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Reexamining surface-integral formulations for one-nucleon transfers to bound and resonance states
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One-nucleon transfer reactions, in particular (d,p) reactions, have played a central role in nuclear structure
studies for many decades. Present theoretical descriptions of the underlying reaction mechanisms are insufficient
for addressing the challenges and opportunities that are opening up with new radioactive beam facilities.
We investigate a theoretical approach that was proposed recently to address shortcomings in the description
of transfers to resonance states. The method builds on ideas from the very successful R-matrix theory; in
particular, it uses a similar separation of the coordinate space into interior and exterior regions and introduces
a parametrization that can be related to physical observables, which, in principle, makes it possible to extract
meaningful spectroscopic information from experiments. We carry out calculations, for a selection of isotopes
and energies, to test the usefulness of the new approach.
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I. INTRODUCTION

Deuteron-induced reactions, in particular (d,p) one-neutron
transfer reactions, have been used for decades to investigate
the structure of nuclei. These reactions, carried out in inverse
kinematics, are expected to play a central role in the study
of weakly bound systems at modern radioactive beam facili-
ties [1]. While the theoretical framework and its computational
implementation for describing (d,p) reactions have seen much
progress over the decades, open questions remain and need to
be addressed. Resonances, for example, occur in all nuclei
and are of special interest in the low-energy spectra of weakly
bound nuclei. Their properties, in particular their energies and
widths, are of great interest to nuclear astrophysics, as many
reactions that occur in astrophysical environments proceed
through resonances. Furthermore, resonances provide both
challenges and stringent tests for nuclear structure models,
as predicting their properties involves a proper treatment of
the nuclear many-body system including the continuum [2].

Current theoretical descriptions of transfer reactions that
populate resonance states suffer from two major shortcom-
ings. On the practical side, one has to deal with numerical
convergence issues, as the matrix element that describes the
transition to the final state includes contributions from very
large distances outside the nucleus. Conceptually, it is also not
clear what spectroscopic information can be extracted from a
transfer to a resonance. A clear connection between experi-
mental transfer observables and typical resonance parameters
remains to be established.

Recently, a new formalism that utilizes concepts known
from the successful and popular R-matrix theory was proposed
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for the description of deuteron-induced reactions [3]. R-matrix
theory is a standard tool for extracting resonance properties
such as energies and widths from nucleon capture and
scattering experiments [4,5], and the new approach establishes
a similar link between resonance properties and transfer reac-
tions. The formalism covers transfers to bound and resonance
states and is general enough to include deuteron breakup.

A central tenet of the formalism proposed in Ref. [3] is
the recasting of the reaction amplitude, a volume integral, in
terms of a surface integral plus (presumably small) remnant
terms that contain contributions from the interior and exterior
of the final nucleus. Interior and exterior are defined with
respect to the distance between the transferred nucleon and
the target nucleus. The surface-integral formalism, as we refer
to it here, holds the potential to overcome present difficulties
in describing transfers to resonance states and to become a
practical method for extracting structure information from
transfer experiments, because (1) it reduces the dependence of
the cross section calculations on the model used for the nuclear
interior, (2) it avoids the convergence problems that affect
traditional calculations of transfers to resonances, and (3) it
establishes a useful link between resonance properties and
transfer observables, because the cross section obtained from
the surface integral can be parametrized in terms of quantities
that are familiar from traditional R-matrix approaches.

It is the purpose of this paper to test the formalism proposed
in Ref. [3]. In particular, we study the role of interior and
exterior contributions to the cross sections, for both post and
prior formulations of the transfer amplitudes. This allows us
to draw some conclusions about the sensitivity of the post
and prior expressions to model assumptions made about the
nuclear interior. We then investigate the relative contributions
from the surface term and the residual interior and exterior
terms to the transfer cross section and the dependence of these
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contributions on the chosen radius a at which the surface
integral is evaluated. This is done to assess to what extent
the surface term captures the essentials of the reaction and
reproduces the full cross section. The calculations are carried
out in the framework of the distorted-wave Born approxima-
tion (DWBA) formalism. The implications for generalizing the
study to the continuum-discretized coupled-channels (CDCC)
formalism [6], which incorporates effects of deuteron breakup
in the reaction, are briefly considered.

In the next section, Sec. II, we summarize the formalism
developed in Ref. [3], in particular the introduction of
“exterior” and “interior” contributions to the transfer matrix
element and the emergence of a surface term. In Sec. III,
we investigate the contributions of the interior, surface, and
exterior terms to the transfer cross sections. Our findings are
summarized in Sec. IV.

II. REVIEW OF THE FORMALISM

In the R-matrix approach for a binary reaction [4,5], the
configuration space is separated into two regions: an exterior
region, in which the reaction partners are well-separated
and interact only via the Coulomb interaction (for charged
particles), and an interior region, where a confined compound
system exists that is governed by nuclear and Coulomb forces.
Formally, the nuclear wave function in the interior is expanded
in some suitable set of basis functions, while in the exterior,
it takes the form of a scattering wave function, and matching
conditions are imposed at the surface. In typical applications,
the parameters (resonance energies and width parameters) are
adjusted to reproduce measured cross sections. This approach
makes it possible to parametrize the collision matrix, and thus
the calculated cross section, in terms of a few formal R-matrix
parameters, which can then be related to observed quantities.
R-matrix theory [4] is typically employed in the description
of binary reactions, such as elastic or inelastic scattering, or
capture reactions, but the underlying ideas can be applied more
generally.

For reactions of the type A(d,p)F , where A denotes the
target and F the residual nucleus, Mukhamedzhanov [3]
introduced an analogous separation of the model space into
interior and exterior regions. The separation into the different
regions is based on the distance rnA of the deposited neutron
from the center of the target nucleus. The standard DWBA
transition matrix element can be written in post or prior
form [7],

M (post) = 〈ϕF χ
(−)
pF |�VpF |ϕdϕAχ

(+)
dA 〉

= 〈
IF
A χ

(−)
pF

∣∣�VpF |ϕdχ
(+)
dA 〉, (1)

M (prior) = 〈ϕF χ
(−)
pF |�VdA|ϕdϕAχ

(+)
dA 〉

= 〈
IF
A χ

(−)
pF

∣∣�VdA|ϕdχ
(+)
dA 〉, (2)

where ϕA and ϕF denote the wave functions of the initial
(A) and final (F = A + n) nuclei, respectively, and IF

A (rnA) =
〈ϕA|ϕF 〉 is the associated overlap function, which depends on
the coordinate of interest, rnA. In applications, this is typically
approximated by a single-particle wave function obtained from
a potential-model calculation [8,9]. The distorted waves in

the entrance and exit channels are given by χdA and χpF ,
respectively, and ϕd is the deuteron wave function.

Post and prior forms require different transition operators,

�VpF = Vpn + VpA − UpF (post), (3)

�VdA = VnA + VpA − UdA (prior), (4)

respectively. In the post form, �VpF contains the interaction
between the proton and the target nucleus (VpA), the proton-
neutron interaction (Vpn), and the optical potential for the
exit channel (UpF ), while in the prior form, �VdA contains
the interaction between the neutron and the target (VnA), the
proton and the target (VpA), and the optical potential in the
entrance channel (UdA). The interactions include both nuclear
and Coulomb terms. In the first-order distorted-wave approach,
post and prior formulations give identical matrix elements,
provided the interactions and wave functions are chosen con-
sistently [7]. This implies, e.g., that the deuteron wave function
ϕd has to be an eigenfunction of the potential Vpn (prior form),
and that the overlap function IF

A has to be an eigenfunction of
VnA (post form). Similarly, UdA and UpF have to be consistent
with the distorted waves χdA and χpF , respectively.

While post and prior forms are equivalent, historically
there has been a preference for using the post formalism
for describing (d,p) reactions. One advantage of using the
transition operator in Eq. (3) over using the one in Eq. (4) is that
it lends itself to the approximation VpA − UpF ≈ 0 and Vpn is
short-ranged, which makes it possible to treat the interaction
between proton and neutron inside the deuteron in a zero-range
approximation [7]. In addition, the Johnson-Soper model [10],
an early description of deuteron stripping and elastic scattering
that includes the effects of deuteron breakup, is formulated in
the post form and makes use of the zero-range approximation.
Similarly, the Johnson-Tandy [11] extension of the model to
finite range uses the post form. One disadvantage of the post
form, however, is that for stripping reactions that populate
resonance final states, convergence becomes difficult. Unlike
in the prior case, where contributions from the long tails of
resonance wave functions are suppressed by the short-range
nature of the interactions in Eq. (4), post calculations typically
have contributions from the resonance wave function at very
large distances rnA, owing to the Vpn term.

In both the post and the prior formulations, the transition
matrix element can be separated into two parts,

M (DWBA) = Mint(0,a) + Mext(a,∞), (5)

where a refers to the specific value chosen for the coordinate
rnA, for which to carry out the separation. The interior term
involves an integration from rnA = 0 to rnA = a, while the
exterior term involves an integration from rnA = a to very
large radii, rnA → ∞. In Sec. III, we illustrate that for typical
(d,p) transfer reactions and separation radii roughly equal
to the size of the target nucleus, the main contributions
to the post-form matrix element come from the exterior
region, while the prior-form matrix element is dominated by
interior contributions from further inside the nucleus. This is
significant; as in Ref. [3], it was further demonstrated that
Green’s theorem can be employed to convert the post-form
exterior matrix element into a surface integral plus a prior-form
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exterior matrix element:

M
(post)
ext (a,∞) = Msurf(a) + M

(prior)
ext (a,∞). (6)

Using this in the post version of Eq. (5), the full DWBA
matrix element becomes

M (DWBA) = M
(post)
int (0,a) + Msurf(a) + M

(prior)
ext (a,∞). (7)

The same result is obtained if one starts with a consideration
of the prior form and expresses the interior part in terms of a
surface integral and remaining contributions from the interior,

M
(prior)
int (0,a) = Msurf(a) + M

(post)
int (0,a). (8)

The interior post term in Eq. (7) involves an integration over
the overlap function IF

A (rnA) for small rnA; i.e., it depends on
a model for the nuclear interior. The exterior prior and surface
terms, however, are related to the asymptotic properties of the
overlap function, as long as a is outside the boundary of the
neutron binding potential.

For transfer reactions that populate resonance reactions,
this surface formulation is particularly attractive. In Ref. [3],
it was shown that the surface term Msurf(a), which is evaluated
at a specific radius a, can be parametrized by quantities that
are familiar from traditional R-matrix approaches, namely
a channel radius (here the separation radius a), logarithmic
boundary conditions (here logarithmic derivatives of known
Hankel functions), and reduced-width amplitudes (here related
to the asymptotic normalization of the overlap function).
Thus, a useful link between resonance properties and transfer
observables could be established.

A dominant surface matrix element would reduce the
dependence of the cross-section calculations on the model
used for the interior portion of the overlap function.

In the next section we investigate the relative contributions
of interior, surface, and exterior terms for various target nuclei
and at various reaction energies. We focus on the DWBA
implementation.

III. INTERIOR, SURFACE, AND EXTERIOR
CONTRIBUTIONS TO THE TRANSFER CROSS SECTION

Transfer cross sections calculated in the DWBA framework
are proportional to the square of the full matrix element
M (DWBA) given in Eqs. (5) and (7). To better assess the
relevance of the various contributions for realistic situations,
we begin with a full cross section calculation, with model
parameters selected to reasonably reproduce measured (d,p)
cross sections. We then repeat each cross-section calculation
with all contributions other than the term of interest set to zero
and compare the resulting cross section to the full calculation.

This comparison is made in one of two ways. (1) We
compare the peak value of the angular cross section obtained in
the restricted calculation to that obtained in the full calculation.
This is done when we are interested in the dependence of the
contribution on the separation radius a. In that case we plot
the ratio

RX(a) = σ̂
(DWBA)
X(a)

σ̂
(DWBA)
exact

, (9)

where σ̂
(DWBA)
exact denotes the peak value of the full (angular)

cross section, and σ̂
(DWBA)
X(a) is the peak value of the angular

cross section obtained by including only the term X(a), for
X(a) = Mint(0,a), Msurf(a), or Mext(a,∞). We consider the
first (smallest-angle) peak, as this peak plays a prominent role
in comparisons of calculations with experimental data. (2) For
specific cases of interest, we also compare the angular behavior
of the cross section σ

(DWBA)
X(a) to σ

(DWBA)
exact . Focusing in particular

on σ
(DWBA)
Msurf(a) allows us to assess to what extent the surface term

is able to describe the reaction considered.
In our study, we included target nuclei from different mass

regions and considered different beam energies. Here we
present representative calculations for the target nuclei 20O,
48Ca, and 90Zr. Additional cases (12C, 40Ca, 208Pb) give similar
results. For the 90Zr case, we considered transfer reactions with
Ed = 11 MeV [12]. We calculated cross sections for transfers
to the 5/2+ ground state, the 1/2+ first excited state, and
a narrow f7/2 resonance state that lies about 1 MeV above
the neutron separation threshold of 7.195 MeV. For 48Ca,
we studied three different beam energies, Ed = 13, 19.3, and
56 MeV [13,14], and considered reactions involving both the
3/2− ground state and first excited 1/2− state in 49Ca. The
20O(d,p) reaction was recently studied in inverse kinematics
at equivalent deuteron energy Ed = 21 MeV. Measurements
were carried out for transfers to two bound states (5/2+ ground
state and 1/2+ first excited state) and two resonance states
(a 3/2+ resonance at Eex = 4.77 MeV and a resonance at
Eex = 6.17 MeV, which has either 3/2+ or 7/2− character.)
We carried out calculations for the two bound states and the
two resonances, considering both spin-parity assignments for
the second resonance.

Finite-range DWBA calculations were carried out with
a modified version of the reaction code FRESCO [15] that
allowed setting specific contributions to the transition matrix
element to zero. The Reid soft-core potential [16] was used
to describe the deuteron. We used the deuteron-nucleus
optical-model potential by Daehnick et al. [17] and employed
the Koning-Delaroche potential [18] for the proton-nucleus
interaction. The manner in which we calculated the surface
term, as a difference between prior-interior and post-interior
contributions [Eq. (8)], requires good post-prior agreement.
We therefore matched the approximation used by the FRESCO

code, specifically the omission of the spin-orbit term in UdA

and UpF in the transition operators [Eqs. (3) and (4)], by
eliminating this term also from the optical-model potential in
the entrance and exit channels. To still carry out comparisons
to experimental results, small adjustments to the potential
parameters were made to reproduce the elastic scattering cross
section, where available, and to improve the fit of the full
calculations with measured (d,p) cross sections. We verified
that the overall conclusions of our study are not affected by
these changes in potential parameters. For final bound states,
the overlap function was approximated by a single-particle
function in a Woods-Saxon well, with a depth adjusted to
reproduce the proper binding energy. For resonance states,
we adopted a bin description for the overlap function. Bin
functions are momentum-averaged continuum wave functions
�(r) =

√
2

πN

∫ k2

k1
w(k)φk(r)dk [with N = ∫ k2

k1
|w(k)|2dk]
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that are square integrable and orthogonal to bound states
and to each other (provided the momentum ranges do not
overlap) [15]. Here φk(r) is a positive-energy scattering state
of the potential. If the radius of integration over r is taken
to be sufficiently large, the bin functions are normalized and
the transfer calculations converge. For the narrow resonances
considered here, we used a weight function of the form
w(k) = exp(−iδk)sin(δk), where δk is the scattering phase shift
for φk(r).

We first consider the separation of the full matrix element
into an interior and an exterior contribution, as given in Eq. (5).
Subsequently, we study the separation into three terms, given
in Eq. (7) and discuss the role of the surface term relative to
the other contributions.

A. Interior and exterior contributions: Post vs prior formalism

Transfer experiments are often carried out under conditions
that presumably make the reaction peripheral; i.e., they probe
the overlap function in the region of the nuclear surface. The
primary contributions to the transfer matrix elements should
therefore come from rnA values that are roughly equal to the
size of the target nucleus. Our calculations, however, will
illustrate that the importance of a particular nuclear region
depends on the form (post or prior) chosen. The potential
well used for calculating the one-neutron overlap functions
of various states in 91Zr with the ground state of 90Zr had a
radius of 5.53 fm and a diffuseness of 0.66 fm; the rms radius
of the overlap associated with the 5/2+ 91Zr ground state was
4.94 fm.

Figure 1 shows the contributions to the transfer cross section
arising from the interior and exterior terms in Eq. (5). Results
for the post and prior forms are given in the top and bottom
panels, respectively. The ratio RX(a) of the calculated peak
cross section to the peak cross section obtained in the full
calculation, is given as a function of the separation radius a. As
expected, for small separation radii, the exterior terms contain
all cross section contributions (RMext(a) → 1 for a → 0) and
for very large radii, the interior terms carry the bulk of the
cross section (RMint(a) → 1 for a → ∞). In both post and
prior cases, contributions to the transition matrix element
are very small for radii below 2 fm as well as for radii
above 15 fm, as indicated by curves that are largely flat
in those regions. The interesting region, however, is where
the crossover from interior-dominated to exterior-dominated
occurs. We observe that this crossover lies at much smaller
radii when the prior formulation is used than in the post
formulation.

In the post formulation, integration over rnA from 0 out to 7–
8 fm yields less than 30% of the peak cross section, while in the
prior formulation such integration captures over 80% (see post
and prior interior contributions). Similarly, when considering
exterior contributions in the post form, it suffices to integrate
from 4–5 fm on out, while in the prior form contributions
from about 2 fm out have to be included. At the same time,
the region beyond rnA ≈ 7–8 fm contributes little in the prior
form.

This illustrates that, although the full post and prior DWBA
amplitudes are equal, their behavior is quite different in the
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FIG. 1. (Color online) Examination of the role of interior and
exterior contributions for 90Zr(d,p)91Zr stripping to the ground state.
Shown is RX(a), the ratio of the peak cross section obtained when
only one term (either Mint or Mext) is included in the transition matrix
element in Eq. (5) to the peak cross sections obtained in the full
calculation. The quantity is given as a function of the separation
radius a, for both the post (a) and the prior (b) formalisms.

subspace over the variable rnA. The prior formulation is clearly
more sensitive to the nuclear interior (and thus to model
assumptions about the interior structure), while contributions
from more peripheral parts of the n + target system dominate
the post form. [The radial shape of the overlap function can
be seen in the upper portion of Fig. 2(b).] The reason for this
behavior can be found in the difference in the structure of the
transition operators, Eqs. (3) and (4). For sufficiently large
rnA, the three terms in �VdA will cease to contribute to the
prior transition matrix element, while Vpn in �VpF can still
produce non-negligible contributions to the post form (VpA

and UpF approximately cancel each other). It is the presence
of Vpn in the post-form matrix element that makes convergence
of the radial integrals difficult when the overlap function IF

A

describes a resonance [19,20].
Calculations for (d,p) reactions on other nuclei (C, O, Ca,

Pb) show similar trends for bound states. For resonance states
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(e) f7/2 resonance
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FIG. 2. (Color online) Examination of interior, surface, and exterior contributions to the transfer reaction 90Zr(d,p)91Zr. Compared are
several calculations for stripping to the 5/2+ ground state (top panels), the 1/2+ first excited state (middle panels), and the f7/2 resonance
(bottom panels). (Left column) Angular cross sections calculated from the surface term only (broken curves) are compared to the full stripping
cross section (solid black lines) and experimental data from Ref. [12]. The broken curves illustrate the dependence of the cross section on the
choice of the surface radius a. (Right column) Fractions RX(a) for the interior (post) term, the surface term, and the exterior (prior) term are
given as functions of the surface radius in the lower portion of each panel. The ratios take values between zero and ≈2.2 (labels are on the left
axis). The associated one-neutron overlap functions I are shown in the upper portion of each panel (solid curves with stars). They are given in
units of fm−1; labels are on the right axis. The rms radii of the overlaps are indicated by dashed vertical lines. The potential VnA, which binds
the neutron to the 90Zr nucleus, has a radius of 5.53 fm and a diffuseness of 0.66 fm.
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we find reduced contributions from the nuclear interior, but
additional complications arise, as discussed in Sec. III B.

B. Role of the surface term

To assess whether it is possible to approximate the (d,p)
transfer cross section by a calculation based solely on the
surface term, it is necessary to investigate the contributions of
the three terms in Eq. (7) to the full cross section.

To calculate the terms M
(post)
int (0,a) and M

(prior)
ext (a,∞),

respectively, we set the overlap function to zero for rnA > a
in the first case and for rnA < a in the second case. The
surface term is calculated in first-order DWBA as Msurf(a) =
M

(prior)
int (0,a) − M

(post)
int (0,a). We discuss our findings next.

1. 90Zr(d, p)91Zr: Transfers to bound and resonance states

We carried out a set of calculations for 90Zr(d,p)91Zr that
included stripping to the (bound) ground and first excited
states, as well as to a narrow f7/2 resonance at about 1 MeV
above the neutron separation threshold. The panels in the right
column of Fig. 2 show the ratios RX(a) of the peak cross
sections obtained in the restricted calculations to the peak
cross section from the full calculation, as a function of the
separation radius a. Also shown is the radial behavior of the
one-neutron overlap functions I (solid curves with stars) for
the three final states considered; their rms radii are indicated
by dashed vertical lines.

We find that for bound final states, the surface term is
dominant at around 6–8 fm, at radii a little larger than the
rms values of the overlap functions. For the resonance case,
panel (f), we observe that the surface term is dominant at
slightly larger radii, around 7–10 fm, even though the overlap
function has an rms value that is still larger, namely 11.7 fm.
In addition, the surface term in the resonance case is nonzero
over a wider range of radii than it is in the bound-state case.

We also observe that the surface term does not fully account
for the cross section. At all separation radii for which Msurf(a)
dominates, there are also remnant contributions from one or
both of the other terms, Mint(0,a) and Mext(a,∞). As a result,
the surface term alone does not completely reproduce the
angular behavior of the cross section. This can be seen in the
left column of the figure, where the cross sections calculated
by using the surface terms only are compared to the full cross
sections (solid curves) for selected separation radii a.1 The
calculated cross sections show some dependence on the choice
of a, and the absence of the other terms is clearly significant.

1For transfer to the 91Zr ground state, there is a clear discrepancy in
shape between the full calculations and the cross sections calculated
with the surface term, with the latter not exhibiting the upturn at
small angles. In fact, in the region below 10◦, the measured cross
section does not exhibit this upturn. The full calculation is not able
to reproduce the experimental data correctly without introducing a
(somewhat artificial) lower cutoff in the integration. This issue has
already been discussed in the literature; see, e.g., Ref. [21], p. 456.

2. 48Ca(d,p)49Ca: Energy dependence of the surface term

It is known that with increasing beam energy a reaction
becomes less peripheral and is increasingly affected by the
structure of the nuclear interior. This effect is visible in
Fig. 3, where results are presented for 48Ca(d,p)49Ca, for
populating the ground state of 49Ca, at three different beam
energies, Eb = 13.0, 19.3, and 56 MeV. With increasing
energy the region where the transition from exterior-dominated
to interior-dominated occurs and, where the surface term
dominates, shifts to smaller radii.

The first two cases resemble the Zr example discussed,
with a dominant surface term around a = 6.5 and 7.0 fm,
respectively, that approximately reproduces the shape of
the full cross section but underpredicts the magnitude. For the
highest beam energy considered, Ed = 56 MeV, however, the
surface term peaks at smaller radii, around a = 5.25 fm. In this
region, there are sizable contributions from the post-interior
and the prior-exterior terms. The angular behavior of the cross
section for this case also confirms that at this energy, the surface
term does not provide a good approximation to the full cross
section. There is a strong dependence of the shape of the cross
section on the separation radius chosen. Calculations carried
out for transfers to the first excited state in 49Ca give very
similar results (not shown). In both cases, the surface term
does not provide a good representation of the reaction for the
higher energies, but shows clear improvements as one moves
to lower energies, Ed = 19.3 and 13.0 MeV: The shape of the
calculated cross section becomes less dependent on the choice
of the surface radius a and better approximates the exact cross
section.

3. 20O(d,p)21O: Focus on resonances

Achieving convergence for transfer calculations involving
resonances has long been known to be difficult and we
find this again in the calculations presented here. Numerical
convergence is an issue; ambiguities in how to extract struc-
ture information (resonance energies and widths) is another.
Various methods have been suggested to achieve numerical
convergence [19,22], but their implementation in modern
reaction codes is incomplete. Here we investigate to which
extent the surface term is able to reproduce the full cross
sections for several resonances. A surface term that captures
the essentials of the reaction would reduce the dependence
of the calculated cross section on slowly converging radial
integrals. Furthermore, it would provide strong motivation for
the implementation of the formalism within the framework of
the CDCC approach, as deuteron breakup contributions are
included in that case.

We focus on the 20O(d,p)21O reaction, which was re-
cently investigated in inverse kinematics with a radioactive
beam [23]. This is one of very few cases where angular
cross sections for both bound and resonance states have
been measured in the same experiment. Using a 10.5 MeV/u
20O beam, it was possible to obtain angular cross sections
for one-nucleon transfers populating the bound ground and
first excited states, as well as resonances at 4.77 and
6.17 MeV (lying 0.96 and 2.36 MeV above threshold,
respectively).
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(c) Ed = 19.3 MeV
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(e) Ed = 56.0 MeV
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FIG. 3. (Color online) Examination of interior, surface, and exterior contributions for 48Ca(d,p)49Ca. Compared are several calculations
for stripping to the 3/2− ground state, at Ed = 13, 19.3, 56 MeV (top to bottom). (Left column) Contributions from the surface term (broken
curves) are compared to the full stripping cross section (solid black lines) for various choices of the surface radius. Data are from Metz et al. [13]
(13, 19.3 MeV) and Uozumi et al. [14] (56 MeV). (Right column) Contributions resulting from the interior (post) term, the surface term, and
the exterior (prior) term, are given as functions of the surface radius. The rms radius of the associated one-neutron overlap function is 4.62 fm.
The potential VnA, which binds the neutron to the 48Ca nucleus, has a radius of 4.54 fm and a diffuseness of 0.65 fm. Results for transfers to
the 1/2− first excited state in 49Ca are very similar, but are not shown here.
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FIG. 4. (Color online) Radial behavior of the one-neutron over-
lap functions associated with three resonances in 21O (in fm−1). The
resonance energies are indicated in the figure. For the resonance at
6.17 MeV we consider two possible spin-parity assignments.

We have carried out calculations for (d,p) reactions
populating these four final states in 21O. We adopted the
recommended spin-parity assignments from Ref. [23], namely
5/2+ and 1/2+ for the ground and first excited states,
respectively, and 3/2+ for the resonance at Eex = 4.77 MeV.
Because there is some ambiguity as to whether the resonance
at Eex = 6.17 MeV has 3/2+ or 7/2− character, we considered
both possibilities. As in the Zr and Ca cases, we carried out full
calculations and reproduced the measured cross sections. We
then studied the contributions from the interior post, surface,
and exterior prior terms as functions of the separation radius a.

For (d,p) transfers to the two bound states, we found results
(not shown here) that are qualitatively similar to those shown
in Fig. 2 for the zirconium case. The surface terms peak around
a = 5 fm and the shape of the full cross section is reproduced
by the surface term only, with the overall magnitude being too
small by about 20%–40%.

Calculations for the resonances were more challenging.
This was expected, because these were carried out in the
traditional DWBA approach that does not make use of any
simplifications that the surface approach might offer. The
one-neutron overlap functions associated with the resonances
exhibit oscillations that decline in amplitude only very slowly
with increasing radial coordinate, as seen in Fig. 4. As a
result, there are contributions to the post-form matrix element
[Eq. (1)] from far outside the nucleus that have to be taken into
account, while contributions from large distances to the prior-
form matrix element [Eq. (2)] are suppressed by the transition
operator. Naturally, this does not only cause problems for the
full calculations (when carried out in the post formalism), but
also for the calculations of the post-interior contributions, as
can be seen in Fig. 5. Even for separation radii a = 20 fm,
we find that the ratio RMint(0,a) for the interior-post calculation
does not approach unity. To reach this limit, integration out to
very large radii (on the order of 100 fm) is required. The prior
calculation does not require integration to such large distances,
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(b) d3/2, E = 6.17 MeV
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FIG. 5. (Color online) Examination of interior, surface, and ex-
terior contributions for transfers to resonance states in 21O. Contri-
butions resulting from the interior (post) term, the surface term, and
the exterior (prior) term are given as functions of the surface radius.
Cross-section results are shown for the 3/2+ resonance at 4.77 MeV
(a) and the 6.17-MeV resonance, assuming a 3/2+ state (b) or a
7/2− (c). The associated overlap functions are shown in Fig. 4. The
potential VnA, which binds the neutron to the 20O nucleus, has a radius
of 3.39 fm and a diffuseness of 0.65 fm.
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(f) f7/2, E=6.17 MeV 
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FIG. 6. (Color online) Improvements to the surface-term-only approximation can be achieved by including contributions from the prior-
exterior term and selecting a small surface radius. Panels (b), (d), (f) compare the surface-only results (dashed curves) and the surface plus
interior-prior results (dash-dotted curves) to the full calculation (solid lines) and to experimental results, for three different resonance cases in
21O. The calculations were carried out at surface radii that coincide with the maxima of the surface contributions shown in Fig. 5, specifically
(b) a = 5.0 fm for a 3/2+ resonance at 4.77 MeV, (d) a = 5.5 fm for a 3/2+ resonance at 6.17 MeV, and (f) a = 5.5 fm for a 7/2− resonance
at 6.17 MeV. The left column shows the effect of decreasing the surface radii by 0.5 fm. Results are shown for the same three resonance cases.
Cross sections arising from the surface term are seen to decrease, but cross sections associated with the sum of the surface and the prior-exterior
term show better agreement with the exact results.
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as the interactions in �VdA [Eq. (3)] cease to contribute to the
transition matrix element at much smaller radii. The exact
cross sections shown here were calculated in the prior form.

Despite the convergence challenges, a region around
rnA ≈ 4–7 fm can be identified for which both prior-exterior
contributions and post-interior contributions are small. We
calculated the surface term and the associated (d,p) cross
sections for several values of a in this region, to test to which
extent the surface term is able to reproduce the full cross
section. As in the Zr and Ca cases, we find that the cross
sections calculated from the surface term only do not reproduce
the full cross sections. The discrepancies are an indication that
the remaining terms cannot be completely neglected.

The comparisons of the surface cross sections with the
full cross sections are shown in panels (b), (d), and (f) of
Fig. 6. There we also discuss an option for improving on the
surface-term-only approximation to the (d,p) stripping cross
section.

C. Improvements to the surface-integral approach

In the previous section we studied the contributions from
the interior-post, surface, and exterior-prior terms to the (d,p)
cross sections for several target nuclei. In all cases, for both
bound and resonance final states, we found that the surface
term gives the dominant contributions, provided a separation
radius is chosen that is in the region of the nuclear surface.
When comparing to exact calculations of the cross sections,
however, we also found that significant strength is missing,
which indicates that the residual terms cannot be neglected.
In the region where the surface cross section peaks, we find
contributions from both the interior-post and the exterior-prior
terms.

A possible path forward for practical applications is to
select a separation radius a that is slightly smaller than the
radius corresponding to the peak of the surface term. This
will minimize contributions from the post-interior term, thus
removing the need for a model for the one-nucleon overlap
function in the nuclear interior. With a decrease in the surface
radius comes an increase in the contribution from the prior-
exterior term. Taking this term explicitly into consideration
is necessary for achieving a proper description of the cross
section in the DWBA approach tested here.

We illustrate the effect of including this term in Fig. 6,
where we compare the surface-only cross sections (dashed
curves) and the surface-plus-post-interior calculations (dash-
dotted curves) to the exact calculations (solid lines) for the
21O resonances discussed in the previous section. Available
experimental data are shown as well. The surface calculations
shown in the right column were calculated with separation
radii a = 5.0, 5.5, and 5.5 fm, for a 3/2+ resonance at 4.77
MeV, a 3/2+ resonance at 6.17 MeV, and a 7/2− resonance at
6.17 MeV, respectively. These choices for the radius a coincide
with the maxima of the surface contributions shown in
Fig. 5. As mentioned above, the curves fall clearly short of
reproducing the full cross section. Also shown are calculations
that contain both surface and prior-exterior contributions
(dash-dotted curves). We observe a slight improvement in
the agreement with the exact calculation, but additional

contributions (from the post-interior term) would be needed
to achieve satisfactory agreement.

Moving the separation radius to smaller values, however,
improves the situation, as a comparison between the right and
left columns shows. In panels (a), (c), and (e) we compare
the surface-only results (dashed curves) and the surface plus
interior-prior results (dash-dotted curves) to the full calculation
(solid lines). The radii are selected to be 0.5 fm smaller than in
the right column. While this shift in a reduces the surface-only
cross section, it increases the cross section arising from the the
exterior-prior term, with the sum giving a better approximation
to the exact cross section. When moving to smaller radii, which
improves the agreement of the surface-plus-prior-exterior
approximation with the exact result, care must be taken to
remain at a radius a for which the nuclear potential VnA can
be approximately neglected. In the present case, the potential
binding the neutron to the 20O target has fallen to 15% of its
maximum strength at a = 4.5 fm and to 8% of its strength at
a = 5.0 fm.

The exterior term, which involves an integral over rnA from
a to very large distances, includes contributions from the same
operator �VdA [see Eq. (2)] that also causes deuteron breakup.
In CDCC calculations, deuteron breakup is explicitly included
through the use of a wave function 
CDCC that describes the
three-body dynamics between the neutron, proton, and target
nucleus. We thus expect the CDCC implementation of the
surface-integral formalism to contain a remnant exterior term
that is reduced relative to the DWBA case. This issue remains
to be investigated in detail.

Instead of moving to smaller surface radii, one might
consider to increase a and include explicitly the contributions
from the post-interior term. A test of this strategy (not shown)
indicates that this as well leads to improvements in the
calculated cross section. The drawback of this latter approach,
however, is that it requires a model for the one-nucleon
overlap function in the nuclear interior. It will still be an
improvement over the traditional calculations because (i) the
interior contribution, and thus the model-dependence, of the
cross section is reduced and (ii) the dominant part of the cross
section can be parametrized in terms of useful spectroscopic
quantities. We expect these arguments to carry over to the
CDCC implementation of the theory. An extension of the
present work that will make this possible is under way.

IV. SUMMARY AND OUTLOOK

Experimentally, resonance structures are most often studied
in elastic and inelastic scattering reactions. In this context,
the phenomenological R-matrix approach has been extremely
useful for the interpretation of experiments and for extracting
resonance energies and widths from measured cross sec-
tions [4,5].

A formalism that makes use of R-matrix ideas and is
applicable to (d,p) transfer reactions was recently proposed [3]
with the goal to provide a practical way for extracting structure
information from transfer experiments. In this approach, the
transfer amplitude, a volume integral, was reformulated in
terms of a surface integral plus (presumably small) remnant
terms that contain contributions from the interior and exterior
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of the final nucleus. The formalism has a series of significant
advantages over traditional calculations for cases where the
surface-integral dominates the associated cross section.

We investigated the proposed approach for various isotopes
in different mass regions and for a variety of beam energies.
In particular, we studied the separation of the transition matrix
element into the three terms suggested in Ref. [3] and deter-
mined their contributions to the total transfer cross sections.

We find that the surface term is dominant in the region
where one expects it to be strong, near 5–7 fm for bound states,
and at slightly larger radii for resonance states. At all radii
there are also contributions from the post-interior and/or prior-
exterior terms. As a result, the surface term does not completely
reproduce the exact cross section. For low to moderate energies
(below about Ed ≈ 20 MeV), the shape of the cross section
is reproduced, but the magnitude differs by as much as 30%–
50%. It is clearly necessary to include additional contributions.

Possible remedies include increasing the surface radius,
which leads to improved cross sections, at the expense of
having a model-dependent contribution from the nuclear
interior (albeit one that is smaller than the model dependence
in traditional calculations). Alternatively, one can decrease
the chosen surface radius. In the DWBA implementation of
the method, this will require the explicit inclusion of external
(prior) contributions. In the CDCC extension of the approach,
we expect these external contributions to be partially accounted
for by the deuteron breakup components that are included in
the CDCC formalism.

If the latter strategy is followed, the surface-integral
approach has potentially very significant advantages over
conventional calculations: (1) It removes the dependence of
the cross-section calculations on the model used for the nuclear
interior. (2) The calculations do not suffer from convergence
issues. (3) The method establishes a useful link between
resonance properties and transfer observables, because the
cross section obtained from the surface integral can be
parametrized in terms of quantities that are familiar from
traditional R-matrix approaches. The strategy is constrained
by the requirement that a be outside the nuclear potential VnA

and can thus only be employed for peripheral reactions.
Because the CDCC formalism describes both transfers and

breakup, an extension of the present work is worth exploring.
Work along these lines is under way.
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