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Covariant density functional theory is a modern theoretical tool for the description of nuclear structure
phenomena. The current investigation aims at the global assessment of the accuracy of the description of
the ground state properties of even-even nuclei. We also estimate theoretical uncertainties defined here as
the spreads of predictions within four covariant energy density functionals in known regions of the nuclear
chart and their propagation towards the neutron drip line. Large-scale axial relativistic Hartree-Bogoliubov
calculations are performed for all Z � 104 even-even nuclei between the two-proton and two-neutron drip lines
with four modern covariant energy density functionals such as NL3*, DD-ME2, DD-MEδ, and DD-PC1. The
physical observables of interest include the binding energies, two-particle separation energies, charge quadrupole
deformations, isovector deformations, charge radii, neutron skin thicknesses, and the positions of the two-proton
and two-neutron drip lines. The predictions for the two-neutron drip line are also compared in a systematic way
with the ones obtained in nonrelativistic models.
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I. INTRODUCTION

Density functional theories (DFT’s) are extremely useful
for the microscopic description of quantum mechanical many-
body systems. They map the complicated N -body systems
on an effective systems of N uncorrelated single particles.
They have been applied with great success for many years
in Coulombic systems [1,2], where they are, in principle,
exact and where the functional can be derived without any
phenomenological adjustments directly from the Coulomb
interaction. In nuclear physics the situation is much more
complicated.

Nuclei are self-bound systems with translational invariance.
Because of the large spin-orbit interaction spin degrees of
freedom play an important role and cannot be neglected. There
are also isospin degrees of freedom and many open-shell nuclei
are superfluid systems. In addition, there are strong indications
[3] that an optimal description of nuclei should be relativistic.
As a consequence, the single-particle wave functions form
at each point in r-space a spinor of dimension 4, or 8 (with
superfluidity), or 16 (in the relativistic case).

The bare nuclear force is usually adjusted to scattering
data. This requires additional assumptions and is connected
with additional uncertainties such as the off-shell behavior.
As compared to the Coulomb force, the two-body part of the
nuclear force is extremely strong at short distances and has a
relatively short range. There are convincing indications that it
contains, on the nonrelativistic level, an important three-body
part.

Despite all these restrictions, in the past 40 years nonrela-
tivistic and relativistic (covariant) DFT’s have been developed
and successfully applied to the description of a variety of
nuclear phenomena [4–7] with great success. All of these
applications are based on phenomenological parametrizations
of the underlying density functionals. Usually the form of
these functionals is determined by arguments of symmetry

and simplicity and the remaining set of parameters is fitted to
experimental data in finite nuclei, such as binding energies,
radii, etc. Only recently have there been attempts to reduce the
number of phenomenological parameters by using information
from ab initio calculations for nonrelativistic [8–10] and
relativistic [11,12] functionals. It is clear, however, that the
required accuracy of a few hundred keV for the binding
energies, i.e., in heavy nuclei an accuracy of 10−4 and below,
can, in the foreseeable future, only be achieved by additional
fine tuning of a few extra phenomenological parameters.

Among these nuclear DFT’s, covariant DFT is one of
most attractive because covariant energy density functionals
exploit basic properties of QCD at low energies, such as
symmetries and the separation of scales [5]. They provide
a consistent treatment of the spin degrees of freedom and
include the complicated interplay between the large Lorentz
scalar and vector self-energies induced on the QCD level by the
in-medium changes of the scalar and vector quark condensates
[13]. In addition, these functionals include nuclear magnetism
[14], i.e., a consistent description of currents and time-odd
mean fields important for odd-mass nuclei [15], the excitations
with unsaturated spins, magnetic moments [16], and nuclear
rotations [17,18]. Because of Lorentz invariance no new
adjustable parameters are required for the time-odd parts of
the mean fields. Of course, at present, all attempts to derive
these functionals directly from the bare forces [19–22] do not
reach the required accuracy. However, in recent years modern
phenomenological covariant density functionals have been
derived [11,12,23] which provide an excellent description of
ground and excited states all over the nuclear chart [6,7] with a
high predictive power. Modern versions of these forces derive
the density dependence of the vertices from state-of-the-art ab
initio calculations and use only the remaining few parameters
for a fine tuning of experimental masses in finite spherical [12]
or deformed [11] nuclei.
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The theoretical description of ground state properties of
nuclei is important for our understanding of their structure. It
is also important for nuclear astrophysics, where we are facing
the problem of an extrapolation to the nuclei with large isospin.
Many of such nuclei will never be studied experimentally, even
with the next generation of facilities. Thus, it is important
to answer two questions. First, how well do the existing
nuclear energy density functionals (EDF’s) describe available
experimental data? Second, how well do they extrapolate to
the region of unknown nuclei?

Unfortunately, even the answer on the first question is
not possible for the majority of nuclear EDF’s because their
global performance is not known. This is especially true for
covariant energy density functionals. Very few of them were
confronted with experimental data on a global scale. Even
the new generation of covariant energy density functionals
(CEDF’s) such as NL3* [24], DD-ME2 [23], DD-MEδ [12],
and DD-PC1 [11], which were fitted during past decade, have
not passed this critical test. This is because only limited sets
of nuclei, usually located in the region of nuclei used in the
fitting protocol, were confronted with calculations. Thus, it is
not known how well they describe ground state properties on a
global scale and what are their strong and weak points in that
respect.

The answer to the question “How well does a given
CEDF extrapolate towards neutron-rich nuclei?” is intimately
connected with the answer to the first question. This is because
one can estimate its reliability for the description of nuclei far
away from the region of known nuclei only by assessing its
global performance on existing experimental data. Of course,
a good performance in known nuclei is only a necessary
condition and one has to be very careful with extrapolations of
models where this good performance has only been achieved
with a large number of phenomenological parameters. It is
one of the essential advantages of relativistic models that
covariance reduces the number of parameters considerably.

It was suggested in Refs. [25–27] to use the methods of
information theory and to define the uncertainties in the EDF
parameters. These uncertainties come from the selection of the
form of EDF as well as from the fitting protocol details, such
as the selection of the nuclei under investigation, the physical
observables, or the corresponding weights. Some of them are
called statistical errors and can be calculated from a statistical
analysis during the fit, others are systematic errors, such as,
for instance, the form of the EDF under investigation. On the
basis of these statistical errors and under certain assumptions
on the independence of the form of many EDF’s one hopes
to be able to deduce in this way theoretical error bars for the
prediction of physical observables [25–27]. It is very difficult
to perform the analysis of statistical errors on a global scale
because the properties of transitional and deformed nuclei have
to be calculated repeatedly for different variations of original
CEDF. Thus, such statistical analysis has been performed
mostly for spherical nuclei [25,28] or selected isotopic chains
of deformed nuclei [26].

Although such an analysis has its own merits, at present,
it does not allow to fully estimate theoretical uncertainties
in the description of physical observables. This is because
they originate not only from the uncertainties in model

parameters, but also from the definition and the limitations
of the model itself, in particular, from an insufficient form of
the nuclear energy density functional. The later uncertainties
are very difficult to estimate. As a consequence, any analysis
of theoretical uncertainties (especially, for extrapolations to
neutron-rich nuclei) contains a degree of arbitrariness related
to the choice of the model and fitting protocol.

Thus, in the given situation we concentrate mostly on the
uncertainties related to the present choice of energy density
functionals which can be relatively easily deduced globally. We
therefore define theoretical systematic uncertainties for a given
physical observable via the spread of theoretical predictions
within the four CEDF’s,

�O(Z,N ) = |Omax(Z,N ) − Omin(Z,N )|, (1)

where Omax(Z,N ) and Omin(Z,N ) are the largest and smallest
values of the physical observable O(Z,N ) obtained with the
four employed CEDF’s for the (Z,N ) nucleus. In the following
we use the word spread for these theoretical systematic
uncertainties for the CEDF’s. Three different classes of the
CEDF’s are used for this purpose (see Sec. II). Note that
these theoretical uncertainties are only spreads of physical
observables owing to a very small number of functionals and,
thus, they are only a crude approximation to the systematic
theoretical errors discussed in Ref. [27]. As in the case of
present Skyrme functionals, the different covariant functionals
do not form an independent statistical ensemble. Their number
is very small and they are all based on a very similar form. For
example, no tensor terms are present in the relativistic case
and simple power laws are used for the density dependence
in the Skyrme DFT. The parameters of these functionals are
fitted according to similar protocols, including similar types
of physical observables such as binding energies and radii.

Thus, there are two main goals of the current paper. First
is the assessment of global performance of the state-of-the
art CEDF’s. In the future it will make it possible to define the
strategies for new fits of CEDF’s. The second goal is to estimate
differences in the description of various physical observables
on a global scale and especially in the regions of unknown
nuclei.

The paper is organized as follows. The four state-of-the-art
covariant energy density functionals and the details of their
fitting protocols are discussed in Sec. II. Section III describes
the solutions of the relativistic Hartree-Bogoliubov equations.
The treatment of the pairing interaction and the selection of its
strength are considered in Sec. IV. We report on the results
for masses (binding energies) and two-particle separation
energies in Secs. V and VI, respectively. Section VII contains
a discussion of the two-proton drip line and the accuracy
of its description in model calculations. The predictions
for the two-neutron drip line, an analysis of sources for
uncertainties of its definition, and a comparison of two-neutron
drip-line predictions of covariant and nonrelativistic DFT’s
are presented in Sec. VIII. Calculated charge quadrupole
and hexadecapole deformations and isovector quadrupole
deformations are considered in Sec. IX. Charge radii and
neutron skin thicknesses are discussed in Sec. X. Note that
theoretical uncertainties of relevant physical observables are
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discussed in each of Secs. V, VI, VII, VIII, IX, and X. Finally,
Sec. XI summarizes the results of our work.

II. COVARIANT ENERGY DENSITY FUNCTIONALS

Three classes of covariant density functional models are
used throughout this paper: the nonlinear meson-nucleon
coupling model (NL), the density-dependent meson-exchange
(DD-ME) model, and the density-dependent point-coupling
(DD-PC) model. The main differences between them lie in
the treatment of the range of the interaction and in the density
dependence. The interaction in the first two classes has a finite
range that is determined by the mass of the mesons. For fixed
density it is of Yukawa type and the range is given by the
inverse of the meson masses. For large meson masses, i.e., for
small ranges, the meson propagator can be expanded in terms
of this range. In zeroth order we obtain δ forces and in higher
order derivative terms. This leads to the third class of density
functionals, the point-coupling models. It is well known from
the nonrelativistic Skyrme functionals that pure δ-forces are
not able to describe properly at the same time nuclear binding
energies and radii. One needs at least one derivative term in
the isoscalar-scalar channel because the σ mass is considerably
smaller than the masses of the other mesons.

For realistic calculations the density dependence is very
important. It is taken into account by nonlinear meson cou-
plings in the NL models and by an explicit density dependence
of the coupling constants in the other two cases, i.e., by
density-dependent meson-nucleon vertices in the DD-ME and
DD-PC models.

Each of these classes is represented in the current paper by
the CEDF’s considered to be state-of-the-art, i.e., by NL3* [24]
for the NL models, by DD-ME2 [23] and DD-MEδ [12] for the
DD-ME models, and by DD-PC1 [11] for the point-coupling
models.

In the meson-exchange models [12,23,24], the nucleus is
described as a system of Dirac nucleons interacting via the
exchange of mesons with finite masses leading to finite-range
interactions. The starting point of covariant density functional
theory (CDFT) for these two models is a standard Lagrangian
density [29],

L = ψ̄[γ · (i∂ − gωω − gρ �ρ �τ − eA) − m − gσσ − gδ �τ �δ]ψ

+ 1
2 (∂σ )2 − 1

2m2
σ σ 2 + 1

2 (∂�δ)2 − 1
2m2

δ
�δ2

− 1
4�μν�

μν + 1
2m2

ωω2 − 1
4

�Rμν
�Rμν + 1

2m2
ρ �ρ 2

− 1
4FμνF

μν, (2)

which contains nucleons described by the Dirac spinors ψ
with the mass m and several effective mesons characterized
by the quantum numbers of spin, parity, and isospin. They
create effective fields in a Dirac equation, which corresponds
to the Kohn-Sham equation [1] of nonrelativistic DFT. The
Lagrangian (2) contains as parameters the meson masses mσ ,
mω, mδ , and mρ and the coupling constants gσ , gω, gδ , and gρ .
e is the charge of the protons and it vanishes for neutrons.

This linear model has first been introduced by Walecka
[30,31]. However, it has failed to describe the surface
properties of realistic nuclei. In particular, the resulting

TABLE I. The parameters of the NL3*, DD-ME2, and DD-MEδ

CEDF’s. The masses are given in MeV and the dimension of g2 in
NL3* is fm−1. All other parameters are dimensionless. Note that
gσ = gσ (ρsat), gω = gω(ρsat), gδ = gδ(ρsat), and gρ = gρ(ρsat) in the
case of the DD-ME2 and DD-MEδ CEDF’s.

Parameter NL3* DD-ME2 DD-MEδ

m 939 939 939
mσ 502.5742 550.1238 566.1577
mω 782.600 783.000 783.00
mδ 983.0
mρ 763.000 763.000 763.0
gσ 10.0944 10.5396 10.3325
gω 12.8065 13.0189 12.2904
gδ 7.152
gρ 4.5748 3.6836 6.3128
g2 −10.8093
g3 −30.1486
aσ 1.3881 1.3927
bσ 1.0943 0.1901
cσ 1.7057 0.3679
dσ 0.4421 0.9519
eσ 0.4421 0.9519
aω 1.3892 1.4089
bω 0.9240 0.1698
cω 1.4620 0.3429
dω 0.4775 0.9860
eω 0.4775 0.9860
aδ 1.5178
bδ 0.3262
cδ 0.6041
dδ 0.4257
eδ 0.5885
aρ 0.5647 1.8877
bρ 0.0651
cρ 0.3469
dρ 0.9417
eρ 0.9737

incompressibility of infinite nuclear matter is much too large
[32] and nuclear deformations are too small [29]. Therefore,
Boguta and Bodmer [32] introduced a density dependence
via a nonlinear meson coupling replacing the term 1

2m2
σ σ 2 in

Eq. (2) with

U (σ ) = 1
2m2

σ σ 2 + 1
3g2σ

3 + 1
4g3σ

4. (3)

The nonlinear meson-coupling models are represented by the
parameter set NL3* [24] (see Table I), which is a modern
version of the widely used parameter set NL3 [33]. Both
contain no δ meson. Apart from the fixed values for the masses
m, mω, and mρ , there are six phenomenological parameters,
mσ , gσ , gω, gρ , g2, and g3, which have been fitted in Ref. [24] to
a set experimental data in spherical nuclei: 12 binding energies,
9 charge radii, and 4 neutron skin thicknesses.

The density-dependent meson-nucleon coupling model has
an explicit density dependence for the meson-nucleon vertices.
There are no nonlinear terms for the σ meson, i.e., g2 = g3 =
0. For the form of the density dependence the Typel-Wolter
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ansatz [34] has been used,

gi(ρ) = gi(ρsat)fi(x) for i = σ,ω,δ,ρ, (4)

where the density dependence is given by [12,23,34]

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + ei)2
, (5)

where x is defined as the ratio between the baryonic density
ρ at a specific location and the baryonic density at saturation
ρsat in symmetric nuclear matter. The parameters in Eq. (5) are
not independent, but constrained as follows: fi(x = 1) = 1,
f

′′
σ (x = 1) = f

′′
ω(x = 1), and f

′′
i (x = 0) = 0. In addition, the

constraints dσ = eσ and dω = eω are used. These constraints
reduce the number of independent parameters for the density
dependence. The density-dependent meson-nucleon coupling
model is represented here by the CEDF’s DD-ME2 [23] and
DD-MEδ [12]. The selection of DD-MEδ in this class is
motivated by the desire to understand the role of the extra
(δ) meson. Note that in the case of DE-ME2 we have no δ
meson and the density dependence of Eq. (5) is used only for
the σ and ω mesons. For the ρ meson we have an exponential
density dependence,

fρ(x) = exp[−aρ(x − 1)], (6)

in DD-ME2.
There is an important difference between the functional

NL3* and three other functionals considered in this investiga-
tion. NL3*, as all older nonlinear meson coupling functionals
like NL1 [35], NL3 [33], or TM1 [36], have no nonlinearities
in the isovector channel. Therefore, in infinite nuclear matter,
the isovector fields are proportional to the isovector density,
which are given by N − Z. This leads to a very stiff symmetry
energy as a function of the density and to relatively large values
for the symmetry energy J and its slope L at saturation (see
Table V). J is particularly large in NL1. The fits of other
above-mentioned nonlinear meson coupling functionals have
tried to reduce this value. However, because of the stiffness
of the linear ansatz this is possible only to a certain extent.
Although these functionals are very successful for static CDFT
close to the valley of stability [24], their common feature is that
the neutron skin thicknesses are larger than those of successful
Skyrme EDF’s and DD CEDF’s (see Sec. X for more details).
The majority of experimental estimates of the neutron skin
thickness based on hadronic probes favor lower values for this
quantity. However, these experimental values strongly depend
on model assumptions. Only the central value of the neutron
skin thickness obtained in the recent PREX [37] experiment
is in agreement with CEDF’s linear in the isovector channel.
This experiment is, however, characterized by large statistical
errors. On the other hand, the information on the symmetry
energy (for more details concerning the present status of our
knowledge on the symmetry energy in nuclei see Ref. [38])
from ab initio calculations and from isovector excitations such
as the giant dipole resonance (GDR) indicate clearly that one
needs a density dependence in the isovector channel [39], as
we have it in the CEDF’s DD-ME2, DD-MEδ, or DD-PC1.

For the functional DD-ME2 [23] the masses m, mω, and
mρ are kept at fixed values. As discussed above the density
dependence of the coupling constants fi(x) i = σ,ω,ρ is

given by four independent parameters. Therefore, together
with the four parameters mσ , gσ (ρsat), gω(ρsat), and gρ(ρsat)
DD-ME2 contains eight independent parameters which have
been fitted in Ref. [23] to a set experimental data in spherical
nuclei: 12 binding energies, 9 charge radii, and 3 neutron skin
thicknesses.

The functional DD-MEδ [12] differs from the earlier
DD-ME functionals in the fitting strategy. It tries to use only a
minimal number of free parameters adjusted to the data in finite
nuclei and to use ab initio calculations to determine the density
dependence of the meson-nucleon vertices. Relativistic ab
initio calculations [20,21] show clearly that the isovector scalar
self-energy, i.e., the field of the δ meson, is not negligible.
Therefore, the functional DD-MEδ differs also from the other
functionals by including the δ meson, which leads to a different
effective Dirac mass for protons and neutrons:

m∗
n,p = m + gσσ ± gδδ. (7)

As a consequence, the splittings of the spin-orbit doublets with
large orbital angular momentum l are slightly different in the
models with and without δ meson. However, this effect is too
small to be seen in present experiments [12]. All the other
effects of the δ meson on experimental isovector properties
of nuclear structure at densities below and slightly above
saturation can be completely absorbed by a renormalization
of the ρ-meson-nucleon vertex [12]. Therefore, successful
phenomenological CEDF’s do not need to include the δ meson.
However, the effects of the δ meson are important for a proper
description of the nuclear equation of state (EoS) at higher
densities (see Ref. [12] and references given there), which
play a role in heavy-ion reactions and in astrophysics.

In the earlier parameter sets DD-ME1 [39] and DD-ME2
[23] all eight independent parameters were adjusted to experi-
mental data in finite nuclei, whereas for DD-MEδ only the four
independent parameters mσ , gσ (ρsat), gω(ρsat), and gρ(ρsat)
have been adjusted to experimental data in finite nuclei. This
data set includes 161 binding energies and 86 charge radii
of spherical nuclei. The parameter gδ(ρsat) and the density
dependence fi(x) have been fitted to parameter-free ab initio
calculations of infinite nuclear matter of various densities,
as, for instance, the EoSs for symmetric nuclear matter and
pure neutron matter, and the difference of the effective Dirac
masses m∗

p − m∗
n. Thus, the functional DD-MEδ is the most

microscopically justified CEDF among those used in this
investigation.

The Lagrangian for the DD-PC model [11,40] is given by

L = ψ̄(iγ · ∂ − m)ψ − 1
4FμνF

μν − eψ̄γ · Aψ

− 1
2αS(ρ)(ψ̄ψ)(ψ̄ψ) − 1

2αV (ρ)(ψ̄γ μψ)(ψ̄γμψ)

− 1
2αT V (ρ)(ψ̄ �τγ μψ)(ψ̄ �τγμψ) − 1

2δS(ψ̄ψ)�(ψ̄ψ). (8)

It contains the free-nucleon part, the coupling of the proton to
the electromagnetic field, and the point-coupling interaction
terms. The derivative term with the D’Alembert operator �
accounts for the leading effects of finite-range interaction
which are important in nuclei. In analogy with meson-
exchange models, this model contains isoscalar-scalar (S),
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TABLE II. The parameters of the DD-PC1 CEDF.

Parameter DD-PC1

m 939
aS −10.046 16
bS −9.150 42
cS −6.427 29
dS 1.372 35
aV 5.919 46
bV 8.863 70
dV 0.658 35
bT V 1.835 95
dT V 0.640 25

isoscalar-vector (V), and isovector-vector (TV) interactions.
The coupling constants αi(ρ) are density dependent.

In the present work the Lagrangian (8) is represented by the
parametrization DD-PC1 [11] given in Table II. The following
ansatz is used for the functional form of the couplings,

αi(ρ) = ai + (bi + cix)e−dix, for i = S,V,T V, (9)

where x = ρ/ρsat denotes the nucleon density in units of the
saturation density of symmetric nuclear matter. In the isovector
channel a pure exponential dependence is used, i.e., aT V = 0
and cT V = 0. The remaining set of ten constants, aS , bS ,
cS , dS , aV , bV , cV , dV , bT V , and dT V , which control the
strength and density dependence of the interaction Lagrangian,
was adjusted in a multistep parameter fit exclusively to the
experimental masses of 64 axially deformed nuclei.

The fitting protocols used for the derivation of the various
CEDF’s differ in the amount and the type of experimental
data. Figure 1 shows the nuclei which were used in the fits of
the different CEDF’s. NL3*, DD-ME2, and DD-MEδ CEDF
were fitted to spherical nuclei, while DD-PC1 was fitted to
deformed nuclei in the rare-earth and actinide regions. Only
12 spherical nuclei were used in the fitting protocols of NL3*
and DD-ME2. On the contrary, the fits of other CEDF’s rely on
more extensive sets of experimental data (161 spherical nuclei
in the DD-MEδ CEDF and 64 deformed nuclei in the DD-
PC1 CEDF). In all these fitting protocols, the binding energies
were used. In addition, the charge radii were employed in
the fitting of NL3*, DD-ME2, and DE-MEδ. In contrast to
nonrelativistic models, no single-particle information has been
used in the fits. The number of independent parameters in
the NL3*, DD-ME2, DD-MEδ, and DD-PC1 CEDF is 6, 8,
14, and 10, respectively. Note, however, that in the case of
DD-MEδ, only the 4 parameters are fitted to the properties
of finite nuclei and the additional 10 parameters are fitted to
pseudodata obtained from ab initio calculations of nuclear
matter.

III. SOLUTION OF THE RHB EQUATIONS

Pairing correlations play an important role in all open-
shell nuclei. On the mean-field level they are taken into
account by Bardeen-Cooper-Schrieffer (BCS) or Hartree-
Fock-Bogoliubov (HFB) theory and in the relativistic case
by relativistic Hartree-Bogoliubov (RHB) theory [41–43].
Therefore, DFT in nuclei always has to go beyond the simple
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FIG. 1. (Color online) The nuclei (solid squares), shown in the (N,Z) plane, which were used in the fit of indicated CDFT parametrizations.
Their total number is shown below the parametrization label. Magic shell closures are shown by dashed lines.

054320-5



S. E. AGBEMAVA, A. V. AFANASJEV, D. RAY, AND P. RING PHYSICAL REVIEW C 89, 054320 (2014)

DFT used in most of the DFT applications in Coulombic
systems, where the energy depends only on the normal
single-particle density ρ. Nuclear energy density functionals
depend on two densities, the normal density,

ρn1n2
= 〈�|c†n2

cn1
|�〉, (10)

and the anomalous density,

κn1n2
= 〈�|cn2

cn1
|�〉, (11)

usually called the pairing tensor. |�〉 is the RHB wave function,
a generalized Slater determinant [44] and, therefore, the
density ρ as well as κ depend on the pairing correlations.
In particular, the density matrix ρ is no longer a projector on
the subspace of occupied states:

ρ2 − ρ = κκ∗. (12)

In the relativistic form the nuclear energy functional is usually
given by

ERHB[ρ,κ] = ERMF[ρ] + Epair[κ], (13)

where ERMF[ρ] has the same functional form as the CEDF’s
discussed in the last section, but it is now a functional of the
density ρ in Eq. (10) depending on the RHB wave function
|�〉. The pairing energy1 is given by

Epair[κ] = 1

4

∑
n1n2,n

′
1n

′
2

κ∗
n1n2

〈n1n2|V pp|n′
1n

′
2〉κn′

1n
′
2
. (14)

The Dirac equation for fermion fields ψ(r) is now replaced by
the RHB equation. In the present paper, the RHB framework
with finite range pairing and its separable limit are used for
a systematic study of ground state properties of all even-even
nuclei from the proton to neutron drip line. It has the proper
coupling to the continuum at the neutron drip line and,
therefore, it allows a correct description of weakly bound
nuclei close to the neutron drip line. Even nuclear halo
phenomena can be described by this method, if a proper basis
is used, such as the coordinate space [45,46] or a Woods-Saxon
basis [47].

The RHB equations for the fermions are given by [43](
ĥD − λ �̂

−�̂∗ −ĥ ∗
D + λ

)(
U (r)
V (r)

)
k

= Ek

(
U (r)
V (r)

)
k

, (15)

Here ĥD is the Dirac Hamiltonian for the nucleons with mass
m, λ is the chemical potential defined by the constraints on the
average particle number for protons and neutrons, Uk(r) and
Vk(r) are quasiparticle Dirac spinors [41–43], and Ek denotes
the quasiparticle energies. The Dirac Hamiltonian

ĥD = α( p − V ) + V0 + β(m + S) (16)

contains an attractive scalar potential,

S(r) = gσσ (r), (17)

a repulsive vector potential,

V0(r) = gωω0(r) + gρτ3ρ0(r) + eA0(r), (18)

1The details for the treatment of pairing are presented in Sec. IV

and a magnetic potential,

V (r) = gωω(r) + gρτ3ρ(r) + eA(r). (19)

The last term breaks time-reversal symmetry and in-
duces currents. Time-reversal symmetry is broken when the
time-reversed orbitals are not occupied pairwise. This takes
place in odd-mass nuclei [15]. In the Dirac equation, the
spacelike components of the vector mesons ω(r) and ρ(r)
have the same structure as the spacelike component A(r)
generated by the photons. Because A(r) is the vector potential
of the magnetic field, by analogy the effect owing to presence
of the vector field V (r) is called nuclear magnetism [14].
It affects the properties of odd-mass nuclei [15]. Thus, the
spatial components of the vector mesons are properly taken
into account for such nuclei. This is done only for the study
of odd-even mass staggerings in Sec. IV as it has been
successfully done earlier for the studies of single-particle
[48,49] and pairing [50] properties of deformed nuclei. Nuclear
magnetism, i.e., currents and time-odd mean fields, plays
no role in the studies of even-even nuclei. The systematic
investigations of such nuclei are performed within the axial
RHB computer code outlined below. As the absolute majority
of nuclei are known to be axially and reflection symmetric
in their ground states, we consider only axial and parity-
conserving intrinsic states and solve the RHB equations in
an axially deformed harmonic oscillator basis [29,51].

We have developed a parallel version of the axial RHB
computer code starting from a considerably modified version
of the computer code DIZ [51]. This code is based on an
expansion of the Dirac spinors and the meson fields in terms of
harmonic oscillator wave functions with cylindrical symmetry.
The calculations are performed by successive diagonalizations
using the method of quadratic constraints [44]. The parallel
version allows simultaneous calculations for a significant
number of nuclei and deformation points in each nucleus. For
each nucleus, we minimize

ERHB + C20

2
(〈Q̂20〉 − q20)2, (20)

where ERHB in Eq. (13) is the total energy and 〈Q̂20〉 denotes
the expectation value of the mass quadrupole operator,

Q̂20 = 2z2 − x2 − y2, (21)

where q20 is the constrained value of the multipole moment
and C20 the corresponding stiffness constant [44]. To provide
the convergence to the exact value of the desired multipole
moment we use the method suggested in Ref. [52]. Here
the quantity q20 is replaced with the parameter qeff

20 , which
is automatically modified during the iteration in such a way
that we obtain 〈Q̂20〉 = q20 for the converged solution. This
method works well in our constrained calculations.

For each nucleus the potential energy curve is calculated in
a large deformation range from β2 = −0.4 up to β2 = 1.0 by
means of the constraint on the quadrupole moment q20. The
lowest in energy minimum is defined from the potential energy
curve. Then, unconstrained calculations are performed in this
minimum and the correct ground state configuration and its
energy are determined. This procedure is especially important
for the cases of shape coexistence.
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The truncation of the basis is performed in such a way
that all states belonging to the major shells up to NF = 20
fermionic shells for the Dirac spinors and up to NB = 20
bosonic shells for the meson fields are taken into account.
In constrained calculations, the deformation of the basis is
selected in such a way that it corresponds to the desired
deformation of the converged solution. The Coulomb field
is determined by integrating over the Green’s function [51].
The comparison with the results obtained with NF = 26 and
NB = 26 clearly shows that this truncation scheme provides
sufficient numerical accuracy for the description of weakly
bound nuclei in the vicinity of the neutron drip line and of
superheavy nuclei. This is even more true for the nuclei in
the vicinity of β-stability line and for the nuclei with masses
A � 260 away from neutron drip line.

It has been found in axial reflection-symmetric calculations
for superheavy nuclei with Z � 106 that the superdeformed
minimum is frequently lower in energy than the normal
deformed one [53,54]. As long as triaxial [54] and octupole
[53,54] deformations are not included, this minimum is
stabilized by the presence of an outer fission barrier. Including
such deformations, however, it often turns out that this
minimum becomes a saddle point, unstable against fission
[53,54]. Because these deformations are not included in the
present calculations, we restrict our consideration to nuclei
with Z � 104. The investigation of ground state properties of
superheavy Z � 106 nuclei is inevitably connected with the
studies of fission barriers; such investigations are currently in
progress and their results will be reported in a forthcoming
paper [55]. Of course, in the nuclear chart there exist also
a small number of nuclei with stable octupole or triaxial
deformations not considered here which we have to leave for
future investigations.

IV. THE EFFECTIVE PAIRING INTERACTION

The pair field �̂ in RHB theory is given by

�̂ ≡ �n1n2
= 1

2

∑
n′

1n
′
2

〈n1n2|V pp|n′
1n

′
2〉κn′

1n
′
2
. (22)

It contains the pairing tensor κ of Eq. (11),

κ = V ∗UT , (23)

and the effective interaction V pp in the particle-particle
channel.

In the literature on nuclear DFT several types of effective
pairing forces V pp have been used. The most simple force is the
seniority force of Kerman [56] with constant pairing matrix
elements G. For problems with time-reversal symmetry the
corresponding pairing matrix � in Eq. (22) is proportional
to unity for this force and RHB theory is equivalent to
RMF + BCS. This force is widely used, but it has many
limitations, e.g., correlations in pairs with higher angular
momentum are neglected, the scattering between pairs with
different shells is not constant in realistic forces, the coupling
to the continuum is not properly taken into account and
the predictive power is limited. Nonetheless, this method
is used in the constant gap approximation in most of the

large-scale adjustments of CEDF’s, in particular, also for
DD-ME2 [23] and DD-PC1 [11]. For each nucleus in the fit,
the gap parameter is determined directly from odd-even mass
differences of neighboring nuclei. In this case the occupation
numbers v2

k in the neighborhood of the Fermi surface, which
depend crucially on the gap parameter, have rather reasonable
values and in this way all quantities depending only on the
v2

k ’s are not influenced further either by the value of G or
by the pairing window. Of course, the pairing energy (14)
depends on the constant G and on the pairing window. The
actual value of G producing this experimental gap parameter
is determined after the self-consistent solution of the BCS
equations and depends on the nucleus under consideration
and on the pairing window. However, for a reasonable pairing
window the total change in binding energy caused by pairing,
which is the difference between the gain in binding owing
to the pairing energy (14) and the loss in binding owing to
the reoccupation of the single-particle levels, is rather small.
Therefore, there is a clear separation of scales between the total
binding energy, which is of the order of 1000 MeV and more
for heavy nuclei, and the additional binding of a few MeV
caused by pairing. For this reason the conventional procedure
to adjust the parameters of the Lagrangian in the constant
gap approximation by RMF + BCS calculations and to use for
all further RHB calculations a more realistic pairing force is
very successful. In this way all the problems of the monopole
pairing force are avoided.

In the present investigation two types of realistic effective
pairing interaction have been used. Both of them have finite
range and, therefore, provide an automatic cutoff of high-
momentum components. These are as follows.

(i) The Brink-Booker part of phenomenological non-
relativistic D1S Gogny-type finite-range interaction,

V pp(1,2) = f
∑
i=1,2

e−[(r1−r2)/μi ]2
(Wi + BiP

σ

−HiP
τ − MiP

σP τ ). (24)

The motivation for such an approach to the description
of pairing is given in Refs. [43,57]. In Eq. (24), μi , Wi ,
Bi , Hi , and Mi (i = 1,2) are the parameters of the force
and P σ and P τ are the exchange operators for the spin
and isospin variables. The D1S parametrization of the
Gogny force [58,59] is used here. Note that a scaling
factor f is introduced in Eq. (24). Its role is discussed
below.

(ii) A separable pairing interaction of finite range intro-
duced by Tian et al. [60]. Its matrix elements in r
space have the form

V (r1,r2,r ′
1,r

′
2) = −f Gδ(R − R′)

×P (r)P (r ′) 1
2 (1 − P σ ), (25)

with R = (r1 + r2)/2 and r = r1 − r2 being the cen-
ter of mass and relative coordinates. The form factor
P (r) is of Gaussian shape,

P (r) = 1

(4πa2)3/2
e−r2/4a2

. (26)
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The parameters of this interaction have been derived
by a mapping of the 1S0 pairing gap of infinite nuclear
matter to that of the Gogny force D1S. The resulting
parameters are G = 738 fm3 and a = 0.636 fm [60].
The scaling factor f is the same as in Eq. (24).

Both in theory and in experiment the strength of pairing
correlations is usually accessed via the three-point indicator
[61],

�(3)(N ) = πN

2
[B(N − 1) + B(N + 1) − 2B(N )] , (27)

which quantifies the odd-even staggering (OES) of binding
energies. Here πN = (−1)N is the number parity and B(N ) is
the (negative) binding energy of a system with N particles. In
Eq. (27), the number of protons Z is fixed, and N denotes the
number of neutrons; i.e., this indicator gives the neutron OES.
The factor depending on the number parity πN is chosen so
that the OES centered on even and odd neutron number N will
both be positive. An analogous proton OES indicator �(3)(Z)
is obtained by fixing the neutron number N and replacing N
with Z in Eq. (27).

As discussed in Ref. [50], in many applications of RHB
theory with the pairing force D1S the same scaling factor f
has been used across the nuclear chart. However, it was found
a decade ago that a proper description of rotational properties
in actinides [48] requires weaker pairing as compared with the
rare-earth region [43,62]. Subsequent systematic studies of
pairing (via the three-point indicator �(3)) and rotational prop-
erties of actinides confirmed this observation in Refs. [50,63].
The investigation of odd-even mass staggerings in spherical
nuclei in Ref. [64] also confirms the need for a scaling factor
f which depends on the region in the nuclear chart. The studies
of Refs. [48,50,64] show also a weak dependence of the scaling
factor f on the CDFT parametrization. We therefore introduce
in Eqs. (24) and (25) a scaling factor f for a fine tuning of the
effective pairing force.

The scaling factor f used in the present investigation has
been selected based on the results of a comparison between
experimental moments of inertia and those obtained in cranked
RHB calculations with the CEDF NL3*. As verified in the
actinides in Ref. [50], the strengths of pairing defined by means
of the moments of inertia and by the three-point indicators �(3)

strongly correlate in deformed nuclei. Following the results
obtained in Ref. [50], the scaling factor has been fixed at
f = 1.0 in the Z � 88 actinides and superheavy nuclei. The
analysis of the moments of inertia in the rare-earth region [65]
leads to a scaling factor of f = 1.075 for the 56 � Z � 76
rare-earth nuclei. For Z � 44 nuclei, the scaling factor was
fixed at f = 1.12 [65]. The scaling factor gradually changes
with Z between these regions. Because the strength parameter
G of the separable force has been determined in Ref. [60] by
a direct mapping to the Gogny force D1S, the same scaling
factors are also used in the following RHB calculations with
separable pairing.

Figures 2 and 3 compare calculated (open red circles)
and experimental (solid black circles) three-point indicators
�(3) for different chains of spherical nuclei. In both theory
and experiment, these quantities have been obtained from
binding energies. The calculations have been performed within

the RHB formalism of Refs. [43,48], which allows a fully
self-consistent treatment of even-even and odd-mass nuclei.
Blocking and time-odd mean fields have been taken into
account in the case of odd-mass nuclei. The Gogny force
D1S of Eq. (24) with the scaling factors f has been used
in these calculations. As shown in Ref. [15] the impact of
the time-odd mean fields on the �(3) indicators cannot be
ignored. Large peaks appear in the experimental �(3) indicators
at shell closures. This is connected with the fact that pairing
correlations disappear in these cases and the peaks are not
produced by pairing, but by the increasing shell gap for
closed-shell configurations. Therefore, they are not relevant
for the present discussions.

One can see that, on average, the RHB calculations
reproduce the experimental data and the magnitude of the
observed staggering in �(3) rather well. However, in some
nuclei the calculations somewhat overestimate experimental
�(3) indicators. There are two possible reasons for that. First,
particle-vibration coupling in odd-mass nuclei is neglected
in these calculations. Extra correlations induced by this
coupling increases the binding energy in odd-mass nuclei.
According to Eq. (27), this will lead to smaller �(3) values.
Thus, the agreement with experiments could improve if we
would take into account the additional correlations owing to
particle-vibrational coupling in odd-mass nuclei. The analysis
of Ref. [66] suggests that this effect is non-negligible and
that it can reach up to 300 keV. In addition, we have to
keep in mind that the effects of particle-vibration coupling
are state-dependent [67]. The second reason for the deviations
between theory and experiment in Fig. 2 has to do with
the deficiencies in the underlying single-particle structure
produced by the CEDF NL3* [49,67].

Figure 2 also shows that the accuracy of the description
of the �(3) indicators depends on the structure of underlying
single-particle states. For example, reasonable agreement
between theory and experiment is obtained in the Ni isotopes
between the N = 28 shell and the N = 40 subshell closures
where the active neutrons occupy the spherical 2p3/2, 1f5/2,
and 2p1/2 orbits. However, the calculations systematically
overestimate the experiment between the N = 40 subshell and
the N = 50 shell closure where the active neutron occupies
the 1g9/2 orbit. A similar situation and a reduced accuracy in
the description of experimental data can be seen in the chain
of Sn [Fig. 2(c)] and Pb [Fig. 2(d)] isotopes when crossing
the N = 82 and N = 126 shell closures. We do not have
a clear explanation for these features but two factors may
contribute: first, the state dependence of particle-vibration
coupling mentioned above, and second, a deficiency of the
Gogny force D1S to reproduce a possible state dependence of
pairing correlations.

There are clearly some differences in the approaches based
on fixing the pairing strength to the data in deformed and in
spherical nuclei. This is also seen in the Skyrme EDF [68],
where, similar to our case, the pairing strength adjusted to ro-
tational structures leads to too high �(3) indicators in spherical
nuclei. As illustrated in Ref. [50], deformed nuclei offer the op-
portunity to fix the strength of pairing to two independent phys-
ical observables, the rotational moments of inertia and the �(3)

indicators. The accuracy of the description of the latter quantity
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FIG. 2. (Color online) Experimental and calculated neutron three-point indicators �(3)(N ) and calculated pairing gaps �uv and �lcs as
functions of the neutron number N . Theoretical �(3)(N ) indicators shown by open red circles are derived from calculated binding energies of
odd- and even-even nuclei; they are obtained in RHB calculations with the CEDF NL3* and the Gogny force D1S of Eq. (24) in the pairing
channel. The calculated pairing gaps �uv and �lcs are shown by lines. They are calculated in even-even nuclei with the Gogny force D1S
(labeled as “Gogny D1S”) and its separable approximation in Eq. (25) (labeled as “separable” in the figure).

in deformed nuclei depends on the correctness of the reproduc-
tion of the ground state configuration in the odd-mass nuclei
and the impact of particle-vibration coupling (see Sec. III E
of Ref. [50]). However, these factors have less influence on
the calculated moments of inertia. Particle-vibration coupling
is expected to be more pronounced in spherical nuclei as
compared with deformed ones (see discussion in Sec. VI B
of Ref. [48]). Thus, we believe that the experimental data in
deformed nuclei allows a better and more reliable estimate of
pairing strength as compared with the one in spherical nuclei.

However, it is too time consuming to perform the analysis
presented in Refs. [50,65] for the remaining three functionals.
Thus, we looked on alternative indicators for the strength of
the effective pairing force. It is well known that the connection
between the �(3) (or �(5)) indicators and theoretical pairing
gaps is not straightforward. Thus, several expressions for
pairing gaps aimed at circumventing this problem have been
proposed. On the one hand, they have the advantage of being
calculated in even-even nuclei, thus avoiding the complicated
problem of calculating the blocked states in odd-mass nuclei
(see Refs. [49,50]). However, their validity for the comparison
with experimental �(3) indicators is not clear.

In the literature the following definitions for the average
pairing gap have been used.

(i) The pairing gap

�vv =
∑

k v2
k�k∑

k v2
k

(28)

has been introduced in Ref. [69]. The sum runs
over the states k in the canonical basis (for details,
see Ref. [44]). v2

k are the corresponding occupation
probabilities and �k is the diagonal matrix element of
the pairing field in this basis.

(ii) The pairing gap

�uv =
∑

k ukvk�k∑
k ukvk

(29)

is related to the average of the state-dependent gaps
over the pairing tensor.

(iii) The pairing gap �lcs (lcs stands for lowest canonical
state) [68] is defined by the smallest quasiparticle
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FIG. 3. (Color online) The same as Fig. 2 but for proton three-point indicators �(3)(Z) and proton pairing gaps �uv and �lcs as a function
of proton number Z. Note that it was not possible to get a convergence for a few odd-mass nuclei in the N = 28 and N = 82 isotone chains
in the RHB calculations with Gogny D1S force in pairing channel. This leads to the absence of theoretical �(3) values in some proton number
range.

energy,

Ek =
√

(εk − λ)2 + �2
k, (30)

which is approximately equal to the gap �k of the orbit
closest to the Fermi surface. Here εk is the diagonal
matrix element of the single-particle field ĥ in the
canonical basis.

All these definitions have advantages and disadvantages.
�vv averages over the occupation numbers v2

k . For heavy nuclei
with many fully occupied states most of the contributions are
therefore determined by deeply bound states far from the Fermi
surface, which have little to do with the pairing phenomenon
and the scattering of Cooper pairs around the Fermi surface.
�lcs considers only the canonical orbit closest to the Fermi
surface and, therefore, it is more connected to the pairing
phenomenon. However, it has the disadvantage, that it depends
on a specific orbit and that it is not really an average. �uv finally
averages over ukvk , a quantity which is concentrated around the
Fermi surface However, because of the fact that κ ∼ ∑

k ukvk

diverges for the seniority force and for zero-range forces, �uv

turns out to depend on the pairing window. This is, however,
no problem for the finite-range pairing forces used in this
investigation. In addition, in the majority of the cases the �vv

values are larger than the �lcs ones, which, as follows from the
discussion below, overestimate experimental data. Therefore,
in the current paper, we consider only �uv and �lcs.

The calculated quantities are presented in Figs. 2 and 3
both for the Gogny force D1S in Eq. (24) and for its
separable approximation (25). It is interesting to compare them
with the five-point indicator �(5) discussed in Refs. [68,70],
which is a better measure of pairing correlations because
it is less polluted by mean-field effects as compared with
the �(3) indicator. This quantity represents a smooth curve
and the �(3) indicator oscillates around it (see Fig. 2 of
Ref. [68] for the graphical example of the relation between
the �(3) and the �(5) indicators). It turns out that far from
spherical shell closures, the �uv values come close to the
calculated �(5) indicators. However, the �lcs values always
overestimate the �(5) indicators. This result is contrary to the
conclusions of Ref. [68], which concludes that the �lcs value is
a better measure of pairing correlations. The difference maybe
attributable to the zero-range pairing forces in Ref. [68], while
finite-range pairing forces are used in our paper.

Figures 2 and 3 also show that the pairing gaps �lcs and �uv

calculated with the D1S Gogny force and its separable limit are
very close to each other. Thus, all systematic calculations in
this paper are performed with the separable form of the Gogny
force D1S. This reduces the computational time considerably.
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FIG. 4. (Color online) Calculated neutron pairing gaps �uv and �lcs as a function of the neutron number N for different isotonic chains.
The results of RHB calculations with the separable pairing force (25) are presented for the indicated CEDF’s.

Figures 4 and 5 compare the pairing gaps �lcs and �uv

obtained in the calculations with different CEDF’s. Apart from
proton number Z = 14 in the N = 20 and the N = 28 isotope
chains (see Fig. 5) and the proton subshell closure at Z = 40 in
the Ni isotopes (see Fig. 4), the calculated gaps are similar for
the different parameterizations. The spread in the calculated
values indicates that scaling factors f used here are reasonable

within the limits of a few percent. For example, the change of
scaling factor f by 4% in 182Pb leads to a change of the pairing
gaps �lcs and �uv by ∼0.14 MeV. The weak dependence of
the scaling factor f on the CEDF has already been seen in
the studies of pairing and rotational properties in the actinides
[48,50]. Thus, the same scaling factor f as defined above for
the CEDF NL3* is used in the calculations with DD-PC1,
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FIG. 5. (Color online) The same as Fig. 4 but for calculated proton pairing gaps �uv and �lcs as a function of the proton number Z for
different isotopic chains.

054320-11



S. E. AGBEMAVA, A. V. AFANASJEV, D. RAY, AND P. RING PHYSICAL REVIEW C 89, 054320 (2014)

TABLE III. The rms deviations �Erms, �(S2n)rms [�(S2p)rms]
between calculated and experimental binding energies E and two-
neutron (-proton) separation energies S2n (S2p). They are given
in MeV for the indicated CDFT parametrizations with respect
to “measured” and “measured + estimated” sets of experimental
masses.

EDF Measured Measured + estimated

�Erms �Erms �(S2n)rms �(S2p)rms

NL3* 2.96 3.00 1.23 1.29
DD-ME2 2.39 2.45 1.05 0.95
DD-MEδ 2.29 2.40 1.09 1.09
DD-PC1 2.01 2.15 1.16 1.03

DD-ME2, and DD-MEδ. Considering the global character of
this study, this is a reasonable choice. Definitely there are
nuclei in which the choice of the scaling factor f is not optimal.
However, the change of scaling factor by 1% changes the
binding energy only by approximately 100 keV. The impact on
physical observables such as two-particle separation energies
and the positions of two-proton and two-neutron drip lines is
even smaller because they are sensitive to the differences in the
binding energies. Changes of scaling factor by a few percent
will only marginally affect the deformations, radii, and neutron
skin thicknesses.

V. BINDING ENERGIES

In Table III we list the rms deviations �Erms between
theoretical and experimental binding energies for the global
RHB calculations with the different CEDF’s investigated in
this paper. The masses given in the AME2012 mass evaluation
[71] can be separated into two groups: One represents nuclei
with masses defined only from experimental data, the other
contains nuclei with masses depending in addition on either
interpolation or extrapolation procedures. For simplicity, we
call the masses of the nuclei in the first and second groups
as measured and estimated. There are 640 measured and 195
estimated masses of even-even nuclei in the AME2012 mass
evaluation. One can see in Table III that the extension to include
also estimated masses leads only to a slight decrease of the
accuracy in the description of experimental data.

To our knowledge, for relativistic density functionals,
reliable2 global comparisons of experimental and theoretical

2The masses were globally studied earlier in the RMF [72] or
RMF + BCS [73,74] formalisms. However, the pairing correlations
have been completely ignored in the studies of Ref. [72]. The
treatment of pairing via the BCS approximation in Refs. [73,74]
has to be taken with care in the region of the drip line because this
approximation does not take into account the continuum properly and
leads to the formation of a neutron gas [75] in nuclei near neutron
drip line. In addition, these calculations use at most 14 fermionic
shells for the harmonic oscillator basis, which according to our study
and the one of Ref. [76] is not sufficient for a correct description of
binding energies of actinides and superheavy nuclei and the nuclei in
the vicinity of neutron drip line.

masses have been performed so far only for the parametriza-
tions NL3 [33], FSUGold [77], BSR4 [78], and TM1 [36] in the
RMF + BCS approach using the constant gap approximation
in Ref. [76] and for PC-PK1 [79] in the RMF + BCS approach
with density-dependent pairing in Ref. [80]. Apart of BSR4
and PC-PK1 these CEDF’s were fitted more than 10 years
ago. The rms errors for the masses found for these CEDF’s
are 3.8 MeV for NL3, 6.5 MeV for FSUGold, 2.6 MeV for
BSR4, 5.9 MeV for TM1, and 2.6 MeV for PC-PK1 (at the
mean-field level).

One can see that the CEDF’s NL3*, DD-ME2, DD-MEδ,
and DD-PC1 investigated in the present paper provide an
improved description of masses across the nuclear chart. The
rms deviations for the binding energies presented in Table III
are more statistically significant than those of Refs. [76] and
[80] because they are defined for 835 even-even nuclei. On
the contrary, rms deviations for binding energies for the NL3,
FSUGold, BSR4, and TM1 CEDF’s are defined only for 513
(575 for PC-PK1) even-even nuclei in Refs. [76] and [80]. The
extension of the experimental database to 835 nuclei may lead
to further deterioration of the rms deviations for these CEDF’s.

In Fig. 7, the errors in binding energies are summarized
for all experimentally known even-even nuclei. This figure
is prepared in the same style as Fig. 3 of Ref. [76]. This
makes it possible to compare the gross trends for the binding
energy errors of the current and previous generations of
the CEDF’s. In particular, old CEDF’s show in all cases a
growing deviation from the zero line with increasing mass
number (Fig. 3 in Ref. [76]). These deviations are especially
pronounced for FSUGold and TM1, for which they reach
15 MeV for the highest measured masses. The deviations are
smaller for the NL3 CEDF, for which they reach 10 MeV
for the highest measured masses, and quite moderate for the
BSR4 parametrization. On the contrary, no such problems
exist in the current generation of the CEDF’s. The accuracy of
the description of the masses of heavy nuclei is comparable
with or even better (as in the case of DD-PC1) than that of
medium-mass and light nuclei (Fig. 6). The large deviation
peaks seen in Fig. 6 are located in the vicinity of the doubly
magic shell closures. For such nuclei, medium polarization
effects associated with surface and pairing vibrations have a
substantial effect on the binding energies [81].

Previous estimates of the rms deviations for binding ener-
gies with these CEDF’s have been obtained only with restricted
sets of experimental data. For example, the RHB(NL3*) results
were compared with experiment only for approximately 180
even-even nuclei in Ref. [24]. However, no rms deviations for
binding energies were presented for this set. An rms deviation
of 2.4 MeV has been obtained in the analysis of 161 nuclei in
the RMF + BCS calculations with DD-MEδ using monopole
pairing [12]. Note, however, that the binding energies of
these nuclei were used in the fit of DD-MEδ. Ninety-three
deformed nuclei calculated in the RMF + BCS approach with
DD-PC1 CEDF were compared with experiment in Ref. [11].
The binding energies of the most of these nuclei deviate
from experiment by less than 1 MeV, which is not surprising
considering that 64 of these nuclei were used in the fit of the
corresponding CEDF. However, much larger deviations have
been reported for this CEDF in spherical nuclei [11]. Note that,
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FIG. 6. (Color online) The difference between theoretical and experimental masses of 835 even-even nuclei investigated in RHB calculations
with indicated CEDF’s. If Eth − Eexp < 0, the nucleus is more bound in the calculations than in experiment.

so far, DD-PC1 is the only CEDF exclusively fitted to deformed
nuclei. Theoretical binding energies of approximately 200
nuclei calculated in the RHB framework with DD-ME2 CEDF
and the Gogny D1S interaction in the pairing channel show
rms deviation of less than 0.90 MeV from experiment [23].

Comparing these rms deviations with the ones presented
in Table III one can see that the increase of the size of
experimental data set leads to a deterioration of the average
description of the binding energies. This clearly suggests that
the experimental data sets used in the fits of the CEDF’s (see
Sec. II for details) are not sufficiently large to provide an
optimal localization of the model parameters in the parameter
space and reliable extrapolation properties of the CEDF’s
with respect to binding energies. To our knowledge, so far,
no attempt to create a “mass table” quality CEDF based on
a fit to the full set of available experimental masses has been
undertaken in CDFT. This is contrary to nonrelativistic models
where mass tables based on an extensive use of experimental
data were generated in the macroscopic + microscopic model
[82], the Skyrme [83], and the Gogny [84] DFT. We have to
keep in mind, however, that the number of free parameters in
such fits to thousands of experimental masses is considerably
larger than that used in the CEDF’s investigated in this
paper. In particular, many of these fits include more or less

phenomenological terms for the Wigner energy [85,86] in
close to N ≈ Z nuclei and for the rotational corrections in
deformed nuclei.

One should also recognize the limitations of the description
of masses at the mean-field level. This is clearly visible in
Fig. 7, where the relative errors are plotted as a function of
mass number A. One can see that these errors are especially
pronounced in light A � 80 nuclei for which the configuration
mixing effects (which go beyond mean field) are important
[87–89]. In very light nuclei the clusterization effects can also
be important [90] and for the nuclei in the N = Z region the
Wigner term [85,86]. Such effects are not taken into account
in these density functionals. For the heavier A � 80 nuclei,
the relative error in the description of masses stays safely
within the ±0.5% error band. In this context, it is interesting to
mention that a similar level of error (∼0.3%) in the description
of binding energies is achieved in the DFT local density
approximation in condensed-matter physics [91].

In Fig. 8 we show the map of theoretical uncertainties
�E(Z,N ) defined in Eq. (1) for the description of binding
energies. The comparison of this figure with Fig. 1 in Ref. [92]
(which presents experimentally known nuclei in the nuclear
chart) shows that the spreads in the predictions of binding
energies stay within 5–6 MeV for the known nuclei. These

054320-13



S. E. AGBEMAVA, A. V. AFANASJEV, D. RAY, AND P. RING PHYSICAL REVIEW C 89, 054320 (2014)

0 40 80 120 160 200 240 280
Mass number  A

-6

-4

-2

0

2

4

6

(E
th

-E
ex

p)/|
E ex

p|*
10

0 
 (%

)

NL3*

(a)

+0.5%

-0.5%

0 40 80 120 160 200 240 280
Mass number  A

-6

-4

-2

0

2

4

6

(E
th

-E
ex

p)/|
E ex

p|*
10

0 
 [%

]

DD-ME2

(b)

+0.5%

-0.5%

0 40 80 120 160 200 240 280
Mass  number  A

-4

-2

0

2

4

6

(E
th

-E
ex

p)/|
E ex

p|*
10

0 
[%

]

DD-MEδ

(c)

+0.5%

-0.5%

0 40 80 120 160 200 240 280
Mass  number  A

-6

-4

-2

0

2

4

6

(E
th

-E
ex

p)/|
E ex

p|*
10

0 
 [%

]

DD-PC1

(d)

+0.5%

-0.5%

FIG. 7. (Color online) The relative accuracy of the description of experimental masses in our model calculations. The same set of data as
in Fig. 6 is used. Dashed lines show the ±0.5% error band.
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FIG. 8. (Color online) The binding energy spreads �E(Z,N ) as a function of proton and neutron number. �E(Z,N ) = |Emax(Z,N ) −
Emin(Z,N )|, where Emax(Z,N ) and Emin(Z,N ) are the largest and the smallest binding energies for each (N,Z) nucleus obtained with the four
CEDF’s used in this investigation.
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FIG. 9. (Color online) The same as Fig. 8, but only for DD-ME2 and DD-MEδ.
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FIG. 10. (Color online) Two-neutron separation energies S2n(Z,N ) given for different isotopic chains as a function of neutron number. To
facilitate the comparison between theory and experiment, five different colors are used periodically as a function of neutron number. Black,
red, green, orange, and blue colors are used for isotope chains with proton numbers ending with 2, 4, 6, 8, and 0, respectively.
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spreads are even smaller (typically around 3 MeV) for the
nuclei in the valley of β stability. However, the theoretical
systematic uncertainties (1) for the masses increase drastically
when approaching the neutron-drip line and in some nuclei
they reach 15 MeV. This is a consequence of poorly defined
isovector properties of many CEDF’s. Comparing different
pairs of CEDF’s one can conclude that the smallest difference
in the predictions of binding energies exists for the DD-
ME2/DD-MEδ pair of CEDF’s (Fig. 9). The next-smallest
difference in terms of �E(Z,N ) exists for the DD-PC1/NL3*
pair of CEDF’s.

VI. SEPARATION ENERGIES

Because our investigation is restricted to even-even nuclei,
we consider two-neutron S2n = B(Z,N − 2) − B(Z,N ) and
two-proton S2p = B(Z − 2,N ) − B(Z,N ) separation ener-
gies. Here B(Z,N ) stands for the binding energy of a
nucleus with Z protons and N neutrons. Two-neutron S2n

and two-proton S2p separation energies are described with a
typical accuracy of 1 MeV (Table III). The accuracy of the
description of separation energies depends on the accuracy

of the description of mass differences. As a result, it is not
always the functional which provides the best description
of masses that gives the best description of two-particle
separation energies.

The accuracy of the description of two-neutron and two-
proton separation energies is illustrated for different isotopic
and isotonic chains on the example of RHB calculations with
DD-PC1 in Figs. 10 and 11. Similar results were obtained also
in the calculations with NL3*, DD-ME2, and DD-MEδ. One
can see that two-proton separation energies are better described
than two-neutron separation energies (see also Table III). In
part, this is a consequence of the behavior of the calculated S2n

curves in the vicinity of spherical shell gaps. The experimental
S2n curves are smooth (frequently almost straight) as a function
of neutron number between shell gaps (Fig. 10). For a given
isotope chain, the calculations rather well reproduce this
behavior of experimental S2n curves in the regions of a few
neutrons away from shell closures. However, the situation
is different in the vicinity of the N = 82 and 126 shell
closures. Here the calculations overestimate (underestimate)
experimental S2n values for a few nuclei before (after) the
shell closure in a number of isotopic chains with Z � 40.
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FIG. 11. (Color online) Two-proton separation energies S2p(Z,N ) given for different isotonic chains as a function of proton number. To
facilitate the comparison between theory and experiment, five different colors are used periodically as a function of proton number. Black, red,
green, orange, and blue colors are used for isotonic chains with neutron numbers ending with 2, 4, 6, 8, and 0, respectively.
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It is interesting that such problems do not exist for two-
proton separation energies (Fig. 11). The origin of these
problems is most likely related to the relative impact of proton
and neutron shell closures. Figure 17 shows that the band
of nuclei with spherical or near-spherical deformations (gray
area in the figure) is wider around N = 82 and N = 126 as
compared with the one around Z = 50 and Z = 82. Thus,
the transition from spherical shapes to well-deformed shapes
(where the mean-field description is justified) proceeds faster
(in terms of particle number) for the proton subsystem than
for the neutron subsystem. In contrast, the transitional shapes
requiring a beyond-mean-field description are expected for a
wider range of nuclei around the N = 82 and N = 126 shell
closures. Neglecting these beyond-mean-field correlations is
most likely the source for the above-mentioned discrepancies
between experimental and calculated S2n values in the vicinity
of the N = 82 and N = 126 shell closures.

This analysis leads to a more critical look on the reappear-
ance of two-neutron binding with increasing neutron number
beyond the primary two-neutron drip line which exists in a
number of DFT calculations [26,46,92]. This reappearance
shows itself in the nuclear chart via the peninsulas emerging
from the nuclear mainland. For example, as we see in
Fig. 17, such peninsulas exist at (Z = 62,N = 132–146)
and (Z = 88,N = 194–206) for DD-PC1, at (Z = 74,N =
176–184) and (Z = 90,N = 194–206) for DD-ME2, and at
(Z = 62,N = 132–142), (Z = 74,N = 178–184), and (Z =
90,N = 204–206) for DD-MEδ, but they are absent in NL3*.
The physical mechanism for their appearance was discussed in
Ref. [92]. Its basic is the following: The two-neutron separation
energy S2n is slightly negative immediately after the large
shell gap at the neutron number N

(1)
drip that defines the primary

neutron drip line, but then with increasing neutron number it
becomes slightly positive at a higher neutron number Npenin

and remains like that for a range of neutron numbers up to N
(2)
drip.

A further increase of N beyond N
(2)
drip leads to two-neutron

unbound nuclei. For example, these features are visible in
Fig. 3 of Ref. [92]. However, the present analysis clearly
shows that immediately after the large neutron shell closure
CDFT calculations [and very likely also SDFT calculations
because the shapes of calculated S2n curves (see Fig. 8 in
Ref. [93] and Fig. 2 in [26]) indicate the possibility of such
a scenario] underestimate the experimental S2n values. For
some isotope chains, this underestimate may lead to negative
S2n values and, thus, to the formation of peninsula in the
nuclear chart. Therefore, the calculated peninsulas may in
some cases be an artifact of the mean-field approximation. The
inclusion of correlations beyond mean field may increase the
two-neutron separation energies S2n and make them positive
for neutron numbers from N

(1)
drip up to Npenin. As a consequence,

the peninsula will disappear and the two-neutron drip line will
be located at N

(2)
drip.

VII. THE TWO-PROTON DRIP LINE

The particle stability (and, as a consequence, a drip line)
of a nuclide is specified by its separation energy, namely,
the amount of energy needed to remove particle(s). If the
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FIG. 12. (Color online) Schematic illustration of the dependence
of the accuracy of the prediction for the position of the two-particle
drip line on the slope of the two-particle separation energy curve as
a function of the relevant particle number. The error bars for the
calculated results show typical rms deviations (1 MeV) between
theory and experiment (Table III). If these error bars would be
taken into account (as it is effectively done when different CEDF’s
are compared), they would lead to the possible ranges of particle
numbers corresponding to the two-particle drip line shown by
arrows. For particle-bound nuclei the results for DD-PC1 are used.
The separation energies for particle unbound nuclei (S2n,2p < 0)
represent extrapolations. They are used here only for illustration
purposes.

two-neutron and the two-proton separation energies are pos-
itive, the nucleus is stable against two-nucleon emission.
Conversely, if one of these separation energies is negative, the
nucleus is unstable. Thus, the two-neutron or the two-proton
drip line is reached when S2n � 0 or S2p � 0, respectively (see
Fig. 12).

The proton drip line was studied extensively more than
a decade ago in the RHB framework with the finite-range
Gogny pairing force D1S in Refs. [94–99]. However, the main
emphasis was put on the one-proton drip line, for which, at the
time of these studies, experimental data was more available
than that for the two-proton drip line. In addition, only the
NL3 parametrization [33] has been used in these studies.
Therefore, no estimate of theoretical errors in the prediction
of one- and two-proton drip lines is available. These gaps in
our knowledge of the CDFT performance have been filled
in Ref. [92], where the two-proton drip lines were studied
with NL3*, DD-ME2, DD-PC1, and DD-MEδ. Theoretical
uncertainties in the definition of two-proton drip line have
been deduced.

In this section, we present a more detailed comparison
of RHB results with the experiment. Figure 13 compares
experimental data with calculated two-proton drip lines ob-
tained with NL3*, DD-ME2, DD-PC1, and DD-MEδ. Note
that the experimental two-proton drip line is delineated firmly
or tentatively up to Z = 84 (see caption of Fig. 13 for details).
The red line with small solid circles shows the calculated
two-proton drip line. Nuclei to the left of this line are
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FIG. 13. (Color online) The calculated two-proton drip lines versus experimental data. For each isotope chain, the four experimentally
known most proton-rich nuclei are shown by squares. Cyan shading of the squares is used for the nuclei located beyond the two-proton drip
line (S2p < 0). The experimental data are from Ref. [71]. The borderline between shaded and open squares delineates the known two-proton
drip lines. Only in the cases of the Z = 4, 6, 8, 80, 82, and 84 isotope chains the locations of two-proton drip lines are firmly established
because the masses of the nuclei on both sides of the drip line are directly and accurately measured. The two-proton drip line is only tentatively
delineated for other isotope chains because either the masses of beyond the drip line nuclei are only estimated in Ref. [71] or beyond the drip
line nuclei are not known experimentally. The red lines with small symbols show the calculated two-proton drip lines which go along the last
two-proton bound nuclei.

proton unstable in the calculations. Nuclei which are proton
unstable in experiment are shown by solid cyan squares. In
the following discussion we concentrate on isotope chains
containing proton-unstable nuclei because this provides the
most reliable experimental information on the position of the
two-proton drip line. One can see that NL3* tends to predict
the two-proton drip line at too low values of the neutron
number N . Indeed, experimentally known proton-unstable
nuclei at Z = 8, 14, 16, 18, 20, 32, 34, 68, 76, 78, 80, and
82 (shown by cyan squares in Fig. 13) are predicted to be
proton bound by NL3*. However, the two-proton drip line is
predicted too early for the Z = 52 chain. Similar problems
with the description of the proton unstable Z = 4, 8, 20, 32,
34, 76, 80, and 82 nuclei exist for DD-ME2. Note also that
the two-proton drip line is predicted too early in the Z = 26
and 52 isotope chains in this CDFT parametrization. Also
for DD-MEδ, proton unbound Z = 4, 8, 20, 30, 32, 80, 82
nuclei are predicted to be proton bound, and the two-proton
drip line is predicted too early for Z = 26. A similar situation

is observed with DD-PC1 for which Z = 4, 8, 16, 18, 20,
32, 34, 76, 80, and 82 proton unbound nuclei are bound
in the calculations. In addition, the two-proton drip line is
predicted too early for this parametrization for the Z = 56
isotopes.

The best reproduction of the two-proton drip line is
achieved with DD-ME2 and DD-MEδ, which are characterized
by the best residuals for two-proton separation energies S2p

(Table III). In general, the results of the calculations are very
close to experimental data. This is because the proton drip line
lies close to the valley of stability, so that extrapolation errors
towards it are small. Another reason is the fact the Coulomb
barrier provides a rather steep potential reducing considerably
the coupling to the proton continuum. This leads to a relatively
low density of the single-particle states in the vicinity of the
Fermi level.

Because this density is comparable with the one for the
nuclei away from two-proton drip line, the slope of the
two-proton separation energy S2p as a function of proton
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FIG. 14. (Color online) Two-neutron drip lines obtained in state-of-the-art DFT calculations. The regions of well-defined localization of
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number for a given isotonic chain remains almost unchanged
on approaching the two-proton drip line (Fig. 11). This slope
is directly related to the uncertainties in the prediction of
the position of two-proton drip line. For a given accuracy
of the description of two-proton separation energies these
uncertainties in the definition of position of the two-particle
drip line increase with the decrease of the slope of S2p,2n (see
Fig. 12). As a consequence, theoretical uncertainties for the
two-proton drip line are rather small for Z � 86 but somewhat
larger for higher Z (see Fig. 2 in Ref. [92]) owing to the
increase of the single-particle level density and the related
decrease of the slope of S2p as a function of proton number
(Fig. 11).

According to Fig. 2 of Ref. [92], theoretical uncertainties in
the predictions of the position of two-proton drip line are either
very small (two neutrons) or nonexistent for isotope chains
with Z � 86. These small uncertainties may be a source of
observed discrepancies between calculations and experiment
for a number of isotope chains (for example, the ones with Z =
4, 14, 16, 18, 20, 26, 68, 76, 78, and 80 in Fig. 2 of Ref. [92]).
However, in a number of the cases (for example, in the Z = 32
and 34 isotopes chains) there is no uncertainty in the predicted
position of two-proton drip line (Fig. 2 in Ref. [92]). Thus, the

observed discrepancies between theory and experiment may be
attributable to the limitations of the model description on the
mean-field level. Indeed, it is well known that the Ge (Z = 32)
[100] and Se (Z = 34) [88,101] isotopes show prolate-oblate
shape coexistence and/or γ softness near the proton drip line.
A similar shape coexistence is also observed in heavier Kr
[87,89,102,103] and Rb [104] nuclei as well as in the Z ∼ 82
proton drip-line nuclei [105,106]. By ignoring the correlations
beyond mean field, which are expected to be most pronounced
in light nuclei, we may introduce an error in the predicted
position of two-proton drip line.

VIII. THE TWO-NEUTRON DRIP LINE

As discussed in Refs. [26,92], the situation is different for
the two-neutron drip line. Figure 14 presents the compilation
of known calculated two-neutron drip lines obtained with the
state-of-the-art relativistic and nonrelativistic EDF’s. They
include four two-neutron drip lines obtained in the CDFT
calculations of Ref. [92], which are tabulated in Table IV.
Nonrelativistic results are represented by two-neutron drip
lines obtained with the Gogny functional D1S [107] and with
eight functionals of Skyrme type [26,93]. In addition, the
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TABLE IV. Two-proton and two-neutron drip lines predicted by the CEDF’s used in this work. Neutron numbers N (columns 2–9)
corresponding to these drip lines are given for each even proton number Z (column 1). An asterisk at a neutron number at the two-neutron drip
line indicates isotope chains with additional two-neutron binding at higher N values (peninsulas).

Proton NL3* Two-proton drip line DD-PC1 NL3* Two-neutron drip line DD-PC1

number Z DD-ME2 DD-MEδ DD-ME2 DD-MEδ

1 2 3 4 5 6 7 8 9

2 2 2 2 2 8 6 6 6
4 4 2 2 2 12 8 8 8
6 4 4 4 4 18 16 14 16
8 4 4 4 4 20 20 20 20
10 8 8 8 8 28 20 20 24
12 8 8 8 8 34 28 28 28
14 8 10 10 10 38 34 34 34
16 10 12 12 10 40 38 40 40
18 12 14 14 12 48 40 40 40
20 14 14 14 14 56 44 42 48
22 18 18 18 18 60 54 52 52
24 20 20 20 20 64 58 56 56
26 20 22 22 20 68 62 60 62
28 22 22 22 22 70 66 68 68
30 26 26 26 26 78 70 70 72
32 28 28 28 28 82 76 76 78
34 30 30 30 30 88 80 82 82
36 32 32 32 32 94 84 82 82
38 34 36 34 34 100 88 82 82
40 36 36 36 36 104 92 84 86
42 38 40 40 38 108 98 96 100
44 42 42 42 42 112 104 102 104
46 44 44 44 44 116 110 110 114
48 46 46 46 46 120 112 114 120
50 48 48 48 48 124 118 122 126
52 56 56 54 54 128 126 126 126
54 56 56 56 56 128 126 126 126
56 58 58 58 60 138 126 126 126
58 60 60 60 60 144 126 126 126
60 62 62 64 62 150 126 126 126
62 66 66 66 66 154 144 126* 126*
64 68 68 70 70 158 148 146 150
66 70 72 72 72 166 152 150 154
68 74 76 76 76 168 156 154 158
70 78 78 78 78 178 162 160 164
72 80 80 82 80 182 166 164 166
74 80 84 84 84 184 170* 168* 184
76 84 86 88 86 184 184 184 184
78 88 90 90 90 184 184 184 184
80 90 92 92 92 184 184 184 184
82 94 94 96 94 184 184 184 184
84 104 104 104 104 186 184 184 184
86 106 108 106 108 206 184 184 184
88 108 110 110 110 214 184 184 184*
90 112 116 114 116 218 184* 198* 210
92 118 120 118 120 224 210 210 216
94 122 126 126 126 232 214 216 218
96 126 128 130 130 252 218 218 220
98 130 130 132 130 256 220 222 230
100 132 132 134 134 258 222 228 232
102 134 136 136 136 258 230 232 246
104 138 140 140 142 258 234* 236 250
106 142 144 144 144 258 258 250 256
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TABLE IV. (Continued.)

Proton NL3* Two-proton drip line DD-PC1 NL3* Two-neutron drip line DD-PC1

number Z DD-ME2 DD-MEδ DD-ME2 DD-MEδ

1 2 3 4 5 6 7 8 9

108 146 148 148 150 258 258 258 258
110 150 152 152 154 258 258 258 258
112 154 156 156 158 258 258 258 258
114 158 160 160 162 262 258 258 258
116 162 164 164 166 270 258 262 274
118 166 170 168 172 270 258 276 278
120 170 170 172 172 270 258* 278 286

two-neutron drip line from the microscopic + macroscopic
calculations of Ref. [82] is shown. One can see that, with the
exception of two encircled regions, the theoretical differences
in the location of two-neutron drip line are much larger than the
ones for the two-proton drip line. They are generally growing
with increasing proton number.

One could ask whether there exist correlations between
the position of two-neutron drip line for a given EDF and

its nuclear-matter properties. With that goal Figs. 15 and 16
show the four most neutron-rich and the four least neutron-rich
two-neutron drip lines among the 14 compiled lines. The
nuclear-matter properties of the corresponding EDF’s are
shown in Table V. Let us consider the EDF’s NL3* and
DD-ME2 leading to the most and the least neutron-rich
two-neutron drip lines amongst the relativistic functionals.
It is tempting to associate the difference in the position of
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FIG. 15. (Color online) The same as in Fig. 14 but with the four most neutron-rich two-neutron drip lines shown in color and the rest in
black.
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FIG. 16. (Color online) The same as in Fig. 14 but with the four least neutron-rich two-neutron drip lines shown in color and the rest in
black.

TABLE V. Properties of symmetric nuclear matter at saturation for the energy density functionals used in Fig. 14: the density ρ0, the energy
per particle (E/A∞), the incompressibility K∞, the symmetry energy J and its slope L, and the isoscalar effective masses m∗/m of a nucleon
at the Fermi surface. In the relativistic cases we show the Lorentz effective masses [108]. The results of the compilation [109] are used for the
Skyrme functionals when possible.

Parameter ρ0 (fm−3) (E/A)∞ (MeV) K (MeV) J (MeV) L (MeV) m∗/m

Four most neutron-rich two-neutron drip lines
NL3* [24] 0.150 −16.31 258 38.68 122.6 0.67
SkM* [109,110] 0.160 −15.77 217 30.03 45.8 0.79
UNEDF1 [111] 0.159 −15.80 220 28.99 40.0 0.99
TOV-min [93] 0.161 −15.93 222 32.30 76.0 0.94

Four least neutron-rich two-neutron drip lines
mic + mac [FRDM] [82] −16.25 240 32.73 1.00
DD-ME2 [23] 0.152 −16.14 251 32.40 49.4 0.66
SLy4 [109,112] 0.160 −15.97 230 32.00 45.9 0.69
D1S [Gogny] [113] 0.160 −15.90 210 32.00 0.70

Remaining parametrizations (drip lines in the middle)
UNEDF0 [111] 0.161 −16.06 230 30.54 45.1 0.90
DD-MEδ [12] 0.152 −16.12 219 32.35 52.9 0.61
SkP [109,75] 0.163 −15.95 201 30.00 19.7 1.00
SV-min [109,114] 0.161 −15.91 222 30.66 44.8 0.95
DD-PC1 [11,79] 0.152 −16.06 230 33.00 68.4 0.66
HFB-21 [BSk21] [115] 0.158 −16.05 246 30.00 46.6 0.80
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two-neutron drip lines with different symmetry energies J
(J = 32.30 MeV for DD-ME2 and J = 38.68 MeV for NL3*)
and the slope parameter L of the symmetry energy at saturation
density (L = 51.26 MeV for DD-ME2 and L = 123 MeV
for NL3*). However, a detailed comparison of the positions
of the 14 two-neutron drip lines presented in Figs. 14, 15,
and 16 with nuclear-matter properties of their EDF’s (Table V)
does not reveal clear correlations between the locations of
two-neutron drip lines and the nuclear-matter properties of
the corresponding functional. In fact, for nuclei close to the
neutron drip line the Fermi surface is very small and negative
close to the continuum limit and it changes only slowly with the
neutron number. The precise position of the drip line therefore
depends very much on the behavior of the tail of the neutron
density. At these very low densities the properties J and L of
nuclear matter at saturation are not really relevant.

Possible sources of the uncertainties in the position of the
two-neutron drip line have been discussed in Ref. [92]. They
include the isovector properties of the EDF’s [26] and the un-
derlying shell structure connected with inevitable inaccuracies
of the single-particle energies in the DFT description [92].

The isovector properties of an EDF define the depth of the
nucleonic potential with respect to the continuum and may
thus affect the location of two-neutron drip line. However,
such uncertainties in the depth of the nucleonic potential exist
also in known nuclei (see discussion in Sec. IV C of Ref. [67]).
They cannot describe the observed features completely.

The shell structure effects are clearly visible in the fact that
for some combinations of Z and N there is basically no (or
very little) dependence of the predicted location of the two-
neutron drip line on the CDFT parametrization. Such a weak
(or vanishing) dependence, seen in all model calculations, is
especially pronounced at spherical neutron shell closures with
N = 126 and 184 around the proton numbers Z = 54 and
80, respectively. In addition, a similar situation is seen in the
CDFT calculations at N = 258 and Z ∼ 110. This fact is easy
to understand because of the large neutron shell gap at the
magic neutron numbers in all DFT’s.

Inevitable inaccuracies in the DFT description of single-
particle energies [49,67] also contribute to increasing uncer-
tainties in the prediction of two-neutron drip-line position on
moving away from these spherical shell closures. This move
induces deformation. The comparison of Figs. 14 and 17
shows that there is a close correlation between the nuclear
deformation at the neutron drip line and the uncertainties in
their prediction. The regions of large uncertainties correspond
to transitional and deformed nuclei. Again this is caused by
the underlying level densities of the single-particle states. The
spherical nuclei under discussion are characterized by large
shell gaps and a clustering of highly degenerate single-particle
states around them. Deformation removes this high degeneracy
of single-particle states and leads to a more equal distribution
of the single-particle states with energy. Moreover, the density
of bound neutron single-particle states close to the neutron
continuum is substantially larger than that on the proton drip
line which leads to a small slope of two-neutron separation
energies S2n as a function of neutron number in the vicinity
of two-neutron drip lines for medium- and heavy-mass nuclei
(see Fig. 10). This slope is smaller than the slope of two-proton

separation energies S2p as a function of proton number in the
vicinity of the two-proton drip line (Fig. 11). Note that the S2n

and S2p values are described with a similar accuracy in the
various parametrizations (Table III). However, the difference
in the slope of S2n and S2p as a function of proton and
neutron numbers translates into much larger uncertainties in
the definition of the position of the two-neutron drip line as
compared with the two-proton drip line. This also indicates
that the predictions for the two-neutron drip line depend
more sensitively on the single-particle energies than those for
two-proton drip line.

IX. DEFORMATIONS

The solution of the variational equations of DFT yields
values for the single-particle density ρ(r). Therefore, DFT not
only allows us to derive the binding energies of the system but,
in addition, all quantities depending on ρ(r). In this section we
consider the charge quadrupole and hexadecupole moments,

Q20 =
∫

d3rρ(r) (2z2 − r2
⊥), (31)

Q40 =
∫

d3rρ(r) (8z4 − 24z2r2
⊥ + 3r4

⊥), (32)

with r2
⊥ = x2 + y2. In principle, these values can be di-

rectly compared with experimental data. However, it is more
convenient to transform these quantities into dimensionless
deformation parameters β2 and β4,

Q20 = 2

√
4π

5

3

4π
ZR2

0β2, (33)

Q40 = 8

√
4π

9

3

4π
ZR4

0β4, (34)

where R0 = 1.2A1/3. Equation (33) is used also in the
extraction of experimental β2 deformation from measured data
[116]. This justifies its application despite the fact that this
simple linear expression ignores the contributions of higher
power/multipolarity deformations to the charge quadrupole
moment. Including higher powers of β2, as in Ref. [117], yields
values of β2 that are ≈10% lower. In Figs. 17 and 19 we show
the distribution of proton quadrupole β2 and hexadecapole
β4 deformations in the (N,Z) plane for the CEDF’s NL3*,
DD-ME2, DD-MEδ, and DD-PC1.

Direct experimental information on the deformations of
nuclei can be obtained from Coulomb excitation and lifetime
measurements [116]. An alternative method is to derive a
quadrupole moment from the 2+ → 0+ transition energy by
using the Grodzins relation [118] or its later refinements
[119]. However, these prescriptions are applicable only to
well-deformed nuclei. In general, it is estimated that exper-
imental methods give an accuracy of around 10% [119] for
the static charge quadrupole deformation β2 in the case of
well-deformed nuclei. The error can be larger in transitional
nuclei because in this case the deformation extracted from
experimental data will contain also dynamic deformation
resulting from zero-point oscillations of the nuclear surface
in the ground state [120].
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FIG. 17. (Color online) Charge quadrupole deformations β2 obtained in the RHB calculations with indicated CEDF’s.
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FIG. 18. (Color online) Proton quadrupole deformation spreads �β2(Z,N ) as a function of proton and neutron number. �β2(Z,N ) =
|βmax

2 (Z,N ) − βmin
2 (Z,N )|, where βmax

2 (Z,N ) and βmin
2 (Z,N ) are the largest and smallest proton quadrupole deformations obtained with four

employed CEDF’s for the (Z,N ) nucleus.

These considerations basically limit the possibilities of
a comparison between calculated and experimental β2

deformations to the well-deformed nuclei in the rare-earth
and actinide regions. Although deformation exists also in the
ground states of nuclei in many other regions, the potential
energy surfaces of these nuclei are, in general, soft in β2 or γ
deformation, leading to the phenomena of shape fluctuations,
shape coexistence [121], and quantum phase transitions [122].
For such situations, the mean-field description is not com-
pletely adequate, and, thus, a comparison between theoretical
and experimental deformation properties is not conclusive.

A systematic comparison between calculated and experi-
mental static charge quadrupole deformations β2 has already
been performed in each of these regions (with NL3* [50]
in the actinides and with DD-ME2 and DD-PC1 [11] in
the rare-earth region). They describe the experimental data
well, typically within the experimental uncertainties. Figure 18
shows that in these regions of well-deformed nuclei the spread
of the theoretical predictions, i.e., the difference between
results obtained with various CEDF’s, is rather small for static
quadrupole deformations β2. Thus, we do not repeat such a
comparison here.

The distribution of calculated static quadrupole deforma-
tions β2 is similar in all four CEDF’s under consideration (see
Fig. 17). The biggest difference between these results is related
to the presence of two regions of oblate deformation at (Z ∼
70, N ∼ 160) and (Z ∼ 95, N ∼ 230) in the calculations with
NL3*. These regions are absent in the other CEDF’s. However,
this is a consequence of the fact that the two-neutron drip line
is located at higher N values in NL3* as compared with other
CEDF’s. As a result, these regions are neutron-unbound for
DD-ME2, DD-MEδ, and DD-PC1.

The width of the gray region in Fig. 17 (the gray color
corresponds to spherical and near-spherical shapes) along
a specific magic number corresponding to a shell closure

indicates the impact of this shell closure on the structure of the
neighboring nuclei. Note that proton and neutron shell gaps
act simultaneously in the vicinity of doubly magic spherical
nuclei. Thus, the effect of a single gap is more quantifiable
away from these nuclei. One can see in Fig. 17 that the neutron
N = 82, 126, and 184 shell gaps have a more pronounced
effect on the nuclear deformations as compared with the proton
shell gaps at Z = 50 and Z = 82. This feature is common for
all the CEDF’s under investigation in this paper.

It is interesting to compare the RHB results with those
obtained in nonrelativistic models. The comparison of Fig. 17
in the present paper with HFB results based on the Gogny
D1S force in Fig. 3 a of Ref. [107], with HFB results based
on six Skyrme EDF’s in Fig. 2 of the Supplemental Material
to Ref. [26], and with the microscopic + macroscopic model
in Fig. 9 of Ref. [82] show that the general structure of
the distribution of charge quadrupole deformations β2 in the
nuclear chart is similar in all model calculations. Differences
between models emerge mostly at the boundaries between
the regions of different types of deformation, i.e., in the
transitional regions, where the energy surfaces are rather flat
and static deformations are not well defined. These are the
boundaries between the regions of prolate and oblate shapes
and between the regions of deformed and spherical shapes.
This comparison also reveals that, similar to our relativistic
results, also in nonrelativistic calculations the neutron shell
gaps with N = 82, 126, and 184 have a more pronounced
effect on the nuclear deformations than the proton shell gaps
with Z = 50 and Z = 82.

Figure 18 shows the spreads �β2(Z,N ) among four
CEDF’s for the predicted charge quadrupole deformations.
One can see that this spread is either nonexistent or very
small for spherical or nearly spherical nuclei as well as for
well-deformed nuclei in the rare-earth and actinide region. The
largest uncertainties for predicting the equilibrium quadrupole
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FIG. 19. (Color online) Proton hexadecapole deformations β4 obtained in the RHB calculations with the indicated CEDF’s.
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deformations exist at the boundaries between regions of
different deformations. They are extremely high in the regions
of the prolate-oblate shape coexistence, indicating that the
ground state in a given nucleus can be prolate (oblate) in
one CEDF and oblate (prolate) in another CEDF. These
uncertainties are more modest on the boundaries of the regions
of spherical and deformed (oblate or prolate) shapes. It is well
known that such nuclei are difficult to describe precisely at
the mean-field level [7,121,123]. Correlations going beyond
mean field have to be taken into account [87,88,105,124]
and shape fluctuations do not allow a precise definition of
deformation parameters. However, even if such correlations
and fluctuations are taken into account properly by methods
based on DFT and going beyond the mean field, there remain
deficiencies of the current generations of the DFT models
with respect of the description of single-particle energies [87].
Indeed, when we compare the profile of the potential energy
surface (PES) as a function of the deformation in spherical or
well-deformed nuclei with that in transitional nuclei, we find
that this profile depends for transitional nuclei much more
sensitively on the underlying single-particle structure than
in the other two cases. However, it is well known that the
single-particle energies (both spherical and deformed) are not
very accurately described at the DFT level (see Refs. [49,67]
and references quoted therein). Considering that the PES’s
obtained at the mean-field level form the starting points of
many beyond mean field calculations, further improvement
in the description of the single-particle energies is needed to
describe experimental data in transitional and shape-coexistent
nuclei reliably and consistently across the nuclear chart with
a high level of predictive power by the methods going beyond
mean field.

In Figs. 19 and 20 we present the distribution of the
calculated charge hexadecapole deformations β4 in the (N,Z)
plane and the spreads (1) for this observable. The detailed

comparison of Figs. 20 and 19 reveals a large degree of
correlation between the uncertainties in the predictions of
proton quadrupole and hexadecapole deformations. Similar
to quadrupole deformation (see discussion above), the largest
spread of the calculated hexadecapole deformations exists
near the borderline separating the regions with different
quadrupole deformations. For nonrelativistic theories, the
distribution of hexadecapole deformations of ground states
in the nuclear chart has been published so far only in the
microscopic + macroscopic (MM) model (see Fig. 11 in
Ref. [82]). Although the general trends for hexadecapole
deformations seem to be similar with our results, the direct
comparison between the two models is very difficult. In the
MM model [82], the deformation parameters determine the
shape of the potentials and the multipole moments of the
corresponding density distributions are complicated nonlinear
functions of deformations: QL0 = QL0(β2,β4) for (L = 2,4).
On the contrary, in the present investigation the deformation
parameters are defined from the QL0 moments via the linear
expressions (33) and (34), where all the nonlinear coupling
effects are neglected (see, for instance, Ref. [125]).

In Fig. 21 we present isovector deformations βIV
2 =

β2(ν) − β2(π ). So far, there are no experimental data on
such a quantity. However, it is important to understand how
consistent are the predictions for βIV

2 among modern DFT
models. The results presented in the Supplemental Material
of Ref. [26] show that for the absolute majority of nuclei
Skyrme functionals favor smaller neutron β2 deformations
as compared with the proton values. This result has been
verified for six Skyrme EDF’s; although some differences
between Skyrme parametrizations exist, it appears as a general
rule. The situation is different in covariant functionals. The
neutron β2 deformation is larger than the corresponding proton
deformation in approximately 2/3 of the nuclei, while in
1/3 of the nuclei the opposite situation is seen. The absolute
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FIG. 20. (Color online) Proton hexadecapole deformation spreads �β4(Z,N ) as a function of the proton and neutron numbers. �β4(Z,N ) =
|βmax

4 (Z,N ) − βmin
4 (Z,N )|, where βmax

4 (Z,N ) and βmin
4 (Z,N ) are the largest and smallest proton hexadecapol deformations obtained with four

employed CDFT parametrizations for the (Z,N ) nucleus.
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FIG. 21. (Color online) Isovector βIV
2 = β2(ν) − β2(π ) deformations obtained in the RHB calculations with the indicated CDFT

parametrizations.
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FIG. 22. (Color online) Isovector quadrupole deformation spreads �βIV
2 (Z,N ) as a function of proton and neutron number. �βIV

2 (Z,N ) =
|βIV

2,max(Z,N ) − βIV
2,min(Z,N )|, where βIV

2,max(Z,N ) and βIV
2,min(Z,N ) are the largest and smallest isovector quadrupole deformations, respectively,

obtained with four CDFT parametrizations for the (Z,N ) nucleus.

difference between proton and neutron β2 deformations is less
than 0.0125 in approximately 70% of the deformed nuclei. As
illustrated by Fig. 22, these results do not depend much on the
selection of the CEDF. On the contrary, the difference exceeds
0.02 for at least half of the deformed nuclei in the Skyrme DFT
(see Fig. 3 in Supplemental Material of Ref. [26]). Thus, the
MM model, which assumes the same deformations for protons
and neutrons, is better justified in CDFT than in Skyrme DFT.
One also should note that in CDFT there are several regions
in the periodic chart, where the differences of neutron and
proton quadrupole deformations become substantial. These
are (Z ∼ 16,N ∼ 34), (Z ∼ 28, N ∼ 60), and Z ∼ 50, N ∼
100) regions located in the vicinity of two-neutron drip line
(Fig. 21). They are present in all CDFT parametrizations. At
the moment we do not understand all these details, but we have
to emphasize that most of the regions with large differences
between neutron and proton deformations are close to the
neutron drip line, where the neutron densities are more dilute
than those of the protons. In addition, the neutron densities
are more deformed than the proton ones in these regions. Of
course, in the future it would be interesting to investigate these
facts in more detail.

X. CHARGE RADII AND NEUTRON SKIN THICKNESS

The charge radii were calculated from the corresponding
point proton radii as

rch =
√

〈r2〉p + 0.64 fm, (35)

where the factor 0.64 accounts for the finite-size effects of
the proton. Here we have neglected the small contributions to
the charge radius originating from the electric neutron form
factor and the electromagnetic spin-orbit coupling [126,127]

as well as the corrections owing to the center-of-mass motion.
Note that in the fits of the three density functionals NL3*
[24], DD-ME2 [23], and DD-MEδ [12] the same finite size of
the proton of 0.8 fm has been used and that the functional
DD-PC1 [11] has been adjusted only to nuclear binding
energies.

The accuracy of the description of charge radii is illustrated
on the example of the CEDF DD-PC1 in Fig. 23. We do not
present such a comparison for the CEDF’s NL3*, DD-ME2,
and DD-MEδ because they show very similar results. This
similarity is clearly seen from Fig. 24, which presents the
spreads (1) in the theoretical results on charge radii, and
from Table VI, which presents the rms deviations between
calculated and experimental radii. These comparisons are
based on the latest compilation of experimental charge radii
in Ref. [128], which includes charge radii for 351 even-even
nuclei,

One can see that the calculations provide, in general, a
good description of experimental data. However, there are
four exceptions. First, there are very light nuclei He, Be, and
C [Fig. 23(a)], where the mean-field description has obvious
limitations. The discrepancy between theory and experiment is
especially pronounced in the case of the He nuclei. Then there
is a substantial discrepancy between theory and experiment
for charge radii of Se, Kr, and Sr isotopes at neutron numbers
N = 38–46 [see Fig. 23(b)]. The calculated ground state
quadrupole deformations of these nuclei are predicted to be
either spherical or near spherical (see Fig. 17). However,
the PES’s are soft. This indicates that a proper description
of their structure requires the inclusion of beyond-mean-field
correlations. Next, the ground states of some proton-rich Hg
and Pb isotopes are predicted to be oblate (or prolate), in
contradiction with experiment. These earlier observed features
[129] are in part attributable to incorrect position of the
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FIG. 23. (Color online) Experimental and theoretical charge radii as a function of neutron number. The calculations are performed with
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The experimental data are taken from Ref. [128]. Panels (b), (c), and (d) show the comparison in an enlarged scale.
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FIG. 24. (Color online) Charge radii spread �rch(Z,N ) as a function of proton and neutron number. �rch(Z,N ) = |rmax
ch (Z,N ) −

rmin
ch (Z,N )|, where rmax

ch (Z,N ) and rmin
ch (Z,N ) are the largest and the smallest charge radii obtained with the four CDFT parameterizations

for the (Z,N ) nucleus.
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TABLE VI. The rms deviations �r rms
ch between calculated and

experimental charge radii. They are given in fm for the indicated
CEDF’s. For the calculations of the rms values, all experimental data
are used in column 2, while the data on radii of He (Z = 2) and
Cm (Z = 96) isotopes are excluded in column 3. See text for the
discussion of these cases.

CEDF �r rms
ch (fm) �r rms

ch (fm)
1 2 3

NL3* 0.0407 0.0283
DD-ME2 0.0376 0.0230
DD-MEδ 0.0412 0.0329
DD-PC1 0.0402 0.0253

proton 1h9/2 spherical subshell [48,129] and they are present
in all the CEDF’s used here (see Fig. 17). When comparing
theory with experiment we use for these nuclei the radii from
the minimum of the PES corresponding to the experimental
minimum, i.e., the spherical minimum for the N = 104–114
Pb isotopes and the oblate minimum for the N = 100–108
Hg isotopes. Finally, the last case is related to the unusual
behavior of the charge radii in the U-Pu-Cm isotopes [see
Fig. 23(d)]. For a fixed neutron number, the increase of proton
number leads in these isotopes to an increase of the calculated
charge radius. Such a feature is seen not only for the CDFT
results, but also for the results of the nonrelativistic DFT
calculations based on the Gogny D1S force (see Supplemental
Material to Ref. [107]). However, in experiment the charge
radii of the Cm (Z = 96) nuclei are lower than those of
Pu (Z = 94) and U (Z = 92). This is the only case in the
nuclear chart where such an inversion exists. Considering
that both the ground state quadrupole deformations are very
stable in this region, i.e., their variations with particle number
are much less pronounced than in the rare-earth region, and
that CDFT describes the experimental deformations in the
actinides well [48,50], it is impossible based on the current
CDFT’s and on the Gogny functional D1S to understand this

highly unusual behavior of experimental charge radii in the Cm
isotopes.

In neutron-rich nuclei the excess of neutrons over pro-
tons creates a neutron skin. The neutron skin thickness is
commonly defined as the difference of proton and neutron
root-mean-square (rms) radii,

rskin = 〈
r2
n

〉1/2 − 〈
r2
p

〉1/2
. (36)

The neutron skin thickness is an important indicator of
isovector properties. It is closely related with a number of
observables in finite nuclei which are sensitive to isovector
properties [25,130,131] and it affects the physics of neutron
stars [25,132–134].

The experimental data on the neutron skin thickness in
208Pb is contradictory. On the one hand, there is a large
set of experiments which suggests that the neutron skin is
around 0.2 fm or slightly smaller (see Table 1 in Ref. [136]).
However, these experimental data are extracted in model-
dependent ways (see Ref. [137] and references quoted therein).
The neutron skin thicknesses rskin = 0.161 ± 0.042 [136] and
rskin = 0.190 ± 0.028 [138] obtained recently from the energy
of the antianalog GDR rely on relativistic proton-neutron
quasiparticle random-phase approximation calculations based
on the RHB model. Another recent value of the neutron
skin thickness of rskin = 0.15 ± 0.03(stat)+0.01

−0.03(sys) fm has
been extracted from coherent pion photoproduction cross
sections [139]. However, the extraction of information on the
nucleon density distribution depends on the comparison of the
measured (γ,π0) cross sections with model calculations. Alter-
natively, a measurement using an electroweak probe has very
recently been carried out in parity violating electron scattering
on nuclei (PREX) [37]. It utilizes the preferential coupling of
the exchanged weak boson to neutrons. The electroweak probe
has the advantage over experiments using hadronic probes that
it allows a nearly model-independent extraction of the neutron
radius that is independent of most strong interaction uncertain-
ties [140]. However, a first measurement at a single momentum
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FIG. 25. (Color online) Neutron skin thicknesses obtained in RHB calculations with several CEDF’s.
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FIG. 26. (Color online) Neutron skin thickness spreads �rskin(Z,N ) as a function of proton and neutron number. �rskin(Z,N ) =
|rmax

skin (Z,N ) − rmin
skin(Z,N )|, where rmax

skin (Z,N ) and rmin
skin(Z,N ) are the largest and smallest proton hexadecapol deformations obtained with

four CDFT parametrizations for the (Z,N ) nucleus.

transfer gave rskin = 0.33 ± 0.17 with a relatively large error
bar [37]. A central value of 0.33 fm is particularly intriguing
because it is around 0.13 fm higher than central values obtained
in other experiments (see Table 1 in Ref. [136]). The analysis
performed in Ref. [135] has found no compelling reason to rule
out the models with large neutron skin in 208Pb. However, as
indicated in Ref. [135], the parameters of these models do not
follow from a strict optimization procedure. All systematic fits
with density-dependent couplings in the isovector channel for
DD-ME1 [39], DD-ME2 [23], DD-MEδ [12], DD-PC1 [11],
or FSUGold [77] find for the neutron skin thickness in 208Pb
values close to 0.2 fm (see Table VII). Only in the first two
cases the small neutron skins have been used in the fit. For
the CEDF’s DD-MEδ and DD-PC1 the density dependence
in the isovector channel has been determined from ab initio
calculations of nuclear matter.

It is clear that the already approved follow-up PREX
measurement [141] designed to achieve the original 1% error
in the neutron radius of 208Pb will provide useful constraints
on the selection of the proper CEDF. Table VII also provides
the predictions for neutron skin thickness in 48Ca. It will be
measured in the approved CREX experiment at JLab with
an accuracy of around 0.02 fm [141]. Again the neutron

TABLE VII. Neutron skin thicknesses rskin in 48Ca and 208Pb
obtained in calculations with the indicated CEDF’s. The results of
the calculations with FSUGold are taken from Ref. [135].

CEDF rskin(48Ca) (fm) rskin(208Pb) (fm)

NL3* 0.236 0.288
DD-ME2 0.187 0.193
DD-MEδ 0.177 0.186
DD-PC1 0.198 0.201
FSUGold 0.21

skin thickness is the largest for the NL3* CEDF and the
density-dependent (DD) CEDF’s provide similar, but smaller,
predictions for it. However, the difference between the NL3*
and the DD CEDF’s is less pronounced in 48Ca as compared
with 208Pb. Apart from NL3*, the neutron skin thicknesses are
only slightly (by ∼0.05 fm) smaller in 48Ca as compared with
208Pb.

On going to the neutron drip line we observe the same trends
which are already seen in 48Ca and 208Pb (see Table VIII). First,
the neutron skin thicknesses obtained with DD CEDF’s cluster
around the same value. Second, the neutron skin thickness
obtained with NL3* exceeds substantially those found with
DD CEDF’s. It is interesting that the neutron skin thicknesses
obtained with DD CEDF’s are very close to those found in
Skyrme DFT’s calculations with SV-min and UNEDF0 in
Ref. [28].

In Fig. 25 we present calculated distributions of neutron
skin thicknesses in the (Z,N ) chart. One can see that they
are very similar for the DD CEDF’s. However, the neutron
skin thickness is larger for NL3*. In some nuclei it can reach
1.2 fm. This is a consequence of two factors. First, the neutron

TABLE VIII. Neutron skin thicknesses rskin (in fm) in selected
neutron-rich nuclei obtained in calculations with relativistic func-
tionals (CEDF) and Skyrme functionals (SEDF). The latter results
are extracted from Fig. 3 of Ref. [28].

EDF Ca (N = 42) Zr (N = 84) Er (N = 68)

CEDF(NL3*) 0.688 0.666 0.752
CEDF(DD-ME2) 0.598 0.522 0.582
CEDF(DD-MEδ) 0.542 0.495 0.529
CEDF(DD-PC1) 0.539 0.509 0.532
SEDF(SV-min) 0.55 0.470 0.490
SEDF(UNEDF0) 0.55 0.510 0.560
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FIG. 27. (Color online) The same as Fig. 26 but for neutron skin thickness spreads obtained with exclusion of the NL3*.

skin is larger for NL3* than for the DD CEDF’s already
in the valley of β stability and the neutron skin thickness
increases with isospin. Second, the two-neutron drip line
extends to more neutron-rich nuclei in NL3* as compared
with DD CEDF’s (see Sec. VIII) leading to these high values
of rskin. The comparison of the results for DD CEDF’s
shows significant similarities with the results obtained for six
Skyrme functionals in Ref. [28]. In part, this is a consequence
of the fact that, similar to the DD CEDF’s, these Skyrme
EDF’s (SEDF’s) favor smaller values for the neutron skin
in 208Pb.

As shown in Fig. 26 the spreads (1) of theoretical predic-
tions in the neutron skin thickness increase with isospin and
become rather large in neutron-rich nuclei (reaching 0.25 fm
in some cases). They are larger than those found in Skyrme
calculations in Ref. [28]. This is a consequence of the use of
NL3*, which, contrary to DD CEDF’s of the present paper and
the Skyrme EDF’s used in Ref. [28], favors large neutron skins.
As illustrated in Fig. 27, the spreads (1) in the neutron skin
thicknesses become substantially smaller if we exclude NL3*
from our consideration. This again stresses the importance of
future PREX-II and CREX experiments. If PREX-II confirms
the large neutron skin in 208Pb (rskin ∼ 0.33 fm) obtained
in the first PREX experiment, this would also require to
look for density-dependent CEDF’s and Skyrme EDF’s with
larger neutron skins. If this experiment will lead to a smaller
neutron skin thickness rskin ∼ 0.2 fm, then the EDF’s with
large neutron skins (such as NL3*) should be excluded from
further consideration. In either case, this experiment will lead
to a reduction of the uncertainty in the prediction of neutron
skins in neutron-rich nuclei.

XI. CONCLUSIONS

The global performance of CEDF’s has been assessed inves-
tigating the state-of-the-art functionals NL3*, DD-ME2, DD-
MEδ, and DD-PC1. They represent three classes of functionals

which differ by basic model assumptions and fitting protocols.
The available experimental data on ground state properties
of even-even nuclei have been confronted with the results
of the calculations. For the first time, theoretical systematic
uncertainties in the prediction of physical observables [as
defined in Eq. (1)] have been investigated on a global scale
for relativistic functionals. Special attention has been paid to
the propagation of these uncertainties towards the neutron drip
line.

The main results can be summarized as follows.

(i) The current generation of CEDF’s investigated in the
present paper provides an improved description of
masses across the nuclear chart as compared with the
previous generation. This leads not only to reduced
global rms deviations but also to improved gross trends
of the deviations between theory and experiment as a
function of the mass number. The rms deviations for
the available experimental masses of 835 even-even
nuclei range from 2.15 MeV (DD-PC1) to 3.00 MeV
(NL3*). This is achieved with a relatively small
number of model parameters fitted to a rather modest
set of data on finite nuclei ranging from 12 (for
NL3* and DD-ME2) to 161 (for DD-MEδ) nuclei.
The spread for binding energies increases on going
from the β-stability valley towards the neutron drip
line. This is a consequence of poorly defined isovector
properties of the current generation of CEDF’s. In the
light of the model limitations and the relatively narrow
isospin range measured in experiment, it still remains
an open question whether the isovector properties
of EDF’s can accurately be defined from masses
alone.

(ii) The analysis of discrepancies between theory and
experiment for two-neutron separation energies and
their sources leads to a more critical look on the
reappearance of two-neutron binding with increasing
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neutron number beyond the primary two-neutron drip
line. This reappearance shows itself in the nuclear
chart via peninsulas emerging from the nuclear main-
land and it is directly related to the behavior of two-
neutron separation S2n energies with neutron number.
This effect exists in a number of DFT calculations
[26,46,92], but it maybe an artifact of the mean-field
approximation. These peninsulas usually appear above
the N = 126 and N = 184 shell closures. However,
the range of nuclei around these shell closures, in
which transitional shapes are expected, is wide. Thus,
the inclusion of correlations beyond mean field may
lead to the merging of these peninsulas with the nuclear
mainland.

(iii) The calculated two-proton drip lines are very close
to experiment. The best reproduction of the two-
proton drip line is achieved for the CEDF’s DD-ME2,
and DD-MEδ, which are characterized by the best
residuals for the two-proton separation energies S2p.
Because the proton drip line lies close to the valley of
stability, the extrapolation errors towards it are small.
In addition, the Coulomb barrier provides a rather
steep potential, reducing considerably the coupling to
the proton continuum. This leads to a relatively low
density of the single-particle states in the vicinity of
the Fermi level, which helps to minimize the errors in
the prediction of two-proton drip line.

(iv) A detailed analysis of the sources of the spread in the
predictions of the two-neutron drip lines existing in
nonrelativistic and covariant DFT has been performed.
Poorly known isovector properties of the EDF’s, the
underlying shell structure and inevitable inaccuracies
in the DFT description of the single-particle energies
contribute to these uncertainties. However, no clear
correlations between the location of the two-neutron
drip line and the nuclear-matter properties of the
corresponding EDF have been found.

(v) The spread between the different models in the defini-
tion of the two-neutron drip line at Z ∼ 54, N = 126
and Z ∼ 82, N = 184 are very small owing to the
impact of the spherical shell closures at N = 126
and 184. The largest difference between covariant
and Skyrme DFT exist in superheavy nuclei, where
the first model (contrary to the second) consistently
predicts a significant impact of the N = 258 spherical
shell closure. The spread of the theoretical predictions
grows on moving away from these spherical closures.
This is caused by the increasing deformation.

(vi) The experimental static β2 deformations of well-
deformed nuclei are well described in these calcula-
tions. The difference between the four CEDF’s is small
and within the experimental uncertainties. As a result,
such experimental data cannot be used to differentiate
between the functionals. Theoretical uncertainties for
this physical observable are either nonexistent or very
small for spherical or nearly spherical nuclei as well
as for well-deformed nuclei in the rare-earth and in
the actinide regions. The largest spreads for predicting
the equilibrium quadrupole deformations exist at the

boundaries between regions of different deformations.
They are extremely high in the regions of the prolate-
oblate shape coexistence, indicating that the ground
state in a given nucleus can be prolate (oblate) in one
CEDF and oblate (prolate) in another CEDF. These
uncertainties are attributable to the deficiencies of the
current generations of the DFT models with respect of
the description of single-particle energies.

(vii) The analysis of isovector deformations βIV
2 reveals

that the neutron β2 deformation is typically larger
than the corresponding proton deformation. However,
in most of the nuclei the absolute value of βIV

2 is
small. Only in the (Z ∼ 16,N ∼ 34), (Z ∼ 28, N ∼
60), and (Z ∼ 50, N ∼ 100) regions located in the
vicinity of two-neutron drip line is the isovector
deformation substantial in all relativistic functionals.
On the contrary, for Skyrme functionals in the majority
of the nuclei the neutron β2 deformations are smaller
than proton ones and the absolute values of βIV

2 are
larger. Thus, the microscopic + macroscopic model,
which assumes the same deformations for protons and
neutrons, is better justified in CDFT than in Skyrme
DFT.

(viii) A comparable level of accuracy (with a slightly
better description by DD-ME2) is achieved by all
the functionals under investigation for charge radii.
Figure 24 shows that the spread in predicting charge
radii are not necessarily larger near the neutron drip
line as compared with the valley of β-stability.

(ix) The experimental data on the neutron skin thickness
rskin in 208Pb are somewhat contradictory. Hadronic
probes give rskin ∼ 0.2 fm, whereas in the PREX
experiment the electroweak probe provides a central
value of rskin = 0.3 fm, however with very large error
bars. The NL3* results come close to the central
PREX value, while DD-ME2, DD-MEδ, and DD-PC1
give much smaller neutron skins in the vicinity of
rskin = 0.2 fm. This can be understood by the fact that
the last three functionals have a density dependence
in the isovector channel, which leads to a smaller
slope L of the symmetry energy at saturation and,
therefore, to larger values of the symmetry energy in
the region of densities ρ ∼ 0.1 fm below saturation
(see Refs. [39,130]). As a consequence, the neutrons
are less bound to the protons in this region of densities.
Globally, the spreads in the neutron skin thickness
increase with isospin and become rather large in
neutron-rich nuclei (reaching rskin = 0.25 fm in some
cases) reflecting the difference between NL3* and the
DD CEDF’s. There is hope that these uncertainties can
be reduced if future PREX-II and CREX experiments
provide neutron skin thicknesses in 208Pb and 48Ca
with the required accuracy.

The current investigation shows that the biggest uncer-
tainties in theoretical description exist in transitional nuclei.
On the one hand, this is expected because these nuclei have
usually flat potential energy surfaces, often in the β and γ
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directions. The minima are not well defined in these flat
energy surfaces and the fluctuations cannot be neglected.
These nuclei have to be treated by the methods going beyond
mean field [7,89,105]. On the other hand, the mean field
is the starting point of these approaches. However, in some
specific cases we find a strong dependence of the equilibrium
deformations and the potential energy surfaces of transitional
and shape-coexistent nuclei on the employed EDF which
originates from the deficiencies of mean-field methods in
the description of single-particle energies. These uncertain-
ties will eventually affect the results of beyond-mean-field
calculations. The analysis indicates that further improvement
in the description of the single-particle energies is needed to
describe experimental data in transitional and shape-coexistent
nuclei reliably and consistently across the nuclear chart with
a high level of predictive power by the methods going beyond
mean field.

Historically, it was considered an advantage of the CDFT
over nonrelativistic DFT that no single-particle information
has been used in the fit of CEDF’s. However, it is clear from
the current investigation that such an approach has its own
limits because further improvement of CEDF’s may require
additional terms, such as tensor terms, in the functional which
cannot be firmly constrained by only nuclear-matter properties
and by the fit to masses and radii of finite nuclei [142]. The
inclusion of experimental data on giant resonances in the spin
and isospin degrees of freedom and/or on the energies of the
single-particle states into the fitting protocol may offer such
an extra tool and make it possible to define the functional

with better single-particle properties. However, we also have
to consider that, according to the concept of DFT [1,2], single-
particle energies are only auxiliary quantities, which are not
automatically reproduced well. As is well known, very often,
in particular in the relativistic case, DFT theories suffer from
low effective masses and the corresponding low-level densities
at the Fermi surface. One has to go beyond mean field and to
take into account energy-dependent self-energies [143–145],
as, for instance, particle-vibrational coupling, to deal with this
problem [67,146].

As an example, the data set of the calculated properties of
even-even nuclei obtained with DD-PC1 CEDF is provided as
Supplemental Material with this article at Ref. [147].
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[124] Z. P. Li, T. Nikšić, D. Vretenar, J. Meng, G. A. Lalazissis, and
P. Ring, Phys. Rev. C 79, 054301 (2009).

[125] J. Libert and P. Quentin, Phys. Rev. C 25, 571 (1982).
[126] W. Bertozzi, J. Friar, J. Heisenberg, and J. W. Negele, Phys.

Lett. B 41, 408 (1972).
[127] M. Nishimura and D. W. L. Sprung, Prog. Theor. Phys. 77, 781

(1987).
[128] I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99,

69 (2013).
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