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We theoretically demonstrate the inclusive and semiexclusive spectra in the 3He(K−, π∓) reactions at
600 MeV/c (4◦) within a distorted-wave impulse approximation, using a coupled (2N − �) + (2N − �) model
with a spreading potential. We present the possible existence of the �NN quasibound state with J π = 1/2+, T �
1 near the � threshold, predicted by a 2N − Y folding-model potential derived from YN g-matrices. The result
shows that a signal of the 3

�He quasibound state is clearly confirmed near the � threshold in the π− spectrum,
whereas a peak of the 3

�n quasibound state is rather reduced in the π+ spectrum owing to the interference effects
caused by the 3S1-1S0 admixture in the NN pair. The mechanism of � production for these spectra and charge
symmetry breaking effects are also discussed.
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I. INTRODUCTION

One of the most important subjects on strangeness nuclear
physics is to understand properties of a � hyperon in nuclei
as well as �N interaction [1]. The � hyperon is expected to
play an essential role in the description of the �NN three-body
force in hypernuclei [2], and the maximal mass and particle
fraction of neutron stars or compact stars [3]. However, the �N
interaction has still been in quantitative ambiguities because
the �N scattering data are very limited [1,4].

In the 1990s, many efforts were made in � hypernuclear
studies on s- and p-shell nuclei using (K−, π∓) reactions
at CERN, BNL, and KEK [5,6]. It has been known that
there is no evidence of a � nuclear state [7], except 4

�He
which is established to be a quasibound (or unstable bound)
state experimentally [8–10], as predicted in Ref. [11]. Saha
et al. [12] reported that there is a strong repulsion in the real
part with a sizable imaginary part of the �-nucleus potential
analyzing nuclear (π−, K+) spectra on C, Si, Ni, In, and Bi
targets. This repulsion originates from the �N 3S1, I = 3/2
channel that corresponds to a quark Pauli-forbidden state in
baryon-baryon systems in the flavor SU(6) symmetry [13].

Several theoretical works [14–18] performed to investigate
the �NN systems that have total isospin T = 0, 1, 2 and
total spin S = 1/2, 3/2. Garcilazo [14] showed that the
�−nn system with T = 2 has no bound state in a Faddeev
calculation with a separable �N potential, and Stadler and
Gibson [15] confirmed it using the Jülich potential. Afnan
and Gibson [16] demonstrated that an enhancement in the �d
cross section near the � + N + N threshold is associated with
a resonance pole of the �NN states having T = 0, S = 1/2
in the scattering amplitude. Dover et al. [17] discussed the
spin-isospin selectivity of the �N → �N conversion decay
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in the �NN states, assuming that the isospin and spin of the
NN pair, I2 and S2, are good quantum numbers. Their results
suggested that the �NN state with T = 0, S = 1/2 is the best
candidate to be bound and relatively long lived when the NN
state takes I2 = 0, S2 = 1 [5]. It should be noticed that the
NN states with (I2,S2) = (1,0) and (0, 1) admix each other
in the �NN state. Indeed, Koike and Harada [18] performed
three-body �NN coupled-channel calculations, leading to the
fact that there exist quasibound states of T = 1, S = 1/2 in
the isotriplet (3

�He, 3
�H, 3

�n) where the �N potential strongly
admixes (I2,S2) = (1,0) and (0, 1) states in the NN pair.
Recently, Garcilazo et al. [19] have shown that a narrow
quasibound state with � � 2.1 MeV exists near the � threshold
in the T = 1, S = 1/2 channel in �NN systems, using Faddeev
�NN-�NN calculations with NN and YN potentials derived
from a chiral constituent quark model. Consequently, one
naively expects that the �NN quasibound state exists near
the � threshold whenever a modern YN potential is used.

On the other hand, it has been recognized that there is
no evidence of a narrow �NN quasibound state (3

�n) below
the � threshold in the 3He(K−, π+) reaction at BNL-E774
experiments [20]. These contradictory arguments are still not
settled: Is there a quasibound state in �NN systems?

In this paper, we theoretically demonstrate the inclusive
and semiexclusive spectra in 3He(K−, π∓) reactions at 600
MeV/c (4◦) within a distorted-wave impulse approximation
(DWIA), using a coupled (2N − �) + (2N − �) model with
a spreading potential. We focus on the behavior of signals of
the �NN quasibound states observed as 3

�He and 3
�n in π− and

π+ spectra, respectively, in order to study the �N interaction
and also a mechanism of � production for these spectra.

In a previous paper [21], we reported theoretical calcula-
tions of 3He(K−, π∓) spectra at 600 MeV/c, using the 2N − Y
folding-model potential with g-matrices derived from the NFS

potential [22] that simulates the Nijmegen model F [23]. The
result suggested that there are quasibound states in the �NN
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systems. However, the folding models using NFS were not able
to systematically explain � binding energies of 3

�H, 4
�He, 4

�He∗,
and 5

�He. One of the prescriptions to solve this overbinding
problem of s-shell � hypernuclei [24] may be to consider the
coherent �N − �N coupling [2]. The D2 potential [2,25]
is a central version of the YN potential that simulates the
Nijmegen model D [26], and it is fulfilled in the coherent
�N − �N coupling. In this paper, therefore, we use a slightly
modified potential (D2′) that is adjusted to the binding energies
of s-shell hypernuclei [27].

The outline of this paper is as follows. In Sec. II, we will
briefly mention the DWIA framework for 3He(K−,π∓) reac-
tions, employing the coupled (2N − �) + (2N − �) model
in a Green’s function technique [28,29]. In Sec. III, we will
construct an effective 2N − Y potential within a microscopic
folding model with YN g-matrices, and will discuss the
structure of the �NN quasibound states, taking into account
threshold effects due to the mass difference among � hyperons
and the Coulomb forces. A pole position for the �NN
quasibound state is obtained on the complex E plane. In
Sec. IV, we will demonstrate the calculated spectra of the
3He(K−,π∓) reactions at 600 MeV/c to see a possible signal
of the �NN quasibound state, which might be observed in
forthcoming experiments at J-PARC facilities [4]. In Sec. V,
we will discuss the sensitivity of the π∓ spectra to a pole
position of the �NN quasibound state. We will consider the
reason why the peak of a 3

�n quasibound state populated in the
π+ spectrum is not observed, and compare the calculated π+
spectrum with the data observed in BNL-E774 experiments.
Summary and conclusion are given in Sec. VI. In the Appendix,
we will report binding energies of 3

�H, 4
�He, 4

�He∗, and 5
�He

obtained by the folding-model calculations with D2′, and
interference effects for cross sections by (K−, π∓) reactions
owing to the 3S1-1S0 admixture of the NN pair.

II. CALCULATIONS

Let us consider a theoretical framework for 3He(K−,π∓)
reactions. Here we treat hypernuclear final states classified as

K−3He → π−pp�,

π−d�+,
(1)

π−pn�+,

π−pp�0,

for the π− spectrum, and those as

K−3He → π+nn�,

π+d�−,
(2)

π+pn�−,

π+nn�0,

for the π+ spectrum. It seems that an impulse approximation
works well in K− capture at incident K− beam of pK− =
600 MeV/c [30]. Figure 1 illustrates typical diagrams for
physical processes for the (K−, π∓) reactions. We will
calculate these spectra within the distorted-wave impulse

π

Λ, ΣΣ+

π

Λ, ΣΛ/Σ0

π

Λ, ΣΣ−

FIG. 1. Diagrams for hypernuclear (K−, π∓) reactions on a
3He target: (a) K− + p → π− + �+, (b) K− + n → π− + � or
K− + n → π− + �0, and (c) K− + p → π+ + �− reactions in the
impulse approximation.

approximation (DWIA) for the (2N − �) + (2N − �) model
with a spreading potential [31], as we mention in this section.

A. Model wave functions

In our calculation, we consider a model wave function �A

of the 3He ground state (Jπ = 1/2+,T = 1/2) as a target
nucleus, in the LS-coupling scheme. It is given by

|�A〉 = Â[[
φ

(2N)
0 ⊗ ϕ

(N)
0

]
LA

⊗ XA
TA,SA

]MA

JA
,

(3)
XA

TA,SA
= [

χ
(2N)
I2,S2

⊗ χ
(N)
1/2,1/2

]
1/2,1/2,

where Â is the antisymmetrized operator for nucleons, φ
(2N)
0

is the wave function of a 2N -core subsystem, and ϕ
(N)
0

is the relative wave function between 2N and N for a
2N − N system in the 3He ground state. XA

TA,SA
is the

isospin-spin function for 3He, and χ
(2N)
I2,S2

and χ
(N)
1/2,1/2 are

the isospin-spin functions for 2N (isospin I2, spin S2) and
N (IN = 1/2,SN = 1/2), respectively. Here we obtain the
wave function ϕ

(N)
0 using the 2N − N potential U (N) that was

derived from microscopic three-body calculations [11] with
a central potential of Tamagaki’s C3G [32]. This potential
can reproduce the experimental data of the binding energy of
BN = 8.07 MeV and the nuclear root-mean-square distance of
〈R2〉1/2 = 2.64 fm for the 2H + p system in 3He [33].

For hypernuclear YNN final states, we consider wave
functions �B for 2N − Y systems with Jπ on physical particle
(charge) bases. The wave functions are written by

|�B〉 =
∑

α

[[
φ(2N)

α ⊗ ϕ
(Y )
�Y

]
LB

⊗XB
Yα,Sα

]MB

JB
,

(4)
XB

Yα,Sα
= [

χ
(2N)
I2,S2

⊗ χ
(Y )
IY ,1/2

]
Yα,Sα

,

where ϕ
(Y )
�Y

is the relative wave function between 2N and Y

with the angular momentum �Y , and XB
Yα,Sα

is the isospin-spin
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TABLE I. Hypernuclear final states in (K−,π∓) reactions on a
3He target and the threshold mass of the 2N − Y particle channels.

Reactions Channels Mth ωth Mth I2 S2 Sα

α (MeV) (MeV) (MeV)

(K−, π−) {pp}� 2992.3 183.8 0.0 1 0 1/2
[pn]�+ 3065.0 256.6 72.8 0 1 1/2, 3/2
{pn}�+ 3067.2 258.8 75.0 1 0 1/2
{pp}�0 3069.2 260.8 77.0 1 0 1/2

(K−, π+) {nn}� 2994.8 186.4 0.0 1 0 1/2
[pn]�− 3073.0 264.6 78.3 0 1 1/2, 3/2
{pn}�− 3075.2 266.8 80.5 1 0 1/2
{nn}�0 3071.6 263.2 77.0 1 0 1/2

function for 2N − Y in the α channel; χ (Y )
IY ,1/2 is the isospin-spin

function for Y (isospin IY , SY = 1/2). The channel indices α
indicate the final states as listed in Table I, where {N1N2} =
N1N2 + N2N1 and [N1N2] = N1N2 − N2N1 denote the 2N
states with 1S0, I = 1 and 3S1, I = 0, respectively. Since a spin-
flip process in (K−,π∓) reactions at low momentum regions,
e.g., pK− = 600 MeV/c may be negligibly small, as seen in
Sec. II E, we consider only spin Sα = 1/2 for the 2N − Y
systems formed from 3He, omitting Sα = 3/2. Therefore, we
take the 2N − Y final states on JB = |LB ± 1/2| with LB =
0,1, . . . ,Sα = 1/2, where JB and LB are the total and orbital
angular momenta, respectively.

We use the wave functions φ(2N)
α , which are obtained with

the C3G potential. The wave function φ(2N)
α for the [pn] (3S1,

I = 0) state has a nuclear bound state with BN = 2.22 MeV for
2H(Jπ = 1+). Because there is no bound state in the {pp} (1S0,
I = 1) state, we use a continuum-discretized wave function
φ̃

(2N)
α,i which is obtained in the momentum bin method [34],

φ̃
(2N)
α,i (r) = 1√

k

∫ ki+1

ki

φ(2N)
α (k,r)dk, (5)

where k = ki+1 − ki , and r and k are the radial coordinate
and the momentum between two nucleons, respectively. The
scattering wave function φ(2N)

α (k,r) satisfies the Schrödinger
equation (

Tα + v(NN)
α (r) − εα

)
φ(2N)

α (k,r) = 0 (6)

with the energy εα = k2/2μ (>0), where μ is the reduced mass
of the 2N system. This method is often used in continuum-
discretized coupled-channel (CDCC) calculations [34], and it
may work well in continuum dynamics involving NN breakup
processes. Here we used the only lowest discretized state with
k0 = 0.0 fm−1 and k = 0.20 fm−1 for the {pp} state.

Figure 2 shows the wave functions φ(2N)
α of the [pn] and

{pp} states, together with the intranuclear 2N wave function
φ

(2N)
0 in the 3He ground state, which is derived from three-body

calculations with the C3G potential.

B. Distorted-wave impulse approximation

According to the DWIA [28,35–37], the inclusive differen-
tial cross section for nuclear (K−, π ) reactions in the laboratory

FIG. 2. Behaviors of the radial wave functions of the NN states,
rφ(2N)(r), as a function of the relative distance r between the nucleons.
The solid and long-dashed-dot curves denote the wave functions
for {pp} and [pn], respectively. The dashed curve denotes the
intranuclear NN wave function in the 3He ground state, which is
obtained by three-body calculations. All of the wave functions are
calculated with the central Tamagaki’s C3G potential [32].

frame is given by (in units � = c = 1)

d2σ

dEπd�π

= β
1

[JA]

∑
MA

∑
B

|〈�B |F̂ |�A〉|2

×δ(Eπ + EB − EK − EA) (7)

with the strangeness-exchange external operator including
zero-range K−N→πY interactions

F̂ =
∫

d r χ (−)∗
π ( pπ ,r)χ (+)

K ( pK,r)

×
A∑

j=1

f̄(Yπ)(ωK̄N )δ(r − rj )Ôj , (8)

where [J ] = 2J + 1; Eπ , EK , EB , and EA are energies of an
outgoing π∓, an incoming K−, the hypernuclear state, and
the target nucleus, respectively. The baryon operator Ôj can
change the j th nucleon into a hyperon in the nucleus, and r is
the relative coordinate between the mesons and the center of
mass of the nucleus; f̄(Yπ) is the Fermi-averaged amplitude for
the K− + N → π + Y reaction in the nuclear medium on the
laboratory frame, where ωK̄N is the total energy of K− − N
subsystems.

The momentum and energy transfer to the 2N − Y final
state in these reactions is given by

q = pK − pπ , ω = EK − Eπ, (9)

where pK and pπ (EK , Eπ ) are the laboratory momenta
(energies) of the incident K− and outgoing π∓ in the
many-body K− + A → π + A

Y B∗ reaction, respectively. The
kinematical factor β in Eq. (7) [38,39] expresses the translation
from the two-body K− − N laboratory system to the K− − A
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laboratory system [40], which is given by

β =
(

1 + E(0)
π

E
(0)
Y

p(0)
π − p

(0)
K cos θlab

p
(0)
π

)
pπEπ

p
(0)
π E

(0)
π

, (10)

where p
(0)
K and p(0)

π (E(0)
π and E

(0)
Y ) are momenta of K− and

π (energies of π and hyperon) in the two-body K− + N →
π + Y reaction, respectively.

The distorted waves χ (−)∗
π and χ

(+)
K in Eq. (8) express the

outgoing π and incoming K− ones, respectively [41]:

χ (−)∗
π ( pπ ,r)χ (+)

K ( pK,r) =
∑

λ

√
4π [λ]iλj̃λ(θlab,r)Y 0

λ (r̂),

(11)

where j̃λ(θlab,r) is the radial distorted wave with the angular
momentum λ, and θlab is the scattering angle to the forward
direction in (K−, π ) reactions. The computational procedure
for the distorted waves is simplified with the help of the eikonal
approximation [35,42] because the distortions for mesons are
not so important in few-body systems.

According to the Green’s function method [28,29], we can
rewrite a sum of the final states in Eq. (7) as

∑
B

|�B〉〈�B |δ(E − EB) = − 1

π
ImĜ(E). (12)

Thus the inclusive differential cross section is written by

d2σ

dEπd�π

= β
1

[JA]

∑
MA

Sπ , (13)

where the strength function is given by

Sπ = − 1

π
Im〈F |Ĝ(E)|F 〉, (14)

where |F 〉 denotes the 2N − Y doorway states excited initially
by external field, which is defined as

|F 〉 ≡ F̂ |�A〉, (15)

involving the f (Yπ) amplitudes.

C. Coupled-channel Green’s functions

The Green’s function method [28,29] facilitates parametriz-
ing complicated many-body effects in a simple and tractable
way, keeping the proper aspects of quantum mechanical
systems. This technique can well describe an unstable hadron
nuclear system such as a �−, �−, or K− nuclear state [29].
The complete Green’s function G in Eq. (14) [43] provides
all information concerning hyperon-nucleus dynamics as a
function of the energy transfer ω = EB − EA, which is related
to the energy EY = EB − (mY + MC) = −BY measured from
the Y+core-nucleus threshold, where mY and MC are masses
of the Y and the core nucleus, respectively. Here we will
consider 2N − Y states within coupled (2N − �) + (2N −
�) channels with a spreading potential [30].

For 2N − Y final states, the complete Green’s function in
the P space is given by

Ĝ(ω) = P
1

ω − Ĥ + iε
P, (16)

where Ĥ is the total Hamiltonian of the 2N − Y system with
Ĥ |�B〉 = EB |�B〉, and P is Feshbach’s projection operator
for the model space we consider. Then we can calculate the
complete Green’s function by solving the following equation:

Ĝ(ω) = Ĝ(0)(ω) + Ĝ(0)(ω)ÛĜ(ω), (17)

where Ĝ(0) is the free Green’s function for the 2N − Y system,
and Û is the operator of a potential energy for the relative
motion between 2N and Y . In order to extend it to a coupled-
channel system, we introduce projection operators of Pα into
the α channel in the P space, where P = ∑

α Pα . In the case
of P = Pα + Pα′ , for example, we obtain

Ĝ(ω) = (Pα + Pα′ )Ĝ(ω)(Pα + Pα′ )

= Ĝαα(ω) + Ĝαα′ (ω) + Ĝα′α(ω) + Ĝα′α′ (ω), (18)

where we define Ĝαα′ (ω) = PαĜ(ω)Pα′ . The complete
Green’s function for αα′ channels satisfies the following
multichannel coupled equation:

Ĝαα′ (ω) = Ĝ(0)
α (ω)δαα′ + Ĝ(0)

α (ω)
∑

γ

Ûαγ Ĝγα′ (ω). (19)

Solving this coupled equation numerically, we obtain the
complete Green’s function Ĝαα′ (ω) [44]. Here we use partial
waves of Ĝαα′ (ω) with JB as a function of the relative distance
R between 2N and Y , and its explicit form is written as

G
JB

YαY ′α′(ω; R,R′)

=
∑
LM

�
(LS)JBMB

Yα (R̂)
∣∣φ(2N)

α

〉g(αα′)JB

YY ′ (ω; R,R′)
RR′

×〈
φ

(2N)
α′

∣∣�(LS)JBMB

Y ′α′ (R̂′)† (20)

with

�
(LS)JBMB

Yα (R̂) = [
YLB

(R̂) ⊗ XB
Yα,Sα

]JBMB

Yα
, (21)

where g
(αα′)J
YY ′ (ω; R,R′) is the relative Green’s function for

YαY ′α′ channels. The explicit form of the double-differential
cross section of Eq. (13) is written as

d2σ

d�πdEπ

=
∑

Jλαα′YY ′
f

∗
(Yπ)f (Y ′π)C

∗
YαCY ′α′

×〈
φ(2N)

α

∣∣φ(2N)
0

〉∗〈
φ

(2N)
α′

∣∣φ(2N)
0

〉
(−)S

′+S+2JA

×[JB][λ]
√

[LA][LB][L′
A][L′

B] I
(αα′)JB

YY ′NN ′ (θlab,ω)

×
(

LB λ LA

0 0 0

) {
JB λ JA

LA S LB

}

×
(

L′
B λ L′

A

0 0 0

) {
JB λ JA

LA′ S ′ LB ′

}
(22)

with

I
(αα′)JB

YY ′NN ′ (θlab,ω) = (−)
1

π
Im

∫ ∞

0
dRdR′RR′ϕ(N)

0 (R)

× j̃
(+)∗
λ

(
θlab,

MC

MA

R

)
g

(αα′)JB

YY ′ (ω; R,R′)

× j̃
(+)
λ

(
θlab,

MC

MA

R′
)

ϕ
(N)
0 (R′),

(23)
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TABLE II. Isospin-spin spectroscopic factor CYα for the 2N–Y

channel.

Reactions Channels CYα

(K−, π−) {pp}� −1
[pn]�+ √

3/2
{pn}�+ √

1/2
{pp}�0 −1

(K−, π+) {nn}� −1
[pn]�− √

3/2
{pn}�− √

1/2
{nn}�0 −1

where the factor of MC/MA denotes the recoil effects, leading
to the effective momentum transfer of (MC/MA)q. The
isospin-spin spectroscopic factor for the 2N − Y channel is
obtained as

CYα = 〈
XB

Y,S

∣∣ A∑
j=1

Ôj

∣∣XA
TA,S

〉
. (24)

In Table II, we show the values of CYα for non-spin-flip
processes, which are seemed to be dominant ones in nuclear
(K−, π ) reactions near 600 MeV/c.

D. The decomposition of the inclusive cross
sections into components

The inclusive cross sections can be decomposed into
partial cross sections corresponding to different physical
processes [28,29,45], as classified in Table I. We obtain the
decomposition of the strength function Sπ of Eq. (14) as

Sπ− = S
{pp}�
π− + S

[pn]�+
π− + S

{pn}�+
π− + S

{pp}�0

π− + S
(Conv)
π−

(25)

for the π− spectrum, and that as

Sπ+ = S
[pn]�−
π+ + S

{pn}�−
π+ + S

{nn}�0

π+ + S
(Conv)
π+ (26)

for the π+ spectrum. The partial strength functions are defined
by

Sα
π = − 1

π
〈F |�̂(−)†(ImĜ(0)

α

)
�̂(−)|F 〉,

(27)

S(Conv)
π = − 1

π

∑
αα′

〈F |Ĝ†
αWαα′Ĝα′ |F 〉,

where we used the identity

ImĜ = �̂(−)†(ImĜ(0))�̂(−) + Ĝ†(ImÛ )Ĝ, (28)

and �̂(−) = 1 + ÛĜ is the Möller wave operator, and Wαα′ is
a spreading (imaginary) potential for the complicated nuclear
excited states from the αα′ channel. It should be noticed
that Ĝ†

αWαα′Ĝα′ denotes the spreading processes, which are
predominantly caused by the �N → �N conversion into
complicated N + N + � states because a produced � subse-
quently interacts with a second nucleon, and its converted �N
pair gains large energy from the mass difference m� − m� �

70 MeV. Indeed, the peak below the � threshold is connected
with the secondary processes[

3
�He

] → p + p + �, (29)

in the π− spectrum, or with those[
3
�n

] → n + n + �, (30)

in the π+ spectrum. The decomposition near the � threshold
can help us to understand the structure of the YNN quasibound
state and its decay property.

E. Fermi-averaged amplitudes for K− + N→π + Y
in nuclear medium

It is recognized that the spectral shape for DWIA is sensitive
to the elementary K− + N → π + Y amplitudes of f (Yπ) in
nuclear medium in Eq. (8) [37,46–48]. When we evaluate the
nuclear (K−, π∓) cross sections with the K− + N → π + Y
amplitudes, it is important to take into account the Fermi
motion of a struck nucleon in nuclear medium [37]. This
effect is considerably enhanced near narrow �/� resonances
because their widths are smaller than the Fermi-motion energy
of the struck nucleon. According to the procedure by Rosenthal
and Tabakin [46], we perform the Fermi-averaging of the
K− + N → π + Y scattering T matrix obtained by Gopal
et al. [49]. We use the momentum distribution ρ(p) of a
struck nucleon in 3He, which is assumed as a simple harmonic
oscillator with a size parameter bN = 1.31 fm, leading to
〈p2〉1/2 � 184 MeV/c in the nucleus.

In Fig. 3, we show the Fermi-averaged laboratory cross sec-
tions of K− + n → π− + �, K− + p → π− + �+, K− +
n → π− + �0, and K− + p → π+ + �− reactions on nuclei,

〈
dσ

d�

〉K−N→πY

lab

= |f (Yπ)|2 + |g(Yπ)|2, (31)

at detected π angles θlab = 0◦ and 10◦, as a function of
the incident K− laboratory momentum pK . f (Yπ) and g(Yπ)
denote the non-spin-flip and spin-flip components of the
Fermi-averaged amplitudes, respectively. The shape of the
Fermi-averaged cross section sizably becomes broader, and its
value is not so changed by a choice of the target, as discussed
by Dover et al. [5,42,48]. Since the spin-flip cross section of
|g(Yπ)|2 is negligibly small, we consider only the non-spin-flip
process in the nuclear (K−, π∓) reaction.

Furthermore, it is noticed that the Fermi-averaged ampli-
tudes f̄(Yπ) remain in ambiguities, e.g., the relative phase of ϕ�

(ϕ�) for �π (�π I = 1) to �π I = 0 channels, as discussed
in Ref. [30]. Thus we assume ϕ� = +15.8◦ and ϕ� = +33.2◦,
which were determined by fitting the data overall in 4He(K−,
π∓) reactions at pK− = 600 MeV/c [30], and we use them in
our calculations.

III. MICROSCOPIC COUPLED-CHANNEL
2N − Y POTENTIALS

In order to describe the �NN quasibound states, we
construct a microscopic effective 2N − Y potential using
the YN g-matrices in folding-model calculations [52,58]. In
Ref. [18], three-body coupled-channel calculations for �NN
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FIG. 3. Fermi-averaged cross sections for (a) K− + n → π− + �, (b) K− + p → π− + �+, (c) K− + n → π− + �0, and (d) K− + p →
π+ + �− reactions in nuclear medium. Solid and long-dashed curves denote non-spin-flip Fermi-averaged laboratory cross sections, |f |2,
for θlab = 0◦ and 10◦, respectively, and the dot-dashed curve denotes a spin-flip Fermi-averaged one, |g|2, for θlab = 10◦. The thin-solid
and thin-dashed curves are for non-spin-flip laboratory elementary cross sections in free space at θlab = 0◦ and 10◦, respectively, and the
thin-dot-dashed curve is for a spin-flip one at θlab = 10◦. The elementary amplitudes are used by Gopal et al. [49].

systems suggested that the channel coupling plays an important
role in making a bound state which has strong admixtures
of (I2,S2) = (0, 1) and (1, 0) states in the NN pair, e.g.,
[pn]�+, {pn}�+, and {pp}�0 states admix each other in
3
�He. Its origin is due to the (σN · σ�)(τN · t�) term in the
�N OBE potentials [5]. This nature is quite different from
the weak-coupling state like [pn] + � in 3

�H, and it must be
involved in the 2N − Y potential.

In folding-model calculations, the effective 2N − Y poten-
tial for αα′ channels is obtained as

Uαα′ (R) =
∫

ραα′ (r)(gαα′ (r1) + gαα′ (r2))d r, (32)

where r1 = R + r/2 (r2 = R − r/2) is the relative coordinate
between N1 (N2) and Y , as shown in Fig. 4. The nucleon or
transition density for αα′ channels is given by

ραα′ (r) = 〈
φ(2N)

α

∣∣ ∑
i

δ(r − r i)
∣∣φ(2N)

α′
〉
. (33)

In Table III, we show matrix elements of isospin-spin averaged
potentials for αα′ channels, in which the g-matrices gαα′ for
�N − �N , �N − �N , and �N − �N states can be ob-
tained by solving the coupled Bethe-Goldstone equation with
appropriate parameters of the starting energy ES and Fermi
momentum kF.

Figure 5 shows the wave functions for ραα′ of Eq. (33), as
a function of the distance r between nucleons. For the {pp}�
channel, here we used the {pp} wave function φ(2N)

α obtained
by CDCC as the NN-pair nucleus, as given in Fig. 2, because
the �N interaction is very weak. For the � channels, on the
other hand, we must consider nuclear contraction of the NN
pair because �N potentials may induce NN-pair admixture
between 3S1 and 1S0 states in �NN systems [18]. In the [pn]�+
channel, the wave function derived from three-body �NN
calculations is not so changed that in 2H. In the {pp}�0 or

FIG. 4. Coordinates of the 2N − Y systems when calculating the
effective 2N − Y potentials.
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TABLE III. Isospin-spin averaged matrix elements of gαα′ for the
YN potential terms in 3

Y He and 3
Y n. gYY ′

I,S denotes a YN − Y ′N potential
for the isospin I and spin S state.

α α′ gαα′

{pp}� {pp}� + 3
4 g��

1/2,1 + 1
4 g��

1/2,0

[ pn ]�+ − 3
4 g��

1/2,1 + 1
4 g��

1/2,0

{pn}�+ −
√

1
3

(
3
4 g��

1/2,1 + 1
4 g��

1/2,0

)
{pp}�0 +

√
1
3

(
3
4 g��

1/2,1 + 1
4 g��

1/2,0

)
[ pn ]�+ [ pn ]�+ 2

12 g��
3/2,1 + 6

12 g��
3/2,0 + 1

12 g��
1/2,1 + 3

12 g��
1/2,0

{pn}�+ −
√

3
12

(
g��

3/2,1 − g��
3/2,0 − g��

1/2,1 + g��
1/2,0

)
{pp}�0 +

√
3

12

(
g��

3/2,1 − g��
3/2,0 − g��

1/2,1 + g��
1/2,0

)
{pn}�+ {pn}�+ 6

12 g��
3/2,1 + 2

12 g��
3/2,0 + 3

12 g��
1/2,1 + 1

12 g��
1/2,0

{pp}�0 3
12 g��

3/2,1 + 1
12 g��

3/2,0 − 3
12 g��

1/2,1 − 1
12 g��

1/2,0

{pp}�0 {pp}�0 6
12 g��

3/2,1 + 2
12 g��

3/2,0 + 3
12 g��

1/2,1 + 1
12 g��

1/2,0

{nn}� {nn}� + 3
4 g��

1/2,1 + 1
4 g��

1/2,0

[ pn ]�− − 3
4 g��

1/2,1 + 1
4 g��

1/2,0

{pn}�− +
√

1
3

(
3
4 g��

1/2,1 + 1
4 g��

1/2,0

)
{nn}�0 −

√
1
3

(
3
4 g��

1/2,1 + 1
4 g��

1/2,0

)
[ pn ]�− [ pn ]�− 2

12 g��
3/2,1 + 6

12 g��
3/2,0 + 1

12 g��
1/2,1 + 3

12 g��
1/2,0

{pn}�− +
√

3
12

(
g��

3/2,1 − g��
3/2,0 − g��

1/2,1 + g��
1/2,0

)
{nn}�0 −

√
3

12

(
g��

3/2,1 − g��
3/2,0 − g��

1/2,1 + g��
1/2,0

)
{pn}�− {pn}�− 6

12 g��
3/2,1 + 2

12 g��
3/2,0 + 3

12 g��
1/2,1 + 1

12 g��
1/2,0

{nn}�0 3
12 g��

3/2,1 + 1
12 g��

3/2,0 − 3
12 g��

1/2,1 − 1
12 g��

1/2,0

{nn}�0 {nn}�0 6
12 g��

3/2,1 + 2
12 g��

3/2,0 + 3
12 g��

1/2,1 + 1
12 g��

1/2,0

Σ+

Σ0

FIG. 5. Radial wave functions of the intranuclear NN states in
transition densities of ραα′ , which are used to calculate the 2N − Y

potentials in the folding model, as a function of the relative distance r .
The solid curve denote the NN wave functions in the �NN quasibound
state, which is obtained by three-body calculations [18]. The dash
curves denote the NN wave functions in free space.

{pn}�+ channel, the wave functions in the �NN systems
differ from that obtained by CDCC, and the root-mean-square
radius amounts to 〈r2〉1/2 = 3.7 fm for the former, in a
comparison with 7.7 fm for the latter. This contraction makes
a strong coupling between the {pn}�+, [pn]�+, and {pp}�0

states in 3
�He, leading to the results that will confirm the

structure of �NN quasibound states obtained in three-body
calculations [18]. In folding-model calculations, therefore,
we use these wave functions derived from three-body �NN
calculations.

Now let us calculate the YN g-matrices in Eq. (32) with a
central version (D2′) of the YN potential [2,22] that simulates
the Nijmegen model D [23]. This D2′ potential has the ability
of solving the overbinding problem of �-binding energies
of s-shell � hypernuclei in Brueckner-Hartree-Fock [2] and
full few-body calculations [27]. In fact, we can reproduce �-
binding energies of 3

�H, 4
�He, 4

�He∗, and 5
�He using the folding-

model potentials with D2′, as shown in Appendix A. This fact
realizes us the concept of the coherent �N − �N coupling in
s-shell hypernuclei [2].

Moreover, it should be noticed that the imaginary part of
Uαα′ for the αα′ channel is regarded as a spreading potential
Wαα′ . This is significant to describe the complicated surround-
ing � excited states with all the 2N breakup processes, because
� hypernuclear states can be connected with highly � excited
states via the strong �N − �N coupling. In the folding model
with D2′, we can also reproduce the binding energy and width
of 4

�He, in a comparison with the data, as shown in Appendix A.
Figure 6 displays the real and imaginary parts of the

effective 2N − Y potential Ûαα′ (R) for 3
Y He (Jπ = 1/2+) at

E� = 70 MeV that corresponds to the � threshold region,
as a function of the relative distance R between 2N and Y .
We find that the coupling potentials of {pn}�+ − {pp}�0,
[pn]�+ − {pn}�+, and [pn]�+ − {pp}�0 are quite strong.
This nature originates from the fact that the �N potential
has a strong isospin-spin dependence, as pointed out by
Dover and Gal [40] and suggested by recent YN potential
models [53]. For the imaginary parts (Wαα′ ), we also recognize
that there is the spin-isospin selectivity [40] for �N → �N
conversion decays. It is very important to realize whether or
not the quasibound state has a narrow width in �NN systems.
Strengths of Wαα for diagonal [pn]�+ and {pp}�0 channels
are −5.0 MeV and −13.2 MeV at the nuclear center, which are
consistent with quenching factors Q = 1/3 and 1, respectively,
as given in Table II of Ref. [40].

IV. RESULTS

A. �NN quasibound states

In order to obtain eigenvalues for bound and resonance
states simultaneously, we solve the multichannel equation for
the 2N − Y systems by the complex scaling method [54,55].
Here we use the 2N − Y potential given in Fig. 6 and the
Coulomb force. We find that a pole position for 3

�He (Jπ =
1/2+, L = 0, S = 1/2) as a complex eigenvalue of the 2N − Y

system, E (pole)
�+ = E�+ − i 1

2�� on the second Riemann sheet
[−+++] that is identified by a set of four signs of [Imk{pp}�,
Imk[pn]�+ , Imk{pn}�+ , Imk{nn}�0 ] on the complex E plane. The
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Σ+

Λ

Λ−[ ]Σ+

Σ0

Σ+− Σ0

Σ+− Σ0

Σ+− Σ+

Λ− Σ+

Λ− Σ0

Σ+

Λ

Λ−[ ]Σ+

Σ0

Σ+− Σ0

Σ+− Σ0

Σ+− Σ+

Λ− Σ+

Λ− Σ0

FIG. 6. (a) Real and (b) imaginary parts of the calculated effective
2N − Y potential Ûαα′ (R) for 3

Y He (J π = 1/2+) at E� = 70 MeV in
the folding-model potential, as a function of a relative distance R

between 2N and Y .

pole is located as

E (pole)
�+

(
3
�He

) = +0.96 − i 4.5 MeV, (34)

where E�+ is measured from the d + �+ threshold, as shown
in Table IV. Its width becomes �� = 9.0 MeV. Since the pole
lies in the second quadrant (Rek�+ < 0, Imk�+ > 0) on the
complex k�+ plane, the wave function behaves as

exp(ik�+R) = exp(iRek�+R) exp(−Imk�+R) → 0 (35)

in the asymptotic region (R → ∞). Hence this state is
identified to be a quasibound (an unstable bound) state. In
the � region, we also confirm that there is no pole of a 3

�He
bound state below the p + p + � threshold.

For 3
�n (Jπ = 1/2+, L = 0, S = 1/2), we find

E (pole)
�0

(
3
�n

) = −0.58 − i 5.3 MeV, (36)

TABLE IV. Energies and widths of 2N − Y systems on complex
E plane.

(J π , T ) E� E�± E�0 �� k�±

(MeV) (MeV) (MeV) (MeV) (fm−1)

3
�He ( 1

2

+
, 1) +73.7 +0.96a −3.24 9.0 −0.322 + i0.260

3
�n ( 1

2

+
, 1) +76.4 −1.87b −0.58 10.5 −0.263 + i0.374

aE�+ = E� − 72.8 MeV = E�0 − 4.2 MeV, where E�+ is mea-
sured from the 2H + �+ threshold.
bE�− = E� − 78.3 MeV = E�0 + 1.3 MeV, where E�− is mea-
sured from the 2H + �− threshold.

where E�0 is measured from the n + n + �0 threshold, and
�� = 10.5 MeV, as shown in Table IV.

In order to see the contributions of the 2N − Y components
in these pole states, we calculate probabilities of isospin
T (I2S2) states for 3

�He (Tz = +1) and 3
�n (Tz = −1):

PT (I2S2) = ∣∣〈�T,Tz

(I2S2)

∣∣�(pole)
B

〉∣∣2
, (37)

where �
T,Tz

(I2S2) is the isospin state defined in Eqs. (B1) and (B4).
In Table V, we show values of PT (I2S2), together with values of
probabilities on the � charge bases. We find that values of a
sum of PT =1 account for 99.6% and 97.9% in the 3

�He and 3
�n

states, respectively, including {pp}� states. Hence the total
isospin T = 1 becomes an almost good quantum number.

B. π− spectrum

Figure 7 shows the calculated inclusive spectrum of the
3He(K−, π−) reaction at 600 MeV/c (4◦) from � to � regions,
together with the Jπ = 1/2+ (L = 0, S = 1/2) component,
which is predominantly connected with �N→�N conversion
processes of [3

�He] → p + p + � decays. The � hyperon
produced in the real or virtual 3

�He state subsequently interacts
with a second nucleon, and it is converted to a � via �N →

TABLE V. Probabilities of channel components of the pole states
of 3

�He and 3
�n with J π=1/2+ on complex E plane. Calculated values

are obtained by the complex scaling method.

States Components Probabilities
(%)

3
�He {pp}� 2.07

[pn]�+ 54.9
{pn}�+ 24.7
{pp}�0 18.3
T = 1 (I2 = 0,S2 = 1) 54.9
T = 1 (I2 = 1,S2 = 0) 42.5
T = 2 0.45

3
�n {nn}� 2.42

[pn]�− 39.5
{pn}�− 20.9
{nn}�0 37.2
T = 1 (I2 = 0,S2 = 1) 39.5
T = 1 (I2 = 1,S2 = 0) 56.0
T = 2 2.10
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FIG. 7. Calculated inclusive π− spectrum of the 3He(K−, π−)
reaction at 600 MeV/c (4◦). The solid curve denotes the total
spectrum, and the dashed curve denotes the J π = 1/2+ (L = 0,
S =1/2) component caused by conversion decay processes as
[3
�He] → p + p + �, with a detector resolution of 2 MeV FWHM.

�N conversion processes inducing 2N -nuclear breakup due
to the mass difference m� − m� � 77 MeV. It is recognized
that a clear peak just below the d + �+ threshold in the π−
spectrum, which corresponds to the 3

�He quasibound state with
Jπ = 1/2+, T � 1 on the Riemann sheet [−+++] near the
� threshold. Such a �N→�N conversion spectrum with
p + p + � may give evidence of the existence of the 3

�He
quasibound state.

In the π− spectrum we obtain the decomposition of
the inclusive spectrum into partial spectra of the {pp}�,
[pn]�+, {pn}�+ and {pp}�0 components, as given in
Eq. (25). Figure 8 illustrates the contributions of the �-emitted

Σ+
Λ

Σ0

Σ+

FIG. 8. The decomposition of the calculated inclusive π− spec-
trum of the 3He(K−, π−) reaction at 600 MeV/c (4◦) near the �

threshold, together with the components of {pp}�, [pn]�+, {pn}�+,
{pp}�0, and [3

�He] → p + p + � conversion processes, obtained by
folding with a detector resolution of 2 MeV FWHM.

FIG. 9. Calculated inclusive π+ spectrum of the 3He(K−, π+)
reaction at 600 MeV/c (4◦). The solid curve denotes the total
spectrum, and the dashed curve denotes the J π = 1/2+ (L = 0,
S = 1/2) component caused by conversion decay processes as
[3
�n] → n + n + �, with a detector resolution of 2 MeV FWHM.

processes of {pp}� and [3
�He] → p + p + � conversion

near the � threshold, together with those of the �-emitted
processes of [pn]�+, {pn}�+, and {pp}�0. For the �
continuum region, we find that the contribution of the {pp}�0

component is larger than that of the [pn]�+ component
because the production amplitudes have |f (�0π−)| � |f (�+π−)|
near pK− = 600 MeV/c [5]. Below the d + �+ threshold, the
3
�He quasibound state is predominantly populated via the �0

components by f (�0π−).

C. π+ spectrum

The nuclear (K−, π+) reaction at forward direction of
pK− = 600 MeV/c seems to be appropriate to search a bound
state in the � bound region. The reasons were because
(i) this reaction can populate only the �− components in the
final states by its double-charge exchange reaction, so that
the contribution of a � hyperon is removed out from the π+
spectrum, and (ii) it has a substitutional mechanism under the
near-recoilless condition so as to produce the 3

�n quasibound
state from 3He, as well as the 3

�He quasibound state in the
(K−, π−) reaction. Therefore, we have naively expected that
a signal of the corresponding peak can be clearly observed in
the π+ spectrum, rather than the π− one.

Figure 9 shows the calculated inclusive spectrum of the
3He(K−, π+) reaction at 600 MeV/c (4◦) from � to � regions,
together with the Jπ = 1/2+ (L = 0, S = 1/2) component in
[3
�n] → n + n + � conversion processes, obtained by folding

with a detector resolution of 2 MeV FWHM. Surprisingly,
we find that although the 3

�n quasibound state exists, the
corresponding peak disappears in the inclusive π+ spectrum,
where the component of the � quasibound state is quite
reduced rather than that of � continuum states.

Figure 10 illustrates the contributions of the [3
�n] → n +

n + � conversion, {nn}�0, [pn]�−, and {pn}�− processes
near the � threshold. Because these states can be populated via
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Σ−

Σ0

Σ−

FIG. 10. The decomposition of the calculated inclusive π+

spectrum of the 3He(K−, π+) reaction at 600 MeV/c (4◦) near the
� threshold, together with the components of [pn]�−, {pn}�−,
{nn}�0, and [3

�n] → n + n + � conversion processes, obtained by
folding with a detector resolution of 2 MeV FWHM.

only �− productions by f (�−π+) in the (K−, π+) reaction. We
find that the [pn]�− and {pn}�− components predominantly
occur in � continuum regions, and that a small {nn}�0

component can be populated via the quasibound state near
the n + n + �0 threshold, followed by [3

�n] → n + n + �0.

V. DISCUSSION

A. Charge symmetry breaking

It is noticed that the 3
�He and 3

�n quasibound states belong
to Jπ = 1/2+ isotriplet states in �NN systems, whereas a
value of E (pole)

�+ for 3
�He slightly differs from that of E (pole)

�− for
3
�n, as seen in Table IV. This discrepancy comes from the �
threshold energy difference and the Coulomb force, leading to
the charge symmetry breaking (CSB) in the �NN systems. We
study a dependence of these pole positions and configurations
of the 2N − Y quasibound states on CSB effects

To see the CSB effects, we obtain a charge symmetric (CS)
state, neglecting the Coulomb force and replacing masses of
m�±,0 and mp,n by averaged masses of m� = 1193.2 MeV and
mN = 938.9 MeV, respectively. We find

E (pole)
� (CS) = −0.23 − i 4.7 MeV, (38)

and probabilities of the [NN]�, {NN}�, and {NN}� compo-
nents that account for 49.5%, 48.25%, and 2.3%, respectively.
Although the threshold energy difference between pn�+ and
pp�0 (nn�− and pn�0) amounts to 2.0 (−3.6) MeV, we find
that the energy levels for 3

�He (3
�n) is +0.96 (−0.58) MeV,

which is slightly different from −0.23 MeV obtained for CS.
This confirms the fact that the �NN quasibound states have
a T � 1 good isospin (97%–99%). We obtain that the width
for 3

�He amounts to 9.0 MeV, which is slightly smaller than
9.4 MeV for CS because the pp�0 threshold is located above
the d + �+ one. Contrary to 3

�He, the width of 3
�n becomes

broader up to 10.5 MeV because the nn�0 threshold is located

Σ+

[ ]Σ

Σ0

Σ0

Σ+

Σ−

Σ

Σ−

−

−

Σ Σ

FIG. 11. Energies and widths of the �NN quasibound states
(thick line) near the � threshold. The square brackets denote the
widths of the quasibound states, and the round brackets denote
probabilities of each channel component. See also Tables IV and V.

below the d + �− threshold. Figure 11 illustrates energy levels
and widths of the �NN quasibound states for 3

�He and 3
�n

near the � threshold, together with the probabilities of the
2N − Y components in the �NN systems. We also confirmed
that the CSB effects rarely have an influence on the shape and
magnitude of the π∓ spectra.

B. Interference effects between production amplitudes

It should be noticed that a production cross section near the
� threshold is very sensitive not only to the pole position but
also to the configuration of the wave function of the quasibound
state. We consider difference of the � production mechanism
between the π− and π+ spectra in terms of interference
among � production amplitudes. In order to understand the
behavior of the π∓ spectra, we evaluate interference effects
among configurations of the NN core states in � production
amplitude, because the 2N − Y potential should admix 3S1 and
1S0 states in the NN pair [18], depending on the nature of the
�N potential.

In the π− spectrum, production amplitude for 3
�He near the

� threshold is approximately written as

〈3
�He π−|T |3HeK−〉

� 1√
2

{
1√
2
f (�+π−) − f (�0π−)

}〈
�

2,1
(s)

∣∣�(3He)
〉

+
{√

3 + 1

2
f (�+π−) + 1

2
f (�0π−)

}
〈�1,1

(−)|�(3He)〉

+
{√

3 − 1

2
f (�+π−) − 1

2
f (�0π−)

}
〈�1,1

(+)|�(3He)〉 (39)

on isospin bases, where �
T,Tz

(I2S2) is the isospin state defined in

Eq. (B1). The wave function of �
1,1
(−) is regarded as that of

a 3
�He ground state with Jπ = 1/2+, T = 1, and �

1,1
(+) as a

3
�He∗ excited state. The relative phase between f (�+π−) and
f (�0π−) is ϕ(�+/�0) = +4.8◦ at pK− = 600 MeV/c, so the

component of �
1,1
(−) is relatively enhanced in the π− spectrum.

We recognize that the interference effects between f (�+π−) and
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f (�0π−) play an important role in populating the component of

�
1,1
(−).
In the π+ spectrum, on the other hand, production am-

plitude for 3
�n near the � threshold is approximately written

as〈3
�nπ+∣∣T |3HeK−〉

� f (�−π+)

{
1

2

〈
�

2,−1
(s)

∣∣�(3He)
〉+ 2

√
3 − √

2

4
〈�1,−1

(−) |�(3He)〉

+ 2
√

3 + √
2

4
〈�1,−1

(+) |�(3He)〉
}

(40)

on isospin bases. We find that a cross section for �
1,−1
(−)

as the 3
�n ground state is relatively reduced by a factor

[(2
√

3 − √
2)/4]2 = 0.512 � 0.26, whereas that for �

1,−1
(+) as a

3
�n∗ excited state is enhanced by a factor [(2

√
3 + √

2)/4]2 =
1.222 � 1.49. The interference effects are considered as
dynamical ones caused by 3S1 − 1S0 admixture in the NN
pair for the �NN systems. This mechanism originates from
properties of the �N interaction, and it is inevitable whenever
we consider the 3He(K−,π+) reaction. In Appendix B, we
discuss in detail the interference effects.

C. Dependence of the π∓ spectra on � widths

Several three-body YNN calculations suggested that there is
a quasibound state in �NN systems. However, the � width is
unsettled because the �N potential still remains quantitative
ambiguities. It seems that the shape and magnitude of the
peak for the �NN quasibound state is very sensitive to a value
of its width. We demonstrate behavior of the π∓ spectrum
near the � threshold in order to compare it with experimental
observations. We introduce an artificial factor of fW changing
the strength of the spreading potential:

Wαα′ → fW × Wαα′ . (41)

Here let us consider several cases of various widths in the π∓
spectrum as follows:

(i) Case A was obtained by fW = 1.00, leading to a broad
width of �� � 9 MeV. This width was suggested
by a Faddeev calculation for the � + d → � + N +
N scattering near the � threshold by Afnan and
Gibson [16].

TABLE VI. Energies and widths of the 3
�He quasibound state

with J π = 1/2+, T � 1 on complex energy plane when the spreading
potential Wαα′ is artificially changed.

Case fW E�+ E�0 �� k�+

(MeV) (MeV) (MeV) (fm−1)

A 1.00 +0.96 −3.24 9.0 −0.322 + i0.260
B 0.75 −0.10 −4.30 6.9 −0.249 + i0.257
C 0.50 −0.94 −5.14 4.8 −0.176 + i0.257
D 0.25 −1.53 −5.73 2.8 −0.101 + i0.259

FIG. 12. Shape dependence of the calculated π− spectrum in the
3He(K−, π−) reaction near the � threshold at 600 MeV/c (4◦),
when changing the spreading potential Wαα′ artificially by fW = (a)
1.00, (b) 0.75, (c) 0.50, and (d) 0.25, which correspond to widths
of �� = 9.0, 6.9, 4.9, and 2.9 MeV, respectively. These spectra are
obtained by folding with a detector resolution of 2 MeV FWHM.
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TABLE VII. Energies and widths of the 3
�n quasibound state with

J π = 1/2+, T � 1 on complex energy plane when the spreading
potential Wαα′ is artificially changed.

Case fW E�− E�0 �� k�−

(MeV) (MeV) (MeV) (fm−1)

A 1.00 −1.87 −0.58 10.5 −0.263 + i0.374
B 0.75 −2.79 −1.50 8.1 −0.200 + i0.380
C 0.50 −3.51 −2.22 5.7 −0.138 + i0.388
D 0.25 −4.02 −2.73 3.2 −0.077 + i0.396

(ii) Case B was obtained by fW = 0.75, leading to �� �
7 MeV, of which width was predicted in three-body
calculations within a SAP approximation by Koike
and Harada [18].

(iii) Case C was obtained by fW = 0.50, leading to �� �
5 MeV, which is equivalent to a half of the width of
Case A.

(iv) Case D was obtained by fW = 0.25, leading to a
narrow � width of �� � 2–3 MeV in recent Faddeev
�NN − �NN calculations using NN and YN potentials
derived from a chiral constituent quark models by
Garcilazo et al. [19].

In Table VI, we obtain the calculated values of energies
and widths of the 3

�He quasibound state on the complex E
plane. Figure 12 shows dependence of the shape and magnitude
of the π− spectrum on the width. In Case A, we confirm
that a peak of the π− spectrum is enhanced just below the
d + �+ threshold, as already seen in Fig. 8. In Case B, we also
recognize that the peak can be observed as a candidate of the
� hypernuclear bound state, having a narrow width of �� �
7 MeV. This is equivalent to the value of 〈vσ�−p→�n〉av, where
v and σ�−p→�n are the velocity and total cross section data
of �−p → �n at low energies, respectively. In Cases C and
D, we find that a peak of the quasibound state is more clearly
observed below the � threshold, so that it might be a very
good candidate if the �NN quasibound state has such a narrow
width. Consequently, the π− spectrum near the � threshold
provides valuable information to understand the nature of �N
potentials and the structure of the �NN quasibound state.

In Table VII, we obtain the calculated values of energies
and widths of the 3

�n quasibound state on the complex E plane.
Figure 13 shows the shape and magnitude of the π+ spectrum
on the corresponding widths. In Cases A and B, we find that
the shape of the spectrum is scarcely changed by a value of
fW . This originates from the fact that the contributions of
the [pn]�− and {pn}�− components predominantly occur
in continuum states, and the shape of continuum spectrum
is insensibly influenced by the spreading potential Wαα′ . For
Case D, the quasibound state has a very narrow width of �� �
3 MeV, observed below the n + n + �0 threshold. However,
the cross section of the quasibound state is rather small,
compared with the continuum one, because of a reduction
mechanism caused by the interference effects in the π+
spectrum, as discussed in Sec. V B.

FIG. 13. Shape dependence of the calculated π+ spectrum in the
3He(K−, π+) reaction near the � threshold at 600 MeV/c (4◦),
when changing the spreading potential Wαα′ artificially by fW = (a)
1.00, (b) 0.75, (c) 0.50, and (d) 0.25, which correspond to widths
of �� = 10.5, 8.1, 5.7, and 3.2 MeV, respectively. These spectra are
obtained by folding with a detector resolution of 2 MeV FWHM.
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FIG. 14. Comparison of the calculated π+ spectrum with the
experimental data in the 3He(K−, π+) reaction at 600 MeV/c (4◦).
The bold solid curve denotes the inclusive π+ spectrum obtained
by folding with a detector resolution of 5 MeV FWHM. The
dashed, long-dashed, dot-dashed, and thin-solid curves denote the
contribution of the [3

�n] → n + n + � decay, [pn]�−, {pn}�−,
and {nn}�0 components, respectively. Data are taken from BNL-
E774 [20].

D. Comparison with experimental data

It has been recognized that there is no evidence of a narrow
structure for the �NN quasibound state (3

�n) below the �
threshold in the 3He(K−, π+) reaction from E774 experiments
at BNL [20]. Figure 14 shows the calculated inclusive π+
spectrum at pK− = 600 MeV/c (4◦), in order to be compared
with the BNL-E774 data [20]. Here the spectrum was obtained
by folding with a detector resolution of 5 MeV FWHM. We
find that the calculated π+ spectrum is in good agreement
with the data. Because the shape of the spectrum is not so
sensitive to its width, it seems that it is difficult to extract
information on the width of the quasibound state from the data
in the π+ spectrum. Consequently, contradictory arguments
against the existence of a �NN bound state may be settled in
our calculations.

VI. SUMMARY AND CONCLUSIONS

We have theoretically demonstrated the inclusive and
semiexclusive spectra in the 3He(K−, π∓) reactions at
600 MeV/c (4◦) within the DWIA, using the coupled
(2N − �) + (2N − �) model with the spreading potential.
The effective 2N − Y potential derived from YN g-matrices
has strong isospin-spin dependence, and provides quasibound
states (3

�He, 3
�H, 3

�n) with Jπ = 1/2+ (L = 0, S = 1/2),
T � 1 near the � threshold. The results are summarized as
follows:

(i) The coupled-channel framework is essential for calcu-
lating the inclusive π− and π+ spectra of the 3He(K−,
π∓) reactions, in order to consider significant effects
of interference between K− + N→π + Y amplitudes
and the threshold energy differences.

(ii) The effective 2N − Y potential is constructed by a
folding-model potential with YN g-matrices derived
from the central D2′ potential, which is simulated to
the Nijmegen model D. Such folding potentials can
overcome serious overbinding problems in s-shell �
hypernuclei.

(iii) The calculated inclusive spectrum of the 3He(K−, π−)
reaction shows a signal of the 3

�He quasibound state
with Jπ = 1/2+, T = 1 near the � threshold, and its
width has �� � 9 MeV.

(iv) The calculated inclusive spectrum of the 3He(K−, π+)
reaction shows no peak of the 3

�n quasibound state that
is located near the � threshold with �� = 10.5 MeV,
by interference effects caused by 3S1 − 1S0 admixture
in the NN pair for 3

�n and the CSB effects. This
spectrum is consistent with the BNL-E774 data.

In conclusion, we show that a signal of the 3
�He quasibound

state is clearly confirmed near the � threshold in the π−
spectrum, whereas the peak of the 3

�n quasibound state is
relatively reduced in the π+ spectrum. We believe that the π−
and π+ spectra on 3He targets provide valuable information
on properties of �NN quasibound states so as to study the �N
interaction.
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APPENDIX A: BINDING ENERGIES OF s-SHELL �

HYPERNUCLEI IN FOLDING-MODEL CALCULATIONS

Let us consider � binding energies of 3
�H, 4

�He, 4
�He∗, and

5
�He in folding models. We obtain YN g-matrices in Eq. (32),
solving the coupled Bethe-Goldstone equation[

��

��

]
=

[
��

0

]
+ Q

e
v

[
��

��

]
, (A1)

where e and Q are the energy denominator and Pauli exclusion
operator, respectively [50,51]. v is a YN potential including
the �N − �N coupling. The D2 potential [2] is a central
YN potential that simulates the Nijmegen model D [23]. The
D2′ potential we used in this paper is a modified version to
reproduce the experimental value of B�(5

�He), multiplying
the strength of the long-range part in the �N 3S1 by a factor
(0.954) [27]. In Table VIII, we show the calculated results of
� binding energies of s-shell � hypernuclei in the folding
models. We obtain B� = 0.13, 2.4, 1.1, and 3.1 MeV for
3
�H, 4

�He, 4
�He∗, and 5

�He, respectively. Here parameters of
starting energies and Fermi momentum were taken to be (Es ,
kF) = (−2.2 MeV, 1.05 fm−1), (−8 MeV, 1.05 fm−1), (−8
MeV, 1.05 fm−1), and (−28 MeV, 1.30 fm−1) for 3

�H, 4
�He,

4
�He∗, and 5

�He, respectively. In order to compare them with
the experimental data [56], we need to include rearrangement
energies by −κNUαα′ [57,58] where we choose κN = 0.06,
0.08, 0.08, and 0.115 for 3

�H, 4
�He, 4

�He∗, and 5
�He, respectively.

We confirm that the calculated values of B� can reasonably
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TABLE VIII. Binding energies and �-mixing probabilities of s-shell � hypernuclei in the folding-model potential calculations for
g-matrices with the YN D2′ potential, together with those obtained in Brueckner-Hartree-Fock [2] and SVM calculations [25,27]. Data are
taken from Ref. [56].

3
�H (1/2+) 4

�He (0+) 4
�He∗ (1+) 5

�He (1/2+)

B� P� B� P� B� P� B� P�

(MeV) (%) (MeV) (%) (MeV) (%) (MeV) (%)

This worka

with −κNU b 0.13 0.07 2.4 2.0 1.1 0.02 3.1 –
w/o −κNU 0.26 0.10 3.0 2.1 1.5 0.03 4.4 –

BHF [2] 2.4 1.9 1.1 0.01 3.1 –
SVM [25,27] 0.056 0.14 2.23 1.85 0.91 0.42 3.18 0.61
Expt. [56] 0.13 ± 0.05 2.39 ± 0.03 1.24 ± 0.04 3.12 ± 0.02

aStarting energies and Fermi momenta are used as (ES , kF) = (−2.2 MeV, 1.05 fm−1), (−8 MeV, 1.05 fm−1), (−8 MeV, 1.05 fm−1), and
(−28 MeV, 1.30 fm−1) for 3

�H, 4
�He, 4

�He∗, and 5
�He, respectively.

bCorrection of rearrangement energies is taken from −κNU [57,58], where we choose κN = 0.06, 0.08, 0.08, and 0.115 for 3
�H, 4

�He, 4
�He∗,

and 5
�He, respectively.

reproduce the corresponding experimental data. This fact
supports the importance of the coherent �N − �N coupling
in s-shell hypernuclei [2]. It should be noticed that our
folding-model calculations provide to explain properties of the
s-shell hypernuclei, whereas the values of P� for 4

�He∗ and
5
�He should be in disagreement with those of SVM because no
D-wave component is included in our model space.

In order to describe properties of � hypernuclei, we must
consider the binding energy and width of a 4

�He quasibound
state with Jπ = 0+, T = 1/2. Let us calculate a pole position
of 4

�He which is located on the complex E plane by the
complex scaling method [54,55], when we use (ES , kF) =
(−8 MeV, 1.05 fm−1) and κN = 0.08 as the parameters
in folding-model calculations. In Table IX, we show the
calculated result of the binding energy and width, in order to
be compared with those of experimental data [9,10]. We find
B�+ = 0.89 MeV and �� = 11.8 MeV with YN g-matrices
derived from the D2′ potential where E�+ = −B�+ − i 1

2��

where B�+ is measured from the 3H + �+ threshold.

TABLE IX. Binding energy and width of the 4
�He quasibound

state with J π = 0+, T = 1/2 in the folding-model potential calcula-
tions for g-matrices with the YN D2′ potential, in a comparison with
analysis of theoretical calculation [31] and experimental data taken
from Refs. [9,10].

B�+ b ��
b

(MeV) (MeV)

This worka 0.83 11.8
Harada [31] 1.1 12.4
Outa et al. [9] 2.8 ± 0.7 12.1 ± 1.2
Nagae et al. [10] 4.4 ± 0.3 ± 1 7.0 ± 0.7+1.2

−0.0

aStarting energy and Fermi momentum of (ES , kF) = (−8 MeV,
1.05 fm−1), and the rearrangement energy with κN = 0.08 are used.
bE�+ = −B�+ − i 1

2 �� determined on complex E plane, where B�+

is measured from the 3H + �+ threshold.

APPENDIX B: PRODUCTION AMPLITUDES FOR (K−, π∓)
REACTIONS ON ISOSPIN �NN STATES

In order to understand behavior of the π∓ spectra, we
consider � production amplitudes for isospin �NN states in
3He(K−, π∓) reactions. In the π− spectrum, we recognize that
the 3

�He quasibound state is populated via f (�π−), f (�+π−), and

f (�0π−), and this state is identified by a configuration of �
T,Tz

(I2S2).
We obtain

�
2,1
(s) = 1√

2
|{pp}�0〉 + 1√

2
|{pn}�+〉,

�
1,1
(s) = 1√

2
|{pp}�0〉 − 1√

2
|{pn}�+〉, (B1)

�
1,1
(t) = |[pn]�+〉.

where s and t denote spin-singlet (I2 = 1, S2 = 0) and spin-
triplet (I2 = 0, S2 = 1) states, respectively, for the 2N pair
in the �NN systems. Therefore, we have total isospin T = 1
good states as

�
1,1
(±) = a�

1,1
(s) ± b�

1,1
(t) , (B2)

owing to the strong admixture of (I2,S2) = (0,1) and (1,0)
states in the NN pair. Because the 2N − Y potential should
admix 3S1 and 1S0 states in the NN pair, depending on the
nature of the �N potential [18], interference effects of �
production amplitude are important to make a shape of the
π− spectrum. As seen in Sec. V A, when a = b = 1/

√
2 for

simplicity we obtain �
1,1
(−) that corresponds to the ground state

in 3
�He, and �

1,1
(+) to an excited state. If we approximately omit

� production amplitude of f (�π−) in the � threshold region,
we obtain production amplitude for the (K−, π−) reaction as
〈3
�He π−∣∣T |3HeK−〉

� 1√
2

{
1√
2
f (�+π−) − f (�0π−)

}〈
�

2,1
(s)

∣∣�(3He)
〉
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+
{√

3 + 1

2
f (�+π−) + 1

2
f (�0π−)

}
〈�1,1

(−)|�(3He)〉

+
{√

3 − 1

2
f (�+π−) − 1

2
f (�0π−)

}
〈�1,1

(+)|�(3He)〉. (B3)

We find that interference effects between f (�+π−) and f (�0π−)

play an important role in populating �
1,1
(−) and �

1,1
(+) within

the �NN states with T = 1. Considering the relative phase
ϕ(�+/�0) = +4.8◦ between f (�+π−) and f (�0π−) at pK− =
600 MeV/c, we obtain that the component of �

1,1
(−) that is

identified as the 3
�He quasibound state with Jπ = 1/2+, T =

1, is relatively enhanced in the π− spectrum, whereas the
component of �

1,1
(+) in � continuum states is reduced.

For the π+ spectrum, we find that the 3
�n quasibound state

is populated via only f (�−π+). We obtain

�
2,−1
(s) = 1√

2
|{pn}�−〉 + 1√

2
|{nn}�0〉,

�
1,−1
(s) = 1√

2
|{pn}�−〉 − 1√

2
|{nn}�0〉, (B4)

�
1,−1
(t) = |[pn]�−〉,

where the isospin T = 1 good states are written as

�
1,−1
(±) = a�

1,−1
(s) ± b�

1,−1
(t) . (B5)

If a = b = 1/
√

2, �
1,−1
(−) and �

1,−1
(+) are regarded as ground

and excited states in 3
�n, respectively. Thus the production

amplitude for the (K−, π+) reaction is

〈3
�nπ+|T |3HeK−〉

� f (�−π+)

{
1

2

〈
�

2,−1
(s)

∣∣�(3He)
〉

+ 2
√

3 − √
2

4
〈�1,−1

(−) |�(3He)〉

+ 2
√

3 + √
2

4
〈�1,−1

(+) |�(3He)〉
}
. (B6)

We find that production amplitude for �
1,−1
(−) is relatively

reduced by a factor (2
√

3 − √
2)/4 = 0.51, whereas that

for �
1,−1
(+) is enhanced by a factor (2

√
3 + √

2)/4 = 1.22.
This mechanism is inevitable whenever we consider the
3He(K−,π+) reaction.
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