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Collectivity and instability of the N = Z = 28 shell gap and strongly deformed
bands with g9/2 configuration in 56Ni
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The positive-parity excited states of 56Ni and instability of the N = Z = 28 shell gap are discussed on the
basis of the antisymmetrized molecular dynamics calculation using the Gogny D1S effective interaction. It is
found that 56Ni is quite soft against oblate deformation and the N = Z = 28 closed-shell configuration amounts
to only 62% in the ground state. It is also found that the shell gap easily disappears by prolate deformation, which
leads to the coexistence of the almost spherical ground band, excited β and γ bands, and a prolate superdeformed
band with (f7/2)−m(p3/2)m configurations within the small excitation energies. Furthermore, in the highly excited
region, it is predicted that a couple of strongly deformed bands with (sd)−m(pf )−n(g9/2)m+n configurations are
built on the 0+ states around 20 MeV.
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I. INTRODUCTION

In a simple shell-model description, the nucleus 56Ni is
expected to have a doubly closed-shell configuration with
the magic number of N = Z = 28, which is the smallest one
generated by the spin-orbit splitting. However, experimental
and theoretical studies have revealed that its low-lying and
highly excited states manifest very important and interesting
aspects of nuclear many-body dynamics.

In the low-lying states of 56Ni, spherical levels including
the ground state and two strongly deformed rotational bands
are experimentally known. The first 2+ state which is one of
the spherical levels has a relatively small excitation energy of
2.7 MeV [1] and a relatively large value of B(E2; 2+ → 0+) =
112 e2 fm4 [2–4] compared to other doubly closed-shell nuclei
such as 48Ca, which has the first 2+ state at 3.8 MeV and
B(E2; 2+ → 0+) = 17 e2 fm4. These observations suggest
that 56Ni is a rather soft double magic nucleus against the
collective excitations. Indeed, the Monte Carlo shell-model
(MCSM) calculations [5–10] pointed out that the f7/2 closed-
shell configuration in the ground state amounts to only
50%–70% and other configurations within the pf shell play
an important role to explain the observed spherical energy
levels. Furthermore, they predicted a deformed rotational band
built on a 0+ state around 5 MeV, which is dominated by
an (f7/2)−4(p3/2)4 configuration. Experiments [11–13] have
identified this rotational band from the 2+ state at 5.35 MeV up
to the 14+ state at 16.35 MeV. Adding to this, another strongly
deformed band that is supposed to have negative parity was
found and assigned from the 5− state at 8.89 MeV up to the
17− state at 19.52 MeV. Based on the mean-field and MCSM
calculations [10,11], this band was supposed to have nucleons
excited into the upper orbital, the g9/2 shell. These two
rotational bands can be regarded as superdeformed (SD) bands
owing to their large moment of inertia. Thus, the spherical
energy levels indicate the instability of the N = Z = 28 shell
closure and the SD bands show the existence of the SD shell
gap with N = Z = 28. Therefore, the detailed study of the
low-lying spectrum will provide us important information on
the shell structure and instability of the N = Z = 28 magic
number in the neutron deficient nuclei.

The highly excited states of 56Ni or the compound nucleus
56Ni∗ suggest another important aspect of nuclear many-body
dynamics. Betts et al. [14,15] found intermediate structure
resonances with narrow widths in the 28Si(28Si,28Si∗)28Si∗
reactions at excitation energies of 60 to 70 MeV in a number
of exit channels of 28Si∗ + 28Si∗. Dichter et al. [16] also
found the similar resonant structures in the measurement
of the 40Ca(16O, 28Si∗)28Si∗ reactions. From the analysis of
the angular dependence, it was shown that those resonances
have the angular momentums ranging from L = 36 to 42.
The intermediate resonance structures observed in 28Si + 28Si
and 40Ca + 16O systems are strongly correlated to each
other and observed in a number of different exit channels.
Therefore, it looks like those reactions proceed through the
compound nucleus 56Ni∗, which is a strongly deformed shape
isomeric state [SD or hyperdeformed (HD) states] or dinucleus
(28Si∗ + 28Si∗) state.

On the theoretical side, two different approaches have
been applied to understand the resonant structure of the
compound nucleus 56Ni∗. (1) Cluster (dinucleus) models
[17–21] in which the resonances are regarded to have dinucleus
configurations as a result of a potential pocket between two
clusters. For example, Uegaki et al. [20,21] recently reported
their analysis on the resonances of the 28Si + 28Si system
based on the dinuclear molecular model and successfully
explained why the resonant structures are observed in a
number of exit channels of 28Si∗ + 28Si∗. (2) Mean-field
models [19,22] which interpret the resonance structure as the
strongly deformed shape isomeric state of 56Ni∗ assisted by
the strong deformed shell correction. They have reported HD
minima in the energy surface, which possibly explains why
the same resonant structure appears in both 28Si + 28Si and
16O + 40Ca channels. Thus, two different approaches explain
some aspects of the observed resonant structure. Therefore,
we may expect that the resonant structure observed in 56Ni∗

has a dual nature of the cluster and mean-field aspects;
i.e., the 56Ni resonant structure is understood as a strongly
deformed isomeric state stabilized by the SD or HD shell
effect, but it also has considerable overlap with 28Si + 28Si
dinuclear configurations, and, hence, it manifests both aspects
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of strongly deformed mean field and clustering. We quote
similar phenomena reported in the theoretical studies of
12C + 16O and 16O + 16O molecular resonances [23–25]. For
example, in the case of 32S [23,24], it was shown that the
SD state has dual nature of the SD mean field and 16O + 16O
clustering, which leads to the evolution of the SD states into the
16O + 16O molecular bands by the excitation of the intercluster
motion. This point of view of “duality” might lead to the unified
understanding of the resonant structure of 56Ni.

In this paper, as a first step of the exploration, we report the
results obtained by the antisymmetrized molecular dynamics
(AMD) calculation. The aim of the study is twofold. The first
is to clarify the properties of the coexisting low-lying states
and how the N = Z = 28 shell closure is weakened in 56Ni.
The second is to explore the strongly deformed states at high
excitation energies and to examine their relationship with the
observed resonant states. In the next section, we briefly explain
the theoretical framework of AMD and the methods to analyze
the results. In Sec. III, the results are presented. We first discuss
the low-lying spectrum. It is shown that 56Ni is quite soft
against the oblate deformation and the N = Z = 28 shell gap
easily disappears by prolate deformation, which leads to the
coexistence of the almost spherical ground band, excited β
and γ bands, and a prolate SD band with (f7/2)−m(p3/2)m

configurations at small excitation energies. We then focus on
the highly excited states. It is predicted that a couple of strongly
deformed bands with (sd)−m(pf )−n(g9/2)m+n configurations
are built on the 0+ states around 20 MeV. The final section
summarizes this work.

II. THEORETICAL FRAMEWORK OF
ANTISYMMETRIZED MOLECULAR DYNAMICS

The theoretical framework and calculational procedure
applied in this study are almost common to those in Ref. [26].
We briefly explain the variational calculation and the generator
coordinate method (GCM) which are used to obtain the
eigenenergies and the wave functions of the various states
of 56Ni. We also define several quantities used to analyze the
wave functions.

A. Energy variation and generator coordinate method

We use the microscopic A-body Hamiltonian,

Ĥ =
A∑
i

t̂i − t̂c.m. + 1

2

A∑
ij

v̂NN (ij ) + 1

2

Z∑
ij

v̂C(ij ), (1)

where the Gogny D1S interaction [27] is employed as an
effective interaction v̂NN and the Coulomb interaction v̂C

is approximated by a sum of seven Gaussians. In the AMD
framework, the center-of-mass wave function is analytically
separable from the internal wave function, and hence, the
center-of-mass kinetic energy t̂c.m. is exactly removed.

The variational wave function is a parity-projected Slater
determinant,

�π = 1 + πP̂x

2
A {ϕ1,ϕ2, . . . ,ϕA} . (2)

Here the single-particle wave packet ϕi is represented by a
deformed Gaussian wave packet [28],

ϕi(r) = exp

[ ∑
σ=x,y,z

−νσ

(
rσ − Ziσ√

νσ

)2
]
χiξi, (3)

χi = αiχ↑ + βχ↓, ξi = proton or neutron. (4)

The variational parameters are the width ν, the centroids Zi of
Gaussian wave packets, and spin direction αi and βi . They are
determined by the variation with the constraints on the matter
quadrupole deformation parameters β and γ . The sum of the
energy and the constraint potentials,

〈�π |Ĥ |�π 〉
〈�π |�π 〉 + vβ(〈β̂〉 − β)2 + vγ (〈γ̂ 〉 − γ )2, (5)

is minimized to obtain the optimized wave function �π (β,γ )
for given values of β and γ . Here vβ and vγ are sufficiently
large values and the definition of 〈β̂〉 and 〈γ̂ 〉 is given in
Ref. [26]. In this study, the set of (β,γ ) is chosen on the
triangular lattice in the β-γ plane from β = 0 to 0.8 at intervals
of 0.05.

To complete the calculation, we perform the angular
momentum projection and the GCM. The optimized wave
function are projected to the eigenstate of Ĵ 2,

�Jπ
MK (βi,γi) = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�)�π (βi,γi), (6)

and are superposed employing β and γ as the generator
coordinates to describe the eigenstate of Ĥ ,


Jπ
Mα =

∑
Ki

gJπ
Kiα�Jπ

MK (βi,γi), (7)

where the coefficients gJπ
Kiα and eigenenergies EJπ

α are ob-
tained by solving the Hill-Wheeler equation,∑

i ′K ′
HJπ

KiK ′i ′g
Jπ
K ′i ′α = EJπ

α

∑
i ′K ′

NJπ
KiK ′i ′g

Jπ
K ′i ′α, (8)

HJπ
KiK ′i ′ = 〈

�Jπ
MK (βi,γi)

∣∣Ĥ ∣∣�Jπ
MK ′ (βi ′ ,γi ′)

〉
, (9)

NJπ
KiK ′i ′ = 〈

�Jπ
MK (βi,γi)

∣∣�Jπ
MK ′ (βi ′ ,γi ′)

〉
. (10)

B. Analysis of the wave function

To analyze the structure of the wave function, we define
several quantities. We first define the parity-projected and the
angular-momentum-projected energies, which are respectively
expressed as

Eπ (β,γ ) = 〈�π (β,γ )|Ĥ |�π (β,γ )〉
〈�π (β,γ )|�π (β,γ )〉 , (11)

EJπ
K (β,γ ) =

〈
�Jπ

MK (β,γ )
∣∣Ĥ ∣∣�Jπ

MK (β,γ )
〉〈

�Jπ
MK (β,γ )

∣∣�Jπ
MK (β,γ )

〉 . (12)

For the analysis of the single-particle configuration, we use
the principal quantum number of deformed harmonic oscillator

054313-2



COLLECTIVITY AND INSTABILITY OF THE N = Z = 28 . . . PHYSICAL REVIEW C 89, 054313 (2014)

(DHO) defined as

N (β,γ ) = 〈�π (β,γ )|N̂DHO|�π (β,γ )〉
〈�π (β,γ )|�π (β,γ )〉 , (13)

N̂DHO =
A∑

i=1

∑
σ=x,y,z

1

�ωσ

(
p2

iσ

2m
+ m

2
ω2

σ σ 2
i − 1

2

)
, (14)

ωσ = 2�νσ

m
(σ = x,y,z). (15)

It is noted that the deformation of the DHO potential is
defined depending on the deformation of the Gaussian wave
packets of �π (β,γ ). Therefore, N (β,γ ) roughly estimates the
configuration in the DHO potential. In the case of 56Ni, the
lowest Pauli allowed value of N is Nmin = 108.

The direct information of the single-particle configuration is
obtained by the single-particle energy and wave function which
are calculated as follows. We first transform the single-particle
wave packets ϕi of �π (β,γ ) into the orthonormalized basis ϕ̃p,

ϕ̃p = 1√
μp

∑
i

cipϕi, (16)

where μp and cip are the eigenvalues and the eigenvectors of
the overlap matrix Bij = 〈ϕi |ϕj 〉. Note that this transformation
does not change the Slater determinant except for a trivial
factor. Then we construct the single-particle Hamiltonian,

hpq = 〈ϕ̃p|t̂ |ϕ̃q〉 +
∑

r

〈ϕ̃pϕ̃r |v̂|ϕ̃q ϕ̃r − ϕ̃r ϕ̃q〉. (17)

The eigenvalues and eigenvectors of hpq give the single-
particle energies and wave functions,∑

q

hpqfqα = εαfpα, (18)

φα =
∑

p

fpαϕ̃p =
∑

i

(∑
p

cip

1√
μp

fpα

)
ϕi. (19)

Finally, we define the GCM amplitude OJπ
Kα , which is the

overlap between 
Jπ
Mα and the basis wave function �Jπ

MK to

discuss the distribution of the wave function in the β-γ plane,

OJπ
Kα(β,γ ) = ∣∣〈�Jπ

MK (β,γ )
∣∣
Jπ

Mα

〉∣∣2
. (20)

This amplitude reflects the properties of each states such as
the SD band, β vibration, and so on.

III. RESULTS AND DISCUSSIONS

A. Energy surfaces and single-particle configurations

Figure 1(a) shows the parity-projected energy surface of the
positive-parity states obtained by the variational calculation.
It can be classified into two regions depending on the
expectation values of the principal quantum number N (β,γ )
shown in Fig. 1(b). In the region with β � 0.5, N (β,γ ) is
approximately equal to Nmin, and, hence, these wave functions
are dominated by 0�ω configurations in the deformed mean
field; i.e., all valence nucleons are within the orbits originate
in the spherical pf shell. In this region, there are the global
energy minimum at (β,γ ) = (0.0,0◦) and a local minimum
at (0.35,0◦). The energy surface with 0�ω configurations
is quite flat against γ deformation and soft against β de-
formation. For example, the energy differences between the
states at (β,γ ) = (0.0,0◦),(0.35,0◦), and (0.30,60◦) are within
8 MeV.

The single-particle configuration and the N = Z = 28 shell
gap change depending on β and γ as shown in Fig. 2, in
which neutron single-particle energies are plotted along a
path shown in Fig. 1(a). In the present result, protons and
neutrons are always excited simultaneously; therefore, only
the neutron single-particle energies are shown. The change
of single-particle energies shows the existence of various
configurations in the β � 0.5 region. In the spherical shape,
the lowest configuration is the f7/2 closed-shell configuration.
The N = Z = 28 shell gap at spherical shape decreases
as the prolate deformation grows and the intruder orbit
originating in the spherical p3/2 orbit ([310,1/2] orbit in
Nilsson model) becomes lower than one of the orbit originates
in spherical the f7/2 orbit around β = 0.25. In the prolate
deformed region with 0.25 � β � 0.4, where the spherical
shell gap is lost but a deformed N = Z = 28 shell gap
exists, a deformed (f7/2)−4(p3/2)4 configuration appears. In the

−478

−472

−466

−460

−454

[MeV]

−474

−467

−460

−453

−446

−439
[MeV](a) 

0

2

4

6

8
(b) (c) 
 N(β,γ)-NminE+(β,γ) E0+(β,γ)

[deg]

[deg]

[deg]

FIG. 1. (Color online) (a) The parity-projected energy surface before the angular momentum projection. The red line shows the path along
which the neutron single-particle energies are plotted in Fig. 2. (b) The principal quantum number of DHO calculated from the parity-projected
wave function shown in (a). (c) The angular-momentum-projected energy surface of the J π = 0+ states. The open circles in (a) and (c) show
the positions of the global and local energy minima.
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FIG. 2. (Color online) The neutron single-particle energies along
the path shown in Fig. 1(a). The lines with symbols show the orbits
occupied in the lowest energy configuration, while those without
symbols show the unoccupied orbits.

triaxially deformed region, the order of the orbits originating in
the spherical f7/2 and p3/2 orbits is reverted around γ = 20◦. In
the oblate side, the intruder orbit from p3/2 stays much higher
than f7/2 and the spherical N = Z = 28 shell gap is kept
large. Therefore, the oblately deformed states are dominated
by the configuration originates in the spherical f7/2 closed
configuration.

In β � 0.5 region, an intruder orbit from g9/2 becomes
lower than the orbits that originate in f7/2 and p3/2, and,
hence, the configurations with g9/2 appear and make the
N (β,γ ) larger than Nmin. A strongly prolate deformed lo-
cal energy minimum appears at (β,γ ) = (0.64,0◦), which
has a (f7/2)−8(p3/2)4(g9/2)4 configuration. The increase of
γ from the prolate side toward the oblate side brings
about the crossings of an orbit that originates in d3/2

with f7/2 and p3/2. These level crossings generate two
strongly deformed minima with axial asymmetric shapes at
(β,γ ) = (0.66,8◦) and (0.54,55◦) which have the configu-
rations of (d3/2)−4(f7/2)−4(p3/2)4(g9/2)4 and (d3/2)−4(g9/2)4,
respectively.

By the angular momentum projection, the deformed states
gain larger energy than the spherical states, and energy surface
becomes more soft against β and γ deformations. As a result,
the energy minima on the surface move toward larger defor-
mations. Figure 2(c) shows the energy surface after the angular
momentum projection to Jπ = 0+. In the β � 0.5 region,
the global and local minima move to (β,γ ) = (0.18,45◦)
and (0.38,8◦) after the angular momentum projection. They
gain 2.5- and 5.2-MeV binding energies by the projection,
respectively. Note that the global minimum is not a spherical
state despite of the N = Z = 28 shell closure and both minima
are not axially symmetric as seen in their intrinsic density
distributions in Figs. 3(a) and 3(b). In the β � 0.5 region,
strongly deformed minima with g9/2 configurations also move
to (β,γ ) = (0.64,0◦), (0.66,14◦), and (0.53,45◦), and their
energy gains by the projection are 13.8, 11.8, and 12.9 MeV,
respectively. The density distributions of the prolate and
axially asymmetric deformed minima [Figs. 3(c)–3(e)] show
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FIG. 3. Intrinsic density distribution of (a) the global minimum at
(β,γ ) = (0.18,45◦), (b) the prolate minimum at (β,γ ) = (0.38,8◦),
and the strongly deformed local energy minima with g9/2 configu-
rations located at (c) (β,γ ) = (0.64,0◦), (d) (β,γ ) = (0.66,14◦), and
(e) (β,γ ) = (0.53,45◦).

that the ratios of the deformation axis are approximately equal
to 1:2.

To summarize this section, we remind the reader of the
following three points. (1) Despite the double magic number of
N = Z = 28, 56Ni is unstable against the oblate deformation.
The global energy minimum is slightly deformed and located
at (β,γ ) = (0.18,45◦). (2) In the prolate deformed region, the
SD shell gap replaces the spherical one owing to the inversion
of orbits originate in the spherical f7/2 and p3/2 orbits, and
there exists a local minimum with a (f7/2)−4(p3/2)4 config-
uration at (β,γ ) = (0.38,8◦). (3) In the strongly deformed
region (β � 0.5), the configurations involving the g9/2 orbit
appear. There are three minima with (f7/2)−8(p3/2)4(g9/2)4,
(d3/2)−4(f7/2)−4(p3/2)4(g9/2)4, and (d3/2)−4(g9/2)4 configura-
tions, of which deformations are close to a 1:2 ratio.
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FIG. 4. Low-lying positive-parity states up to J π = 8+ obtained by the GCM calculation. The observed spectrum [1,12] is also shown for
the sake of the comparison.

B. Low-lying states with p f -shell configurations

In this section, we focus on the low-lying states dominated
by the (f7/2)−m(p3/2)m configurations. Figure 4 shows the
low-lying six bands obtained by the GCM calculation up to
Jπ = 8+ states, and the band assignment is based on the
strong in-band E2 transitions listed in Table I. There is an
almost spherical band built on the ground state and two oblate
deformed bands starting from the 0+

2 state at E = 3.7 MeV and
from the 2+

4 state at 8.9 MeV, which are denoted as the ground,
β and γ bands, respectively. These three bands are composed
of the spherical and oblate deformed intrinsic states with f7/2

configurations. The intrinsic states in the vicinity of a prolate
deformed minimum with an (f7/2)−4(p3/2)4 configuration
generate three well-deformed rotational bands in Fig. 4. They
are the SD band with Kπ = 0+ built on the 0+

3 state at 4.7 MeV,
the SD γ band with Kπ = 2+ on the 2+

5 at 11.3 MeV, and the
SD β band with Kπ = 0+ on the 0+

4 state at 17.0 MeV.
The calculated ground-band spectrum does not reproduce

observed irregular level spacing, especially those of 0+–2+
and 6+–8+. The MCSM calculation [6] which successfully
reproduced the observed level spacing suggested that the
occupation number of the f7/2 orbital varies depending on
the angular momentum. Therefore, the irregular level spacing
may be closely related to the occupation number of f7/2

orbital in each yrast state. This feature may be included
by performing the angular momentum projection before the
variation which optimizes the intrinsic wave function for
each angular momentum state. However, it costs too much
computational time and did not perform in the present study.
The properties of the band member states are identified from
their GCM amplitudes shown in Figs. 5(a) and 5(b). The
amplitude of the ground state distributes in a small deformed
region, and its maximum is at (β,γ ) = (0.18,45◦), indicating
weak oblate deformation in spite of the double magic number
N = Z = 28. From the GCM amplitude, it is also found that

the closed-shell configuration amounts to only 62% in the
ground state, which agrees with the MCSM results [5–10].

TABLE I. The in-band E2 transition probability B(E2) and the
monopole matrix element M(E0) between the ground and β bands.
In the first column, g, β, SD, and SD β represent the ground, β, SD,
and SD β-bands, respectively.

Band J π
i J π

f B(E2) (e2 fm4)

g → g 2+
1 0+

1 182(112) [2–4]
4+

1 2+
1 306

6+
1 4+

1 338
8+

2 6+
1 508

β → β 2+
3 0+

2 187
4+

3 2+
3 155

6+
4 4+

3 246
8+

4 6+
4 382

SD → SD 2+
2 0+

3 808
4+
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M(E0) (fm2)

g → β 0+
1 0+

2 7.85
2+

1 2+
3 8.44

4+
1 4+

3 5.96
6+

1 6+
4 8.14

8+
2 8+

4 8.49

SD → SDβ 0+
3 0+
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2+

2 2+
6 11.7

4+
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FIG. 5. (Color online) The GCM amplitudes of the low-lying 0+ and 2+ states.

In a simple shell-model description, the 2+
1 state is a spherical

state with an (f7/2)−1(p3/2)1 configuration and located at rather
high excitation energy corresponding to the N = Z = 28 shell
gap. However, the observed 2+

1 state is at 2.7 MeV and the
calculated 2+

1 state also locates at small energy, E = 2.1 MeV.
The amplitude of the 2+

1 state shows a different nature from
a simple picture; i.e., it is oblately deformed and oriented at
(β,γ ) = (0.23,49◦). This indicates the softness or instability
of the f7/2 closed configuration against oblate deformation.
The origin of this softness can be seen in Fig. 2, which
shows that the spherical f7/2 closed configuration can be
easily deformed toward the oblate side without changing the
configuration and without reducing the N = Z = 28 shell
gap. The oblate deformation leads to the relatively large
B(E2; 2+

1 → 0+
1 ) = 182 e2 fm4, which is comparable with the

observed value of 112 e2 fm4(8.8 W.u.) [2–4]. Other member
states such as the 4+

1 state show similar amplitudes to the
2+

1 state, and hence, the in-band B(E2) are large. However,
the overestimation of B(E2; 2+

1 → 0+
1 ) implies that the actual

deformation of 56Ni is smaller than the present result.
The existence of the β band built on the 0+

2 state at 3.7 MeV
also indicates the softness against oblate deformation. The
calculated 0+

2 state is located at 3.7 MeV, which fairly agrees
with the observation, although other member states have not
been observed yet. The GCM amplitudes of the 0+

2 and 2+
3

states [Figs. 5(c) and 5(d)] show the β-vibrational character
of this band. Namely, their amplitudes are widely distributed
toward the oblate side and have a node around β = 0.2 to be
orthogonal to the member states of the ground band. Therefore,
we conclude that this band is a β band built on the ground band
by the oscillation in the direction of the oblate deformation.
The interpretation of the β band is supported by the large
monopole matrix element M(E0) between the ground and
β bands, which is well known to be enhanced as large as the
single-particle unit. Assuming a uniform density distribution,

the single-particle unit is estimated as Msp(E0) = 11 fm2 for
56Ni, while the matrix element between the ground and β bands
can be expressed as [29]

Mβ(E0) = 2β0

(
3

4π
ZR2

)[
1 + 4

3
π2

(
a

R

)2]
�β, (21)

where β0 is the equilibrium value of β, �β is the amplitude
of the oscillation, and a is the diffuseness of the nuclear
density. For example, putting β0 = 0.18, �β = 0.1, and a =
0.54 fm by referring the present result, it is estimated as
Mβ(E0) = 6 fm2, which is comparable with Msp(E0). As
listed in Table I, the calculated M(E0) are also as large as
Msp(E0) and Mβ(E0).

We also comment on the deviation of spectrum of the
β band from the rotation-vibration model. For example,
Figs. 5(a)–5(d) show that the equilibrium of β vibration is
different for 0+ and 2+ states. The 2+

1 and 2+
3 states have

slightly larger equilibrium value of β = 0.23 that leads to the
different distribution of GCM amplitudes between the 0+

1 and
2+

1 states and between the 0+
2 and 2+

3 states. In particular, the
0+

2 state has large amplitude around β = 0.3, which overlaps
well with that of the 2+

1 state. As a result, B(E2; 2+
1 → 0+

2 ) has
large value of 112 e2 fm4 comparable with B(E2; 2+

1 → 0+
1 ).

In contrast to the β band, the relatively high excitation
energy of the γ band shows that the f7/2 configurations are
not as soft against the γ deformation as they are in the β
deformation. This band is built on the 2+

4 state at 8.9 MeV,
which is much higher than the β band. Because the member
states of this band are dominantly composed of the wave
function with Kπ = 2+ and the GCM amplitudes have similar
distributions to the ground band with slight shift toward the γ
deformation, we interpret this band as the γ band built on the
ground band.
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The SD band is built on the 0+
3 state at 4.7 MeV and has

large moment of inertia, �
2/2I = 56 keV. Almost the same

results are also obtained by MCSM calculations [6,7] and
both of the present and the MCSM results fairly agree with
the observed bandhead energy E = 5.0 MeV and the moment
of inertia �

2/2I = 61 keV, reported by Rudolph et al. [11].
Owing to large deformation, the in-band B(E2) are much
larger than those in the ground, β, and γ bands. The GCM
amplitudes [Figs. 5(f) and 5(g)] are concentrated around the
prolate side (β,γ ) = (0.38,8◦), where the inversion of orbits
that originate in the spherical f7/2 and p1/2 orbits ([303,7/2]
and [310,1/2]) takes place. Therefore, the SD band has a
(f7/2)−4(p3/2)4 configuration and the B(E2) between the other
bands with the f7/2 configurations is very small and less than
1.0 e2 fm4. It is notable that the excitation energy of the 0+

3
state is rather small in spite of the four-particle excitation. This
suggests that the N = Z = 28 shell gap easily disappears and
the deformed shell gap appears by the prolate deformation.

Similar to the ground band, the SD band is also accom-
panied by the SD β band built on the 0+

4 state at 16.9 MeV
and the SD γ band built on the 2+

5 state at 11.3 MeV. The
GCM amplitude of the SD β band is oriented around (β,γ ) =
(0.53,12◦) and that of the SD γ band is around (0.40,18◦).
However, different from the ground band, the energy of the
SD β and γ bands are rather high, because the energy surface
around the SD minimum [(β,γ ) = (0.38,8◦)] is much steeper
than that around the ground state. It is also noted that M(E0)
between the SD and SD β bands is also large (Table I) and are
comparable with Msp(E0) and Mβ(E0) = 11 fm2 estimated
by Eq. (21) setting β0 = 0.38 and �β = 0.1.

To close this section, we summarize the discussion in
this section. Owing to the instability against oblate de-
formation, the ground state is oblately deformed and the
N = Z = 28 closed-shell configuration amounts to only 62%.
We predict the existence of the β band as a signature of
the instability against oblate deformation. It is also found
that the prolate deformed shell gap generates the SD band
with a (f7/2)−4(p3/2)4 configuration. The present calculation
reproduces the excitation energies of the 0+

2 state and SD band;
however, it fails to reproduce the ground band spectrum and
B(E2; 2+

1 → 0+
1 ). To improve the description of the ground

band, it is needed to perform the variation after the angular
momentum projection and to try other effective interactions.
It should be noted that, by these improvements, the present
result might be changed quantitatively.

C. Highly excited and strongly deformed bands
with g9/2 configurations

In the highly excited region above E = 20 MeV, we have
obtained four strongly deformed rotational bands shown in
Fig. 6. As discussed below in detail, the maxima of their
GCM amplitudes correspond to the minima on the energy
surface with β � 0.5, and, hence, they have the configurations
involving the orbit originates in the spherical g9/2. Depending
on the single-particle configurations, we classified them into
three groups, which we call bands 1, 2, and 3. Their properties
such as the moment of inertia and in-band B(E2) strengths are
listed in Tables II and III, respectively. Because their excitation

band 2

band 3

band 1
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4

FIG. 6. Four rotational bands with the configurations involving
the g9/2 orbit located above Ex = 20 MeV. Depending on their
configurations, they are classified to three groups, bands 1, 2,
and 3.

energies and the moments of inertia are very large, they
possibly associated with the resonant structure observed in
28Si(28Si,28Si∗)28Si∗ reactions [14,15]. Therefore, we discuss
their properties by comparing the observed data and other
theoretical calculations such as the α cluster model [18],
Nilsson model [19], and Skyrme Hartree-Fock model [22].

Band 1 starting from E = 20.8 MeV has the maximum of
GCM amplitude at (β,γ ) = (0.74,0◦) and has a configuration
of (f7/2)−8(p3/2)4(g9/2)4. This band has prolate shape with
axial symmetry, as seen in its intrinsic density distribution and
the ratio of the shortest, the middle, and the longest axes is
1.0:1.0:1.9. A similar prolate band was also reported in the
α-cluster model (denoted as 2:1 band) [18] and the Nilsson
model [19] studied. They suggested the same single-particle
configuration with the present result and the Nilsson model
study showed that the axis ratio is 1:1:1.8, which is very close
to the present result. The rotational energies of the prolate
deformed band are plotted in Fig. 7. The red solid and dashed
lines correspond to band 1 and the 2:1 band in the α-cluster
model, respectively. Their moments of inertia are very close
to each other and they are considered to be an identical
band. It is also noted that the α-cluster model study showed
that the single-particle configuration of 2:1 band corresponds
to the 40Ca + 16O-cluster configuration by applying Harvey
prescription [30].

Band 2 consists of Kπ = 0+ and 2+ bands starting
from E = 21.8 and 22.8 MeV, respectively. They have an

TABLE II. The deformation parameters, the ratio of the deformed
axis, and the moment of inertia of the strongly deformed Kπ = 0+

bands. The intrinsic axis is taken to be 〈x2〉 � 〈y2〉 � 〈z2〉.

Band 1 Band 2 Band 3

β 0.74 0.66 0.53
γ 0◦ 14◦ 45◦√

〈x2〉 (fm) 1.76 1.54 1.42√〈y2〉 1.76 2.09 2.57√
〈z2〉 3.35 3.21 2.86√
〈x2〉 :

√〈y2〉 :
√

〈z2〉 1.0:1.0:1.9 1.0:1.3:2.1 1.0:1.8:2.0
�

2/2I (keV) 36 32 50
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TABLE III. The reduced transition probability B(E2) values in
the highly excited states.

Band Ji Jf B(E2) (e2 fm4)

1 2+ 0+ 3944
4+ 2+ 5641
6+ 4+ 6227
8+ 6+ 6538

2 2+ 0+ 3203
4+ 2+ 1922
6+ 4+ 2235
8+ 6+ 4527

3 2+ 0+ 1909
4+ 2+ 2887
6+ 4+ 3242
8+ 6+ 3473

(f7/2)−4(d3/2)−4(p3/2)4(g9/2)4 configuration and the maximum
of their GCM amplitudes are located at (β,γ ) = (0.66,14◦).
The ratio of deformation axis is 1.0:1.3:2.1. Triaxially de-
formed states are also reported by the α-cluster model (denoted
as triaxial band) and the Nilsson model calculations. The
triaxial state in the α-cluster model has the similar moment
of inertia and the Nilsson model predicted the similar ratio of
axis (1.0:1.2:2.1) to present result. However, these triaxially
deformed states are different from each other, because their
configurations are different to each other; that is, they have
8�ω, 16�ω, and 12�ω configurations in the present, the α-
cluster model and the Nilsson model calculations, respectively.

Band 3 starting from E = 23.8 MeV has the maximum
of the GCM amplitude at (β,γ ) = (0.53,45◦) and has a
configuration of (d3/2)−4(g9/2)4. The ratio of deformation axis
is 1.0:1.8:2.0. In the Skyrme Hartree-Fock model calcula-
tion [22], a similar state was reported as a local minimum
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FIG. 7. (Color online) The rotational energies for highly excited
states above E = 20 MeV and 2:1, triaxial, and 3:1 bands re-
ported in the α-cluster model calculation [18] and the observed
28Si(28Si,28Si∗)28Si∗ resonance states [14]. The observed data are
extrapolated to lower J by Erot = �

2J (J + 1)/2I .

in the energy curve located at (β,γ ) = (0.598,60◦) and
E = 21.5 MeV. The moment of inertia of band 3 is rather
smaller than those of bands 1 and 2.

To end this section, we comment on the relationship be-
tween the present results and the observed 28Si(28Si,28Si∗)28Si∗
resonances. In Fig. 7, the rotational energies in which the
observed data are extrapolated to the lower J are plotted with
the black solid line. In present result, there are no bands that
have the moment of inertia corresponding to the observed
resonance, even though we have predicted several bands with
large deformations. It is also noted that only the “3:1 band”
reported by the α-cluster model explains the observed large
moment of inertia. This fact may mean that it is necessary to
include the degree of freedom of clustering explicitly into
the present theoretical framework to explain the observed
resonances. The results of such calculation will be reported
in our next work.

IV. SUMMARY

In this paper, we have studied the coexistence of various
structures in the low-lying states of 56Ni and how the spherical
N = Z = 28 shell gap is weakened. We also explored the
highly excited and strongly deformed state and examined their
relationship with the results of the other theoretical models
and the observed data.

The energy surface and single-particle energies as functions
of the quadrupole deformation obtained by the variational
calculation with AMD showed that the f7/2 closed con-
figuration is unstable against the oblate deformation. As a
result, it is found that the ground band is slightly deformed
and the N = Z = 28 closed-shell configuration amounts to
only 62% in the ground state. The calculated E(2+

1 ) =
2.1 MeV and the B(E2; 2+

1 → 0+
1 ) = 182 e2 fm4 indicate the

enhanced collectivity owing to the deformation. Furthermore,
as a signature of the instability against oblate deformation,
we predicted the existence of the low-lying K = 0+ band
built on the 0+

2 state which has a β-vibrational nature.
The β-vibrational nature of this band is confirmed by the
enhancement of the E0 matrix element M(E0) comparable
with the single-particle unit. We also predict the Kπ = 2+
band built on the 2+

4 state at 8.9 MeV. However, the present
calculation fails to reproduce the ground-band spectrum and
B(E2; 2+

1 → 0+
1 ). The description of the ground band may

be improved by performing the variation after the angular
momentum projection and trying other effective interactions.
Therefore, it is noted that the present result might be changed
quantitatively by the improvement.

In contrast to oblate deformation, prolate deformation
brings about the inversion between the orbitals that originate
in p3/2 and f7/2, and it generates the deformed N = Z = 28
shell gap around β = 0.4 instead of the spherical shell gap. As
a result, the SD band with an (f7/2)−4(p3/2)4 configuration
appears at E = 4.7 MeV, which plausibly reproduces the
observed data. We also predict the β- and γ -vibrational bands
that accompany the SD band, which are respectively located
at E = 11.3 and 17.0 MeV.

In the β � 0.5 region of prolate deformation, an intruder
orbit from g9/2 becomes lower than the orbits that originate in
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f7/2 and p3/2, and the increase of γ from the prolate side to the
oblate side brings about the crossings of an orbit that originates
in d3/2 with f7/2 and p3/2. As a result, three strongly deformed
minima are generated. Corresponding to these minima, four
strongly deformed bands which are classified into three groups
of bands 1, 2, and 3 are obtained above E = 20 MeV.
Band 1 has prolate shape and has an (f7/2)−8(p3/2)4(g9/2)4

configuration. The similar states are reported in the α-cluster
model and the Nilsson model calculations. Band 2 is triaxially
deformed with a 1.0:1.3:2.1 ratio of the deformation axis. Its
configuration is identified as (f7/2)−4(d3/2)−4(p3/2)4(g9/2)4.
Owing to triaxially deformation, the Kπ = 2+ side band
appears. The triaxially deformed states are also obtained in the
α-cluster model and the Nilsson model but their configurations

are different from each other. Band 3 has an oblate shape
and has a ratio of axis 1.0:1.8:2.0. The configuration of
this band is (d3/2)−4(g9/2)4. These four bands have smaller
moments of inertia than thos of the resonance states observed
in Refs. [14,15].
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