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Microscopic description of 7Li in 7Li + 12C and 7Li + 28Si elastic scattering at high energies

E. C. Pinilla and P. Descouvemont
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We employ a microscopic continuum-discretized coupled-channels reaction framework (MCDCC) to study
the elastic angular distribution of the 7Li = α + t nucleus colliding with 12C and 28Si targets at ELab = 350 MeV.
In this framework, the 7Li projectile is described in a microscopic cluster model and impinges on noncomposite
targets. The diagonal and coupling potentials are constructed from nucleon-target interactions and 7Li microscopic
wave functions. We obtain a fair description of the experimental data, in the whole angular range studied, when
continuum channels are included. The inelastic and breakup angular distributions on the lightest target are also
investigated. In addition, we compute 7Li + 12C MCDCC elastic cross sections at energies much higher than
the Coulomb barrier and we use them as reference calculations to test the validity of multichannel eikonal cross
sections.
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I. INTRODUCTION

Exotic nuclei are at the limit of the stability lines and
exhibit unusual properties, such as a large radius [1]. The
specific properties of these nuclei must be included in the wave
function to compare reaction theories with experiments. Then,
a reliable description of a reaction process involving exotic
nuclei must combine an accurate projectile wave function and
an appropriate reaction model. Light exotic nuclei are known
to group in substructures with their own identities or clusters.
Typical examples are the 7Li nucleus seen as made of α and t
substructures, and the two-neutron halo nuclei 6He and 11Li,
seen as α and 9Li cores plus two neutrons. To describe the
structure of such nuclei, microscopic [2–4] cluster models and
their few-body approximations [5,6] have been implemented.

Few-body approximations of microscopic cluster models
are built on nucleus-nucleus or nucleus-nucleon interactions
and the Pauli principle between clusters is simulated by
a suitable choice of those interactions [7–9]. Even though
they are easier to interpret and to integrate in reaction
models (see, for instance, Refs. [10–12]), they present some
drawbacks, such as (i) the required nucleus-nucleus potentials
are generally poorly known or not known at all; (ii) inaccuracy
introduced by considering the Pauli principle approximately
[13]; and (iii) in most of the calculations, core excitations are
neglected. In contrast, microscopic cluster models are based
on nucleon-nucleon interactions. Hence they are expected to
be more precise. Their main advantages are the following:
(i) they take exactly the Pauli principle into account, and (ii)
core excitations can be included in a direct way. Therefore,
a significant improvement of current reaction calculations in
exotic nuclei should contain a microscopic description of the
projectile.

For weakly bound nuclei, we expect that continuum states
influence most of the reaction processes. At low energies,
around the Coulomb barrier, we can study this influence
within the continuum-discretized coupled-channels (CDCC)
reaction framework [14–16]. This method consists in dis-
cretizing the continuum making square-integrable functions,
which guaranties that continuum-continuum couplings do not

diverge. The continuum discretization is essentially performed
in the following two ways. (i) Variational solutions of the
projectile Hamiltonian are obtained at positive energies. Those
are the pseudostates. (ii) Continuum bins are constructed from
averaging the scattering function over the wave number. At
higher energies, much above the Coulomb barrier, CDCC
calculations could be time demanding, because they imply
many partial waves. Therefore, an eikonal reaction framework
is more suitable. This method relies on some simplifying
assumptions in the high-energy regime. Different versions
and generalizations have been implemented [11,17–22] since
the original Glauber’s publication [23]. In particular, the
eikonal-CDCC method allows one to study the influence of
continuum states in reactions at high energies [20].

A microscopic continuum-discretized coupled-channels
method (MCDCC) has been proposed in Ref. [24]. In this
reference the authors combine a microscopic cluster descrip-
tion of the projectile with the CDCC reaction framework.
They applied the method to study the influence of continuum
states on the elastic and inelastic scattering of an 7Li = α + t

projectile, colliding with a noncomposite 208Pb target at
energies close to the Coulomb barrier. The aim of the present
paper is to extend the study of Ref. [24] of the elastic scattering
of 7Li at much higher energies, where typically approximation
methods are applied, and, on lighter targets, to analyze the
applicability of the model in nuclear dominated reactions.

The method proposed in Ref. [24] and followed in this
work is expected to have a good predictive power for the
following reasons. (i) It relies on microscopic wave func-
tions of the projectile, which are calculated from effective
nucleon-nucleon interactions. These wave functions reproduce
experimental values such as ground state energies, electromag-
netic transition probabilities, etc. (ii) The method is based
on nucleon-target interactions, instead of nucleus-nucleus
interactions, which are available in a wide range of masses
and energies. (iii) There is no free parameter.

The availability of CDCC elastic cross sections at energies
higher than the Coulomb barrier allows us to test the range of
validity of the approximations relying on the multichannel
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eikonal method. Of course, the CDCC calculations are
computationally demanding, but they are exact, provided that
convergence is reached, in the sense that no high-energy
approximations are made.

The paper is organized as follows. In Sec. II we describe
the MCDCC method. Section III is devoted to applying this
method to describe the elastic scattering of 7Li on 12C and
28Si at ELab = 350 MeV. We also illustrate 7Li + 12C inelastic
and breakup angular distributions. In Sec. IV we briefly
describe the eikonal-CDCC approach and we incorporate a
microscopic description of 7Li colliding with a noncomposite
12C target. The high-energy validity of these multichannel
elastic cross sections is particularly tested in Sec. V. Summary
and conclusions are given in Sec. VI.

II. MICROSCOPIC CDCC METHOD

A. Microscopic description of the projectile

An intrinsic state of the projectile with angular momentum
JP , projection on z MP , and parity πP satisfies the Schrödinger
equation

hP �
JP MP πP

i (ξP ) = ε
JP πP

i �
JP MP πP

i (ξP ). (1)

Here ξP = (ξ1,ξ2, . . . ,ξAP
) notates the internal coordinates

of the projectile, where ξk includes the spatial, spin, and
isospin parts. The index i labels bound states (εJP πP

i < 0)
and pseudostates or variational solutions at positive energies
(εJP πP

i > 0) of Eq. (1). If we consider two-body interactions
only, and that protons and neutrons in the projectile have
approximately the same nucleon mass MN , the projectile
Hamiltonian hP is written as

hP =
AP∑
k=1

Tk +
AP∑

k<j=1

Vkj − Tc.m.. (2)

Let us take the projectile of mass mP = mNAP as made of
two cluster nuclei with masses m1 = mNA1 and m2 = mNA2.
The resonating group method (RGM) [25] or its equivalent
generator coordinate method (GCM) [26] provide variational
solutions of the Schrödinger equation, Eq. (1). A GCM wave
function is defined by

�JP MP πP (ξP ) =
∫

dSf JP πP (S)ϒJP MP πP (S), (3)

where S is called the generator coordinate and ϒJP MP πP (S) is
a basis function.

We can construct a nonprojected basis function ϒ as
the antisymmetrized product of two Slater determinants,
each one associated with a cluster nucleus and constructed
from harmonic oscillator shell model orbitals with oscillator
parameter B. If all oscillator parameters of the single-nucleon
orbitals are equal, we can write this basis function as [27]

ϒ(S) = φc.m.Aφ1(ς1)φ2(ς2)
(ρ − S), (4)

where A is the antisymmetrization operator, φi is the wave
function of cluster i with ςi notating its set of translational
invariant coordinates, and φc.m. is the center-of-mass wave
function of the projectile.

Here 
 is the shifted Gaussian function


(ρ − S) =
( μ

πB2

)3/4
e−μ(ρ−S)2/2B2

, (5)

with ρ being the relative coordinate between the center of mass
of the clusters and μ = A1A2/AP .

Equation (4) is projected on angular momentum and parity
[28]. In practice, Eq. (3) is discretized and the coefficients
f JP πP (S), after removing the center of mass, are determined
variationally for bound states and pseudostates.

B. Projectile-target Schrödinger equation

Let us consider the scattering process of a composite
projectile colliding with a noncomposite target. The total
relative projectile-target Hamiltonian is written as

H (R,ξP ) = − �
2

2μPT
∇2

R + hP (ξP ) + V PT(R,ξP ), (6)

where R is the relative coordinate between the center of mass
of the projectile and the target. In spherical coordinates R =
(ϕR,θR,R), with ϕR and θR being the polar and azimuthal
angles, and dR = sin θRdθRdϕR .

The first term on the right-hand side is the relative kinetic
energy with reduced mass μPT = mP mT

mP +mT
, where mP and mT

are the projectile and target masses. The last term is the
projectile-target potential given by

V PT(R,ξP ) =
AP∑
k=1

VkT (R − rk), (7)

where VkT is the interaction of a nucleon k in the projectile
with the noncomposite target. The position rk of a nucleon k
in the projectile is defined from its center of mass.

A partial wave �JMπ (R,ξP ) of total angular momentum
J , with respective projection M and parity π , satisfies the
Schrödinger equation

H�JMπ (R,ξP ) = ET �JMπ (R,ξP ), (8)

with the total energy of the system given by

ET = ε
JP0 πP0
i0

+ Ec.m., (9)

where Ec.m. and ε
JP0 πP0
i0

are the relative energy and internal
energy of the projectile in the entrance channel.

C. CDCC coupled equations

Let us expand the partial wave function �JMπ (R,ξP ) as

�JMπ (R,ξP ) =
∑

iJP πP L

YJMπ
iJP πP L(R,ξP )

χJ
iJP πP L(R)

R
, (10)

with the basis functions

YJMπ
iJP πP L(R,ξP ) = ıL

[
YL ⊗ �i

JP

]JM
. (11)

Here L is the relative orbital angular momentum of the
projectile-target system.

The basis functions (11) satisfy the orthogonality relation〈YJM ′π
i ′J ′

P π ′
P L′

∣∣YJMπ
iJP πP L

〉 = δi ′iδJ ′
P JP

δπ ′
P ,πP

δL′LδM ′M, (12)
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where the Dirac notation indicates integration over R and the
internal coordinates of the projectile.

By inserting the state (10) in the Schrödinger equation (8)
and projecting this equation on the functions (11), we end up
with the following set of coupled differential equations:[

− �
2

2μPT

(
d2

dR2
− L(L + 1)

R2

)
+ εα′ − ET

]
χJ

α′L′(R)

= −
∑
αL

V Jπ
α′L′,αL(R)χJ

αL(R), (13)

with α ≡ {iJP πP }. The diagonal and coupling potentials
V Jπ

α′L′,αL(R) are defined by (see the Appendix)

V Jπ
α′L′,αL(R) = 〈YJMπ

α′L′
∣∣V PT

∣∣YJMπ
αL

〉
=

∑
λ

C
JJP J ′

P

λLL′
〈
�

J ′
P π ′

P

i ′
∣∣∣∣Vλ(R)

∣∣∣∣�JP πP

i

〉
, (14)

with the coefficients

C
JJP J ′

P

λLL′ = (−1)J
′
P +J+ 1

2 (L−L′+λ) L̂L̂′λ̂Ĵ ′
P√

4π

×
(

L′ λ L
0 0 0

){
J J ′

P L′
λ L JP

}
, (15)

where x̂ = √
2x + 1 and we have used the standard notations

of the 3-j and 6-j symbols.
If we use GCM internal wave functions of the projectile, the

reduced matrix element 〈�J ′
P π ′

P

i ′ ||Vλ(R)||�JP πP

i 〉 involves one-
body matrix elements between Slater determinants, which can
be determined systematically [28]. An equivalent procedure is
to employ a folding technique. In this case, the projectile-target
interaction can be obtained by folding the nucleon-nucleus
interactions with the microscopic densities of the projectile. In
this context, the reduced matrix elements are given by [29,30]〈

�
J ′

P π ′
P

i ′
∣∣∣∣Vλ(R)

∣∣∣∣�JP πP

i

〉
= 1

2π2

∫ ∞

0
dqq2jλ(qR)

[
ρ̃

n(λ)
α′,α(q)ṼnT (q)

+ ρ̃
p(λ)
α′,α (q)ṼpT (q)

]
, (16)

where ρ̃
n(λ)
α′,α(q) and ρ̃

p(λ)
α′,α (q) are Fourier multipoles of the

diagonal and transition densities of the projectile. Note that the
index α(α′) is associated with any bound state or pseudostate of
the projectile. The terms ṼnT (q) and ṼpT (q) correspond to the
Fourier transforms of central neutron-target and proton-target
potentials. In the present work, bound and scattering states of
7Li are treated on the same footing and the GCM densities are
determined following Ref. [31].

The main ingredient in reaction calculations is the scattering
matrix that allows one to compute cross sections. This scat-
tering matrix can be determined from the system of equations
(13), which can be solved by different methods [32–35]. In
particular, we use the R-matrix method on a Lagrange mesh
[35]. It mainly consists in dividing the configuration space
into two regions. An internal region, where each radial wave
function χJ

αL(R) is expanded over a finite basis, and an external
region, where each of these radial wave functions has reached

its Coulomb asymptotic behavior. The matching of the wave
function χJ

αL(R) at the boundary a of both regions provides
the collision matrix.

In practice, the sum in Eq. (13) is truncated up to a maximal
value of total angular momentum of the projectile JPmax and
the pseudostates are included up to the determined excitation
energy Emax. The contribution to the elastic cross sections
beyond those values should be negligible.

III. 7Li + 12C and 7Li + 28Si ELASTIC
SCATTERING WITH MCDCC

A. Conditions of the calculations

The calculations are essentially divided into two steps: (i)
computing the coupling potentials (ii) determining the scat-
tering matrix and cross sections. The coupling potentials have
two main ingredients: the projectile bound and pseudostate
wave functions and the nucleon-target potentials.

The conditions to compute the 7Li wave functions are the
same as those in Ref. [24]. The 7Li nucleus is described by an
α + t cluster structure, and the Minnesota nucleon-nucleon
interaction is used. This description provides a spectrum
and a B(E2,3/2− → 1/2−) that are in good agreement with
experiment.

We consider the central parts of optical potentials. The
n-12C and p-12C interactions are taken from Ref. [36] and the
n-28Si and p-28Si interactions from Ref. [37]. The multipole
expansion of the potentials goes up to λmax = 2 in all cases.

To determine the collision matrix we use the R-matrix
method on a Lagrange-Legendre mesh of N = 130 basis func-
tions, with a channel radius of a = 18 fm. Several convergence
tests are performed to check that beyond those values the cross
sections do not vary at the scale of the figures. To compute
the elastic cross sections, partial waves are summed up to
a total angular momentum of the projectile-target system of
Jmax = 200.

B. Elastic cross sections

In Fig. 1 we display the CDCC elastic cross sections of
7Li on 12C and 28Si at ELab = 350 MeV. The cross sections
are computed including various states of 7Li, where positive
and negative parities are considered. We take into account the
breakup channels up to JPmax = 11/2 and a cutoff excitation
energy of Emax = 15 MeV, defined from the α + t threshold.
The calculations for both targets converge at JPmax = 7/2,
which can be understood because the maximum spin of the
well-known cluster state resonances is 7/2 (JπP

P = 7/2−,
Eres � 2.18 MeV).

Figure 1 shows a strong influence on the elastic cross
sections of the excited state and of the breakup channels at
approximately θ > 7◦ for both nuclei. The converged cross
sections are in very good agreement with the experimental
data up to 15◦ for 12C and 10◦ for 28Si. At larger angles, our
predictions overestimate the data by about a factor of 2 for both
systems. Qualitatively, the CDCC calculations in the whole
angular range studied are good predictions because there is no
free parameter.
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FIG. 1. CDCC Elastic cross sections (divided by the Rutherford
cross section) of a composite 7Li impinging on 12C and 28Si targets.
The solid lines labeled G.S. correspond to the single-channel cross
sections. The ones labeled B.S. include the 3/2− and 1/2− bound
states only. The six dashed lines represent the calculations that
consider, in addition to the bound states, the breakup channels up
to a determined JPmax = 1/2–11/2. Each JPmax increases from the top
to the bottom. The curves with JPmax = 7/2–11/2 are superimposed.
The points are the experimental data from Ref. [38].

In Fig. 2 is illustrated the 7Li+28Si elastic cross sections
when Emax is progressively increased. We see that the conver-
gence is reached at Emax ≈ 15 MeV. A similar convergence
behavior is obtained for the 12C target and it is therefore not
shown.
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FIG. 2. Convergence of the CDCC elastic scattering cross section
with the cutoff excitation energy of the projectile Emax. The solid,
dashed, dashed-dotted, and dotted lines correspond to Emax = 7,
11, 15, and 19 MeV, respectively. The calculations include breakup
channels up to JPmax = 7/2. The curve corresponding to Emax =
15 MeV is superimposed with the curve Emax = 19 MeV.
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FIG. 3. Nucleon-28Si elastic cross sections calculated using
different optical potentials. The solid, dashed, and dotted lines
correspond to the KD [37], WP [36], and MD [39] potentials,
respectively.

On the other hand, because the 7Li elastic scattering is
on light targets, the process is nuclear dominated and the
behavior at large angles is strongly influenced by the nuclear
contribution. Thus, we study the sensitivity of the choice of the
nuclear nucleon-target potential, which is one of the inputs of
the model. Figure 3 shows the partial-wave calculation of the
nucleon-28Si elastic cross sections at 50 MeV for three nuclear
optical potentials: the potentials of Koning and Delaroche
(KD) [37], employed to computed the curves in Figs. 1 and 2,
and the potentials of Weppner et al. (WP) [36] and Madland
(MD) [39]. The three potentials have similar Woods-Saxon
functional forms but the MD potential has no surface term.
We can see from Fig. 3 that the n-28Si and p-28Si elastic cross
sections are slightly affected by the choice of the potentials,
although they contain different contributions.

The sensitivity is stronger for the 7Li+28Si scattering.
Figure 4 compares the elastic cross sections using the KD,
WP, and MD nucleon-target optical potentials. The prediction
that uses the MD potential is far from the experimental data,
about 5 times larger. This result suggests that the surface
term is an important ingredient at high energies to compute
nucleus-nucleus elastic cross sections from nucleon-nucleus
optical potentials.

The KD and WP potentials are similar in form. The depth
of the volume imaginary part of the KD potential is 10% larger
than that of the WP potential for the p-28Si case and 20% larger
for n-28Si case. This fact is reflected in Fig. 4, which shows
that the cross sections are slightly affected by the choice of the
potential at large angles (θ > 7◦) with a difference around 20%
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FIG. 4. Influence of the nucleon-target nuclear potential on the
7Li+28Si elastic scattering. The solid, dashed, and dotted lines are
the calculations using the KD [37], WP [36], and MD [39] optical
potentials, respectively.

between them. The 20% difference is the typical uncertainty
that we may expect from a microscopic calculation where no
parameter is fitted.

C. Inelastic and breakup cross sections

In Fig. 5 we illustrate the MCDCC predictions of the
inelastic and breakup angular distributions of the 7Li+12C
system at ELab = 350 MeV, compared with the converged
elastic cross section shown in Fig. 1.

The present description of 7Li assumes a pure α + t
two-cluster structure and neglects the p+6He and n+6Li
channels, which have higher threshold energies. They are
expected to play a minor role in the spectroscopy of low-lying
states. Accordingly, the only breakup channel is α + t . The
breakup angular distribution is estimated by summing over
all individual inelastic excitations from the bound state to a
pseudostate. As expected, the elastic scattering dominates at
small angles, θ < 5◦. At θ > 10◦ the elastic and breakup cross
sections are very close to each other, in correspondence with
the range where the breakup channels influence the elastic
cross section the most (see Fig. 1). The inelastic process is the
less likely one to occur in the whole angular range.
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FIG. 5. CDCC 7Li+12C breakup (solid line), elastic (dashed line),
and inelastic (dashed-dotted line) angular distributions.

IV. MICROSCOPIC EIKONAL-CDCC
ELASTIC SCATTERING

Combining precise projectile wave functions that consider
the internal structure of at least one of the collision partners
should provide a suitable framework of nuclear reaction
studies. However, it increases the complication level both
theoretically and computationally, especially at high ener-
gies when the number of partial waves involved increases.
The approximations relying on the eikonal method make it
simpler and less computationally demanding than the CDCC
calculations.

Some works that utilize in eikonal methods microscopic
cluster wave functions of the projectile and nucleon-target scat-
tering information have been introduced to describe nucleus-
nucleus reactions [40–42]. In particular, we investigate in
Ref. [42] the elastic scattering of an α projectile at high
energies, using a GCM wave function. This wave function
is a four-nucleon Slater determinant corresponding to a single
cluster approximation. As the 4He nucleus is in the ground
state, there is no need for angular projection, which is one of
the main issues in multicluster microscopic calculations.

In the present work, we use a projectile that is more
complicated than the one used in Ref. [42], 7Li, and a
multichannel framework. The microscopic projectile is im-
pinging on a 12C target at 350 MeV. To this end, we use
the eikonal-CDCC method proposed in Ref. [20] and we
incorporate a microscopic description into it.

The eikonal-CDCC method is based on solving the follow-
ing system of first-order differential equations (see Ref. [20]
for details):

i�2Kc

μPT

∂

∂Z
ψ

α0MP0
αMP

(b,Z)

=
∑
α′M ′

P

ei(Kc′ −Kc)ZVαMP ,α′M ′
P
(b,Z)ψ

α0MP0

α′M ′
P

(b,Z), (17)

where we use R in cylindrical coordinates, i.e., R = (b,Z),
with b being the transverse component of R. In Eq. (17) the
superscripts indicate the entrance channel with the set {α0MP0}
and the wave number Kc is defined by

�
2

2μPT
K2

c = ET − εα − �
2

2μPT

(MP − MP0 )2

b2
. (18)

Equation (17) is derived after ignoring the kinetic energy
term in a CDCC-like system of coupled differential equations.
This condition is valid at incident energies much higher than
the Coulomb barrier. System (17) is solved with the initial
condition

ψ
α0MP0
αMP

(b,Z → −∞) = δαα0δMP MP0
. (19)

This condition means that there is a bound state multiplied by
a plane wave in the entrance channel.

The eikonal-CDCC diagonal and coupling potentials are
given by

Vα′M ′
P ,αMP

(R) = 〈
�

J ′
P M ′

P π ′
P

i ′
∣∣V PT

∣∣�JP MP πP

i

〉
,

= ei(MP −M ′
P )ϕRVα′M ′

P ,αMP
(θR,R). (20)
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The Dirac notation stands for integration over the internal
coordinates of the projectile only. The term Vα′M ′

P ,αMP
(θR,R)

is given by (see the Appendix)

Vα′M ′
P ,αMP

(θR,R) =
∑

λ

C̃
JP J ′

P λ

MP M ′
P
P

M ′
P −MP

λ (cos θR)

× 〈
�

J ′
P π ′

P

i ′
∣∣∣∣Vλ(R)

∣∣∣∣�JP πP

i

〉
, (21)

where the coefficients C̃
JP J ′

P λ

MP M ′
P

are defined as

C̃
JP J ′

P λ

MP M ′
P

= (−i)λ
√

(2λ + 1)(λ − M ′
P + MP )!

4π (λ + M ′
P − MP )!

× (JP MP λM ′
P − MP |J ′

P M ′
P ). (22)

The reduced matrix elements in Eq. (21) are common to the
CDCC potentials of Sec. II [Eq. (14)]. They are determined
from Eq. (16).

The elastic angular distribution is calculated from [43]

dσ

d
= 1

2JP0 + 1

∑
M ′

P0
MP0

∣∣fM ′
P0

MP0
(θ )

∣∣2
, (23)

with the elastic scattering amplitude

fM ′
P0

MP0
(θ ) = −2π2

(
2μPT

�2

)
TM ′

P0
MP0

(θ ) (24)

and the transition matrix element TM ′
P0

MP0
[20]

TM ′
P0

MP0
� i−ν+1

�
2

(2π )2μPT

∫ ∞

0
dbbKcJν(Kcbθ )

×(
SM ′

P0
,MP0

(b) − δM ′
P0

MP0

)
, (25)

where Jν is the Bessel function of the first kind of order
ν = |M ′

P0
− MP0 |, and we use the following definition of the

eikonal scattering amplitudes,

SM ′
P0

,MP0
(b) = ψ

MP0

M ′
P0

(b,Z → ∞). (26)

Those are obtained by integrating over Z the system (17) with
a fourth-order Runge-Kutta method. For the 7Li+12C elastic
scattering, we integrate the equations with the step hz = 0.1 fm
up to 30 fm. The integral over b given in Eq. (25) is performed
up to 30 fm with the step hb = 0.1 fm.

The calculation of the scattering matrix elements is from
a bmin to avoid imaginary values of Kc in Eq. (18). There
is almost no effect of this approximation on the elastic
cross section, because the elastic scattering matrix elements
SM ′

P0
,MP0

(b) for b < bmin are negligible in comparison with
those at higher b values (typical bmin < 1 fm). As usual,
to compute the cross sections we separate the Coulomb
projectile-target eikonal scattering amplitudes to get faster
convergence [11].

Figure 6 shows the single-channel (GS) and multichannel
calculations in the eikonal-CDCC reaction framework using
a microscopic α + t projectile. At large angles (θ > 7◦), we
observe an influence of the breakup channels on the elastic
scattering, but the agreement with the experimental data is
poor. In contrast, the CDCC cross section shown in Fig. 1
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/
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FIG. 6. 7Li+12C eikonal-CDCC elastic cross section (divided by
the Rutherford cross section). The solid line labeled G.S. corresponds
to the single-channel cross sections. The one labeled B.S. includes the
3/2− and 1/2− bound states only. The six dashed lines represent the
calculations that consider, in addition to the bound states, the breakup
channels up to a determined JPmax = 1/2–11/2. Each JPmax increases
from the top to the bottom. The curves with JPmax = 7/2–11/2 are
superimposed. The points are the experimental data from Ref. [38].

describes much better the experimental data, indicating that
the collision energy is not high enough for the high-energy
approximation relying on the eikonal-CDCC approach to be
valid. This argument is discussed in detail in the next section.

V. TEST OF THE EIKONAL APPROACH

As we are able to calculate CDCC elastic cross sections
at energies much higher than the Coulomb barrier, let us
take advantage of this fact and consider those as reference
calculations to test the high-energy range of validity of
multichannel eikonal cross sections.

We consider the 7Li+12C system and, in addition to ELab =
350 MeV, we perform calculations at 700 and 1050 MeV. The
conditions to compute the eikonal-CDCC cross sections are the
same as those described for ELab = 350 MeV, with a smaller hb

of 0.05 fm at 700 MeV and 0.01 fm at 1050 MeV. The CDCC
cross sections are obtained with N = 150 and Jmax = 300 at
700 MeV, and with N = 180 and Jmax = 550 at 1050 MeV.
For both cases we use a = 18 fm.

The comparison between the CDCC and eikonal-CDCC
cross sections is displayed in Fig. 7. We include three different
kind of calculations: single channel, breakup channels up to
JPmax = 3/2, and breakup channels up to JPmax = 7/2.

At ELab = 350 MeV, we observe a large difference between
the eikonal-CDCC and CDCC calculations at θ > 7◦. In
addition, the influence of the breakup channels on the elastic
eikonal-CDCC cross sections is much more reduced than in
the CDCC predictions.

We notice that the agreement between both kind of methods
improves at ELab = 700 MeV. Increasing the energy up to
ELab = 1050 MeV reduces the difference between them to
less than 0.15. However, the influence of the breakup channels
on the elastic cross sections becomes very small, which can
be understood because the projectile excitation energies, as
well as the coupling potentials, are much smaller than the
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FIG. 7. (Color online) Comparison between the CDCC (solid
lines) and eikonal-CDCC (dashed lines) elastic cross sections at
different incident energies. The red curves correspond to single-
channel predictions. The green (black) curves are the calculations
including in addition to the bound states the breakup channels up to
JPmax = 3/2 (JPmax = 7/2).

incident energy and therefore we can neglect the projectile
inner motion. This is the main idea behind adiabatic models
[44]. A similar behavior is observed in the CDCC elastic
scattering scattering of 11Be + 64Zn [45].

VI. SUMMARY AND CONCLUSIONS

We use a MCDCC reaction framework [24] to describe
elastic scattering at high energies. This method is applied
to the 7Li = α + t nucleus impinging on the 12C and 28Si
targets. The 7Li nucleus is weakly bound and coupling
with the continuum is expected to play an important role
in the description of the elastic cross section [24]. We
calculate the projectile-target interactions by using a folding
technique, where the main ingredients are the 7Li GCM

wave functions and the nucleon-target potentials. The CDCC
scattering matrix is obtained from solving the CDCC system of
coupled equations through the R-matrix method on a Lagrange
mesh.

First, we compute CDCC elastic cross sections at ELab =
350 MeV, where experimental data are available. We observe
an influence of the breakup channels on the elastic cross
sections. These breakup channels have to be included to get
a better description of the experimental data at large angles
(θ > 7◦). The improvement, with respect to the single-channel
results, is around a factor of 2 for 12C and 4 for 28Si.

Next, we study the influence of the nucleon-target nuclear
potential on the 7Li+28Si cross section. To this end we
use three nucleon-28Si optical potentials. One of them has
no surface imaginary term. This potential provides a cross
section that is very far from the experimental data and from
the other predictions. This result exhibits the importance
of the surface term to predict the 7Li+28Si cross section.
When we use the nucleon-28Si potentials with surface terms,
we obtain a sensitivity around 20% at θ > 7◦. This slight
dependence of the results on the nucleon-target potential is a
good indicator of the reliability of the present model at high
energies, provided that the surface term is included. Besides
the nucleon-target interaction, another input in the model is
the nucleon-nucleon interaction, which provides the densities
of the projectile. Once the nucleon-nucleon and nucleon-target
interactions are fixed, we can study the scattering with no free
parameters. In the present work we address the influence of
the choice of the nucleon-target interaction. The sensitivity of
the nucleon-nucleon interaction should be addressed in future
works.

On the other hand, we compute the eikonal-CDCC elastic
cross section of a microscopic 7Li = α + t impinging on a
noncomposite 12C at ELab = 350 MeV. The eikonal-CDCC
calculation deviates significantly from the CDCC one, which is
closer to the experimental data. The disagreement is explained
because the high-energy validity relying on the multichannel
eikonal treatment is not satisfied. Thus, to test multichannel
eikonal elastic cross sections, we compare the eikonal-CDCC
and CDCC elastic cross sections at different incident energies
for the 12C target, taking as reference the CDCC calculations.
Increasing the incident energy improves the agreement be-
tween the eikonal-CDCC and CDCC calculations, showing
that, for the multichannel eikonal cross sections to be fairly
valid in the whole angular range shown, ELab must be at least
∼1000 MeV. Even though, at such energy, the contribution
of the breakup channels becomes very small. The present
results show that, to observe the influence of the breakup
channels on the elastic scattering of weakly bound nuclei at
high energies, the theoretical and experimental study must not
be performed at energies significantly higher than the Coulomb
barrier. Otherwise, the influence disappears. In addition, the
theoretical study must be performed within the CDCC reaction
framework, because the eikonal-CDCC method is not accurate
at such energies.

This work represents an improved perspective in nucleus-
nucleus scattering at high energies. It can be extended to other
exotic nuclei, such as Borromean nuclei, or to other reactions,
such as inelastic scattering, breakup, or fusion.

054615-7



E. C. PINILLA AND P. DESCOUVEMONT PHYSICAL REVIEW C 89, 054615 (2014)

ACKNOWLEDGMENTS

This text presents research results of the IAP programme
P7/12 initiated by the Belgian-state Federal Services for
Scientific, Technical and Cultural Affairs. E.C.P. is supported
by the IAP programme. P.D. acknowledges the support of
F.R.S.-FNRS, Belgium.

APPENDIX: INTERACTION POTENTIAL

1. Diagonal and coupling potentials used
in the CDCC equations

Let us expand the projectile-target potential in multipoles
as

V PT(R,ξP ) =
∑

λ

(−i)λY
∗M ′

P −MP

λ (R)Vλ(R,ξP ). (A1)

This potential can be rewritten as the sum of products of
multipole tensor operators

V PT =
∑

λ

i−λ(Yλ · Vλ). (A2)

By using the definition (A2), the potentials defined in Eq. (14)
become

V Jπ
α′L′,αL(R)

= 〈YJMπ
α′L′

∣∣V PT
∣∣YJMπ

αL

〉
=

∑
λ

iL−L′−λ
〈[
YL′ ⊗ �i ′

J ′
P

]JM ∣∣Yλ · Vλ

∣∣[YL ⊗ �i
JP

]JM 〉
,

(A3)

where the Dirac notation represents integration over R and
the projectile internal coordinates.

If we use the Wigner-Eckart’s theorem [46] in expression
(A3) we end up with

V Jπ
α′L′,αL(R) =

∑
λ

C
JP J ′

P λ

JLL′
〈
�

J ′
P π ′

P

i ′
∣∣∣∣Vλ(R)

∣∣∣∣�JP πP

i

〉
, (A4)

where

C
JJP J ′

P

λLL′ =(−1)J
′
P +J+ 1

2 (L−L′+λ) L̂L̂′λ̂Ĵ ′
P√

4π

×
(

L′ λ L
0 0 0

){
J J ′

P L′
λ L JP

}
. (A5)

2. Diagonal and coupling potentials used in the
eikonal-CDCC equations

Let us define the diagonal and coupling potentials depend-
ing on R by

Vα′M ′
P ,αMP

(R) = 〈
�

J ′
P M ′

P π ′
P

i ′
∣∣V PT

∣∣�JP MP πP

i

〉
, (A6)

where the Dirac notation stands for integration over the internal
coordinates of the projectile. If we introduce the expansion
(A1) in Eq. (A6) we get

Vα′M ′
P ,αMP

(R)

=
∑

λ

(−i)λ(JP MP λM ′
P − MP |J ′

P M ′
P )

× Y
∗M ′

P −MP

λ (R)
〈
�

J ′
P π ′

P

i ′
∣∣∣∣Vλ(R)

∣∣∣∣�JP πP

i

〉
. (A7)

Here we have used the Wigner-Eckart’s theorem.
By expressing the spherical harmonics in terms of the

associate Legendre polynomials we have

Vα′M ′
P ,αMP

(R) = 〈
�

J ′
P M ′

P π ′
P

i ′
∣∣V PT

∣∣�JP MP πP

i

〉
,

= ei(MP −M ′
P )ϕRVα′M ′

P ,αMP
(θR,R), (A8)

with

Vα′M ′
P ,αMP

(θR,R) =
∑

λ

C̃
JP J ′

P J

MP M ′
P
P

M ′
P −MP

λ (cos θR)

× 〈
�

J ′
P π ′

P

i ′
∣∣∣∣Vλ(R)

∣∣∣∣�JP πP

i

〉
(A9)

and

C̃
JP J ′

P J

MP M ′
P

= (−i)λ
√

(2λ + 1)(λ − M ′
P + MP )!

4π (λ + M ′
P − MP )!

× (JP MP λM ′
P − MP |J ′

P M ′
P ). (A10)

[1] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida,
N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and
N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).

[2] K. Wildermuth and Y. C. Tang, in A Unified Theory of the
Nucleus, edited by K. Wildermuth and P. Kramer (Vieweg,
Braunschweig, 1977).

[3] Y. Suzuki and K. Varga, Stochastic Variational Approach to
Quantum-Mechanical Few-Body Problems, Lecture Notes in
Physics Vol. 54 (Springer, Berlin, 1998).

[4] T. Kajino, Nucl. Phys. A 460, 559 (1986).
[5] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J.

Thompson, and J. S. Vaagen, Phys. Rep. 231, 151 (1993).
[6] B. V. Danilin, I. J. Thompson, J. S. Vaagen, and M. V. Zhukov,

Nucl. Phys. A 632, 383 (1998).
[7] D. Baye, Phys. Rev. Lett. 58, 2738 (1987).

[8] I. J. Thompson, B. V. Danilin, V. D. Efros, J. S. Vaagen, J. M.
Bang, and M. V. Zhukov, Phys. Rev. C 61, 024318 (2000).

[9] V. I. Kukulin and V. N. Pomerantsev, Ann. Phys. 111, 330
(1978).

[10] G. Goldstein, D. Baye, and P. Capel, Phys. Rev. C 73, 024602
(2006).

[11] D. Baye, P. Capel, P. Descouvemont, and Y. Suzuki, Phys. Rev.
C 79, 024607 (2009).

[12] J. S. Al-Khalili, R. Crespo, R. C. Johnson, A. M. Moro, and
I. J. Thompson, Phys. Rev. C 75, 024608 (2007).

[13] E. C. Pinilla, D. Baye, P. Descouvemont, W. Horiuchi, and
Y. Suzuki, Nucl. Phys. A 865, 43 (2011).

[14] G. H. Rawitscher, Phys. Rev. C 9, 2210 (1974).
[15] M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, and

M. Kawai, Prog. Theor. Phys. Suppl. 89, 32 (1986).

054615-8

http://dx.doi.org/10.1103/PhysRevLett.55.2676
http://dx.doi.org/10.1103/PhysRevLett.55.2676
http://dx.doi.org/10.1103/PhysRevLett.55.2676
http://dx.doi.org/10.1103/PhysRevLett.55.2676
http://dx.doi.org/10.1016/0375-9474(86)90428-8
http://dx.doi.org/10.1016/0375-9474(86)90428-8
http://dx.doi.org/10.1016/0375-9474(86)90428-8
http://dx.doi.org/10.1016/0375-9474(86)90428-8
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1016/S0375-9474(98)00002-5
http://dx.doi.org/10.1016/S0375-9474(98)00002-5
http://dx.doi.org/10.1016/S0375-9474(98)00002-5
http://dx.doi.org/10.1016/S0375-9474(98)00002-5
http://dx.doi.org/10.1103/PhysRevLett.58.2738
http://dx.doi.org/10.1103/PhysRevLett.58.2738
http://dx.doi.org/10.1103/PhysRevLett.58.2738
http://dx.doi.org/10.1103/PhysRevLett.58.2738
http://dx.doi.org/10.1103/PhysRevC.61.024318
http://dx.doi.org/10.1103/PhysRevC.61.024318
http://dx.doi.org/10.1103/PhysRevC.61.024318
http://dx.doi.org/10.1103/PhysRevC.61.024318
http://dx.doi.org/10.1016/0003-4916(78)90069-6
http://dx.doi.org/10.1016/0003-4916(78)90069-6
http://dx.doi.org/10.1016/0003-4916(78)90069-6
http://dx.doi.org/10.1016/0003-4916(78)90069-6
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.79.024607
http://dx.doi.org/10.1103/PhysRevC.79.024607
http://dx.doi.org/10.1103/PhysRevC.79.024607
http://dx.doi.org/10.1103/PhysRevC.79.024607
http://dx.doi.org/10.1103/PhysRevC.75.024608
http://dx.doi.org/10.1103/PhysRevC.75.024608
http://dx.doi.org/10.1103/PhysRevC.75.024608
http://dx.doi.org/10.1103/PhysRevC.75.024608
http://dx.doi.org/10.1016/j.nuclphysa.2011.06.030
http://dx.doi.org/10.1016/j.nuclphysa.2011.06.030
http://dx.doi.org/10.1016/j.nuclphysa.2011.06.030
http://dx.doi.org/10.1016/j.nuclphysa.2011.06.030
http://dx.doi.org/10.1103/PhysRevC.9.2210
http://dx.doi.org/10.1103/PhysRevC.9.2210
http://dx.doi.org/10.1103/PhysRevC.9.2210
http://dx.doi.org/10.1103/PhysRevC.9.2210
http://dx.doi.org/10.1143/PTPS.89.32
http://dx.doi.org/10.1143/PTPS.89.32
http://dx.doi.org/10.1143/PTPS.89.32
http://dx.doi.org/10.1143/PTPS.89.32


MICROSCOPIC DESCRIPTION OF 7Li IN 7Li . . . PHYSICAL REVIEW C 89, 054615 (2014)

[16] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher,
and M. Yahiro, Phys. Rep. 154, 125 (1987).

[17] D. Baye, P. Capel, and G. Goldstein, Phys. Rev. Lett. 95, 082502
(2005).

[18] J. Margueron, A. Bonaccorso, and D. M. Brink, Nucl. Phys. A
703, 105 (2002).

[19] B. Abu-Ibrahim and Y. Suzuki, Prog. Theor. Phys. 112, 1013
(2004).

[20] K. Ogata, M. Yahiro, Y. Iseri, T. Matsumoto, and M. Kamimura,
Phys. Rev. C 68, 064609 (2003).

[21] P. Capel, D. Baye, and Y. Suzuki, Phys. Rev. C 78, 054602
(2008).

[22] E. C. Pinilla, P. Descouvemont, and D. Baye, Phys. Rev. C 85,
054610 (2012).

[23] R. J. Glauber, in Lectures in Theoretical Physics, Vol. 1, edited
by W. E. Brittin and L. G. Dunham (Interscience, New York,
1959), p. 315.

[24] P. Descouvemont and M. S. Hussein, Phys. Rev. Lett. 111,
082701 (2013).

[25] J. A. Wheeler, Phys. Rev. 52, 1083 (1937).
[26] H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977).
[27] H. A. Bethe and M. E. Rose, Phys. Rev. 51, 283 (1937).
[28] D. Brink, in Proceedings of the International School of Physics

“Enrico Fermi,” Course XXXVI, Varenna, 1965 (Academic
Press, New York, 1966), p. 247.

[29] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183
(1979).

[30] D. T. Khoa and G. Satchler, Nucl. Phys. A 668, 3 (2000).
[31] D. Baye, P. Descouvemont, and N. K. Timofeyuk, Nucl. Phys.

A 577, 624 (1994).

[32] F. M. Nunes and I. J. Thompson, Phys. Rev. C 59, 2652 (1999).
[33] M. Ichimura, M. Igarashi, S. Landowne, C. H. Dasso, B. S.

Nilsson, R. A. Broglia, and A. Winther, Phys. Lett. B 67, 129
(1977).

[34] P. C. Huu-Tai, Nucl. Phys. A 773, 56 (2006).
[35] T. Druet, D. Baye, P. Descouvemont, and J.-M. Sparenberg,

Nucl. Phys. A 845, 88 (2010).
[36] S. P. Weppner, R. B. Penney, G. W. Diffendale, and G. Vittorini,

Phys. Rev. C 80, 034608 (2009).
[37] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).
[38] A. Nadasen, J. Brusoe, J. Farhat, T. Stevens, J. Williams,

L. Nieman, J. S. Winfield, R. E. Warner, F. D. Becchetti, J.
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