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Low-lying states in near-magic odd-odd nuclei and the effective interaction

B. G. Carlsson1,* and J. Toivanen2

1Division of Mathematical Physics, LTH, Lund University, Post Office Box 118, S-22100 Lund, Sweden
2Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL) FI-40014, Finland
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The iterative quasiparticle random-phase approximation (QRPA) method we previously developed [Phys. Rev.
C 81, 034312 (2010); 86, 024303 (2012); 86, 014307 (2012)] to accurately calculate properties of individual
nuclear states is extended so that it can be applied for nuclei with odd numbers of neutrons and protons.
The approach is based on the proton-neutron QRPA (pnQRPA) and uses an iterative non-Hermitian Arnoldi
diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method
is used to calculate excitation energies of proton-neutron multiplets for several nuclei. The influence of a pairing
interaction in the T = 0 channel is studied.
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I. INTRODUCTION

While static properties of atomic nuclei are very interesting,
much can be learned by considering dynamical effects such as
the linear response of nuclei when perturbed by external fields.
This can be modeled by using the quasiparticle random-phase
approximation (QRPA) [1] where the external field excites
quasiparticle pairs. In the standard proton-proton neutron-
neutron QRPA (pp-nnQRPA) approach the excitations are
composed of sums of two-proton and two-neutron quasiparti-
cle excitations. If the field is instead allowed to excite proton-
neutron quasiparticle pairs, the corresponding approximation
is denoted pnQRPA [1]. With the pnQRPA formalism one can
model nuclear reactions where, in the final state, a proton has
turned into a neutron or vice versa, as occurs in the β-decay
processes. However, when modeling β decay by using nuclear
density-functional theory (DFT), the results are sensitive to
the effective isoscalar pairing interaction used in the model.
Therefore, in recent studies of β decay, the isoscalar pairing
interaction is often used as a free fitting parameter [2,3]. In
order to develop better effective interactions one may try to
find an optimal value for the isoscalar pairing strength without
directly fitting it to the β-decay probabilities. The challenge in
this respect is that this part of the interaction does not play a
role in standard Hartree–Fock–Bogoliubov (HFB) calculations
where pairing between protons and neutrons are not allowed.
Therefore, whatever value is employed does not influence HFB
calculations for the ground state.

In a series of papers [4–7] we have developed fast and
memory-efficient QRPA solvers which can easily be used for
fine tuning model parameters while taking dynamical effects
into account. In this work we extend these methods to the
pnQRPA case and apply the approach to find the strength
of the isoscalar pairing interaction. A value of the strength
is found by using the pnQRPA to calculate the low-lying
spectra of odd-odd nuclei. Starting from a spherical nucleus
and exciting a proton-neutron pair, the particles can couple
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their angular momenta forming a multiplet of final angular-
momentum values. Without any residual interaction, the states
of the multiplet become degenerate but in general they will
split apart. The splitting between such multiplet states was
very early interpreted using empirical rules [8] which stated
that the nucleons prefer to align their intrinsic spins in parallel,
as in the case of deuterium. By using a δ interaction the gross
features of many such spectra can be reproduced [9]. In the case
of one proton and one neutron in identical orbits the different
states of the multiplet will alternate between T = 0 and T = 1
coupling depending on weather the total angular momentum
is even or odd. Therefore, the splitting of the states in the
multiplet is directly sensitive to the magnitude of the T = 0
pairing interaction.

In this work we consider the available experimental data
for multiplets and calculate the corresponding states using
the pnQRPA formalism. The strength of the T = 0 pairing
interaction is taken as a free parameter and is tuned in order to
reproduce the experimental multiplet splittings.

This paper is organized as follows: In Sec. II the pnQRPA
formalism is briefly reviewed and specific aspects of our
formulation are discussed. In Sec. III the computational cost
and accuracy of the method is evaluated. In Sec. IV we discuss
the experimental data. In Sec. V the method is applied to the
calculation of multiplet energies in a selection of odd-odd
nuclei. Finally conclusions are given in Sec. VI.

II. THEORETICAL MODEL

In matrix form the QRPA equation [1,10] can be expressed
as

�ω

(
X

−Y

)
=

(
A B
B∗ A∗

) (
X
Y

)
, (1)

where the A and B matrices have dimensions the size of
two-body matrix elements. In order to avoid constructing
and storing the large QRPA matrix it is useful to write
the action of the matrix on the QRPA vectors in terms
of transitional fields [4,7]. This allows the action of the
QRPA matrix on a vector to be constructed in a three-step
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procedure [4,7]:

(1) In the first step transitional densities are built as

ρ̃ = UZ̃V T + V ∗Z̃′†U †, (2)

κ̃ = UZ̃UT + V ∗Z̃′†V †, (3)

κ̃ ′† = V Z̃V T + U ∗Z̃′†U †, (4)

where U and V denotes the matrices of the Bogoliubov
transformation [10]. Z̃ and Z̃′† are antisymmetric
matrices whose upper-triangular parts correspond to
the elements in the X and Y column vectors.

(2) In the second step the transitional fields are built. In
the absence of a density-dependent pairing interaction
they take the form

h̃μν =
∑
πλ

∂hμν

∂ρπλ

∣∣∣∣
ρgs

ρ̃πλ =
∑
πλ

ṽμλνπ ρ̃πλ, (5)

�̃μν = 1

2

∑
kl

v
pair
μνkl κ̃kl, (6)

(�̃′†)μν = 1

2

∑
kl

v
pair∗
μνkl (κ̃

′†)kl . (7)

In these expressions, the matrix elements entering the
h̃ expression denotes the effective RPA interaction
[10] while v

pair
μνkl denotes the pairing two-body matrix

elements. In our case the Skyrme interaction is used as
a particle-hole interaction and a separable interaction
is used as a pairing interaction. With these special
interactions, standard methods [4,11] can be used to
construct the fields which means that one can avoid
constructing large matrices of two-body elements.

(3) In the third step, these fields are multiplied with the
Bogoliubov matrices to form the W̃ matrices:

W̃ = U †h̃V ∗ + U †�̃U ∗ + V †�̃′†V ∗ − V †h̃T U ∗,

(8)

W̃ ′† = V T h̃U + V T �̃V + UT �̃′†U − UT h̃T V . (9)

It should be noted that the steps of building the transitional
densities and fields are analogous to the way of building the
HFB densities and fields and can thus can be performed with
slight modifications to an existing HFB code. Once these steps
are completed the QRPA equations can be formulated as [4,7]

�ωZ̃ = EZ̃ + Z̃E + W̃ , (10)

−�ωZ̃′† = EZ̃′† + Z̃′†E + W̃ ′†, (11)

where E denotes a diagonal matrix composed of the positive
eigenvalues to the HFB equation [4,7].

In our case, when the HFB U and V matrices [10] do
not mix neutrons and protons, these equations can be divided
into two separate uncoupled pieces where one is the standard
pp-nnQRPA equation and the other piece is the pnQRPA
equation. To simplify the notation for the pnQRPA equation
we first introduce the matrices

Z̃ =
(

z1 z2

z3 z4

)
, Z̃′† =

(
ẑ1 ẑ2

ẑ3 ẑ4

)
, (12)

W̃ =
(

w1 w2

w3 w4

)
, W̃ ′† =

(
ŵ1 ŵ2

ŵ3 ŵ4

)
. (13)

The grouping into four blocks is obtained from ordering the
indices so that proton states come before neutron states. Then,
for example, in the z2 and ẑ2 matrices, the first index refers to
a proton state and the second one to a neutron state. A similar
notation is used for the κ̃, κ̃ ′†, and the ρ̃ matrices. In the same
way the U , V , and E matrices also obtain block structures:

U =
(

Up 0
0 Un

)
, V =

(
Vp 0
0 Vn

)
, E =

(
Ep 0
0 En

)
.

(14)

With this notation the pnQRPA part of the equation can be
expressed:

�ωz2 = Epz2 + z2En + w2, (15)

−�ωẑ2 = Epẑ2 + ẑ2En + ŵ2. (16)

Since the Bogoliubov transformation preserves the proton and
neutron quantum numbers we obtain

w2 = U †
ph2V

∗
n + U †

p�2U
∗
n + V †

p�̂2V
∗
n − V †

phT
3 U ∗

n , (17)

ŵ2 = V T
p h2Un + V T

p �2Vn + UT
p �̂2Un − UT

p hT
3 Vn, (18)

and

(h2)pn =
∑
n′p′

ṽpn′,np′ (ρ2)p′n′ , (19)

(h3)np =
∑
n′p′

ṽnp′,pn′ (ρ3)n′p′ , (20)

(�2)pn =
∑
p′n′

v
pair
pn,p′n′ (κ2)p′n′ , (21)

(�̂2)pn =
∑
p′n′

v
pair∗
pn,p′n′ (κ̂2)p′n′ , (22)

where the p and p′ (n and n′) indices refer to proton (neutron)
states. The relevant blocks of the transitional densities are
obtained as

ρ2 = Upz2V
T
n + V ∗

p ẑ2U
†
n, (23)

ρ3 = −Unz
T
2 V T

p − V ∗
n ẑT

2 U †
p, (24)

κ2 = Upz2U
T
n + V ∗

p ẑ2V
†
n , (25)

κ̂2 = Vpz2V
T
n + U ∗

pẑ2U
†
n. (26)

The equations involve matrix elements of the Skyrme interac-
tion in the T = 1 and TZ = ±1 channels that are not active
during standard HFB calculations which do not mix protons
and neutrons. The evaluation of the extra matrix elements thus
requires an extension of the usual method and this extension
will be discussed in the next section.

A. Evaluation of fields

With the Skyrme functional, and in the spin and isospin
coupled notation, the potential energy arising from the density-
independent two-body part of the interaction can be expressed
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[11,12] as

E =
∫ ∑

αβt

C t,β
α,J

[[
ρt

β,J ,ρt
α,J

]0]
0 d r

=
∫ ∑

αβt

C t,β
α,J

∑
mtm

′
t

MM ′

C00
tmt tm

′
t
C00

JM,JM ′ρ
tmt

β,JM (r)ρ
tm′

t

α,JM ′ (r)d r.

(27)

In this expression vector (isovector) coupling is denoted by
the square brackets with subscripts (superscripts) giving the
value of the total spin (isospin). The coefficients Ct,β

α,J denote
the coupling constants of the model while, e.g., C00

tmt ,tm
′
t
denote

Clebsch–Gordan coefficients [13]. The local densities entering
this expression are defined as

ρ
tmt

α,JM (r) = ρ
tmt

mI,nLνJ ′,JM (r)

= [
D̂mI ,

[
K̂nL,ρtmt

ν (r,r ′)
]
J ′

∣∣
r ′=r

]
JM. (28)

In this expression D̂mIM (K̂nLM ) denote derivative operators
(relative momentum operators) coupled to spherical tensors
introduced in Refs. [11,14]. To keep the notation simple we
have introduced the label α that stands for the set of quantum
numbers α = {mI,nLνJ ′}.

The local densities depend on the spin-isospin one-body
density defined as

ρtmt
νmν

(r,r ′) =
∑

ττ ′σσ ′
ρ(rτσ,r ′τ ′σ ′)〈σ ′|σ̂νmν

|σ 〉〈τ ′|σ̂tmt
|τ 〉

=
∑

ττ ′σσ ′

∑
b,b′

φb(rσ )ρbτ,b′τ ′φ∗
b′ (r ′σ ′)

×〈σ ′|σ̂νmν
|σ 〉〈τ ′|σ̂tmt

|τ 〉. (29)

In this expression the label b stands for the quantum numbers
needed to specify the basis states. For example, in the case of
a harmonic oscillator basis, b = {Nljm}. We assume the same
basis states for neutrons and protons. The quantum number
τ (σ ) is the isospin (spin) projection. For the Pauli matrices
we use the tensor form of the operators introduced in Eqs. 14
and 15 of Ref. [11]. By introducing the short-hand notation
〈σ ′|σ̂νmν

|σ 〉 = σσ ′σ
νmν

, the explicit relations for the different
components of the one-body density can be written as

ρ00
νmν

(r,r ′) =
∑

σσ ′bb′
φb(rσ )φ∗

b′(r ′σ ′)σσ ′σ
νmν

(
ρb− 1

2 ,b′− 1
2
+ ρb 1

2 ,b′ 1
2

)
,

(30)

ρ10
νmν

(r,r ′) =
∑

σσ ′bb′
φb(rσ )φ∗

b′(r ′σ ′)σσ ′σ
νmν

(−i)

× (
ρb 1

2 ,b′ 1
2
− ρb− 1

2 ,b′− 1
2

)
, (31)

ρ1−1
νmν

(r,r ′) =
∑

σσ ′bb′
φb(rσ )φ∗

b′(r ′σ ′)σσ ′σ
νmν

(−i)
(√

2ρb 1
2 ,b′− 1

2

)
,

(32)

ρ11
νmν

(r,r ′) =
∑

σσ ′bb′
φb(rσ )φ∗

b′(r ′σ ′)σσ ′σ
νmν

(−i)
(−√

2ρb− 1
2 ,b′ 1

2

)
.

(33)

We take protons to have isospin τ = −1/2 so Eq. (30) says,
e.g., that the isoscalar part of the one-body density involves the
sum of the proton- and neutron-density matrices. Expanding
the isospin coupling in Eq. (27) gives

E =
∫

d r
∑
αβ,J

C0,β
α,J

[
ρ00

β,J ,ρ00
α,J

]
0 − C1,β

α,J√
3

[
ρ10

β,J ,ρ10
α,J

]
0

+ C1,β
α,J√
3

([
ρ11

β,J ,ρ1−1
α,J

]
0 + [

ρ1−1
β,J ,ρ11

α,J

]
0

)
. (34)

To make the expression more symmetric we introduce new
local densities

ρ+
α,JM (r) = ρ11

α,JM (r) + ρ1−1
α,JM (r), (35)

ρ−
α,JM (r) = ρ11

α,JM (r) − ρ1−1
α,JM (r), (36)

which gives

E =
∫

d r
∑
αβ

C
0,β
α,J

[
ρ00

β,J ,ρ00
α,J

]
0 − C

1,β
α,J√
3

[
ρ10

β,J ,ρ10
α,J

]
0

+ C
1,β
α,J√
3

1

2
([ρ+

β,J ,ρ+
α,J ]0 − [ρ−

β,J ,ρ−
α,J ]0). (37)

The new local densities can be considered to be built from the
density matrices

ρ+
νmν

(r,r ′) =
∑

σσ ′b,b′
φb(rσ )φ∗

b′(r ′σ ′)σσ ′σ
νmν

ρ+
b,b′ , (38)

ρ−
νmν

(r,r ′) =
∑

σσ ′b,b′
φb(rσ )φ∗

b′(r ′σ ′)σσ ′σ
νmν

ρ−
b,b′ , (39)

where

ρ+
b,b′ = i

√
2
(
ρb− 1

2 ,b′ 1
2
− ρb 1

2 ,b′− 1
2

)
, (40)

ρ−
b,b′ = i

√
2
(
ρb− 1

2 ,b′ 1
2
+ ρb 1

2 ,b′− 1
2

)
. (41)

The new fields needed for pnQRPA have τ �= τ ′ and can be
written as

hbτ,b′τ ′ = ∂E
∂ρb′τ ′,bτ

= ∂E
∂ρ+

b′,b

∂ρ+
b′,b

∂ρb′τ ′,bτ

+ ∂E
∂ρ−

b′,b

∂ρ−
b′,b

∂ρb′τ ′,bτ

= i
√

2

(
∂E

∂ρ+
b′,b

2τ + ∂E
∂ρ−

b′,b

)
. (42)

Thus, the main task is calculating the fields

�+
bb′ = ∂E

∂ρ+
b′,b

= 1

2

∂

∂ρ+
b′b

∫
d r

∑
αβ,J

C
1,β
α,J√
3

[ρ+
β,J ,ρ+

α,J ]0, (43)

and

�−
bb′ = ∂E

∂ρ−
b′,b

= −1

2

∂

∂ρ−
b′b

∫
d r

∑
αβ,J

C
1,β
α,J√
3

[ρ−
β,J ,ρ−

α,J ]0. (44)

Except for the constants 1
2 and − 1

2 these fields have the same
form as the fields resulting from the isovector term. Thus the

054324-3



B. G. CARLSSON AND J. TOIVANEN PHYSICAL REVIEW C 89, 054324 (2014)

same computer routines can be reused for the calculation of
these new terms.

B. Density-dependent interaction

Introducing a standard scalar-isoscalar density dependence
gives the new term

Edd =
∑
αβ

C
1,β
α,J√
3

ρα
0

1

2
([ρ+

β,J ,ρ+
α,J ]0 − [ρ−

β,J ,ρ−
α,J ]0). (45)

One realizes that variations of the type

∂2Edd

∂ρx
bb′∂ρx

cc′

∣∣∣∣
ρ=ρgs

, (46)

where x = + or − will give rise to nonzero contributions and
other variations will not give anything. This is because the ρ+

bb′
and ρ−

bb′ density matrices are zero in the ground state when
protons and neutrons are uncorrelated. Therefore, one only
obtains contributions to the fields

�̃ij =
∑
kl

ṽiljkρ̃kl, (47)

where one of the indices i,j refers to a proton and the other to a
neutron. This means that we must consider the matrix elements
ṽpn′np′ and ṽnp′pn′ since the other combinations where the first
two indices refer to the same particle species are forbidden by
charge conservation. The first of these matrix elements can be
expressed [10] as

ṽpn′np′ = ∂EHF

∂ρnp∂ρp′n′

∣∣∣∣
ρgs

= v̄n′pp′n[ρ] +
∑
j l

ρlj

(
∂v̄n′jp′l[ρ]

∂ρnp

+ ∂v̄pjnl[ρ]

∂ρp′n′

)∣∣∣∣
ρgs

+ 1

2

∑
ijkl

ρki

∂v̄ijkl[ρ]

∂ρp′n′∂ρnp

ρlj

∣∣∣∣
ρgs

= v̄n′pp′n[ρgs]. (48)

The last line follows since the density-dependence is explicitly
with respect to the isoscalar density so the variations of the
matrix elements with respect to the mixed proton-neutron
densities become zero. For the ṽnp′pn′ combination it works
in the same way. Thus, with the standard isoscalar ρα

0 density
dependence there are no additional rearrangement terms
appearing in the pnQRPA.

C. Pairing interaction

For the pairing interaction we adopt a form

V (r1,r2,r ′
1,r

′
2)

= δ(R − R′)P (r)P (r ′)[G1�̂s=0 + G0�̂S=1,T =0], (49)

where

P (r) = 1

(4πa2)3/2
e−r2/(4a2), (50)

�̂s=0 = 1

2
(1 − P σ ), (51)

�̂S=1,T =0 = 1

4
(1 + P σ )(1 − P τ ). (52)

Since this interaction has a finite range it leads to convergent
results and no energy cutoff is needed for the pairing space.
The separable structure of the interaction allows an efficient
evaluation of the two-body matrix elements [4]. The isovector
part of this interaction was first considered in Ref. [15]
to parametrize the bare low-momentum potential in the
1S0 channel. Here, the parametrization is straightforwardly
extended to the T = 0 channel by assuming the same radial
dependence.

III. ACCURACY AND CONVERGENCE

In order to find the eigenvalues of the large pnQRPA matrix
we use the implicitly restarted Arnoldi method (IRA) [16,17].
With this approach the pnQRPA matrix never has to be built;
it is sufficient to be able to calculate the results of the matrix
acting on an arbitrary vector which can be done as outlined in
the previous section. The method is implemented in an updated
version of the HOSPHE (v1.02) [11] code.

An example of the calculations is shown in Fig. 1. In
this figure we have selected the lowest multiplet states in
the nucleus 51Sb83 that has a proton-neutron pair outside
closed shells. The proton neutron pair is assumed to be in a
πg7/2 ⊗ νf7/2 configuration and the corresponding excitations
are extracted from the code, requesting the states where this
configuration has the largest amplitude. The longest time is
spent on calculating the highest angular-momentum states.
For the I = 7− calculation with Nmax = 16 it takes about

10 15 20 25
N

max

-0.4

-0.2

0

0.2

E
ne

rg
y 

[M
eV

]

I=0
-

I=1
-

I=7
-

I=2
-

I=3
-I=5
-

I=4
-

I=6
-

51
Sb

83
,  πg

7/2
+⊗νf

7/2
-

FIG. 1. (Color online) Convergence of the relative energies of the
low-lying multiplet in 51Sb83 as a function of the maximum oscillator
shell Nmax included in the basis. The energies are drawn relative to the
average energy of the multiplet. The SKX Skyrme interaction [18]
was used with pairing parameters (G1,G0) = (545,763) MeV fm3

(G0/G1 = 1.4).
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6.5 min on a standard desktop computer (Intel Core i7-2600K,
3.4 GHz). The time depends on the requested accuracy as
well as the number of requested converged excitations. In this
case the 15 lowest positive-energy pnQRPA excitations were
requested and set to be converged with a tolerance parameter
[19] of 10−6. As seen from Fig. 1, the relative energies of
the multiplet states converge rapidly with increasing number
of oscillator shells. Nmax = 16 appears to give a sufficient
accuracy and will therefore be used in the following.

IV. SELECTION OF EXPERIMENTAL DATA

Starting from double-magic spherical nuclei we consider
neighboring nuclei with an excited proton-neutron pair of
particles or holes. The proton-neutron pair can couple to
different total-angular-momentum values forming a multiplet
of states. In order to identify the states we start by considering
the experimental ground states of the odd nuclei surrounding
the double magic one. From the ground-state spins of the
odd nuclei, jp and jn, we can identify the corresponding
configurations by comparing with a Nilsson diagram. Then
the largest components in the lowest states of the odd-odd
nuclei are assumed to result from the coupling of these
states. In the case of N = Z nuclei the isospin of the states
is sometimes experimentally determined. In these cases we
apply the additional condition that, for protons and neutrons
in identical orbits, even (odd)J must be combined with T = 1
(0) in order to make the wave function antisymmetric [20].
Thus for the N = Z nuclei we make use of this relationship
and select the lowest experimental states that have isospin
values consistent with those of our assumed configurations.

In this way Tables I and II are constructed. Table I contains
data for particle states and Table II contains data for hole
states. In addition to these tables, Ref. [22] contains a table of
13 identified experimental multiplets in 210

83 Bi127. As part of the
data set we adopt the first seven multiplets shown in Table III
of Ref. [22].

In some cases it is possible to compare our assumed
assignments for the largest wave-function configurations with
previous shell-model calculations. In the case of 18F, shell-
model calculations [23] confirm our assumptions about the
largest-amplitude configurations except for the 1+ and 3+
states where the largest components are suggested to be
πd5/2νd3/2 and πd5/2νs1/2 configurations. These two states
marked with (a) in Table I are thus excluded from the data
set. For 42Sc our assumption about the largest-amplitude
configurations is confirmed by shell-model calculations [24].
In 50Sc there are two possible spin assignments for the second
state of the multiplet. Previous comparisons with shell-model
calculations [25] suggest the 2+ interpretation we adopt here
as well. In the case of 134Sb, the spin values are shown in
parentheses, indicating that they are not directly measured
but comparisons with shell-model calculations [26] support
the experimental spin assignments given for the two observed
multiplets in this nucleus.

In the case of hole states shown in Table II and for 38K
we have chosen the second observed 1+ state that experiments
suggests to be the one with largest d3/2 components [27]. For
46K we have excluded the 3− and the 4− states marked with

TABLE I. Experimental data [21] for nuclei with a proton-neutron
pair outside closed shells. The experimental states considered are
listed along with their assumed largest configurations. For 210

83 Bi127

we have adopted the first seven multiplets shown in Table III of
Ref. [22] along with the suggested 58 corresponding experimental
energies. All energies are in MeV.

Nucleus Configuration Iπ Eexpt Remark

18
9 F9 πd5/2+ ⊗ νd5/2+ 0+ 1.04155

1+ 0 (a)
2+ 3.06184
3+ 0.93720 (a)
4+ 4.65200
5+ 1.12136

42
21Sc21 πf7/2− ⊗ νf7/2− 0+ 0

1+ 0.611051
2+ 1.58631

(3+) 1.49043
4+

(5+) 1.51010
6+

(7+) 0.61628
50
21Sc29 πf7/2− ⊗ νp3/2− 2+,3+ 0.256895

(3+) 0.328447
(4+) 0.757000
5+ 0

58
29Cu29 πp3/2− ⊗ νp3/2− 0+ 0.202990

1+ 0
2+ 1.6525

(3+) 0.443640
134
51 Sb83 πg7/2+ ⊗ νf7/2− (0−) 0

(1−) 0.0130
(2−) 0.3311
(3−) 0.3840
(4−) 0.5550
(5−) 0.441
(6−) 0.617
(7−) 0.279

πd5/2+ ⊗ νf7/2− (1−) 0.8850
(2−) 0.9350
3−

4−

5−

6−
210
83 Bi127 see caption

(a) in Table II from the data set. That is because these states
may also arise from a possible [πs1/2+ ,νf7/2− ]3−,4− coupling
or may be a mixture of both of these multiplets. Although the
pnQRPA takes this mixing into account we prefer to have as
clean data as possible. In the case of 54Co we adopt the 4+
and 6+ states marked with (b) in Table II although there are
lower states with tentative spin assignments that could belong
to the multiplet. The decay patterns and comparisons with
shell-model calculations suggest the present interpretation
[28]. With these selections we end up with a data set consisting
of a total of 104 states.
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TABLE II. Same as Table I but for nuclei with a proton-neutron
hole-pair outside closed shells. Levels marked with (a) may belong
to the multiplet πs1/2+ ⊗ νf7/2− .

Nucleus Configuration Iπ Eexpt Remark

14
7 N7 πp1/2− ⊗ νp1/2− 0+ 2.312798

1+ 0
38
19K19 πd3/2+ ⊗ νd3/2+ 0+ 0.1304

1+ 1.698
2+ 2.40107
3+ 0

46
19K27 πd3/2+ ⊗ νf7/2− (2−) 0

3− 0.5874 (a)
(4−) 0.6909 (a)
5− 0.8855

54
27Co27 πf7/2− ⊗ νf7/2− 0+ 0

1+ 0.93690
2+ 1.44566
3+ 1.82149
4+ 2.65197 (b)

(5+) 1.8870
(6+) 2.979 (b)
7+ 0.1970

130
49 In81 πg9/2+ ⊗ νh11/2− (1−) 0.0000

2−

3−

4−

5−

6−

7−

8−

9−

(10−) 0.0500

V. DETERMINATION OF ISOSCALAR
PAIRING STRENGTH

In this article the values of the isovector pairing strengths
and range parameter (a = 0.660 fm) are considered to be fixed
from values used in our previous study [7]. In Ref. [7] a
different strength was used for neutrons and protons but in
this work we assume an isospin symmetric T = 1 interaction
with a strength given by the average of the proton and neutron
values taken from Ref. [7]. In general the Coulomb interaction
will introduce isospin breaking leading to different pairing
strengths for protons and neutrons. In a complete approach
one should thus also consider the Coulomb contribution to
the pairing interaction. However, inclusion of Coulomb is
problematic since approximate treatments may give rise to
divergences (see, e.g., Ref. [6]) and exact treatments becomes
time consuming. Since the objective of this work is to
determine a first value of the T = 0 pairing strength that can
be used in pnQRPA calculations for β decay, we have opted
to start by investigating the simpler isospin-invariant form.

When comparing experimental and theoretical states one
should note that in the pnQRPA formalism the resulting
excitations have preserved total angular momentum and parity
but are in general composed of a mixture of “pure” multiplet
configurations such as those shown in Tables I and II. Thus
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FIG. 2. (Color online) Root mean square as a function of the
G0/G1 ratio. All 104 experimental states were used for the
comparison.

in order to select the states that should be compared with
data we extract the theoretical states that have the postulated
experimental configurations as the largest amplitudes. In case
there are two such theoretical states the one lowest in energy
is selected.

A. Full fits

In the case of a multiplet where all experimental states are
not measured or some states are excluded on the basis of being
uncertain we define the average energy of the multiplet as the
average of the remaining experimental states. The average of
the same theoretical states are then used to define the average
theoretical energy of the multiplet. Since in general, Skyrme
interactions will produce errors of ∼1.4 MeV for single-
particle energies [29] we do not compare the average energies
with experiment. Instead the experimental and theoretical
relative energies within the multiplet are compared and the
root mean square (rms) is taken as the difference between
experimental and theoretical relative energies.

Figure 2 shows the rms as a function of the isoscalar pairing
strength. The data set involved all 104 states and, as seen in the
figure, the description of data becomes better as the strength
is increased.

The curves in Fig. 2 are drawn until imaginary eigenvalues
start to appear in the pnQRPA calculations. For each interac-
tion, starting from the last point on the curves and increasing
the G0/G1 ratio by 10% leads to the appearance of such
points. For all nuclei it seems that, as the T = 0 strength
reaches a value G0 � 1.2G1, the pnQRPA starts to become
unstable for N = Z nuclei. This may indicate that the ground
state is not a stationary point with respect to proton-neutron
correlations and may thus go through a transition into an
isoscalar proton-neutron pairing condensate (see, e.g., the
discussion in Ref. [30]).

Both the SKX [18] and the SLy4 [31] interactions show
minima at G0/G1 = 1.2 and in both cases the increase in
rms when going to G0/G1 = 1.3 can be traced to two N = Z
nuclei (42Sc and 38K) whose errors increase substantially while
the rms for most of the remaining nuclei actually decreases.
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FIG. 3. (Color online) Root mean square as a function of the
G0/G1 ratio. The comparison is performed using the 76 states
remaining when N = Z nuclei are removed from the data set.

Further increasing the T = 0 pairing strength to G0/G1 =
1.4 leads to imaginary eigenvalues appearing in the J = 1+
channel for the same nuclei. At G0/G1 = 1.3 and for the SKX
interaction, the lowest energy excitation in this channel is at
0.18 MeV while it is at 1.9 MeV with SLy4, indicating that
the SLy4 minimum is more reliable while the last SKX point
is likely too close to instability to be reliable.

The results for the SkM* interaction [32] follows the other
ones but reaches the unstable point before any tendency for a
minimum is displayed.

In general, the multiplet splitting is larger in the light
nuclei and they therefore get more important when tuning
the strength. In order to remove this dependence one can
divide the energies by 41A−1/3 to obtain oscillator units [33]
which removes the average energy dependence arising from
the different stiffness of the nuclear potential for light and
heavy nuclei. If the rms is instead calculated in oscillator
units, the minimum obtained for SLy4 still occurs for the same
interaction strength.

B. Fits with a reduced data set

In order to be able to test a larger range of interaction
strengths, the Z = N nuclei are excluded from the fits leaving
a total of 76 states. The result of this calculation is shown
in Fig. 3. As seen in this figure, when the N = Z nuclei
are removed all the interactions produce minima when G0 

1.4G1. It is interesting to note that the obtained values are
in good agreement with the ratio of isovector to isoscalar
pairing of 1.3 that was found in Ref. [30] in order to describe
the Wigner energy as a binding energy gain caused by T =
0 pairing in the Bardeen-Cooper-Schrieffer-Lipkin-Nogami
(BCSLN) model.

C. Results for multiplets

The results from the optimal fit obtained with the SKX
interaction and G0 = 1.4G1 are shown for the largest multi-
plets in Figs. 4 and 5. If it were not for the the isoscalar and
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FIG. 4. (Color online) Relative energies of the largest N �= Z

multiplets calculated using the SKX interaction and compared with
experiment.

isovector pairing interactions the resulting theoretical curves
would become constant with the value 0. Thus no splitting of
the multiplets would be predicted. Including a T = 1 pairing
interaction results in the dashed curves in Figs. 4 and 5. These
curves obtain some staggering that makes them agree better
with experiment.

With the T = 0 pairing interaction added, shown with
full drawn curves in Figs. 4 and 5, the description shows
a considerable improvement and the theoretical multiplet
splittings are in good agreement with experiment.

For the 21Sc29 nucleus the lowest multiplet is expected to
result from a π (f7/2)1ν(p3/2)1 configuration which can couple
to I = 2+ − 5+ [25]. As seen in Fig. 4(a), the ordering of the
states is correctly described and the relative energies compare
well with experiment. The lowest multiplet in 51Sb83 was
previously described in the shell-model approach by using
experimental single-particle levels and an effective interaction
derived from the charge-dependent-Bonn (CD-Bonn) NN
potential [26]. The biggest discrepancy was obtained for the
7− state which was predicted to be about 130 keV above
the experimental state. In our case, the 7− state shown in
Fig. 5(b) is instead predicted about to be 130 keV below the
experimental state. However, it should also be noted that in
Ref. [26] the energies are normalized to the lowest state in the
multiplet whereas in this work we normalize to the average
multiplet energy. The most striking difference between the
calculations is that, while we overpredict the relative energies
of the 0− and 1− states, the shell-model calculation gave
almost the correct energy splitting between these states. The
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FIG. 5. (Color online) Same as Fig. 4 for additional multiplets.

same discrepancy is also seen in 83Bi127 [see Fig. 4(c)] where
the 0− state comes out lowest in our calculation while the
experimental ground state is 1−. Both shell-model calculations
based on realistic interactions [34] and phenomenological
forces that include noncentral-tensor and spin-orbit terms can
give the correct ordering [22]. For example, in Ref. [22] a
phenomenological force with eight free parameters was fit to
multiplet data in 83Bi127 which lead to a good reproduction of
the spectra. This suggests that a more complicated interaction
could give a better description of the data but, rather than
introducing additional parameters, it seems more interesting
to attempt to constrain the T = 0 effective force starting from
bare interactions, as done for the T = 1 part in Ref. [15].
However, this work is left as a future exercise.

In Fig. 5 the description of the higher-lying multiplets in
83Bi127 is shown. A few more multiplets have been identified
[22] but here we have restricted ourselves to those with the
lowest excitation energies since the mixing with configurations
that are outside the scope of the pnQRPA description are
expected to increase with increasing excitation energy.

VI. SUMMARY AND CONCLUSIONS

An iterative method for the solution of the pnQRPA
equations that avoids the construction of the large pnQRPA

matrix was introduced and employed for the calculation of low-
lying states. The method uses the implicitly restarted Arnoldi
approach for the solution of the non-Hermitian eigenvalue
problem. In this approach, only the action of the matrix on a
Ritz vector is needed and this can be expressed in terms of
effective fields generated by transitional densities. The numer-
ical tests shows that the method is both fast and reliable. When
generalizing the method to the pnQRPA case, additional fields
in the particle-hole channel which are not active in standard
HFB calculations must be taken into account. The expressions
for the new fields follow straightforwardly from the require-
ment that the nuclear interaction is invariant with respect to
rotations in isospin space, and we demonstrated how they may
be calculated analogously to the standard isovector fields.

The excitations in the pnQRPA are proton and neutron
quasiparticle pairs and the results become sensitive to whether
these pairs like to pair up with their spins parallel or
antiparallel. This feature is determined by the relative strengths
of the T = 1 and T = 0 components of the pairing interaction.
It should be noted that, in recent fits of Skyrme interactions
[35,36], the T = 0 pairing channel is not probed at all since
proton-neutron pairing is generally neglected in the models.
However, for descriptions of β decay [2,3] and neutrinos that
scatter on nuclei [37], the T = 0 pairing channel has a large
influence on the results.

In this work we considered a simple isospin invariant
parametrization of the T = 1 and T = 0 pairing interactions
and determined the T = 0 pairing strength from multiplet
data. The comparison with experimental data suggests that
the effective pairing interaction in the T = 0 channel should
be roughly 40% stronger than the T = 1 pairing interaction.
It is interesting that these values are in agreement with
previous estimates of a 30% stronger T = 0 channel obtained
by assuming the Wigner energy arises from proton-neutron
pairing [30]. The collapse of the pnQRPA obtained for some
of the N = Z nuclei further corroborates this view and may be
indicative of a phase transition to a T = 0 pairing condensate.

It should also be noticed that, in a recent study [38],
a reasonable agreement with experiment was obtained for
Wigner energies using an effective Hamiltonian without any
isoscalar pairing. In fact, the authors find that, with their model,
ratios of isoscalar to isovector pairing larger than 0.8 does not
lead to the correct mass differences.

It is not straightforward to compare the different studies
since different many-body approaches and different interac-
tions are generally employed. It would therefore be interesting
to see if it is possible to find a common effective T = 0 interac-
tion compatible with all the different types of experimental data
such as multiplet energies, β-decay probabilities, ground-state
energies, etc.

Although the many-body approach of this work is more
advanced, the structure of the pairing interactions assumed
here is certainly simpler than those of some previous studies
[22,39]. However, since the main features of the data can be
described with the simple form used in this work, it may be
taken as a first approximation to be used in future pnQRPA
studies. In the long run, the goal would be to determine better
effective interactions and preferably such interactions that have
the same form in both in the particle-hole and the paring
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channels. For such studies, low-lying states in odd-odd nuclei
can provide important constraints on the effective interactions.
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