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Simultaneous description of low-lying positive and negative parity bands in heavy even-even nuclei
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The low-lying spectra including the first few excited positive and negative parity bands of some heavy even-even
nuclei from the rare earth and actinide mass regions are investigated within the framework of the symplectic
interacting vector boson model with the Sp(12,R) dynamical symmetry group. Symplectic dynamical symmetries
allow the change of the number of excitation quanta or phonons building the collective states, providing for larger
representation spaces and richer subalgebraic structures to incorporate more complex nuclear spectra. The
theoretical predictions for the energy levels and the electromagnetic transitions between the collective states
of the ground-state band and Kπ = 0− band are compared with experiment and some other collective models
incorporating octupole and/or dipole degrees of freedom. The energy staggering, which is a sensitive indicator
of the octupole correlations in even-even nuclei, is also calculated and compared with experiment. The results
obtained for the energy levels, energy staggering, and transition strengths reveal the relevance of the dynamical
symmetry used in the model to simultaneously describe both positive and negative parity low-lying collective
bands.
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I. INTRODUCTION

It is well known [1,2] that in some mass regions several
bands of negative parity are observed in the low-lying nuclear
spectra in even-even nuclei, like the Kπ = 0−, 1−, and 2−
bands. The most well studied of them is the Kπ = 0− band,
usually interpreted as an octupole vibrational band, connected
to the ground-state band (GSB) by enhanced E1 transitions.

Negative parity states have been described within different
approaches mainly by inclusion of octupole or/and dipole
degrees of freedom. The bands of negative parity states
are often associated with the reflection asymmetry in the
intrinsic frame of reference. In the geometrical approach this
is achieved by including of the α30 ≡ β3 deformation [3].
In the interacting boson model (IBM) [4] the description
of negative states requires the introduction of f or/and p
bosons with negative parity in addition to the standard s and d
bosons (spdf -IBM) [5,6]. An alternative interpretation of the
low-lying negative parity states has been provided in different
cluster models [7,8] in which the dipole degrees of freedom are
related with the relative motion of the clusters. Based on the
Bohr Hamiltonian different critical-point symmetries (CPS)
including axial quadrupole and octupole deformations have
been proposed [9–12] extending the concept of CPS introduced
for the description of positive parity states.

In this paper we present an algebraic approach, comple-
mentary to the spdf -IBM [5], for the unified description
of the low-lying positive and negative parity bands in some
even-even nuclei from the rare earth and actinide mass regions
within the framework of the symplectic interacting vector
boson model (IVBM) with Sp(12,R) dynamical symmetry
group [13]. The present work is an extension of the approach
proposed in Ref. [14] for the description of the ground-state
band and the “octupole” (Kπ = 0−) band, often treated as a
single-ground-state alternating-parity band. In this way we
investigate simultaneously the first few low-lying negative
parity bands (Kπ = 0−, 1−, and 2−) together with the first
few positive parity (ground-state, β, and γ ) bands. It is shown

that the negative parity bands arise along with the positive
bands without introducing any additional collective degrees
of freedom. Additionally, we calculate the strengths of the
intraband E2 transitions in both the GSB and Kπ = 0− band,
as well as the interband E1 transitions connecting the states
of these two bands. The energy staggering of the ground-state
alternating band, which is a sensitive indicator of the octupole
correlations in the even-even nuclei, is also calculated and
compared with experiment.

II. THEORETICAL FRAMEWORK

A. Interacting vector boson model

It was suggested by Bargmann and Moshinsky [15,16] that
two types of bosons are needed for the description of nuclear
dynamics. It was shown there that the consideration of only a
two-body system consisting of two different interacting vector
particles will suffice to give a complete description of N three-
dimensional oscillators with a quadrupole-quadrupole interac-
tion. The latter can be considered as the underlying basis in the
algebraic construction of the phenomenological IVBM [13].

The algebraic structure of the IVBM is realized in terms
of creation and annihilation operators of two kinds of vector
bosons u

†
m(α), um(α) (m = 0, ± 1), which differ in an ad-

ditional quantum number α = ±1/2 (or α = p and n)—the
projection of the T -spin (an analog to the F -spin of IBM-2 or
the I -spin of the particle-hole IBM). All bilinear combinations
of the creation and annihilation operators of the two vector
bosons generate the boson representations of the noncompact
symplectic group Sp(12,R):

FL
M (α,β) =

∑

k,m

CLM
1k1mu+

k (α)u+
m(β), (1)

GL
M (α,β) =

∑

k,m

CLM
1k1muk(α)um(β), (2)

AL
M (α,β) =

∑

k,m

CLM
1k1mu+

k (α)um(β), (3)
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where CLM
1k1m, which are the usual Clebsch-Gordan coefficients

for L = 0,1,2 and M = −L, − L + 1, . . . ,L, define the trans-
formation properties of (1), (2), and (3) under rotations. The
number preserving operators (3) generate the U(6) group,
while by adding the pair creation (1) and annihilation (2)
operators we generate the noncompact Sp(12,R) which is
the dynamical group of the IVBM. Its irreducible represen-
tations are infinite dimensional. We also introduce the fol-
lowing notations for the two bosons: u

†
m(α = 1/2) = p

†
m and

u
†
m(α = −1/2) = n

†
m.

Symplectic dynamical symmetries allow the change of
the number of bosons, elementary excitations, or phonons
N , providing for richer subalgebraic structures and larger
representation spaces to accommodate more structural effects.
The dynamical symmetry group Sp(12,R) contains both
compact and noncompact substructures, which are defined by
different reduction chains.

B. Dynamical symmetry

We consider the following chain [13,14]:

Sp(12,R) ⊃ U(6) ⊃ SU(3) ⊗ U(2) ⊃ SO(3) ⊗ U (1),

[N ]6 (λ,μ) ⇐⇒ (N,T ) K L T0 (4)

where below the different subgroups the quantum numbers
characterizing their irreducible representations are given. The
generators of the different subgroups in Eq. (4) are expressed
in terms of the number-preserving operators (3). The number
operator

N = p† · p + n† · n = Np + Nn (5)

is the linear invariant of the U(6) as well as U(3) and U(2)
algebras. The SU(3) algebra is generated by the components
of the angular momentum operators

LM = −
√

2
∑

α

A1
M (α,α) (6)

and Elliott’s quadrupole operators

QM =
√

6
∑

α

A2
M (α,α). (7)

The T -spin operators

T+1 = − 1√
2
p† · n, (8)

T−1 = 1√
2
n† · p, (9)

T0 = 1

2
(p† · p − n† · n), (10)

together with the number operator (5) generate the U(2)
algebra.

Within the symmetric irreducible representation [N ]6 of
U(6) the groups SU(3) and U(2) are mutually complemen-
tary [17], i.e., the quantum numbers (λ,μ) are related with
(N,T ) in the following way: N = λ + 2μ and T = λ/2.
Making use of the latter we can write the basis as

|[N ]6; (λ,μ); K,L; T0〉 = |(N,T ); K,L; T0〉. (11)

TABLE I. Classification of basis states.

N T T0 · · · −3 −2 −1 0 1 2 3 · · ·
0 0 (0, 0)

2 1 (2, 0) (2, 0) (2, 0)

0 (0, 1)

2 (4, 0) (4, 0) (4, 0) (4, 0) (4, 0)

4 1 (2, 1) (2, 1) (2, 1)

0 (0, 2)

3 (6, 0) (6, 0) (6, 0) (6, 0) (6, 0) (6, 0) (6, 0)

6 2 (4, 1) (4, 1) (4, 1) (4, 1) (4, 1)

1 (2, 2) (2, 2) (2, 2)

0 (0, 3)

The ground state of the system is

|0〉 = |(N = 0,T = 0); K = 0,L = 0; T0 = 0〉, (12)

which is the vacuum state for the Sp(12,R) group.
The basis states associated with the even irreducible repre-

sentation of the Sp(12,R) can be constructed by the application
of powers of raising generators FL

M (α,β) of the same group on
the vacuum. Each raising operator will increase the number
N of bosons by two. The resulting infinite set of basis states
so obtained is denoted as in Eq. (11) and is shown in Table I.
Each row (fixed N ) of the table corresponds to a given U(6)
irrep, whereas each cell represents the SU(3) irrep contained in
the corresponding U(6) irrep. For fixed N , the possible values
for the T -spin are T = N

2 ,N
2 − 1, . . . ,0 and are given in the

column next to the respective value of N. Thus when N and
T are fixed, 2T + 1 equivalent representations (λ,μ) of the
group SU(3) arise. Each of them is labeled by the eigenvalues
of the operator T0 : −T ,−T + 1, . . . ,T , defining the columns
of Table I. The values of the angular momentum contained in
a certain SU(3) representation (λ,μ) are obtained by means of
standard reduction rules for the chain SU(3) ⊃ SO(3) [18]:

K = min(λ,μ), min(λ,μ) − 2, . . . ,0 (1),

L = max(λ,μ), max(λ,μ) − 2, . . . ,0 (1); K = 0, (13)

L = K,K + 1, . . . ,K + max(λ,μ); K 	= 0.

The multiplicity index K appearing in this reduction is related
to the projection of L in the body fixed frame and is used with
the parity (π ) to label the different bands (Kπ ) in the energy
spectra of the nuclei.

C. The Hamiltonian

We use the following Hamiltonian [14]:

H = aN + bN2 + α3T
2 + β3L

2 + α1T
2

0 , (14)

expressed in terms of the first- and second-order invariant
operators of the different subgroups in the chain (4). It is
obviously diagonal in the basis (11) and its eigenvalues are
just the energies of the nuclear system

E(N,L,T ,T0) = aN + bN2 + α3T (T + 1)

+β3L(L + 1) + α1T
2

0 . (15)
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The energy of the ground state (12) of the system is
obviously 0.

III. APPLICATION

In our application, the most important point is the identi-
fication of the experimentally observed states with a certain
subset of the basis states (11). In this regard, the following two
points are of importance. First, as we noted, the irreducible
representations of Sp(12,R) are infinite dimensional. Then
we require the truncation of the model space to a finite-
dimensional subspace of physically meaningful basis states
revealing the collective properties of states described. It turns
out that such an appropriate set of states is given by the so-
called “stretched states” [19], which represent dominant SU(3)
multiplets in the low-lying collective states [19]. In the present

application we use the following type of stretched states
defined as the SU(3) states of the type (λ,μ) = (λ0,μ0 + k),
where k = 0,2,4, . . . . In the symplectic IVBM the change
of the number k, which is related in the applications to the
angular momentum L of the states, gives rise to the collective
bands.

The second point concerns the parity of the state. We assume
that the one type of the two vector bosons, say the p-boson,
transforms under space reflections as a pseudovector, while
the other – the n-boson – transforms as a vector. The latter
assumes that the creation operators of the two vector bosons,
p
†
m and n

†
m, can be considered as acting separately in the two

adjacent major oscillator shells of opposite parity, creating
in this way two different elementary excitations (“Elliott
quarks,” see Ref. [20]) with opposite parity from which
the collective states are built out. Therefore, we define the

FIG. 1. (Color online) Comparison of the theoretical energies for the low-lying positive and negative parity bands in 152Sm, 154Sm, 148Nd,
150Nd, 226Ra, and 230Th with experiment and some other collective models incorporating octupole or/and dipole degrees of freedom.
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parity of the considered collective state as π = (−1)Nn , which
generalizes our previous definition of the parity π = (−1)T

given in Ref. [14]. This allows us to describe both positive
and negative parity states in the IVBM on the same footing
without introducing of any additional collective degrees of
freedom.

In this way for example, the states of the ground-state band
are mapped onto the SU(3) multiplets (0,L) (T = 0, T0 = 0)
with L = 0,2,4, . . . , whereas those of the Kπ = 0− band are
mapped onto the SU(3) multiplets (2,L) (T = 1, T0 = 1) with
L = 1,3,5, . . . . The latter mapping slightly differs from that
used in Ref. [14] with (T = 1, T0 = 0) because of the parity
definition. We note that although the set of SU(3) states used
in Ref. [14] and in the present approach is identical, in order
to take into account proper the parity of the collective states,
we need the appropriate values of both T and T0. Note that
the SU(3) degeneracy within a given U(6) irrep is lifted by
its mutually complimentary group U(2). The same type of the
stretched states (λ,μ) = (λ0,μ0 + k) are also used for other
bands under consideration.

A. Energy spectra

We consider the first few excited low-lying positive
(ground-state, β, γ ) and negative (Kπ = 0−, 1−, 2−) parity
bands of some nuclei from the rare earth and light actinide
regions for which there is enough experimental data on E1
and E2 transitions.

In Fig. 1 we compare our theoretical predictions for the
energies of the first-excited positive and negative parity bands
observed in 152Sm, 154Sm, 148Nd, 150Nd, 226Ra, and 230Th with
experiment [1] and the results obtained by the diagonalization
of the spdf -IBM Hamiltonian [21] (152Sm, 154Sm), [22]
(150Nd), [23] (226Ra, 230Th). For the 152Sm, 150Nd, and 226Ra
isotopes, the predictions of the CPS approach [10,11] in which
the octupole degrees of freedom are included together with
the quadrupole degrees of freedom are also shown. In the
case of 226Ra the results of the pure SU(3) dynamical limit
of the spdf -IBM are shown as well. The calculations in the
SU(3) limit of spdf -IBM are performed using the Hamiltonian
and matrix elements given in Ref. [24]. The values of the
model parameters obtained in the fitting procedure are given
in Table II.

The 152Sm and 150Nd isotopes in the positive parity part
(GSB and β band) of the spectrum are considered as examples
of the X(5) critical-point symmetry [25]. The nucleus 226Ra
is considered in the literature as possessing stable octupole
shape. 230Th is considered as an octupole soft nucleus in

TABLE II. The values of the model parameters (in MeV).

Nucleus a b α3 β3 α1

152Sm 0.02792 −0.00176 0.10948 0.01551 0.46287
154Sm 0.01476 −0.00153 0.06864 0.01486 0.63245
148Nd 0.09149 −0.00155 0.09725 0.01094 −0.18550
150Nd 0.01572 −0.00413 0.95750 0.02656 −1.1522
226Ra 0.01581 −0.00278 0.12640 0.01600 0.00523
230Th 0.01248 −0.00204 0.15437 0.01331 0.13035

a recent constrained self-consistent relativistic mean-field
calculation [26].

One sees that the IVBM describes reasonably well the
structure of low-lying excited states of the first few bands
of positive and negative parity up to high angular momenta
for the all nuclei under consideration. Note that, in the case of
226Ra, the experimental data show large deviations from the
rotational L(L + 1) rule [SU(3) limit of the spdf -IBM] for
both the ground state and Kπ = 0− bands despite the fact that
R4/2 = 3.13.

B. Energy staggering

A convenient measure for deviation from the pure rotational
behavior is the signature-splitting index S(L) [27]:

S(L) = [EL+1 − EL] − [EL − EL−1]

E2+
1

, (16)

which vanishes for

E(L) = E0 + AL(L + 1), (17)

but not for

E(L) = E0 + AL(L + 1) + B[L(L + 1)]2. (18)

Another quantity also used in practice is [28]

�Eγ,1(L) = 1
16 [6�E(L) − 4�E(L − 1) − 4�E(L + 1)

+�E(L + 2) + �E(L − 2)], (19)

where �E(L) = E(L) − E(L − 1). The staggering function
(19), in contrast to Eq. (16), vanishes for (18) and hence it
represents a more sensitive measure for the deviation of the
nuclear dynamics from that of pure rotational motion. We
recall that the SU(3) limit of the spdf -IBM predicts [28] a
constant behavior for the staggering function (19), thus being
unable to describe the latter.

In the present work we consider the odd-even staggering
between the states of the GSB and Kπ = 0− band. The
mapping of the experimentally observed states of the two
bands under considerations onto the basis states of Table I
(“stretched approximation”) establishes a relationship between
the quantum numbers N and L. As a result, the energies of the
GSB can be expressed in the form [14]

E(L) = βL(L + 1) + γL, (20)

whereas those of the Kπ = 0− band can be expressed as

E(L) = βL(L + 1) + (γ + η)L + ξ. (21)

The relation between the new set of parameters entering
Eqs. (20) and (21) and that in Eq. (15) is given in Ref. [14].
From the expressions (20) and (21), one can see that the
energies of the GSB and Kπ = 0− band consist of rotational
L(L + 1) and vibrational L terms. The rotational interaction
is with equal strength β in both bands.

The calculated and experimental staggering patterns for all
considered nuclei are illustrated in Fig. 2. As can be seen,
the IVBM describes well the energy staggering, including the
“beat patterns” (226Ra). The first beat pattern appears at the
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FIG. 2. (Color online) Theoretical and experimental staggering function �Eγ,1(L) [Eq. (19)] in 152Sm, 154Sm, 148Nd, 150Nd, 226Ra, and
230Th.

point where the two bands are crossing. In order to be able
to describe the second beat pattern we assume that the states
of the yrast band with high angular momentum (L � 20) are

members of the first-excited β band. The correct reproduction
of the experimental energy staggering, including the beat
patterns, is due to the mixing of different collective modes

FIG. 3. (Color online) Comparison of theoretical and experimental values for the transition probabilities of the intraband E2 transitions in
the ground-state band in 152Sm, 154Sm, and 150Nd. For comparison, the theoretical predictions of some other collective models are also shown.

054311-5



H. G. GANEV PHYSICAL REVIEW C 89, 054311 (2014)

FIG. 4. (Color online) Comparison of theoretical and experimental values for the matrix elements of the intraband E2 transitions in the
ground-state band and Kπ = 0− band in 148Nd and 226Ra. For comparison, the theoretical predictions of some other collective models are also
shown.

[see Eqs. (20) and (21)] within the framework of the symplectic
IVBM. The mixing of the two bands under consideration is
caused by the L-dependent interaction term ηL in Eq. (21).

C. Transition probabilities

It is well known that the transition probabilities are a more
sensitive test for each model. Negative parity states of the
Kπ = 0− band are characterized by the enhanced E1 transition
strengths to the GSB. In the present work we consider only
the B(E1) and B(E2) transition probabilities concerning the
ground-state and Kπ = 0− bands.

The transition probabilities between the collective states
attributed to the basis states of the Hamiltonian are by
definition the square of the SO(3) reduced matrix elements

of the transition operators:

B(Eλ; Li → Lf ) = 1

2Li + 1
|〈f ||T Eλ||i〉|2. (22)

The general approach for calculating the transition probabil-
ities along the considered dynamical symmetry is given in
Ref. [29], where the B(E2) transition probabilities between
the states of the GSB were calculated. Similarly, in the present
work we calculate the strengths of the intraband E2 transitions
in both the GSB and Kπ = 0− band, as well as the interband
E1 transitions connecting the states of these two bands. In our
calculations, we use the following operators:

T E2 =e
[
A

[1,−1]6 20
(1,1)[0]2 00 + θ

(
[F × F ][4]6 20

(0,2)[0]2 00

+ [G × G][−4]6 20
(2,0)[0]2 00

)]
, (23)

FIG. 5. (Color online) Comparison of theoretical and experimental values for the transition probabilities of the interband E1 transitions
between the states of the GSB and Kπ = 0− band in 152Sm, 154Sm, and 150Nd. For comparison, the theoretical predictions of the IBM are also
shown.
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FIG. 6. (Color online) Comparison of theoretical and experimental values for the matrix elements of the interband E1 transitions between
the states of the GSB and Kπ = 0− band in 148Nd and 226Ra. For comparison, the theoretical predictions of some other collective models are
also shown.

and

T E1 =e1
[
A

[1,−1]6 10
(1,1)[2]2 1−1 + χ

(
[F × F ][4]6 10

(2,1)[2]2 11

+ [G × G][−4]6 10
(1,2)[−2]2 1−1

)]
, (24)

as transition operators for the E2 and E1 transitions, respec-
tively. In Eqs. (23) and (24) explicit tensor properties with
respect to the reduction chain (4) are written. For more details
concerning the calculations we refer the reader to Ref. [29].

In Fig. 3 we compare our theoretical results for the transition
probabilities of the intraband E2 transitions in the ground-state
band for the three isotopes 152Sm, 154Sm, and 150Nd. Figure 4
compares with experiment the theoretical matrix elements
of the intraband E2 transitions in both the ground-state
band and the Kπ = 0− band for 148Nd and 226Ra nuclei.
For comparison, the theoretical predictions of some other
collective models are also shown. We see that IVBM describes
reasonably well the general trend of the experimental data.
An enhancement of the theoretical E2 matrix elements in the
Kπ = 0− band compared to the GSB values is obtained. Such
an enhancement was experimentally observed in 144Ba [30].

In Figs. 5 and 6 the calculated transition strengths (matrix
elements or transition probabilities) for the E1 transitions
connecting the states of the GSB and Kπ = 0− band are
compared with experiment [1,31] (226Ra), [32] (148Nd), and
the predictions of some other collective models incorporating
octupole or/and dipole degrees of freedom.

An interesting zigzagging behavior of the matrix elements
of the E1 transitions is observed in the case of 148Nd. Such
a staggering behavior with correct phases is obtained in the
framework of the spdf -IBM if the O(10) generator is used

as a transition operator. An equivalent picture is obtained if
the O(4) generator is used as a transitional operator instead of
the O(10) generator. From Fig. 6 one sees that IVBM is also
able to describe such staggering behavior.

IV. CONCLUSIONS

In the present work the low-lying spectra including the
first few excited positive and negative parity bands of some
heavy even-even nuclei from the rare earth and actinide
mass regions, namely 152Sm, 154Sm, 148Nd, 150Nd, 226Ra, and
230Th, are investigated within the framework of the symplectic
interacting vector boson model with the Sp(12,R) dynamical
symmetry group. Symplectic dynamical symmetries allow us
to change the number of excitation quanta or phonons that build
the collective states, providing for larger representation spaces
and richer subalgebraic structures to incorporate more complex
nuclear spectra. The theoretical predictions for the energy
levels, energy staggering and transition strengths between the
collective states are compared with experiment and some other
collective models incorporating octupole or/and dipole degrees
of freedom. The IVBM describes well the experimental data,
including some structural effects observed in the nuclear
spectra such as the beat patterns (226Ra) in the energy
staggering. The results obtained for the energy levels, the
energy staggering and the transition strengths in the considered
nuclei prove the correct mapping of the basis states to the
experimentally observed states and reveal the relevance of the
dynamical symmetry used in the IVBM for the simultaneous
description of the lowlying positive and negative parity bands.
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