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Three-body force effect on the neutron and proton spectral functions in asymmetric nuclear matter
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We investigate the effect of microscopic three-body forces (TBFs) on the off-shell behavior of the neutron and
proton mass operators Mτ (k,ω) = V τ (k,ω) + iWτ (k,ω) in asymmetric nuclear matter within the framework of
the extended Brueckner-Hartree-Fock approach. We adopt the Argonne V18 two-body potential supplemented
with a microscopic TBF as the realistic nucleon-nucleon interaction. At high densities well above the normal
nuclear matter density, the TBF turns out to affect significantly the off-shell behavior of both the proton and
neutron mass operators. The neutron and proton spectral functions in asymmetric nuclear matter are calculated
and discussed. At low densities around and below the normal density, the TBF effect on the spectral functions
turns out to be negligibly weak. At high densities well above the saturation density, the TBF is shown to affect
noticeably the neutron and proton spectral functions.
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I. INTRODUCTION

Nucleon-nucleon (NN) correlations and their isospin
dependence in asymmetric nuclear matter are of great interest
since they are closely related to the structure of neutron-rich
nuclei [1], particle production in heavy-ion collisions [2],
and neutron-star physics [3]. The many-body NN correlations
among nucleons can be directly reflected in the neutron
and proton spectral functions [4], and the latter may play
an important role in understanding the nature of the NN
correlations, especially the short-range and tensor correlations
in asymmetric nuclear matter [1].

The nucleon spectral function S(k,ω) describes the proba-
bility of removing a particle with momentum k from a target
nuclear system, leaving the final system with an excitation
energy ω. Experimentally, the information of S(k,ω) can be
extracted from the high-resolution electron-scattering experi-
ments [5–11] and the proton-induced knockout reactions [12–
15]. These experiments have been performed on various nuclei
with different values of the neutron to proton ratio N/Z,
which not only clarify the limitation of the physical picture of
independent particle motion in the standard mean-field theory,
but also may lead to further insight into the isospin-dependence
of NN correlations. Theoretically, the neutron and proton
spectral functions have been investigated in asymmetric nu-
clear matter by using various microscopic nuclear many-body
approaches, such as the relativistic Dirac-Brueckner-Hartree-
Fock (DBHF) theory [16], the transport model [17], the in-
medium T -matrix approach [18], the self-consistent Green’s
function method [13,19–21], and the Brueckner-Hartree-Fock
(BHF) approach by including the hole-hole contribution [22].
Recently, the nucleon spectral function and the nucleon
momentum distribution are calculated in finite nuclei within
the framework of the Green’s function theory [13,23–25]
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and the nonrelativistic many-body Schrödinger equation [26].
The obtained results have been shown to be useful for
understanding the isospin dependence of NN correlations
observed in the scattering experiments [6–9].

It is well known that the TBF is necessary for reproducing
the empirical saturation properties of symmetric nuclear matter
and for better describing the single-particle properties in
the nonrelativistic microscopic BHF approach [27,28]. The
TBF effect on the spectral function and nucleon momentum
distribution has been investigated within the in-medium
T -matrix method using the Urbana TBF [29], and the
calculations are restricted to symmetric and pure neutron
matter. For the symmetric case, the TBF effect turns out to be
neglected at low densities (for example at the saturation density
ρ = 0.17 fm−3), while it becomes noticeable and induces an
extra short-range correlation at high densities. This result is
confirmed by our recent investigation of Ref. [30] within
the framework of the extended BHF approach by adopting
the Argonne V18(AV18) two-body interaction supplemented
with a microscopic TBF. In the present work, we shall extend
our previous investigation of Ref. [30] to asymmetric nuclear
matter. We calculate the the neutron and proton off-shell mass
operators and the spectral functions in asymmetric nuclear
matter within the framework of the extended BHF approach.
Especially, we pay special attention on the discussion of the
TBF effect.

The TBF adopted in the present calculation is a microscopic
TBF, and has been constructed in Refs. [27,28] by using the
meson-exchange current approach. In this TBF model, the four
most important mesons π , ρ, σ , and ω are considered. The TBF
contains the contributions from various intermediate virtual
processes such as virtual nucleon-antinucleon pair excitations,
and nucleon resonances [28]. The parameters of the TBF
model, i.e., the coupling constants and the form factors,
are determined self-consistently by the corresponding two-
body force within the one-boson-exchange potential (OBEP)
model so that no adjustable parameters are introduced. The
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components of the microscopic TBF model associated to the
π and ρ meson exchanges have been developed for a long
period by several authors [31–37]. The extension to include
the σ and ω exchanges as well as the associated virtual
nucleon-antinucleon pair excitations and nucleon resonances
has been done by Grange et al. [28]. Further improvement
of the TBF model has been achieved in Ref. [27] where new
parameters of the TBF have been obtained self-consistently to
reproduce the AV18 two-body interaction. It has been shown
that the TBF leads to a significant improvement of the predicted
saturation density and energy from (0.265 fm−3, 18.25 MeV)
to (0.198 fm−3, 15.05 MeV) [27]. For more details, we refer
to Refs. [27,28].

The present paper is organized as follows. In Sec. II, we
provide a brief review of the adopted theoretical approaches
including the extended BHF theory and the microscopic
TBF model. We also give a definition and the corresponding
physical interpretation of the mass operator and spectral
function, as presented in Refs. [30,38]. In Sec. III, the
calculated real and imaginary parts of the neutron and proton
off-shell mass operators are reported and discussed. In Sec. IV,
we calculate the neutron and proton spectral functions and
investigate the TBF effect on their energy dependence. Finally,
a summary is given in Sec. V.

II. FORMALISM

A. Brueckner theory with a microscopic TBF

Our calculations are based on the Brueckner theory ex-
tended to asymmetric nuclear matter [39]. The basic ingredient
of the Brueckner theory is the in-medium two-body reaction
matrix G, which in the case of asymmetric nuclear matter
depends on the isospin components of the two colliding
nucleons. The G matrix satisfies the isospin dependent Bethe-
Goldstone (BG) equation [40,41],

G(ρ,β; ω) = VNN + VNN

×
∑
k1k2

|k1k2〉Q(k1,k2)〈k1k2|
ω − ε(k1) − ε(k2) + iη

G(ρ,β; ω), (1)

where ki ≡ { �ki,σi,τi} denotes the single-particle (SP) momen-
tum, the z components of spin and isospin of a nucleon,
respectively. VNN is the bare NN interaction, and ω is
starting energy. The asymmetry parameter β is defined as
β = (ρn − ρp)/ρ, where ρn, ρp and ρ = ρp + ρn denote
the neutron, proton, and total nucleon number densities,
respectively. Q(k1,k2) = [1 − n(k1)][1 − n(k2)] is the Pauli
operator, which prevents the two intermediate nucleons from
being scattered into their respective Fermi seas. Here, n(k)
is the Fermi distribution function, and it is given by the step
function θ (k − kτ

F ) at zero temperature. The proton (τ = p)
and neutron (τ = n) Fermi momenta k

p
F and kn

F are related
to their corresponding densities ρp and ρn by the relations
k

p
F ≡ [ 3π2

2 (1 − β)ρ]1/3 and kn
F ≡ [ 3π2

2 (1 + β)ρ]1/3. ε(k) is the
SP energy given by

ε(k) = �
2k2

2m
+ U (k). (2)

The convergence rate of the hole-line expansion depends on
the choice of the auxiliary potential U (k) [40–42]. Here,
we adopt the continuous choice since it provides a much
faster convergence of the hole-line expansion than the gap
choice [43]. Under the continuous choice, the SP potential
U (k) describes physically at the lowest BHF level the nuclear
mean field felt by a nucleon in nuclear medium [44] and is
calculated from the real part of the on-shell G matrix:

U (k) = Re
∑
k′�kF

〈kk′|G[ρ,ε(k) + ε(k′)]|kk′〉A, (3)

where the subscript A denotes antisymmetrization of the
matrix elements. The coupled equations (1)–(3) have to be
solved in a self-consistent way.

The realistic NN interaction VNN is a basic input of the
BG equation. In the present calculation, we adopt the AV18

two-body interaction [45] plus a microscopic TBF [27] as
our realistic NN interaction. As already mentioned in the
introduction, the adopted TBF model is based on the meson
exchange current approach [27,28,33]. The parameters (the
meson-nucleon couplings and form factors) in this TBF model
have been self-consistently determined to reproduce the AV18

two-body force using the OBEP approximation, and their
values can be found in Ref [27].

Recently, in Refs. [48,49], a self-consistent scheme has
been developed to include a TBF in the Green’s function
approach, and the properties of symmetric nuclear matter
have been calculated by adopting the chiral two-body and
three-body interactions. The authors in these papers have
stressed that TBF at the one-body and two-body level has to be
handled differently in order to get a consistency for including
the TBF effect at the Hartree-Fock level and all the successive
orders in the dispersive contributions. Within the framework of
the Brueckner theory, a fully consistent treatment of the TBF
requires us to consider the three-body Faddeev problem. To
avoid the complication of the in-medium three-body Faddeev
problem, an approximation scheme has been devised to reduce
the TBF to an equivalent two-body force [28] based on the
solution of the Bethe-Faddeev equation valid for a strongly
repulsive central two-body force [50]. This scheme consists in
saturating the quantum numbers of the third nucleon properly
weighted by means of the correlation wave functions with
the two others, i.e., ψ(rij ) = 1 − g(rij ), g being the defect
function. In the BHF approach, the TBF enters the BG equation
only explicitly via the equivalent two-body force. The auxiliary
potential in the BG equation plays the role in controlling
the convergency of the hole-line expansion [40] and the TBF
affects the auxiliary potential only implicitly via the G matrix
during the self-consistent iteration procedure for solving the
BG equation. The consistency of inclusion the TBF at the
one-body and two-body levels in the BHF calculation is only
partly kept, and the price paid is that a number of successive
approximations have been made to get the equivalent two-body
force by averaging the TBF, especially the double-exchange
diagrams are neglected. The above approximation has been
extensively applied in the BHF calculations for including
TBF contribution, and its justification can be found in
Refs. [28,33–36,46,47]. In this averaging scheme, the direct
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and most important single-exchange TBF contributions are
taken into account. The missing contributions, especially from
the double-exchange diagrams, have been shown to be about
20% [33–36]. Accordingly, the above scheme has been thought
reasonable. Going beyond this approximation for including
TBF in the Brueckner theory requires a big effort and need to
be done in the future.

In r space, the equivalent two-body force reduced from the
TBF by averaging over the third nucleon degree of freedom
can be written as [27,28],

V ij (r) = ρ

∫
d3rk

∑
σk,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk, (4)

where g(r) is the defect function, which reflects the nucleon-
nucleon correlations in medium [28,51]. Equations (1)–(4)
are coupled with each other, and need to be solved self-
consistently.

In this work, the calculation has been performed by
including a large number of partial waves (Jmax = 9) in the
expansion of the G matrix, and by using a large momentum
cutoff (kmax = 5 fm−1) in the self-consistent auxiliary SP
potential U (k). For the sake of simplification in calculation,
the angle-average approximation for the Pauli operator and
energy denominator have been adopted in Eq. (1) [52].

B. Mass operator and spectral function
in asymmetric nuclear matter

One of the main purposes of the present work is to explore
the off-shell behavior of the neutron and proton mass operators
in asymmetric nuclear matter. In the spirit of the Brueckner-
Bethe-Goldstone theory, the mass operator Mτ (k,ω) can be
expanded in a perturbation series according to the number of
hole lines as demonstrated in Refs. [41,42,53]. In the expan-
sion of mass operator [42], the first two terms Mτ (k,ω) =
Mτ

1 (k,ω) + Mτ
2 (k,ω) have been taken into account in the

present calculation. The lowest-order term Mτ
1 (k,ω) is the

standard BHF SP potential. The second-order term Mτ
2 (k,ω)

is called the Pauli rearrangement term and it describes the
effect of the ground-state two-hole correlations on the SP
potential [54]. Their expressions are given as follows:

Mτ
1 (k,ω) ≡

∑
τ ′

Mττ ′
1 (k,ω)

=
∑
τ ′

∑
h<kτ ′

F

〈kh|Gττ ′
[ω + ετ ′

(h)]|kh〉A, (5)

Mτ
2 (k,ω) ≡

∑
τ ′

Mττ ′
2 (k,ω) = 1

2

∑
τ ′

∑
n>kτ ′

F

∑
l<kτ

F

∑
m<kτ ′

F

× |〈lm|Gττ ′
[ετ (l) + ετ ′

(m)]|kn〉A|2
ω + ετ ′(n) − ετ (l) − ετ ′(m) − iη

. (6)

The mass operator Mτ (k,ω) is a complex quantity, i.e.,
Mτ (k,ω) = V τ (k,ω) + iWτ (k,ω). The real and imaginary
parts of the mass operator are connected by the dispersion
relation [38]. The off-shell behavior of the mass operator,
i.e., its dependence on momentum �k and energy ω, can be

calculated according to Eqs. (5) and (6) as long as the G
matrix is obtained.

The neutron and proton quasiparticle (QP) energies ετ
QP are

given by the self-consistent solution of the following energy-
momentum relation,

ετ
QP (k) = �

2k2

2m
+ V τ

[
k,ετ

QP (k)
]
. (7)

The on-shell mass operator Mτ (k,ω) is calculated by setting
ω = ετ

QP in the mass operator, and its real part can be
identified as the potential energy felt by a neutron or a proton
with momentum �k in asymmetric nuclear matter. Using the
Lehmann representation for the Green’s function Gτ (k,ω) =
[ω − k2/2m − Mτ (k,ω)]−1, the neutron and proton spectral
functions can be expressed in terms of the mass operator, i.e.,

Sτ (k,ω) = − 1

π

Wτ (k,ω)

[ω − k2/2m − V τ (k,ω)]2 + [Wτ (k,ω)]2
, (8)

with the sum rule ∫ ∞

−∞
Sτ (k,ω) dω = 1. (9)

The neutron and proton occupation probabilities nτ (k)
are related to their spectral functions by the following two
equations:

nτ (k) =
∫ ωτ

F

−∞
Sτ (k,ω) dω, (10)

and

nτ (k) = 1 −
∫ ∞

ωτ
F

Sτ (k,ω) dω, (11)

where ωτ
F = ετ

QP (kτ
F ) is the Fermi energy. For a system with A

nucleons, Sτ (k,ω) measures the probability density of finding
the residual (A − 1) nucleon system with an excitation energy
of E∗ = ωτ

F − ω (ω < ωτ
F ) after removing a nucleon with

momentum k from the ground state, or the probability density
of finding the residual (A + 1) nucleon system with E∗ =
ω − ωτ

F (ω > ωτ
F ) by adding a nucleon to the ground state.

As a function of ω, Sτ (k,ω) behaves like a δ function near
the Fermi energy ωτ

F , and its energy dependence becomes
rather flat in the energy region away from the Fermi energy. In
order to obtain accurately the spectral distribution around the
Fermi energy, the present calculations have been performed by
using two different mesh sizes in different energy regions, i.e.,
a small mesh size of �ω = 0.5 MeV in the region of ωτ

F −
50 MeV < ω < ωτ

F + 50 MeV, and a large one of 5 MeV
for the regions of ω > ωτ

F + 50 MeV and ω < ωτ
F − 50 MeV.

The numerical stability and accuracy have been checked to be
satisfactory.

III. OFF-SHELL PROPERTIES OF THE NEUTRON AND
PROTON MASS OPERATOR AT FIXED MOMENTUM

A. Imaginary part of the off-shell mass operator

The imaginary part of mass operator determines how the
QP strength and lifetime are modified in nuclear medium from
the noninteracting Fermi gas. In Fig. 1, we display the energy
(ω − eF ) dependence of Wτ (k,ω) = Wτ

1 (k,ω) + Wτ
2 (k,ω) for
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FIG. 1. (Color online) Dependence of Wτ (k,ω) = Wτ
1 (k,ω) + Wτ

2 (k,ω) on ω − eF for a fixed momentum of k = 0.4kτ
F in asymmetric

nuclear matter at a asymmetry of β = 0.6 and two densities of ρ = 0.17 fm−3 (left panels) and ρ = 0.34 fm−3 (right panels). The upper panels
refer to neutron, and the lower ones to proton. The curves with filled squares and filled triangles are obtained by including the TBF contribution.

proton and neutron in asymmetric nuclear matter at a given
asymmetry of β = 0.6 for two densities of ρ = 0.17 fm−3 and
ρ = 0.34 fm−3, respectively. Wτ

1 (k,ω) and Wτ
2 (k,ω) are given

by Wτ
1 (k,ω) = Im Mτ

1 (k,ω) and Wτ
2 (k,ω) = Im Mτ

2 (k,ω). In
Fig. 1, the results are given at a fixed momentum of k =
0.4kτ

F . The eτ
F is the proton or neutron Fermi energy in

the BHF approximation: eτ
F = ε(kτ

F ) = kτ2
F /2m + Uτ

BHF(kτ
F ).

In analogy with the case of symmetric matter [30,38], the
contributions to Wτ (k,ω) in the energy region of ω < eτ

F

originate from the rearrangement terms Wτ
2 (k,ω) of the proton

and neutron mass operators, while those at energies of ω > eτ
F

come from the first-order terms Wτ
1 (k,ω). One important

feature in asymmetric nuclear matter is that the magnitude
of Wτ

2 (k,ω) is larger for neutron (upper panels) than that for
proton (lower panels) in the region of ω < eτ

F . The difference
between the proton and neutron mass operators can be readily
understood according to the isospin-asymmetry dependence of
the tensor correlation effect in the proton-neutron interaction.
The above result is in agreement with the prediction within
the framework of the self-consistent Green’s function method
in Ref. [55], where the effect of the isospin T = 0 tensor SD
coupled channel on the imaginary part of self-energy has been
clarified. On the other hand, the quantity Wτ

1 (k,ω) turns out to
be larger in magnitude for proton than that for neutron, and its
magnitude increases monotonically as a function of energy ω
in the region of ω > eτ

F . This result also reflects the fact that the
isospin T = 0 SD tensor component induces a strong short-
range correlation (SRC) in asymmetric nuclear matter, which is
consistent with the results obtained by using the framework of

the Green function approach in Ref. [56] and the extended BHF
approach in Ref. [57]. The TBF effect on the ω dependence
of Wτ (k,ω) is also reported in Fig. 1. By comparing the open
symbols with the corresponding filled symbols in Fig. 1, it
is seen that the TBF effect is to decrease the magnitudes of
Wτ

2 (k,ω) for both proton and neutron below their respective
Fermi energies. At the high density of ρ = 0.34 fm−3 (right
panels), the reduction of the magnitude of Wτ

2 (k,ω) due to
the TBF effect turns out to be more pronounced in the region
of ω < eτ

F as compared with that at the empirical saturation
density ρ0 = 0.17 fm−3 (left panels). In the energy region
of ω > eτ

F , the TBF effect is negligibly small at the saturation
density ρ0 = 0.17 fm−3. At the high density of ρ = 0.34 fm−3,
the TBF effect is shown to become noticeable, and it leads to
a faster increasing of the magnitude of Wτ

1 (k,ω) as a function
of ω for ω > 110 MeV. It is clearly seen that inclusion of
the TBF may induce an extra SRC, and consequently leads
to larger scattering amplitudes in particle-particle states in
dense nuclear medium as compared with the case of excluding
the TBF. It is worth noticing that, in asymmetric matter (for
example β = 0.6), the TBF has a stronger effect to decrease
the magnitudes of Wτ

2 (k,ω) for both proton and neutron as
compared with the result for symmetric matter [30]. As a
result, the TBF effect may depend sensitively on the isospin
asymmetry β, in agreement with the previous studies [27].

B. Real part of the off-shell mass operator

Figure 2 shows the real parts of the proton and neutron
mass operators V τ (k,ω) = V τ

1 (k,ω) + V τ
2 (k,ω) vs. (ω − eτ

F )
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FIG. 2. (Color online) Dependence of V τ (k,ω) = V τ
1 (k,ω) + V τ

2 (k,ω) on ω − eF for a fixed momentum of k = 0.4kτ
F in asymmetric

nuclear matter at a asymmetry of β = 0.6 and two densities of ρ = 0.17 fm−3 (left panels) and ρ = 0.34 fm−3 (right panels). The upper panels
refer to neutron, and the lower ones to proton. The curves with filled squares and filled triangles are obtained by including the TBF contribution.

in asymmetric nuclear matter at β = 0.6 for two densities
of ρ = 0.17 fm−3 and 0.34 fm−3. The gross structure of the
quantity V τ (k,ω) as a function of (ω − eF ) is determined to a
large extent by the first-order term V τ

1 (k,ω). The rearrange-
ment contribution V τ

2 (k,ω) is repulsive and it reduces the
attraction of the BHF mean field V τ

1 (k,ω) in the energy region
of −100 < ω − eτ

F < 30 MeV (−200 < ω − eτ
F < 50 MeV)

for the density ρ = 0.17 fm−3 (ρ = 0.34 fm−3). The real parts
of the proton and neutron mass operators V τ (k,ω) can be
related to their imaginary parts Wτ (k,ω) by using a dispersion
relation [38]. As displayed in Fig. 2, the attraction of the
V τ (k,ω) for proton in asymmetric nuclear matter is stronger
than that for neutron, which is attributed to the fact that the
attractive contribution of the T = 0 tensor SD coupled channel
becomes more effective (less effective) on protons (neutrons)
with increasing asymmetry β [39]. By comparing the left
panels (ρ = 0.17 fm−3) with the right ones (ρ = 0.34 fm−3)
in Fig. 2, one may notice that the overall energy dependence of
V τ

1 (k,ω) is weaker at the saturation density of ρ = 0.17 fm−3

than that at the density of ρ = 0.34 fm−3, which is two times
the saturation density. This result can be partly understood
by the fact that the energy dependence of the imaginary part
Wτ

1 (k,ω) is stronger at a higher density as shown in Fig. 1.
The TBF effect on the predicted V τ (k,ω) is also displayed
in Fig. 2. At the saturation density of ρ = 0.17 fm−3, the
TBF effect on V τ (k,ω) is relatively weak. Inclusion of the
TBF in the calculation reduces the attraction of V τ (k,ω) in
the energy region of ω < eF , whereas it enhances of the
attraction of V τ (k,ω) for ω > eF . At densities well above

the saturation density (for example, ρ = 0.34 fm−3), the TBF
effect turns out to become noticeably strong. As a result,
inclusion of the TBF reduces significantly the attraction of
the proton potential V p(k,ω) at ω < eF , and it may even lead
to an overall enhancement of the repulsion of the neutron
potential V n(k,ω) in the whole range of energy. Besides, the
TBF-induced repulsive contribution to V τ (k,ω) depends on
asymmetry β, and the TBF repulsion turns out to be larger in
asymmetric nuclear matter as compared with that in symmetric
matter reported in Ref. [30].

IV. SPECTRAL FUNCTION AND
OCCUPATION PROBABILITIES

The real and imaginary parts of the mass operator in
Fig. 1 and Fig. 2 can be used to determine the neutron and
proton spectral functions via Eq. (8). When the imaginary
part Wτ (k,ω) is sufficiently small as compared with the real
part V τ (k,ω), the energy dependence of the spectral function
is dominated by the QP peak in the Landau theory of Fermi
liquids and the spectral function can be described by the QP ap-
proximation. In the QP approximation, the neutron and proton
spectral functions can be written as Sτ (k,ω) = δ[ω − ετ

QP (k)],
where ετ

QP (k) is the QP energy defined in Eq. (7). In the present
calculation, the spectral functions Sτ (k,ω) display peaks for
proton and neutron at their respective QP energies ω = ετ

QP (k)
at which the term [ω − k2/2m − V τ (k,ω)] in the denominator
of Eq. (8) vanishes, i.e., the positions of the peaks in the spectral
functions are determined by the real parts of the mass oper-
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FIG. 3. (Color online) Proton and neutron quasiparticle energies
vs momentum k ετ

QP in asymmetric nuclear matter at a asymmetry
of β = 0.6 and two densities of ρ = 0.17 fm−3 (left panels) and
ρ = 0.34 fm−3 (right panels), respectively. Filled symbols correspond
to the results with the TBF contribution.

ators. At ω = ετ
QP (k), the spectral functions are simplified as

Sτ [k,ω = ετ
QP (k)] = −[πWτ (k,ω = ετ

QP (k))]−1, which im-
plies the strengths of the peaks are determined by the imaginary
parts of the mass operators. In Fig. 3, the neutron and proton
QP energies ετ

QP (k) are reported as functions of momentum in
asymmetric nuclear matter at β = 0.6. From Fig. 3, it is seen
that the proton QP energy is more attractive than the neutron
one since in neutron-rich matter, the SD tensor interaction
felt by a neutron from the surrounding protons is weaker than
that felt by a proton from the surrounding neutrons [39]. As a

consequence, the peak locations in the proton and neutron
spectral functions become different in asymmetric nuclear
matter, and the peak in the neutron spectral function is located
at a higher energy than the proton one. From Fig. 3 it is seen
that at the saturation density of ρ = 0.17 fm−3 (left panel),
the TBF effect is negligibly weak, while it gives an overall
repulsive contribution to the proton and neutron QP energies
ετ
QP (k) at the high density of ρ = 0.34 fm−3 (right panel). This

implies that the TBF may shift the peak locations of the neutron
and proton QP energies to higher energies, which is similar to
the previous results in Refs. [29,30] for symmetric nuclear
matter.

In Fig. 4, the neutron and proton spectral functions Sτ (k,ω)
in asymmetric matter at ρ = 0.17 fm−3 and β = 0.6 are
displayed for two momenta of k = 0.4kτ

F and k = 1.5kτ
F . In

order to see more clearly the energy dependence and the peak
locations of the spectral functions, respectively, the results are
shown under the log coordinate in the left panels, and under the
linear coordinate in the right panels. In asymmetric matter, the
main difference of the spectral functions from the symmetric
case comes from the isospin dependence of the mass operator
and the separation of the neutron and proton Fermi surfaces. At
k = 0.4kτ

F (upper panels), the proton spectral function shows
a more pronounced QP peak and a narrower distribution than
the neutron one. This is partly due to the fact that the proton
peak is closer to the Fermi surface as compared with the
neutron one, and in agreement with the general expectation
that the strength and lifetime of QP states increase strongly
when the momenta k approach to the Fermi momentum kτ

F .
The main reason for the difference between the proton and
neutron spectral functions can be traced back to the different

FIG. 4. (Color online) Neutron and proton spectral functions in asymmetric nuclear matter at β = 0.6 and ρ = 0.17 fm−3, for two selected
momenta of k = 0.4kF (upper panels) and k = 1.5kF (lower panels). The results are shown under the log coordinate in the left panels, and
under the linear coordinate in the right panels. The filled symbols correspond to the results obtained by including the TBF contribution, while
the open symbols are the results without the TBF.
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imaginary parts Wτ
2 (k,ω) of the neutron and proton mass

operators in the region of ω < eτ
F . According to Eq. (8), the

overall shapes of the spectral functions in the energy region
of ω < eτ

F are determined to a large extent by the imaginary
parts Wτ

2 (k,ω). The broader distribution of the neutron spectral
function originates from a wider region of the nonvanishing
Wn

2 (k,ω) as compared to the proton one. On the other hand,
the smaller imaginary part W

p
2 (k,ω) leads to a larger peak in

the proton spectral function than the neutron one, since the
strengths of the peaks are inversely proportional to Wτ

2 (k,ω).
At k = 1.5kτ

F (lower panels), the proton spectral function is
also larger than the neutron one in the region of ω < eτ

F . At
energies well above eτ

F , it is noticed from the left panels of
Fig. 4 that the proton spectral function has a larger high-energy
tail than the neutron one, which is directly related to the strong
neutron-proton SRC induced by the isospin T = 0 SD tensor
component of NN interaction. Similar results have also been
reported in Ref. [22] within the BHF approach by adopting
the CD-Bonn potential, in Ref. [16] by using the DBHF
approach, and in Ref. [17] within the framework of transport
theory.

In Fig. 5, we show the neutron and proton spectral functions
Sτ (k,ω) in asymmetric nuclear matter at β = 0.6 and ρ =
0.34 fm−3. In the figure, the filled symbols correspond to the
result obtained by including the TBF contribution, while the
open symbols are calculated by excluding the TBF. By compar-
ing the filled symbols and the corresponding open symbols in
Fig. 4, it is noticed that the TBF effect is negligibly small at the
saturation density of ρ = 0.17 fm−3. However, the TBF effect
becomes noticeable at ρ = 0.34 fm−3, which is well above the
saturation density as shown in Fig. 5. From Fig. 5, it is shown
that the TBF effect decreases slightly the background of the

proton and neutron spectral functions (left panels) and leads to
a shift of the peak locations to higher energies (right panels).
This is readily understood since the TBF decreases the magni-
tude of the imaginary part of the mass operator, and gives an
extra repulsive contribution to the real part, i.e. it may increase
the neutron and proton QP energies. At energies of ω > eτ

F ,
the TBF effect on the neutron and proton spectral functions are
shown to be not so drastic as that on the mass operators. In the
energy region well above eτ

F , inclusion of the TBF is expected
to lead to larger high-energy tails as compared with the case of
not including the TBF, which may be regarded as a manifes-
tation of the TBF effect on the NN correlations in the spectral
functions. In order to test the numerical accuracy of the present
work, the sum rule of the spectral function has been checked
by performing the integration over ω in Eq. (9). In the present
calculation, the neutron and proton spectral functions are
calculated in the energy range of −400 MeV < ω < 400 MeV.
The integrations over ω from −400 MeV to 400 MeV are found
to be about 0.93. According to Figs. 4 and 5, we expect the 7%
deviation is due to the missing contribution of the high-energy
tails in the region of ω > 400 MeV. In order to include this
contribution, we make a polynomial extrapolation to get the
spectral functions in the region of ω > 400 MeV according to
the calculated ones in the region of ω < 400 MeV. By using
the calculated values in the region of ω < 400 MeV and the
extrapolation values in ω > 400 MeV, the neutron and proton
spectral functions are found to be almost exactly normalized
[the integrations in Eq. (9) are about 0.99] in both cases of
including and excluding the TBF. We also noticed that the
TBF effect on the spectral function in pure neutron matter has
been investigated in Ref. [29] using the in-medium T -matrix
method with the Urbana TBF. The Urbana TBF may leads to

FIG. 5. (Color online) The same as Fig. 4, but the results are obtained at ρ = 0.34 fm−3.
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FIG. 6. (Color online) Averaged neutron and proton occupation
probabilities inside their respective Fermi seas. The results are
displayed as a function of isospin asymmetry β for two densities
ρ = 0.17 fm−3 (left panel) and ρ = 0.34 fm−3 (right panel). The solid
and dashed lines correspond to the two cases with and without the
TBF contribution, respectively.

a shift of the peak location to slightly lower energy, because
it gives an extra attractive contribution to the real part of the
self-energy in pure neutron matter.

In order to check further the present calculations, in Fig. 6,
we display the neutron and proton occupation probabilities
nτ (k) averaged below their respective Fermi momenta k < kτ

F

in asymmetric matter at various asymmetries β = 0, 0.2, 0.4,
0.6, and 0.8 for two densities of ρ = 0.17 fm−3 and ρ =
0.34 fm−3. The results are obtained from Eq. (10) by averaging
the neutron and proton momentum distribution nτ (k) in their
respective Fermi seas, respectively. In both cases of including
and excluding the TBF, it is clearly seen that the averaged
neutron and proton occupation probabilities depend sensitively
on the isospin asymmetry β. In asymmetric nuclear matter, the
averaged neutron occupation nn(k) is shown to be larger than
the proton occupation np(k), which is directly related to the fact
that the proton spectral function has a larger high-energy tail
than the neutron one below their respective Fermi momenta.
nn(k) turns out to increase linearly as a function of β, while
np(k) decreases linearly as increasing β. The present results
are compatible with the previous predictions reported in
Refs. [20,57–61]. The averaged occupation probabilities in
our present calculation are slightly larger than the results
in Ref. [22] at the saturation density ρ = 0.17 fm−3. The
isospin dependence of nτ (k) may help us to understand the
properties of short-range and tensor correlations in asymmetric
nuclear matter [8,9,20,57]. Due to the strong T = 0 SD
tensor component in neutron-proton interaction, increasing
asymmetry β tends to widen the neutron spectral distribution in
the energy region of ω < eτ

F and thus lead to an enhancement
of the neutron occupation probability below its Fermi surface,
whereas the proton occupation probability gets smaller at a
higher asymmetry. The above result is understandable and
reflects the effect of the strong neutron-proton correlations
induced by the T = 0 SD tensor interaction. Similar results
have been reported in Ref. [20] by using the self-consistent
Green’s function approach with various NN interactions, and
in Ref. [57] by using the extended BHF approach with the AV18

potential. Their results confirm the important role played by
the tensor force in determining the isospin dependence of the
neutron and proton momentum distributions in asymmetric
nuclear matter. The TBF effect on the isospin dependence of
nτ (k) is also shown in Fig. 6. At the saturation density of ρ =
0.17 fm−3 (left panel), the TBF effect on the neutron and proton
averaged occupation probabilities nn(k) and np(k) is negligibly
small. Whereas, at ρ = 0.34 fm−3 (right panel), the TBF
effect may sizably affect the neutron and proton occupations.
Inclusion of the TBF leads to an overall reduction of both nn(k)
and np(k) in the whole isospin-asymmetry range of 0 � β �
0.8, in good agreement with the conclusion of Ref. [57].

V. CONCLUSIONS

In the present study, we have extended our previous work
of Ref. [30] for symmetric nuclear matter and investigated
the neutron and proton off-shell mass operators as well as
the spectral functions in asymmetric nuclear matter within
the framework of the extended BHF approach by using the
AV18 two-body interaction supplemented with a microscopic
TBF. The first two terms in the hole-line expansion of the
mass operator have been taken into account. For a fixed
momentum k = 0.4kF and asymmetry β = 0.6, the imaginary
part Wτ (k,ω) of the proton mass operator is shown to be
smaller (larger) in the energy region of ω < eF (ω > eF ) than
the neutron one. In the low-energy region of ω < eτ

F , the
predicted smaller proton Wτ (k,ω), as compared with the
neutron one, leads to a more pronounced QP peak in the proton
spectral distribution and a larger depletion of the proton Fermi
sea. In the energy region of ω > eτ

F the proton spectral function
has a larger high-energy tail than the neutron one, which
implies that at a higher asymmetry the SRC effect induced
by the tensor component in NN interaction becomes stronger
on protons as compared with that on neutrons. Our calculations
indicate that the TBF effect on the neutron and proton
spectral functions is negligibly weak at low densities around
and below the nuclear saturation density ρ = 0.17 fm−3.
It becomes noticeable only at high densities well above
the saturation density (for example, ρ = 0.34 fm−3). In the
low-energy region of ω < eF , inclusion of the TBF leads to
an enhancement of the repulsion of the real parts V τ (k,ω) of
the mass operators, while it reduces the magnitudes of the
imaginary parts Wτ (k,ω) for both proton and neutron. As a
result, the TBF effect is expected to induce an extra SRC in
dense nuclear medium, which shifts the peak locations in the
neutron and proton spectral functions to higher energies. The
present results also confirm the previous results concerning
the isospin dependence of the neutron and proton occupation
probabilities [20,22,60] and the TBF effect on the momentum
distributions in asymmetric nuclear matter [57].
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H. Müther, Prog. Part. Nucl. Phys. 34, 371 (1995).

[24] P. Fernández de Córdoba, E. Marco, H. Müther, E. Oset, and
A. Faessler, Nucl. Phys. A 611, 514 (1996).

[25] R. J. Charity, W. H. Dickhoff, L. G. Sobotka, and S. J. Waldecker,
Eur. Phys. J. A 50, 23 (2014).

[26] M. Alvioli, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti, and
H. Morita, Phys. Rev. C 87, 034603 (2013); ,J. Mod. Phys. E 22,
1330021 (2013).

[27] W. Zuo, A. Lejeune, U. Lombardo, and J.-F. Mathiot, Nucl.
Phys. A 706, 418 (2002); ,Eur. Phys. J. A 14, 469 (2002).
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