
Q

)]
× tr

[
γμ

(
/ki + mi

q

)
γν

(
/pf

+ mf
q

)]
= 2g4

9t2

[
4

(
p

μ
f pν

i + p
μ
i pν

f + gμν t

2

)]

×
[

4

(
kf,μki,ν + ki,μkf,ν + gμν

t

2

)]
. (3.11)

Because we study here the elastic pQCD qQ → qQ cross
section, one has mi

q ≡ m
f
q = mq and Mi

Q ≡ M
f
Q = MQ. In

this case, Eq. (3.11) becomes:∑
|M|2 = 4g4

9t2

[(
s − M2

Q − m2
q

)2 + (
u − M2

Q − m2
q

)2

+ 2
(
M2

Q + m2
q

)
t

]
. (3.12)

FIG. 6. (Color online) The cross section σ
pQCD
qQ for the process

qQ → qQ with constant coupling (α = αs = 0.3) for light quark
masses mq = 0 (red) and mq = 0.6 GeV (blue) and different
regularization cutoffs Q2

0 = M2
Q (solid lines) and Q2

0 = 0.51M2
Q

(dashed lines). MQ = 1.25 GeV.

For the cases mi
q = m

f
q �= 0 and Mi

Q = M
f
Q �= 0, s, u, and t

are defined as

s = M2
Q + m2

q + 2
[√(

m2
q + p2

)(
M2

Q + p
)2 + p2],

t = −2p2(1 − cos θ ),

u = M2
Q + m2

q

− 2
[√(

m2
q + p2

)(
M2

Q + p
)2 + p2 cos θ

]
,

u+ s + t = 2M2
Q + 2m2

q, (3.13)

with | pi,c.m.|2 = (m4
q − 2M2

Qm2
q − 2s m2

q + M4
Q + s2 −

2M2
Qs)/4s, tmin = −4p2 = −(m4

q − 2M2
Qm2

q − 2s m2
q +

M4
Q + s2 − 2M2

Qs)/s, and tmax = 0. The divergence of
σqQ(s) is regularized again following the discussion in
Sec. III A.

Figure 6 displays the pQCD elastic scattering cross sections
for the process qQ → qQ (σ pQCD

qQ ) for a constant coupling
(αs = 0.3) and different light and heavy quarks masses. For the
heavy quark we have adopted Mc = 1.25 GeV (as in the PDG
[32]), whereas for the light quark we have used mq = 0 and
mq = 0.6 GeV. The solid line shows the result for the infrared
cutoff Q2

0 = M2
Q and the dashed line the cross section for the

lower cutoff Q2
0 = 0.51M2

Q. We find that the cross sections
for the different choices of the infrared regulator differ by at
least a factor of two, which demonstrates the importance of
this rather unknown quantity for the perturbative cross section.
We also see that at larger c.m. energies

√
s the influence of

the different light quark masses becomes negligible and the
results merge while close to threshold the cross sections differ
as discussed above.

In Fig. 7, furthermore, we study the influence of the running
coupling (3.10) (with Q2 = −t) on the cross section σ

pQCD
qQ as a

function of the energy in the c.m.s.
√

s. Compared to the case
of a constant coupling we observe an increase of the cross
section owing to the different infrared cutoff. Accordingly,
the elastic cross section essentially depends on the infrared
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FIG. 7. (Color online) The cross section σ pQCD for the process
qQ → qQ with running coupling (3.10) for different light quarks
masses and choices of Q2

0. The color coding is the same as in Fig. 6.

regulator and to a minor extent on the light quark mass (except
for threshold energies).

We note that the present considerations hold for T = 0,
which is more an academic limit. In this case we have to
introduce an infrared regulator (IR) μ2 (chosen as M2

Q or
0.51M2

Q) to avoid Coulomb singularities in the t channel. In a
thermal environment (at finite temperature T ) the IR regulator
μ2 can be taken as being proportional to the “thermal gluon
mass” [33], which implies a screening of the interaction for
impact parameters larger than the Debye length l ∼ m−1

D . In
fact, the divergence in the gluon propagator may be interpreted
(in the vacuum) as a nonzero probability for the heavy-quark

scattering with light quarks located at spatial infinity. The
effective Debye mass has been calculated in thermal quantum
field theory by Klimov [34] and Weldon [33] and is given by
m2

D = (1 + nf

6 gsT ), where nf is the number of flavors. The
coefficient of proportionality between the infrared regulator
and the thermal gluon mass is not well determined by first
principles and one finds several proposals in the literature: In
Refs. [35–38] μ2 is taken between g2

s T
2 and g2

s T
2/3, with

g2
s = 4παs , because μ2 = m2

D/3 = Nc

9 (1 + nf

6 gsT ) ≈ (gsT )2

3 ,
where nf (Nc) is the number of flavors (colors).

We continue with finite temperature regularization schemes
and present two approaches in which we can relate these
regulators to physical observables. The first approach is based
on the work of Peigne and Peshier [39] and Gossiaux and
Aichelin [6–11] and the second approach uses the DQPM
coupling constant and pole masses for the gluon and light and
heavy quarks in the Feynman diagram (Fig. 5). We refer to
the first as HTL-GA approach and to the second as dressed
pQCD (DpQCD). For completeness and transparency, we
briefly recall the essential ingredients:

(I) The Gossiaux-Aichelin approach (HTL-GA) is based
on HTL-type calculations and uses the following:

(i) A running nonperturbative effective coupling
αeff(Q2) which remains finite if the Mandelstam
variable t approaches 0 for the timelike sector and
by truncating the 1-loop renormalized coupling
in the spacelike sector to satisfy the so-called
“universality constraint” [7],

αs → αeff(Q
2) = 4π

β0

⎧⎨
⎩

1
2 − π−1 arctan(L+/π ) for Q2 > 0,

αsat for −|Q2|sat < Q2 < 0,

L−1
− for Q2 < −|Q2|sat,

(3.14)

with β0 = 11 − 2
3Nf , Nf = 3, αsat = 1.12,

|Q2|sat = 0.14 GeV2 and L± = ln(±Q2/�2). In
the timelike sector, the explicit form of the effec-
tive running coupling (3.14) is determined from
electron-positron annihilation and the hadronic
decay of τ leptons [40] and satisfies the so-called
“universality constraint” [41]. It remains finite at
Q2 = 0. In the spacelike sector, it is defined by
truncating the 1-loop renormalized coupling at
small Q2 to reproduce the “freeze” observed, e.g.,
by Ref. [42]. It contains implicitly an all-order
resummation of perturbation theory.

(ii) At low momentum the free gluon propagator has to
be replaced by a HTL propagator, whereas at high
momenta a free gluon propagator is appropriate.
As Braaten and Thoma [16,17] (BT) have shown
in QED (as well as in weak-coupling QCD) the
total cross section is independent of the scale t�

of the transition between the two regimes. This is,
however, not the case outside of the weak coupling

regime [43]. Gossiaux and Aichelin have extended
these calculations to “strongly coupled” QCD by
introducing a semihard “global effective propaga-
tor” (Q2 − λm2

D,eff)
−1, with m2

D,eff(T ,Q2) = (1 +
Nf

6 )4παeff(Q2)T 2 ≈ (gsT )2, with g2
s = 4παs in

the |Q2| > |t�| sector to guarantee a maxi-
mal independence of the quark energy loss
dE/dx with respect to the unphysical t�

scale.
(iii) In practice, however, one uses an effective gluon

propagator with a “global” μ2 = κm̃2
D , where

m̃2
D(T ) = Nc

3 (1 + Nf

6 )4παs[−m̃D(T 2)] T 2 for all
momentum transfer in qQ → qQ and gQ → gQ
scattering. The parameter κ is determined by
requiring that the energy loss dE/dx obtained
with this global effective propagator reproduces
the numerical value found with the extended
HTL calculation described in (ii). The details
of this procedure are found in the Appendixes
of Refs. [6,8,9] and the details of the OGE
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models labeled “model E” in the text of the same
reference. We remind the reader that model E
was obtained by fixing (for simplicity) λ = 0.11
for all values of heavy-quark momenta pQ and
deducing an effective gluon squared mass of κm̃2

D

with κ ≈ 0.2. The Debye mass m̃D is determined
self-consistently according to

m̃2
D(T ) = Nc

3

(
1 + Nf

6

)
4παs[−m̃D(T 2)]T 2.

(3.15)

The choices for αeff and μ, motivated by HTL-type
calculations, are compatible with lattice data by
Kaczmarek and Zantow [44], where they have
studied the potential energy and coupling constant
on the lattice in two-flavor QCD by investigating
the free energy between two heavy quarks.

We recall that using these ingredients the
authors of Refs. [6,8,9] were able to reproduce
the centrality dependence of the experimental ratio
RAA in Au + Au collisions at RHIC of heavy
mesons up to a factor of 2–3, as well as the
experimental value of the elliptic flow v2 of heavy
mesons with collisional energy loss only. The
remaining factor of two might be attributed to the
radiative energy loss of heavy quarks in the QGP
medium.

In the following we use the HTL-GA approach
with μ2 = κm̃2

D and κ ≈ 0.2. For comparison,
we also show the cross sections using a fixed
coupling constant (αs = 0.3) and the Debye mass
(mD ≈ ζgsT ) with ζ = 1 or ζ = 0.5 as infrared
regulators. To emphasize the influence of the
running coupling we present also some results for
“model C” of Refs. [6,8,9] in which the coupling
is taken as αs(2πT ) and μ2 = 0.15m2

D .
(II) For the DpQCD approach the qQ → qQ cross section

is determined by

(i) the running coupling constant αs(T ) (2.7);
(ii) the DQPM pole masses for the incoming and

outgoing quarks and gluons; the DQPM pole mass
serves also as an infrared regulator in the gluon
propagator.

For our numerical calculations we consider the scattering
of a (high-momentum) heavy quark with a light quark in
a QGP at temperature T = 0.4 GeV with invariant energy√

s = √
40 GeV. The differential cross sections dσ/dt and

dσ/dcosθ ) for the two approaches with different parametriza-
tions are displayed in Figs. 8(a) and 8(b). It is evident that
both, a running coupling and a lower IR regulator in the
HTL-GA, increase the cross section at small t or forward
angles, whereas the increase at high t is rather moderate but
also the differential cross section is very low. This increase,
nevertheless, will be visible in the case of gQ reactions owing
to the u channel (cf. Sec. IV B). The DpQCD gives a flatter
t (a) and angular distribution (b) as the HTL-GA model for
the lower regularization scale (ζ = 0.5). Note that for α = 0.3
and the infrared regulator ζ = 1 both approaches give a similar

FIG. 8. (Color online) Differential elastic cross sections dσ/dt

(a) and dσ/dcosθ (b) for cq → cq scattering employing different
choices for the strong coupling and the infrared regulator for a QGP
of T = 0.4 GeV and invariant energy squared s = 40 GeV2 (see
legend). mq and MQ are given in GeV.

angular distribution, but differ in magnitude by about a factor
of three in this case.

The total elastic cross section of a c quark, which traverses
a plasma at temperatures T = 2Tc and T = 3Tc, calculated
using the expression (3.6), is shown in Fig. 9(a) as a function
of

√
s. Apart from energies close to the threshold the cross

sections show a rather smooth dependence on the invariant
energy

√
s, however, differ substantially in magnitude. The

HTL-GA with a running coupling yields a much larger
cross sections than the DpQCD model, whereas for constant
coupling (αs = 0.3) lower cross sections are obtained owing to
a sizeably larger infrared regulator. All cross sections decrease
for the higher temperature of 3Tc (dashed lines) in comparison
to the 2Tc case (solid lines). Because the values of the infrared
regulators increase with increasing temperature, the cross
sections decrease with T for both the HTL-GA (in all variants)
and the DpQCD approach, as shown in Fig. 9(b). Here we show
explicitly the temperature dependence of the cross sections for√

s = 4 GeV and
√

s = 7 GeV. In the HTL-GA versions the
running coupling increases the cross sections by a temperature
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FIG. 9. (Color online) Comparison of σ qQ calculated within the HTL-GA and DpQCD approaches for different settings (see legend). mq

and MQ are given in GeV. (a) As a function of
√

s for different temperatures [T = 2Tc (solid lines), T = 3Tc (dashed lines)]. (b) As a function
of the scaled temperature T/Tc, with Tc = 0.158 GeV, for different energies in the c.m. [

√
s = 4 GeV (solid lines) and 7 GeV (dashed lines)].

independent factor with respect to the fixed αs = 0.3. Whereas
at high temperatures the results of the two models differ by
roughly a constant factor, at low temperatures (close to Tc) the
different parametrizations of the couplings yield a dramatically
different T dependence of the cross section which can be
traced back to the infrared enhanced coupling in DpQCD.
This is also reflected in the dependence of the gluon effective
mass on temperature, as shown in Fig. 10. Here the effective
gluon mass for both approaches is roughly proportional to
T for temperatures above 0.2 GeV, however, with different
proportionality constants. Note that the HTL-GA case with
αs = 0.3 and ζ = 1 gives the largest masses for T > 0.5 GeV
and thus the largest infrared regulator, which in turn implies
the lowest cross section.

C. Massive light and heavy quarks of finite widths

So far we have worked with light and heavy quarks of
fixed mass and the question arises if the spectral width of the
degrees of freedom—owing to finite scattering rates—might
have a sizable influence on the cross sections. In this respect
we now calculate the qQ elastic scattering by taking into
account not only the finite masses of the partons, but also
their spectral functions, i.e., their finite widths. For this
purpose, we convolute the on-shell pQCD cross sections
obtained before with the distribution of the quarks and gluons
with different momenta and virtualities given by the DQPM

spectral functions A(m). Here, in principle, should appear a
two-particle correlator, but because we work in a 2PI motivated
scheme the partons in the sQGP can be characterized by
(dressed) single-particle propagators.

In leading order the dressed propagators and the strong
coupling lead to substantial phase-space corrections. Further-
more, the relative contribution of the off-shell partons to the
pQCD cross section is expected to change owing to different
kinematical thresholds. Therefore, we first consider the gen-
eral off-shell kinematics, when the participating quarks are
massive, with the masses distributed according to the DQPM
spectral functions. Denoting the masses of the incoming light
and heavy quarks as mi

q and Mi
Q, the kinematical limits of the

exchanged momentum change compared to the massless or
massive on-shell case. The flux also changes to

J = 1
2

√[
s − (

mi
q

)2 − (
Mi

Q

)2]− 4
(
mi

q

)2(
Mi

Q

)2
, (3.16)

compared to J = s/2 in the massless on-shell approxima-
tion. In addition to the kinematics, the matrix element—
corresponding to the diagram in Fig. 5—is modified in the
general off-shell case compared to the matrix element for qQ
scattering of massless or massive on-shell quarks. Because the
final light- and heavy-quark masses can be different from the
initial ones, the qQ elastic scattering process is considered
as “quasielastic.” The off-shell kinematical limits for the
momentum transfer squared t are

tmax
min = − s

2
(C1 ± C2), where

C1 = 1 − (β1 + β2 + β3 + β4) + (β1 − β2)(β3 − β4),

C2 =
√

(1 − β1 − β2)2 − 4β1β2

√
(1 − β3 − β4)2 − 4β3β4, with (3.17)

β1 = (
mi

q

)2/
s, β2 = (

Mi
Q

)2/
s, β3 = (

mf
q

)2/
s,

β4 = (
M

f
Q

)2/
s.

Additionally, we note that there is a threshold in the invariant energy
√

s for the qQ interaction:

s � max
{(

mi
q + Mi

Q

)2
,
(
mf

q + M
f
Q

)}
. (3.18)
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FIG. 10. (Color online) The gluon mass as a function of the
medium scaled temperature T/Tc, with Tc = 0.158 GeV, according to
the DQPM (2.6) (blue) and the HTL-GA approaches (3.15) (orange)
for different settings of the coupling and infrared regulators (see
legend). mgluon(T ) is given in GeV.

The off-shell cross section for the elastic qQ interaction
has not been calculated before. Therefore, we provide here
a short description of its evaluation. The light and heavy
quarks are now described by the DQPM spectral functions
with finite mass and width at fixed temperature T . The
corresponding cross section for the process qQ → qQ, σ IEHTL

is deduced from σ pQCD according to the relations given in
Sec. II. Considering off-shell initial and/or final particles
the kinematics of the reaction qQ → qQ, σ IEHTL changes
compared to the on-shell case. The new expressions of the
Mandelstam variables are given in Eq. (A1).

For the integration of the expression (iii) of Eq. (2.15), one
has to pay attention to the fact that the integration limits for
the variables mi

q , m
f
q , Mi

Q, and M
f
Q are given according to

Eq. (3.18) by

mi
q ∈ [0,

√
s]; Mi

Q ∈ [
0,

√
s − mi

q

]
,

(3.19)
mf

q ∈ [0,
√

s]; M
f
Q ∈ [

0,
√

s − mf
q

]
.

Using the expression (3.4) for dσ/dt and integrating over
t we can determine the corresponding total cross section.
We recall again that for the pQCD cross section we have
considered Mi

Q = M
f
Q and mi

q = m
f
q . For σ IEHTL

qQ , however,

we have to consider the case where mi
q �= m

f
q and Mi

Q �= M
f
Q

for qQ scattering. We use the DQPM spectral functions for
the gluons and light and heavy quarks, and we consider
the DQPM propagators (i.e., t∗± = t − m2

g ± 2iγgq0, where
mg , γg are, respectively, the effective gluon mass and total
width at temperature T and q0 = p0

f − p0
i = k0

f − k0
i ). Thus,

the divergence in the gluon propagator in the t channel is
regularized. We note that the approximative HTL propagator
[6,16,17] can be regained from the DQPM propagator in the
case mi

q = m
f
q and Mi

Q = M
f
Q and a zero width γg of the

thermal gluon.

The energy averaged differential and total elastic cross
section, which constitutes a first step towards the computa-
tion of transport coefficients, is obtained by integrating the
differential (total) elastic cross sections dσ/dt(T ,s) [σ (T ,s)]
over s taking into account all possible kinematic reactions for a
given thermodynamical medium in equilibrium for fixed T . We
give the expression for the energy-averaged total elastic cross
section. The energy-averaged expression for the differential
cross section is obtained straightforwardly by integration of
σ (T ,s) over s, which is done differently for the case of on-shell
and off-shell partons. For the case of on-shell partons we use
[26,45,46]

σ̄ on
qQ

(
mi

q,M
i
Q,mf

q ,M
f
Q,T

)
=
∫ ∞

Th
ds σ on

qQ

(
mi

q,M
i
Q,mf

q ,M
f
Q,T ,s

) Lon
(
mi

q,M
i
Q,T ,s

)
,

(3.20)

with the threshold Th = max{(mi
q + Mi

Q)2,(mf
q + M

f
Q)2}

[which depends on (T )] and L denoting the probability for
a qQ pair with the invariant energy

√
s in the medium at finite

temperature

Lon
(
mi

q,M
i
Q,T ,s

)
= C ′on

∫
d3p1d

3p2 f (E1)f (E2)δ
(√

s − Ec.m.
1 − Ec.m.

2

)
× δ3( p1 + p2)

= Con Ec.m.
1

(√
s − Ec.m.

1

)
√

s
pc.m.f

(√
s − Ec.m.

1

)
f
(
Ec.m.

1

)
,

(3.21)

with the c.m. momentum

pc.m.
(
mi

q,M
i
Q,s

) =
√[

s−(mi
q+Mi

Q

)2][
s − (

mi
q − Mi

Q

)2]
2
√

s
,

(3.22)

and

Ec.m.
1

(
mi

q,M
i
Q,s

) =
[
s − (

mi
q

)2 + (
Mi

Q

)2]
2
√

s
, (3.23)

while Con is a normalization factor fixed by

[
Con

(
mi

q,M
i
Q,T

)]−1 =
∫ ∞

Th
ds Lon

(
mi

q,M
i
Q,T ,s

)
. (3.24)

In Eq. (3.21) fq,Q(E) = 1/ exp[E/T + 1] is the Fermi-Dirac
distribution for the light and heavy quark with the energy E =√

p2 + m2. Similar calculations can be performed for cross
sections with massive gluons by including the Bose-Einstein
distribution in Eq. (3.21).

The off-shell energy averaged differential dσ off
qQ/dt(T )

and total [σ̄ off
qQ(T )] elastic cross section are obtained in a

similar way as the on-shell case, with new expressions for
the probability function L and the normalization constant C.
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Therefore, for σ̄ off
qQ(T ), one has

σ̄ off
qQ(T ) =

∫ ∞

Th
ds σ off

qQ(T ,s) Loff(T ,s), (3.25)

with

Loff(T ,s) =
∫ ∞

0
dmi

q

∫ ∞

0
dMi

Q

Ec.m.
1

(√
s − Ec.m.

1

)
√

s
Coff(T )

×pc.m.
(
mi

q,M
i
Q,s

)
fq

(
Ec.m.

1

)
fQ

(√
s − Ec.m.

1

)
×Aqi

(
mi

q

)
AQi

(
Mi

Q

)
, (3.26)

and

[Coff(T )]−1 =
∫ ∞

Th
ds

∫ ∞

0
dmi

q

∫ ∞

0
dMi

QLoff(T ,s)

×Aqi

(
mi

q

)
AQi

(
Mi

Q

)
. (3.27)

Figure 11 presents the off-shell differential cross section
dσ/d cos θ (solid lines) in comparison to the on-shell cross
section (dashed lines) at

√
s = 4 GeV (a) and averaged over

energy (b) for temperatures of 1.5Tc, 2.0Tc, and 3.0Tc. The
importance of finite width corrections in the qQ scattering
process is illustrated by comparing the two differential cross
sections. For the energy of

√
s = 4 GeV, one observes a

deviation of the off-shell results compared to on-shell ones
only for large scattering angles.

When averaging over s for a given temperature T , we
observe the inverse situation at large angles; i.e., the off-shell
differential cross section becomes slightly lower than the
on-shell one. We may deduce that the off-shell differential
cross section is larger than the on-shell one for small values
of

√
s and the situation is reversed for large

√
s. However,

according to the small differences between the differential
on-shell and off-shell cross sections one can conclude that
the total on-shell cross sections do not change on a relevant
scale when introducing off-shell masses. This is particularly
important because the width of the heavy quark has been taken
as an upper limit (cf. Sec. II).

The off-shell cross sections, i.e., the numerical convolution
of the on-shell cross sections with the spectral functions,
are shown in Fig. 12(a) as a function of

√
s for different

temperatures. One observes by direct comparison of the solid
lines (IEHTL) of Fig. 12(a) with the dashed lines (DpQCD)
that the effect of a parton spectral width on the qQ elastic
scattering is negligible for energies well above the on-shell
threshold. This is attributable to the moderate parton widths
considered in the DQPM model. At energies below the on-shell
threshold the off-shell cross section increases with

√
s because

more and more masses can contribute. Whereas the on-shell
cross section diverges at the threshold the off-shell cross
section shows a maximum at the on-shell threshold and
decreases then owing to the decrease of the on-shell cross
section. After passing a slight minimum, for large

√
s on-

and off-shell cross section are increasing only very slowly.
The shape of the cross section in

√
s is approximately the

same in this temperature range (1.2Tc < T < 3Tc) and allows
for a simple parametrization with the absolute value driven by
g2(T/Tc). From Fig. 12(a) we deduce as well that an increasing
medium temperature T leads to an increase of the thermal
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FIG. 11. (Color online) Differential elastic cross section of uc →
uc for off-shell (solid lines) and on-shell partons (dashed lines) at
three different temperatures (see legend). We consider the DQPM pole
masses for the on-shell partons and the DQPM spectral functions for
the off-shell degrees of freedom. (a) For

√
s = 4 GeV; (b) averaged

over energy.

gluon mass (infrared regulator) and hence to a decrease of the
IEHTL and DpQCD qQ elastic cross sections.

Figure 12(b) shows, furthermore, the energy averaged qQ
elastic cross section as a function of the medium temperature
T/Tc for the different approaches presented above (see legend
in the figure). We notice different power laws in T , i.e.,
∼T −β for the HTL-GA and DpQCD/IEHTL models. In fact,
one can find that (βT <1.2Tc ∼ 2,βT >1.2Tc ∼ 1.7) for the HTL-
GA versions, whereas (βT <1.2Tc ∼ 4,βT >1.2Tc ∼ 2) for the
DpQCD/IEHTL approaches that are practically identical. The
higher power coefficients in the DpQCD/IEHTL approaches
can be traced back to the infrared enhancement of the effective
coupling. These different power laws in T will have a sizable
effect on the transport coefficients to be evaluated in the
future. We stress again that the effect of the DQPM spectral
function on σ̄ (T ) is negligible by comparing DpQCD/IEHTL
energy-averaged cross sections in Fig. 12(b).
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FIG. 12. (Color online) Elastic cross section of uc → uc for off-
shell (solid lines) and on-shell partons (dashed lines) at different
temperatures (see legend). We consider the DQPM pole masses for
the on-shell partons and the DQPM spectral functions for the off-shell
ones. (a) As a function of

√
s for different temperatures; (b) energy-

averaged cross section as a function of the temperature T/Tc, where
the results are also compared to those from the HTL-GA model with
constant coupling (lower thick line) and running coupling (upper thin
line) (see legend). mq and MQ are given in GeV.

The last point we address for the qQ scattering is the
on-shell and off-shell total elastic cross section as a function
of the energy density ε. These quantities are displayed in
Fig. 14 using the inverted DQPM equation of state which
gives the temperature as a function of the energy density ε as
shown in Fig. 13. Note that the DQPM model describes the
QCD energy density at temperatures even as low as T ∼ Tc.
Simulations in transport theory have shown that the local
energy densities achieved in the course of HICs at SPS and
RHIC energies reach at most 30 GeV fm−3 and at LHC
energies 300 GeV fm−3. Therefore, one observes that the
qQ elastic cross section at the energy densities of interest
is ∈[0.1–10] mb following the DpQCD/IEHTL approaches

FIG. 13. (Color online) Temperature T as a function of the
energy density ε from lattice QCD (blue solid line) [20,21] in the
DQPM (red dashed line) [1,2,19] and the NJL model (pink dot-dashed
line) [26].

and ∈[0.08–0.8] mb (∈[2–18] mb) following the HTL-GA
approach with fixed coupling (running coupling constant).
Actual PHSD transport calculations with the cross section
computed so far in comparison to data at RHIC and LHC
energies will clarify the validity or inadequacy of the models
investigated here.

In concluding this section we have presented the differential
elastic scattering of charm quarks on light u,d quarks of the
QGP within different approaches. We have checked that the
s-c elastic scattering cross sections are almost identical to
the u,d-c cross sections in the DpQCD/IEHTL approaches
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FIG. 14. (Color online) Energy averaged elastic cross section for
uc → uc scattering for off-shell and on-shell partons as a function
of the energy density ε (see legend). We consider the DQPM pole
masses for the on-shell partons (DpQCD) and the DQPM spectral
functions for the off-shell case (IEHTL). Also shown are the results
for the HTL-GA versions with constant (thick solid lower line) and
running coupling (upper thin line), where mq and MQ are given in
GeV.
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FIG. 15. (Color online) Feynman diagrams for the gQ → gQ scattering process. The indices i,j ,k,l = 1–3 stand for quark color, while
the indices a,b,c = 1–8 represent gluon color. μ,ν,λ are Lorentz indices while ki and pi (kf and pf ) denote the initial (final) momentum of the
gluon and the heavy quark, respectively. The invariant energy squared is given by s = (pi + ki)2, t = (pi − pf )2, u = (pi − kf )2.

owing to the large difference between the charm quark mass
and those of the light quarks (u,d,s). The different masses of
the light quarks have a minor effect on the elastic scattering
with c quarks except close to threshold. The same holds
for the effect of a finite spectral width of the degrees of
freedom, which has been calculated here for the first time.
The size of the elastic cross section is dominated by the
infrared regulator, which in the finite temperature medium is
determined by a dynamical gluon mass. Here the HTL-inspired
models—fixed by elementary vacuum cross sections and decay
amplitudes—provide quite different results especially with
respect to the running coupling and the associated gluon
(screening) mass as compared to the DQPM that has been
fixed to lattice QCD calculations at finite temperature. Explicit
transport calculations in comparison to experimental data are
needed to figure out the appropriate scenario. However, one
should point out that DpQCD/IEHTL has much larger 〈t〉 than
the HTL-GA model so that the transport coefficients like q̂
might be not very different from one model to another.

IV. g Q → g Q SCATTERING

In this section we study the gQ elastic scattering in
vacuum and in the QGP medium at finite temperature T .
As in the previous sections, we consider the case of on-shell
and off-shell heavy quarks and gluons. Here we present (for
completeness) the well-known pQCD gQ elastic cross section
with massive heavy quarks and massless gluons, the cross
section with heavy quarks and gluons dressed by effective

masses (“DpQCD”: dressed pQCD) and finally the case of
off-shell heavy quarks and gluons using the DQPM spectral
functions.

The Feynman diagrams for the process gQ → gQ are given
in Fig. 15 and represent t , s, and u channels.

A. Massive heavy quarks and massless gluons of zero widths

The invariant amplitudes for the three graphs (shown in
Fig. 15) for the case of massive heavy quarks and massless
gluons is given according to Combridge [13] and Cutler and
Sivers [12] and expressed in the appendix by Eq. (B1). The
lowest-order amplitude for the process gQ → gQ is obtained
from the Feynman rules of the gauge theory by the sum of the
amplitudes (B1). To obtain the correct result for the squared
matrix element

〈|M|2〉 = 1

4

∑
spins

TαβT �
α′β ′ε

α
i ε�α′

i ε
β
f ε

�β ′
f , (4.1)

we have either to use appropriate projection operators for the
transverse polarization states,∑

spins

εα
i ε�α′

i = −gαα′ + 2

s

(
pα

i kα′
i + pα′

i kα
i

)
,

(4.2)∑
spins

ε
β
f ε

�β ′
f = −gββ ′ + 2

s

(
p

β
f k

β ′
f + p

β ′
f k

β
f

)
,

or to introduce Fadeev-Popov ghosts. For a detailed discussion
we refer the reader to Ref. [12]. The result for the squared
amplitude is

〈|M|2〉 = π2α2
s (Q2)

[
32
(
s − M2

Q

)(
M2

Q − u
)

t2
+ 64

9

(
s − M2

Q

)(
M2

Q − u
)+ 2M2

Q

(
s + M2

Q

)
(
s − M2

Q

)2

+ 64

9

(
s − M2

Q

)(
M2

Q − u
)+ 2M2

Q

(
M2

Q + u
)

(
M2

Q − u
)2 + 16

9

M2
Q

(
4M2

Q − t
)

(
s − M2

Q

)(
M2

Q − u
)

+ 16

(
s − M2

Q

)(
M2

Q − u
)+ M2

Q(s − u)

t
(
s − M2

Q

) − 16

(
s − M2

Q

)(
M2

Q − u
)− M2

Q(s − u)

t
(
M2

Q − u
)

]
, (4.3)

which becomes for MQ = 0 identical to the expression given by Cutler and Sivers [12] for the scattering of massless light quarks
with massless gluons,

〈|M|2〉 = 1 − 4

9

u

s
− 4

9

u

s
− 2us

t2
. (4.4)
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FIG. 16. (Color online) Elastic cross section for the process gQ → gQ as a function of
√

s for different gluon masses (red, mg = 0; blue,
mg = 0.6 GeV), MQ = 1.25 GeV and two choices of Q2

0 (see legend). (a) For constant α = αs = 0.3; (b) for the running coupling αs(Q2)
(3.10).

For the process gQ → gQ, we choose for the running coupling Q2 = 1
2 [−t + (M2

Q − u)] = 1
2 (s − M2

Q). We also examine the
effect on our results by taking Q2 = s.

As in the process qQ → qQ, the resulting cross section, σ (s), given by Eq. (4.5), diverges owing to the pole at t = 0 which
corresponds to soft gQ interactions in the graphs of Fig. 15. For the same physical argumentation as in case of qQ → qQ
scattering, we reduce the upper limit of integration in the evaluation of dσ/dt to t = −Q2

0 but require in addition for gQ → gQ
process that also u − m2 < −Q2

0 to avoid the u-channel pole. Performing this integration we obtain

σgQ→gQ(s) = πα2
s (Q2)(

s − M2
Q

)2

⎡
⎣
⎛
⎝1 + 4

9

{
s + M2

Q

s − M2
Q

}2
⎞
⎠(

L − Q2
0

)+ 2

9

(
Q4

0 − L2
)

(
s − M2

Q

) + 2
(
s + M2

Q

)
ln

Q2
0

L

+ 4

9

s2 − 6M2
Qs + 6M4

Q

s − M2
Q

ln
s − M2

Q − Q2
0

s − M2
Q − L

+ 2
(
s − M2

Q

)2
(

1

Q2
0

− 1

L

)

+ 16

9
M4

Q

(
1

s − M2
Q − L

− 1

s − M2
Q − Q2

0

)]
, (4.5)

with L = min[s − M2
Q − Q2

0,(s − M2
Q)2/s]. As in the qQ →

qQ process, the cuts on the integration range have also
the effect of raising the threshold from s > M2

Q to s >

M2
Q + 1

2Q2
0 +

√
M2

QQ2
0 + 1

4Q4
0 if Q2

0 < 1
2M2

Q and to s >

m2 + 2Q2
0 if Q2

0 < 1
2M2

Q. The coupling constant αs can
be taken as a fixed value or as the running αs(Q2) given
by Eq. (3.10).

Figure 16(a) presents the results of Eq. (4.5) for the
elastic scattering cross section σgQ→gQ(s) for the case of
massive heavy quarks and massless gluons. We see how
the increasing infrared regulator Q2

0 suppresses the cross
section. Also a finite gluon mass (of 0.6 GeV) reduces
the cross section as compared to a zero mass. For a
running coupling the form of the cross section is similar
but the absolute value increases, as can be seen from
Fig. 16(b).

Owing to time-reversal invariance one can deduce that
Eqs. (4.1)–(4.5) describe also the elastic cross section for the
process gQ̄ → gQ̄.

B. Massive heavy quarks and massive gluons of zero widths

If not only the quarks but also the gluons are massive the
invariant amplitudes for the three graphs in Fig. 15 are given
by (C1) in the Appendix. We recall that for vector fields
with nonzero Lagrangian mass there is no gauge freedom
anymore. The massive vector field Aμ only has to fulfill the
condition ∂μAμ = 0. Therefore, the propagator for a massive
vector gluon is given in Appendix C by Eq. (C6) and the sum
over the initial and final gluon polarizations is fixed by the
expressions in Eq. (4.6):

∑
pol,i

εi,αεi,α′ = gαα′ − ki,α ki,α′(
mi

g

)2 ,

(4.6)∑
pol,f

εf,βεf,β ′ = gββ ′ − kf,β kf,β ′(
m

f
g

)2 .

As in the case of qQ elastic scattering, we examine different
assumptions on the value of initial and final heavy quarks and
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FIG. 17. (Color online) Differential elastic cross section of gc → gc dσ
dt

at
√

s = √
40 GeV (a) and dσ

dcosθ (b) for different choices of the
strong coupling constant and of the infrared regulator (see legend). The gluons are part of a heat bath of temperature T = 0.4 GeV. mg and MQ

are given in GeV.

gluons and the exchanged gluon:

(i) σ pQCD with αs(Q2) running in HTL-GA approximation.
As explained in Sec. III C, we determine the pQCD
gQ scattering cross section following the Peshier-
Gossiaux-Aichelin approach. The gluons in the exter-
nal legs are massless, whereas the exchanged gluon
is given by the modified Debye mass μ = √

κm̃D as
in Refs. [5–11] and arbitrary mass is attributed to the
heavy quark (MQ = 1.3 GeV). Figures 17(a) [respec-
tively (b)] represent dσ/dt (respectively dσ/d cos θ )
(orange lines) for the gQ elastic scattering at

√
s =√

40 GeV. Figure 18 shows the corresponding total
cross section as a function of

√
s (a) and as a function

of temperature T (b).
(ii) σ pQCD with αs(T ) and the DQPM gluon propagator

[finite mass, zero width (DpQCD approach)]. σ DpQCD

is obtained by using the DQPM propagator and keeping
particles on shell. We take the DQPM pole masses for

the exchanged gluon and the external gluons and heavy
quarks.

Figures 17(a) [17(b)] show dσ/dt [dσ/dcosθ ] for
gQ elastic scattering at

√
s = √

40 GeV as a function
of |t | (or the angle θ ) for the two approaches. The same
conclusions as in the study of qQ elastic scattering
can be drawn, however, with cross sections for the
gQ elastic scattering that are larger than the cross
sections for qQ scattering by roughly a factor of 9/4,
which is ratio of the different color Casimir operators
(squared).

We see again that the cross section in both approaches is of
the same order of magnitude and also the angular distribution is
similar for a given choice of couplings. The running coupling
in the HTL-GA model essentially enhances the cross section
at small t (or forward angles).

Figures 18(a) and 18(b) present the total elastic scattering of
gQ calculated within the two different approaches presented
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FIG. 18. (Color online) Comparison of σgQ calculated within the HTL-GA (orange lines) and DpQCD (blue lines) approaches. mg and
MQ are given in GeV. (a) As a function of

√
s for different temperatures T (see legend); (b) as a function of the scaled temperature T/Tc, with

Tc = 0.158 GeV for
√

s = 4 and 7 GeV.
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previously, (a) as a function of
√

s for different temperatures
(T = 2Tc,T = 3Tc), (b) as a function of temperature for

√
s =

4 and 7 GeV. Apart from threshold effects, the cross sections
are rather independent on

√
s. These figures show clearly the

different values for σgQ for the different choices of couplings
and infrared regulators with the largest cross section given by
the running coupling in the HTL-GA approach (thin orange
lines) and the smallest cross section in HTL-GA model with
fixed αs = 0.3 (thick orange lines). The variation in

√
s and

temperature is qualitatively very similar to the case of qQ
scattering. Note again the large enhancement of the DpQCD
cross section for temperatures close to Tc, which is attributable
to the infrared enhancement of the effective coupling.
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FIG. 19. (Color online) Differential elastic cross section for
gc → gc scattering for off-shell (IEHTL, solid lines) and on-shell
(DpQCD, dashed lines) partons at three different temperatures (see
legend). We consider the DQPM pole masses for the on-shell partons
and the DQPM spectral functions for the off-shell ones: (a) for√

s = 4 GeV, (b) energy averaged.

C. Massive heavy quarks and gluons of finite widths

For the case of finite masses and widths of the scattering
quarks and gluons, the expressions (C1)–(C7) are still de-
scribing the gQ elastic scattering amplitude but, in addition
of taking the spectral functions for the heavy quark and gluon
masses into account, one has to change the denominator of the
quark and gluon propagators. Indeed, instead of using the usual
expression for the quark and gluon propagator given in the
appendix by Eq. (C6), we consider the following expressions
for the case of massive vector gluons with finite lifetime
G

μν
F (q,mg) and for the case of massive fermions with finite

lifetime SF (p,mq):

G
μν
F (q,mg) = −i

gμν − qμqν/m2
g

q2
0 − p2 − m2

g + i2γgq0
,

SF (p,MQ) = /p + MQ

p2
0 − p2 − M2

Q + i2γQp0
,

Gt
F = −i

gμν − qμqν/m2
g

t − m2
g + i2γg

(
pi

0 − p
f
0

) , (4.7)

Su
F = /p + MQ

u − M2
Q + i2γQ

(
pi

0 − k
f
0

) ,
Ss

F = /p + MQ

s − M2
Q + i2γQ

(
pi

0 + ki
0

) ,
where mg , γg (MQ, γQ) are the mass and width of the gluon or
the heavy quark. In expressions (4.7), q0 (p0) present in G

μν
F

(SF ) is the energy of the gluon in the t channel (the heavy
quark in the u or s channel).

The kinematic limits for the s, t , and u channels in the
off-shell gQ process are analogous to those in the qQ case
(cf. Sec. III). In the off-shell case, the kinematical limits on
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FIG. 20. (Color online) Elastic cross section of gc → gc scatter-
ing for off-shell (IEHTL, solid lines) and on-shell (DpQCD, dashed
lines) partons as a function of

√
s for different temperatures (see

legend). We consider the DQPM pole masses for the on-shell partons
and the DQPM spectral functions for the off-shell ones.
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the momentum transfer t are given by Eqs. (3.17)–(3.19), with

β1 = (
mi

g

)2/
s, β2 = (

Mi
Q

)2/
s,

(4.8)
β3 = (

mf
g

)2/
s, β4 = (

M
f
Q

)2/
s,

while
s � max

{(
mi

g + Mi
Q

)2
,
(
mf

g + M
f
Q

)}
. (4.9)

Again, to obtain the off-shell gQ elastic cross section, the
elementary modified pQCD cross section has to be convoluted
with the effective spectral functions for the heavy quarks and
gluons. We show a comparison of the off-shell (IEHTL, solid
lines) and on-shell (DpQCD) versions in Figs. 19(a) and 19(b)
for the differential cross sections and in Figs. 20 and 21 for
the total cross sections as a function of

√
s, temperature T/Tc,

and energy density ε. From Figs. 19(a) and 19(b), we see
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FIG. 21. (Color online) Elastic cross section for gc → gc scat-
tering for off-shell (IEHTL, red line) and on-shell (DpQCD, yellow
line) partons. We consider the DQPM pole masses for the on-shell
partons and the DQPM spectral functions for the off-shell ones:
(a) energy-averaged cross section as a function of the scaled temper-
ature in comparison to results in the HTL-GA approaches where mg

and MQ are given in GeV (see legend) and (b) energy-averaged cross
section as a function of the energy density ε.

that effects from the off-shell masses appear only for large
scattering angles as in case of qQ elastic scattering for all
temperatures of the thermal bath considered.

The total off-shell gQ elastic cross section is presented
as a function of

√
s in Fig. 20 for different temperatures

from 1.2Tc to 3Tc and demonstrates that the off-shell mass
distributions only have a sizable impact at the threshold
given by the pole masses as in case of qQ scattering. The
energy-averaged gQ cross sections are displayed as a function
of T/Tc in Fig. 21(a) in comparison to the HTL-GA model for
fixed coupling (lower solid thick line) and running coupling
(upper solid thin line) and finally as a function of the energy
density ε in Fig. 21(b). Again we find—as in the case of qQ
scattering—that the off-shellness in mass has practically no
effect on the energy-averaged cross sections in the whole
temperature range considered. Here the energy averaged
cross sections are computed in line with Sec. III using the
Bose-Einstein distribution for the gluons. The different power
laws in temperature for the DpQCD and HTL-GA approaches
are the same as for qQ scattering and owing to the different
regularization schemes. However, one has to point out that the
amplitude for gQ elastic scattering is larger than that for qQ
elastic scattering. In fact, the scattering of heavy quarks with
gluons proceeds according to t , s, and u channels, whereas
one has only the t channel for qQ elastic scattering.

V. SUMMARY

In this study we have presented a detailed calculation
of elastic scattering of heavy quarks with light quarks and
gluons in a QGP medium using pQCD first-order Born
diagrams. We have compared two approaches based on
different regularization schemes. (i) The DQPM [19] in which
quarks and gluons have a finite mass and width that vary with
temperature T . The functional form of both, as well of the
running coupling g(T/Tc), is given by the DQPM model [1]
and the very few parameters for the infrared enhanced coupling
g(T/Tc) are fitted to the equation of state obtained from
lattice gauge calculations with 2 + 1 light flavors. We note
that the DQPM is an “effective model” that incorporates broad
features of finite temperature QCD and should not be mixed up
with first-principle pQCD calculations. However, it properly
describes the equation of state from lattice QCD as well as
correlators such as shear and bulk viscosities, the electric
conductivity and heat conductivity, and the electromagnetic
correlator in comparison to lQCD results [26]. In case of a
finite width the cross sections of these “particles” have to
be calculated using spectral functions. In the DQPM model
the regularization proceeds via the dynamical gluon mass in
the thermal QGP medium. (ii) The Peshier-Gossiaux-Aichelin
approach [6,8,9], which uses massless partons, a running
coupling αs(Q2), and an infrared regulator, which have been
adjusted to reproduce the heavy-quark energy loss in HICs
at RHIC energies. The cross sections are calculated in a HTL
“inspired” approach. This model allows as well for calculations
with a fixed coupling αs . They have shown that by using a
fixed coupling and a Debye mass (mD ≈ gT ) as an infrared
regulator, pQCD calculations are not able to reproduce the
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data at RHIC, neither the energy loss nor the azimuthal (v2)
distribution. These authors have proposed, furthermore, that
by employing a running coupling and by replacing the Debye
mass mD by a more realistic HTL calculation, a substantial
increase in the collisional energy loss can be achieved, which
brings the elliptic flow v2(pT ) as well as ratio RAA(pT ) closer
to the experimental data.

Our detailed studies have demonstrated that the finite
width of the DQPM model—which encodes the multiple
partonic scattering—has little influence on the cross section
for qQ → qQ as well as gQ → gQ scattering except close
to thresholds. Only at very large scattering angles do we find a
difference between cross sections calculated with the spectral
function and those incorporating only the pole mass. Thus,
when studying the dynamics of energetic heavy quarks in a
QGP medium the spectral width of the degrees of freedom
may be discarded in actual transport simulations.

As shown in Secs. III A and IV A the finite gluon mass
in the DQPM screens the infrared singularity and shifts
the kinematical thresholds accordingly. Owing to different
kinematical boundaries the differential cross sections for
heavy-quark scattering on quarks and gluons change sub-
stantially as compared to the case of massless partons, i.e.,
in the magnitude of the cross section as well as in the
angular distributions. The angle-integrated cross sections show
a very smooth dependence on the invariant energy

√
s at all

temperatures of the thermal bath considered and are lower
than 1 mb for temperatures T > 2Tc, however, increase up
to about 10 mb when going down in temperature close to
the critical temperature Tc (cf. Secs. III B, III C, IV B, and
IV C). This dependence on temperature T can be traced back
to the infrared enhancement of the effective coupling, which
has proven to be vital for a proper description of transport
coefficients. Nevertheless, using these cross sections and the
DQPM densities for quarks and gluons the relaxation times
for c quarks are above 1 fm/c up to temperatures of 3Tc.

In the Peshier-Gossiaux-Aichelin model the size of the
elastic cross section and its angular distribution is dominated
by the choice of the infrared regulator and the strong coupling
αs (running or fixed). The HTL-inspired models—essentially
fixing the regulators by elementary vacuum cross sections and
decay amplitudes—provide quite different results especially
with respect to the temperature dependence of the qQ and
gQ cross sections (in all settings). Accordingly, the transport

properties of heavy quarks should be different as a function of
temperature when compared to DQPM results.

The differential cross sections obtained in this study will
form the basis for the calculation of heavy-quark production
and propagation in HICs at GSI Facility for Antiproton and
Ion Research (FAIR), SPS, RHIC, and LHC energies. They
will be implemented into the PHSD transport approach [2],
which is based on the DQPM propagators in the partonic
phase. A comparison of the DQPM cross sections with those
of the Peshier-Gossiaux-Aichelin model—which have been
used successfully to describe heavy-quark dynamics at RHIC
energies—in a heavy-ion environment at different bombarding
energies will be mandatory to find out which approach is
favored by experimental data.

We finally point out that our calculations have employed a
couple of theoretical approximations and model assumptions.
Main uncertainties we encounter in the description of the qqg
and ggg vertices, quark and gluon propagators, and parton
spectral functions at finite temperature. Although in the weak
coupling limit all HTL-dressed n-point functions are known
analytically [47,48] the case of the three-gluon vertex for
strong coupling is even more complicated and its structure at
finite temperature is not well determined yet. For this reason,
we naively have used the perturbative three-gluon vertex at
zero temperature. The perspectives of our study thus are to go
beyond the actual approximations in future calculations and
to test the resulting approaches in comparison to data from
relativistic nucleus-nucleus reactions.
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APPENDIX A: q Q → q Q SCATTERING—MASSIVE
LIGHT AND HEAVY QUARKS OF FINITE WIDTHS

The expressions of the Mandelstam variables in the case of
off-shell initial and/or final particles in the reaction qQ → qQ
are given by

s = (
Mi

Q

)2 + (
mi

q

)2 + 2
{√[(

Mi
Q

)2 + p2
][(

Mi
q

)2 + p2
]+ p2

}
= (

M
f
Q

)2 + (
mf

q

)2 + 2
{√[(

M
f
Q

)2 + p2
][(

M
f
q

)2 + p2
]+ p2
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,

u = (
Mi

Q

)2 + (
mf

q
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Q

)2 + p2
][(

m
f
q

)2 + p2
]+ p2 cos θ
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M

f
Q
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mi

q
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M
f
Q

)2 + p2
][(

Mi
q

)2 + p2
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,
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mi

q
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mf

q

)2 − 2
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][(

m
f
q
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{√[(
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Q
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][(
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f
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]− p2 cos θ
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APPENDIX B: g Q → g Q SCATTERING—MASSIVE HEAVY QUARKS AND MASSLESS GLUONS OF ZERO WIDTHS

The invariant amplitudes for the three graphs (shown in Fig. 15) for the case of massive heavy quarks and massless gluons is
given according to Combridge [13] and Cutler and Sivers [12] by

Mt (gaQi → gbQj ) = g2

t
f cabT c

ij ε
α
i ε

β
f Cμαβ(ki − kf , − ki,kf )ūj (pf )γ λui(pi),

Mu(gaQi → gbQj ) = − ig2

u − M2
Q

T b
ikT

a
kj ūj (pf )/εi(/pi

− /kf + MQ)/εf ui(pi), (B1)

Ms(gaQi → gbQj ) = − ig2

s − M2
Q

T a
il T

b
lj ūj (pf )/εf (/pi

+ /ki + MQ)/εiui(pi),

where we have suppressed the flavor indices and defined the Lorentz tensor C—appearing in the three-gluon vertex—by
Cμλν(q1,q2,q3) ≡ [(q1 − q2)νgμν + (q2 − q3)μgλν + (q3 − q1)λgμν]. (B2)

In Eq. (B1), the Latin (Greek) subscripts denote color (spin) indices assigned as in Fig. 15, MQ is the heavy-quark mass, the T ’s
are the well-known Gell-Mann SU(3) matrices, and εα

i (εβ
f ) are the initial (final) gluon polarization vectors.

APPENDIX C: g Q → g Q SCATTERING: MASSIVE HEAVY QUARKS AND MASSIVE GLUONS OF ZERO WIDTHS

If not only the quarks but also the gluons are massive, the invariant amplitudes for the three graphs in Fig. 15 are given by

Mt (gaQi → gbQj ) = g2

t − m2
g

f cabT c
ij εi,αεf,βCαμ′β(ki − kf ,−ki,kf )

[
gμμ′ − qμqμ′

m2
g

]
ūj (pf )γ μui(pi),

Mu(gaQi → gbQj ) = − ig2

u − (
Mi

Q

)2 T b
ikT

a
kj ūj (pf )/εi

(
/pi

− /kf + Mi
Q

)
/εf ui(pi), (C1)

Ms(gaQi → gbQj ) = − ig2

s − (
Mi

Q

)2 T a
il T

b
lj ūj (pf )/εf

(
/pi

+ /ki + Mi
Q

)
/εiui(pi),

where ui(pi,M
i
Q) [ūj (pf ,M

f
Q)] is a Dirac spinor for the incoming (outgoing) heavy quark with momentum pi (pf ), mass Mi

Q

(Mf
Q) and color i (j ). The different amplitudes squared, summed (averaged) over the final (initial) degrees of freedom, are given by

〈|Mt |2〉 = g4

8
(
t − m2

g

)2 tr

{(
/pf

+ M
f
Q

)
γ μ
(
/pi

+ Mi
Q

)
γ νCαμ′β(ki − kf ,−ki,kf

)[
gμμ′ − qμqμ′

m2
g

]

× �Cλν ′ρ(ki − kf ,−ki,kf )

[
gνν ′ − qνqν ′

m2
g

]}∑
pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ,

〈|Ms |2〉 = 2g4/36[
s − (

Mi
Q

)2]2 tr
[(

/pf
+ M

f
Q

)
γ β
(
/pi

+ /ki + Mi
Q

)
γ α
(
/pi

+ Mi
Q

)
γ λ
(
/pi

+ /ki + Mi
Q

)
γ ρ
]∑

pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ,

〈|Mu|2〉 = 2g4/36[
u − (

Mi
Q

)2]2 tr
[(

/pf
+ M

f
Q

)
γ α
(
/pi

− /kf + Mi
Q

)
γ β
(
/pi

+ Mi
Q

)
γ ρ
(
/pi

− /kf + Mi
Q

)
γ λ
]∑

pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ,

(C2)

and for the interference terms, we have for the u-s interference (the star denotes complex conjugation)

〈MsM�
u〉 = −g4

144
[
s − (

Mi
Q

)2][
u − (

Mi
Q

)2] tr
[(

/pf
+ M

f
Q

)
γ β
(
/pi

+ /ki + Mi
Q

)
γ α
(
/pi

+ Mi
Q

)
γ ρ
(
/pi

− /kf + Mi
Q

)
γ λ
]

×
∑
pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ,

〈MuM�
s〉 = −g4

144
[
s − (

Mi
Q

)2][
u − (

Mi
Q

)2] tr
[(

/pf
+ M

f
Q

)
γ α
(
/pi

− /kf + Mi
Q

)
γ β
(
/pi

+ Mi
Q

)
γ λ
(
/pi

+ /ki + Mi
Q

)
γ ρ
]

×
∑
pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ, (C3)
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for the t-s interference,

〈MtM�
s〉 = −g4

16
(
t − M2

Q

)[
s − (

Mi
Q

)2] tr

{(
/pf

+ M
f
Q

)
γ μ
(
/pi

+ Mi
Q

)
γ λ
(
/pi

+ /ki + Mi
Q

)
γ ρCαμ′β(ki − kf ,−ki,kf )

×
[
gμμ′ − qμqμ′

m2
g

]}∑
pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ,

(C4)

〈MsM�
t 〉 = −g4

16
(
t − M2

Q

)[
s − (

Mi
Q

)2] tr

{(
/pf

+ M
f
Q

)
γ β
(
/pi

+ /ki + Mi
Q

)
γ α
(
/pi

+ Mi
Q

)
γ ν �Cλν ′ρ(ki − kf , − ki,kf )

×
[
gνν ′ − qνqν ′

m2
g

]}∑
pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ,

and finally for the t-u interference,

〈MtM�
u〉 = g4

16
(
t − m2

g

)[
u − (

Mi
Q

)2] tr

{(
/pf

+ M
f
Q

)
γ μ
(
/pi

+ Mi
Q

)
γ ρ
(
/pi

− /ki + M
f
Q

)
γ λCαμ′β(ki − kf , − ki,kf )

×
[
gμμ′ − qμqμ′

m2
g

]}∑
pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ,

(C5)

〈MuM�
t 〉 = g4

16
(
t − M2

Q

)[
s − (

Mi
Q

)2] tr

{(
/pf

+ M
f
Q

)
γ α
(
/pf

− /ki + M
f
Q

)
γ β
(
/pi

+ Mi
Q

)
γ ν �Cλν ′ρ(ki − kf , − ki,kf )

×
[
gνν ′ − qνqν ′

m2
g

]}∑
pol,i

εi,αεi,λ

∑
pol,f

εf,βεf,ρ .

In the expressions (C1)–(C5) we have defined q = kf − ki as the 4-momentum of the exchanged gluon and have used the quark
and gluon propagators

G
μν
F (q,mg) = −i

gμν − qμqν/m2
g

q2 − m2
g

, SF (p,MQ) = /p + MQ

p2 − M2
Q

, (C6)

and also for Cαμ′β(ki − kf ,−ki,kf ) the expression

Cαμ′β(ki − kf ,−ki,kf ) = [(2ki − kf )β gμ′α + (−ki − kf )μ gαβ + (2kf − ki)α gμβ]. (C7)

The total amplitude for the process gQ → gQ is then evaluated according to

〈|M|2〉 = 〈|Mt |2〉 + 〈|Ms |2〉 + 〈|Mu|2〉 + 〈MsM�
u〉 + 〈MuM�

s〉 + 〈MtM�
s〉 + 〈MsM�

t 〉 + 〈MtM�
u〉 + 〈MuM�

t 〉.
(C8)

[1] W. Cassing, Eur. Phys. J. Spec. Top. 168, 3 (2009).
[2] W. Cassing and E. Bratkovskaya, Nucl. Phys. A 831, 215 (2009).
[3] A. Peshier, Phys. Rev. D 70, 034016 (2004).
[4] A. Peshier, J. Phys. G: Nucl. Part. Phys. 31, S371 (2005).
[5] P. B. Gossiaux, V. Guiho, and J. Aichelin, J. Phys. G 31, S1079

(2005).
[6] P. B. Gossiaux and J. Aichelin, Phys. Rev. C 78, 014904

(2008).
[7] P. Gossiaux and J. Aichelin, Nucl. Phys. A 830, 203c (2009).
[8] P. Gossiaux and J. Aichelin, J. Phys. G 36, 064028 (2009).
[9] P. B. Gossiaux, R. Bierkandt, and J. Aichelin, Phys. Rev. C 79,

044906 (2009).
[10] P. Gossiaux, J. Aichelin, T. Gousset, and V. Guiho, J. Phys. G

37, 094019 (2010).

[11] P. Gossiaux, V. Guiho, and J. Aichelin, J. Phys. G 32, S359
(2006).

[12] R. Cutler and D. Sivers, Phys. Rev. D 17, 196 (1978).
[13] B. Combridge, Nucl. Phys. B 151, 429 (1979).
[14] L. D. McLerran and T. Toimela, Phys. Rev. D 31, 545

(1985).
[15] F. Karsch, Nucl. Phys. A 698, 199 (2002).
[16] E. Braaten and M. H. Thoma, Phys. Rev. D 44, R2625 (1991).
[17] E. Braaten and M. H. Thoma, Phys. Rev. D 44, 1298 (1991).
[18] J. Kapusta, P. Lichard, and D. Seibert, Phys. Rev. D 44, 2774

(1991).
[19] W. Cassing, Nucl. Phys. A 791, 365 (2007).
[20] S. Borsanyi et al. (Wuppertal-Budapest Collaboration), J. High

Energy Phys. 09 (2010) 073.

054901-23

http://dx.doi.org/10.1140/epjst/e2009-00959-x
http://dx.doi.org/10.1140/epjst/e2009-00959-x
http://dx.doi.org/10.1140/epjst/e2009-00959-x
http://dx.doi.org/10.1140/epjst/e2009-00959-x
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1103/PhysRevD.70.034016
http://dx.doi.org/10.1103/PhysRevD.70.034016
http://dx.doi.org/10.1103/PhysRevD.70.034016
http://dx.doi.org/10.1103/PhysRevD.70.034016
http://dx.doi.org/10.1088/0954-3899/31/4/046
http://dx.doi.org/10.1088/0954-3899/31/4/046
http://dx.doi.org/10.1088/0954-3899/31/4/046
http://dx.doi.org/10.1088/0954-3899/31/4/046
http://dx.doi.org/10.1088/0954-3899/31/6/062
http://dx.doi.org/10.1088/0954-3899/31/6/062
http://dx.doi.org/10.1088/0954-3899/31/6/062
http://dx.doi.org/10.1088/0954-3899/31/6/062
http://dx.doi.org/10.1103/PhysRevC.78.014904
http://dx.doi.org/10.1103/PhysRevC.78.014904
http://dx.doi.org/10.1103/PhysRevC.78.014904
http://dx.doi.org/10.1103/PhysRevC.78.014904
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.015
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.015
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.015
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.015
http://dx.doi.org/10.1088/0954-3899/36/6/064028
http://dx.doi.org/10.1088/0954-3899/36/6/064028
http://dx.doi.org/10.1088/0954-3899/36/6/064028
http://dx.doi.org/10.1088/0954-3899/36/6/064028
http://dx.doi.org/10.1103/PhysRevC.79.044906
http://dx.doi.org/10.1103/PhysRevC.79.044906
http://dx.doi.org/10.1103/PhysRevC.79.044906
http://dx.doi.org/10.1103/PhysRevC.79.044906
http://dx.doi.org/10.1088/0954-3899/37/9/094019
http://dx.doi.org/10.1088/0954-3899/37/9/094019
http://dx.doi.org/10.1088/0954-3899/37/9/094019
http://dx.doi.org/10.1088/0954-3899/37/9/094019
http://dx.doi.org/10.1088/0954-3899/32/12/S44
http://dx.doi.org/10.1088/0954-3899/32/12/S44
http://dx.doi.org/10.1088/0954-3899/32/12/S44
http://dx.doi.org/10.1088/0954-3899/32/12/S44
http://dx.doi.org/10.1103/PhysRevD.17.196
http://dx.doi.org/10.1103/PhysRevD.17.196
http://dx.doi.org/10.1103/PhysRevD.17.196
http://dx.doi.org/10.1103/PhysRevD.17.196
http://dx.doi.org/10.1016/0550-3213(79)90449-8
http://dx.doi.org/10.1016/0550-3213(79)90449-8
http://dx.doi.org/10.1016/0550-3213(79)90449-8
http://dx.doi.org/10.1016/0550-3213(79)90449-8
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1103/PhysRevD.31.545
http://dx.doi.org/10.1016/S0375-9474(01)01365-3
http://dx.doi.org/10.1016/S0375-9474(01)01365-3
http://dx.doi.org/10.1016/S0375-9474(01)01365-3
http://dx.doi.org/10.1016/S0375-9474(01)01365-3
http://dx.doi.org/10.1103/PhysRevD.44.R2625
http://dx.doi.org/10.1103/PhysRevD.44.R2625
http://dx.doi.org/10.1103/PhysRevD.44.R2625
http://dx.doi.org/10.1103/PhysRevD.44.R2625
http://dx.doi.org/10.1103/PhysRevD.44.1298
http://dx.doi.org/10.1103/PhysRevD.44.1298
http://dx.doi.org/10.1103/PhysRevD.44.1298
http://dx.doi.org/10.1103/PhysRevD.44.1298
http://dx.doi.org/10.1103/PhysRevD.44.2774
http://dx.doi.org/10.1103/PhysRevD.44.2774
http://dx.doi.org/10.1103/PhysRevD.44.2774
http://dx.doi.org/10.1103/PhysRevD.44.2774
http://dx.doi.org/10.1016/j.nuclphysa.2007.04.015
http://dx.doi.org/10.1016/j.nuclphysa.2007.04.015
http://dx.doi.org/10.1016/j.nuclphysa.2007.04.015
http://dx.doi.org/10.1016/j.nuclphysa.2007.04.015
http://dx.doi.org/10.1007/JHEP09(2010)073
http://dx.doi.org/10.1007/JHEP09(2010)073
http://dx.doi.org/10.1007/JHEP09(2010)073


H. BERREHRAH et al. PHYSICAL REVIEW C 89, 054901 (2014)

[21] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz
et al., J. High Energy Phys. 11 (2010) 077.

[22] V. Ozvenchuk, O. Linnyk, M. I. Gorenstein, E. L. Bratkovskaya,
and W. Cassing, Phys. Rev. C 87, 024901 (2013).

[23] O. Kaczmarek, F. Karsch, F. Zantow, and P. Petreczky, Phys.
Rev. D 70, 074505 (2004).

[24] M. Okamoto et al. (CP-PACS Collaboration), Phys. Rev. D 60,
094510 (1999).

[25] F. Karsch, E. Laermann, and A. Peikert, Phys. Lett. B 478, 447
(2000).

[26] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, and
H. Berrehrah, Phys. Rev. C 88, 045204 (2013).

[27] O. Linnyk, S. Leupold, and U. Mosel, Phys. Rev. D 71, 034009
(2005).

[28] O. Linnyk, S. Leupold, and U. Mosel, Phys. Rev. D 75, 014016
(2007).

[29] O. Linnyk, J. Phys. G: Nucl. Part. Phys. 38, 025105 (2011).
[30] H. D. Politzer, Phys. Rep. 14, 129 (1974).
[31] B. Combridge, J. Kripfganz, and J. Ranft, Phys. Lett. B 70, 234

(1977).
[32] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001

(2012).

[33] H. A. Weldon, Phys. Rev. D 26, 1394 (1982).
[34] V. V. Klimov, Sov. Phys. JETP 55, 199 (1982).
[35] B. Svetitsky, Phys. Rev. D 37, 2484 (1988).
[36] V. Greco, H. van Hees, and R. Rapp, arXiv:0709.4452.
[37] H. van Hees and R. Rapp, Phys. Rev. C 71, 034907 (2005).
[38] H. van Hees, V. Greco, and R. Rapp, Phys. Rev. C 73, 034913

(2006).
[39] S. Peigne and A. Peshier, Phys. Rev. D 77, 114017 (2008).
[40] S. J. Brodsky, S. Menke, C. Merino, and J. Rathsman, Phys.

Rev. D 67, 055008 (2003).
[41] Y. Dokshitzer, Nucl. Phys. A 711, 11 (2002).
[42] A. Deur, V. Burkert, J. P. Chen, and W. Korsch, Phys. Lett. B

665, 349 (2008).
[43] P. Romatschke and M. Strickland, Phys. Rev. D 69, 065005

(2004).
[44] O. Kaczmarek and F. Zantow, PoS LAT2005 (2006) 192.
[45] P. Zhuang, J. Hufner, S. P. Klevansky, and L. Neise, Phys. Rev.

D 51, 3728 (1995).
[46] C. Sasaki and K. Redlich, Nucl. Phys. A 832, 62 (2010).
[47] E. Braaten and R. D. Pisarski, Phys. Rev. D 45, R1827 (1992).
[48] E. Braaten and R. D. Pisarski, Nucl. Phys. B 337, 569

(1990).

054901-24

http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1103/PhysRevC.87.024901
http://dx.doi.org/10.1103/PhysRevC.87.024901
http://dx.doi.org/10.1103/PhysRevC.87.024901
http://dx.doi.org/10.1103/PhysRevC.87.024901
http://dx.doi.org/10.1103/PhysRevD.70.074505
http://dx.doi.org/10.1103/PhysRevD.70.074505
http://dx.doi.org/10.1103/PhysRevD.70.074505
http://dx.doi.org/10.1103/PhysRevD.70.074505
http://dx.doi.org/10.1103/PhysRevD.60.094510
http://dx.doi.org/10.1103/PhysRevD.60.094510
http://dx.doi.org/10.1103/PhysRevD.60.094510
http://dx.doi.org/10.1103/PhysRevD.60.094510
http://dx.doi.org/10.1016/S0370-2693(00)00292-6
http://dx.doi.org/10.1016/S0370-2693(00)00292-6
http://dx.doi.org/10.1016/S0370-2693(00)00292-6
http://dx.doi.org/10.1016/S0370-2693(00)00292-6
http://dx.doi.org/10.1103/PhysRevC.88.045204
http://dx.doi.org/10.1103/PhysRevC.88.045204
http://dx.doi.org/10.1103/PhysRevC.88.045204
http://dx.doi.org/10.1103/PhysRevC.88.045204
http://dx.doi.org/10.1103/PhysRevD.71.034009
http://dx.doi.org/10.1103/PhysRevD.71.034009
http://dx.doi.org/10.1103/PhysRevD.71.034009
http://dx.doi.org/10.1103/PhysRevD.71.034009
http://dx.doi.org/10.1103/PhysRevD.75.014016
http://dx.doi.org/10.1103/PhysRevD.75.014016
http://dx.doi.org/10.1103/PhysRevD.75.014016
http://dx.doi.org/10.1103/PhysRevD.75.014016
http://dx.doi.org/10.1088/0954-3899/38/2/025105
http://dx.doi.org/10.1088/0954-3899/38/2/025105
http://dx.doi.org/10.1088/0954-3899/38/2/025105
http://dx.doi.org/10.1088/0954-3899/38/2/025105
http://dx.doi.org/10.1016/0370-1573(74)90014-3
http://dx.doi.org/10.1016/0370-1573(74)90014-3
http://dx.doi.org/10.1016/0370-1573(74)90014-3
http://dx.doi.org/10.1016/0370-1573(74)90014-3
http://dx.doi.org/10.1016/0370-2693(77)90528-7
http://dx.doi.org/10.1016/0370-2693(77)90528-7
http://dx.doi.org/10.1016/0370-2693(77)90528-7
http://dx.doi.org/10.1016/0370-2693(77)90528-7
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.26.1394
http://dx.doi.org/10.1103/PhysRevD.26.1394
http://dx.doi.org/10.1103/PhysRevD.26.1394
http://dx.doi.org/10.1103/PhysRevD.26.1394
http://dx.doi.org/10.1103/PhysRevD.37.2484
http://dx.doi.org/10.1103/PhysRevD.37.2484
http://dx.doi.org/10.1103/PhysRevD.37.2484
http://dx.doi.org/10.1103/PhysRevD.37.2484
http://arxiv.org/abs/arXiv:0709.4452
http://dx.doi.org/10.1103/PhysRevC.71.034907
http://dx.doi.org/10.1103/PhysRevC.71.034907
http://dx.doi.org/10.1103/PhysRevC.71.034907
http://dx.doi.org/10.1103/PhysRevC.71.034907
http://dx.doi.org/10.1103/PhysRevC.73.034913
http://dx.doi.org/10.1103/PhysRevC.73.034913
http://dx.doi.org/10.1103/PhysRevC.73.034913
http://dx.doi.org/10.1103/PhysRevC.73.034913
http://dx.doi.org/10.1103/PhysRevD.77.114017
http://dx.doi.org/10.1103/PhysRevD.77.114017
http://dx.doi.org/10.1103/PhysRevD.77.114017
http://dx.doi.org/10.1103/PhysRevD.77.114017
http://dx.doi.org/10.1103/PhysRevD.67.055008
http://dx.doi.org/10.1103/PhysRevD.67.055008
http://dx.doi.org/10.1103/PhysRevD.67.055008
http://dx.doi.org/10.1103/PhysRevD.67.055008
http://dx.doi.org/10.1016/S0375-9474(02)01185-5
http://dx.doi.org/10.1016/S0375-9474(02)01185-5
http://dx.doi.org/10.1016/S0375-9474(02)01185-5
http://dx.doi.org/10.1016/S0375-9474(02)01185-5
http://dx.doi.org/10.1016/j.physletb.2008.06.049
http://dx.doi.org/10.1016/j.physletb.2008.06.049
http://dx.doi.org/10.1016/j.physletb.2008.06.049
http://dx.doi.org/10.1016/j.physletb.2008.06.049
http://dx.doi.org/10.1103/PhysRevD.69.065005
http://dx.doi.org/10.1103/PhysRevD.69.065005
http://dx.doi.org/10.1103/PhysRevD.69.065005
http://dx.doi.org/10.1103/PhysRevD.69.065005
http://dx.doi.org/10.1103/PhysRevD.51.3728
http://dx.doi.org/10.1103/PhysRevD.51.3728
http://dx.doi.org/10.1103/PhysRevD.51.3728
http://dx.doi.org/10.1103/PhysRevD.51.3728
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.005
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.005
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.005
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.005
http://dx.doi.org/10.1103/PhysRevD.45.R1827
http://dx.doi.org/10.1103/PhysRevD.45.R1827
http://dx.doi.org/10.1103/PhysRevD.45.R1827
http://dx.doi.org/10.1103/PhysRevD.45.R1827
http://dx.doi.org/10.1016/0550-3213(90)90508-B
http://dx.doi.org/10.1016/0550-3213(90)90508-B
http://dx.doi.org/10.1016/0550-3213(90)90508-B
http://dx.doi.org/10.1016/0550-3213(90)90508-B



