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Microscopic description of fission in uranium isotopes with the Gogny energy density functional
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The most recent parametrizations D1S, D1N, and D1M of the Gogny energy density functional are used to
describe fission in the isotopes 232–280U. Fission paths, collective masses, and zero-point quantum corrections,
obtained within the constrained Hartree-Fock-Bogoliubov approximation, are used to compute the systematics of
the spontaneous fission half-lives tSF, the masses and charges of the fission fragments, and their intrinsic shapes.
The Gogny-D1M parametrization has been benchmarked against available experimental data on inner and second
barrier heights, excitation energies of the fission isomers, and half-lives in a selected set of Pu, Cm, Cf, Fm, No,
Rf, Sg, Hs, and Fl nuclei. It is concluded that D1M represents a reasonable starting point to describe fission in
heavy and superheavy nuclei. Special attention is also paid to understand the uncertainties in the predicted tSF

values arising from the different building blocks entering the standard semiclassical Wentzel-Kramers-Brillouin
formula. Although the uncertainties are large, the trend with mass or neutron numbers are well reproduced and
therefore the theory still has predictive power. In this respect, it is also shown that modifications of a few percent
in the pairing strength can have a significant impact on the collective masses leading to uncertainties in the tSF

values of several orders of magnitude.
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I. INTRODUCTION

Nuclear fission is, at the same time, one of the most
distinctive phenomena in the physics of the nucleus and
one of the most elusive to a theoretical description. It takes
place mostly in heavy and superheavy nuclei and involves the
evolution of the initial parent system from its ground state
to scission through a sequence of intrinsic shapes labeled
by some sort of deformation parameter [1–3]. Once the
scission configuration is reached, the system splits into two
daughter nuclei. The occurrence of fission is the result of the
competition between the nuclear surface energy coming from
the strong interaction and the Coulomb repulsion of the nuclear
charge density [4]. In fact, nuclear fission was originally
described [4,5] in terms of the liquid-drop model where the
surface tension plays an essential role. However, experimental
and theoretical evidences emphasize the stabilizing role of
shell effects [6–8] and therefore much effort has been given
to the development of models that incorporate those effects to
the semiclassical liquid-drop model description [9–11]. The
outcome of these models (see, for example, Refs. [12,13] and
references therein) is a potential energy surface, expressed
in terms of several deformation parameters, showing a quite
involved topography (direct consequence of shell effects) with
minima, valleys, ridges, and saddle points. In this picture,
fission is the journey along this complicated landscape from
the ground state to the scission point (an elusive concept to
be discussed later). In spite of their success in describing
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some fission observables, these models lack essential quantum
mechanisms like tunneling through a classically forbidden
barrier or a sound description of the inertia associated with
the collective degrees of freedom used to describe fission.

From a more fundamental point of view, fission could be
regarded as a quantum mechanical problem describing the
evolution from some given initial quantum state to a final state
with two fragments and involving tunneling through a potential
barrier defined in a multidimensional space. The initial state
can be the parent nucleus ground state in spontaneous fission
or a highly excited state (usually described as a statistical
admixture by assuming thermal equilibrium) in induced
fission. Although several attempts to deal with this problem
in a path-integral framework involving instantons and other
sophisticated concepts have been considered [14,15] in the
past, it has not been possible to establish a computationally
feasible framework capable to describe real nuclei with
realistic interactions. Therefore, it is customary to use a more
phenomenological approach where the dynamical changes
involved in the transition from a single nucleus to two
fragments are usually described in the framework of the
(constrained) self-consistent mean-field approximation [6,16]
based on a given nonrelativistic energy density functional
(EDF) of the Gogny [17–25] and/or Skyrme [26–31] type,
as well as with several parametrizations of the relativistic
mean-field (RMF) Lagrangian [32–36]. Recently, the fission
properties of the Barcelona-Catania-Paris-Madrid (BCPM)
EDF [37] have also been studied in the case of drip-line-
to-drip-line uranium isotopes [38]. The aim of all these
methods is to determine the relevant fission configurations
by means of the Hartree-Fock-Bogoliubov (HFB) mean-field
method using constraints on relevant quantities associated with
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shape parameters like multipole moments or neck degrees of
freedom. The resulting HFB wave functions are then used
to compute other parameters like the collective inertia and
quantum corrections to the potential energy surface stemming
from the restoration of broken symmetries (rotational, parity,
etc.) and fluctuations in the collective parameters defining the
fission paths. An implicit assumption of this framework is
that the fission properties are determined by general features
of the interactions and therefore no fine tuning should be
required to describe fission observables. However, interactions
are usually tuned to reproduce nuclear matter parameters that
are not properly constrained by experimental data (the typical
case pertaining fission is the surface energy of semi-infinite
nuclear matter) and therefore there are examples of interactions
fitted to fission properties like Gogny-D1S [17,39], the old
SkM* [40], or the more recent UNEDF1 [26,27] Skyrme
parametrization.

Typical fission observables are the fission lifetimes, frag-
ment mass distributions, and kinetic energy of the fragments.
Fission barrier heights also are commonly considered as
experimental “pseudodata.” All those quantities are required
in many physical scenarios such as the stability of superheavy
elements or the final stages of the r process in stellar
nucleosynthesis that are responsible for most of the abundance
of heavy elements in the solar system. Fission remains a topic
of high interest not only in several areas of basic science but
also on the applications’ side, where the issues of efficient
energy production with nuclear reactors or the degradation of
long-lived radioactive waste are of great interest [3,41].

It turns out that fission observables are quite sensitive to
pairing correlations (see Ref. [38] for a recent discussion)
owing to the strong dependence of the collective inertias on
the inverse of the square of the pairing gap [42,43]. They are
also very sensitive to the underlying theory used to describe
collective motion [typically the adiabatic time-dependent
HFB (ATDHFB) or the generator coordinate method (GCM)]
and the approximations involved in the evaluation of the
inertias (see Refs. [44–46] for different approximations). As a
consequence, fission can be considered as a very demanding
testing ground for theories and interactions used in nuclear
structure calculations.

In the past decades there has been a renewed interest in
microscopic fission studies [18–36,38] owing to the wealth
of information in actinide nuclei [1], huge progress in the
production of superheavy elements, via cold and hot fusion
reactions, and new possibilities opened up by heavy-ion
collisions with radioactive ion beams (see, for example,
Refs. [47–55] and references therein). In particular, the
theoretical description of fission in superheavy elements is
quite relevant to better understand both the shell structure
evolution and the appearance of new proton and/or neutron
magic numbers in heavy nuclei [56,57]. Superheavy elements
are also produced during the r process and their properties
determine the upper end of the nucleosynthesis flow [58].

In addition, it should be kept in mind that, as a decay
mode, spontaneous fission competes with α decay [59] and
determines the stability of heavy and superheavy elements. It
is therefore highly desirable to devote systematic microscopic
studies, based on different effective EDFs, to the prediction

of the spontaneous fission tSF and α-decay tα half-lives (see,
for example, Refs. [25,29]). This is particularly relevant,
taking into account the large uncertainties [38] associated
with the different building blocks entering the Wentzel-
Kramers-Brillouin (WKB) formula [60,61] used to computed
the tSF values.

Although the theoretical uncertainties in the determination
of the absolute values of the fission observables are presumed
to be large [38], the behavior of quantities as a function of
mass number and/or along isotopic chains is reasonably well
reproduced. Therefore, one expects to obtain a reasonable
theoretical description of the physics of fission along isotopic
chains extending up to the neutron drip line. Those regions
are the territories where the fate of the nucleosynthesis of
heavy nuclei is determined. To study the fission of neutron-rich
nuclei, we have used a mean-field framework with the Gogny-
EDF in the uranium isotopic chain up to the neutron drip-line
nucleus 280U. The three most relevant parametrizations of the
Gogny-EDF [39], namely, D1S [17], D1N [62], and D1M [63],
have been used in the calculations. The D1S parametrization
is the oldest among the three and its fitting protocol included
fission properties of 240Pu. Along the years, D1S has built
itself a strong reputation given its ability to reproduce a
large collection of low-energy data all over the periodic table
[17,18,23–25,39,64–81]. In particular, the parametrization
D1S has already been successfully applied to the microscopic
description of fission in heavy and superheavy nuclei (see,
for example, Refs. [18,23,25] and references therein) and, for
this reason, it is taken as a reference in the present study.
However, D1S is not specially good in reproducing masses
specially when moving away from the stability valley. To cure
this deficiency the D1N parametrization was introduced. It
provides a good fit to realistic neutron matter equation of
state (EoS) and therefore it is expected to perform well in
dealing with neutron-rich nuclei. However, this Gogny-EDF
has scarcely been used and its performance in fission has
to be validated. Finally, the D1M parametrization included
in its fitting protocol not only realistic neutron matter EoS
information but also the binding energies of all known nuclei.
With an impressive rms for the binding energy of 0.798 MeV
it represents an excellent and competitive choice to deal with
nuclear masses. An extensive program to establish the merits
and shortcomings of D1M in nuclear structure studies not
only in even-even nuclei [62–65,82–86], but also in odd-A
ones in the framework of the equal filling approximation
(EFA) [82,84,85], is in progress. However, this parametrization
has not been used systematically in fission studies before, and
therefore its properties regarding fission have to be validated as
in the case of D1N. As a consequence of these needs, we have
decided to carry out calculations with the D1M parametrization
for a selected set of nuclei consisting of 238–244Pu, 240–248Cm,
250,252Cf, 250–256Fm, 252–256No, 256–260Rf, 258–262Sg, 264Hs, and
the Z = 114 nucleus 286Fl, for which experimental data are
available [87–91]. The comparison with these data and other
quantities like fission barrier heights and excitation energies
of fission isomers will be used to validate the results obtained
with D1M. Later, calculations of fission properties for the
uranium chain from 232U up to the neutron drip line 280U will
be carried out. The comparison of the results obtained with
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the three parametrizations will serve to give us an idea of the
uncertainties associated with the Gogny-EDF used.

The paper is organized as follows. In Sec. II, we briefly
outline the theoretical formalism used in the present work. The
results of our calculations are discussed in Sec. III. First, in
Sec. III A, we illustrate the methodology employed to compute
the fission paths and other fission-related quantities in the case
of 240U. The same methodology has been used for all the
nuclei studied in this paper. In Sec. III B, we discuss the D1M
results for the nuclei 232–238U, 238–244Pu, 240–248Cm,250,252Cf,
250–256Fm, 252–256No, 256–260Rf, 258–262Sg, 264Hs, and 286Fl and
compare them with available experimental data [87–91]. This
section is mainly intended to validate D1M for fission studies.
The systematics of the fission paths, spontaneous fission half-
lives, and fragment mass in the isotopes 232–280U is presented in
Sec. III C. We compare the results obtained with the D1S, D1N,
and D1M parametrizations to demonstrate the robustness of the
predicted trends in 232–280U with respect to particular choices
of parametrizations. One of the main advantages of all the
considered Gogny-EDFs is that they provide a self-contained
approach to pairing correlations [39]. Owing to the differences
in the corresponding fitting protocols [17,62,63], each of the
EDFs displays a different pairing content [65]. This, by itself,
provides some insight into the impact of pairing correlations
on fission properties in 232–280U. However, in Sec. III D, we
explicitly discuss the impact of pairing correlations on the
predicted tSF values for 232–280U by increasing artificially the
pairing strengths by 5% and 10%, respectively. Finally, Sec. IV
is devoted to the concluding remarks and work perspectives.

II. THEORETICAL FRAMEWORK

The mean-field approximation [6] based on wave functions
|�HFB〉 of the HFB type has been used in the present study.
Constraints in the mean value of the axially symmetric
quadrupole Q̂20, octupole Q̂30, and the necking Q̂Neck(z0,C0)
operators have been used. The last constraint, as discussed
in Sec. III A, allows us to reach two-fragment (2F) solutions
starting from the one-fragment (1F) ones [23,24,38]. As a
consequence of the axial symmetry imposed on our HFB wave
functions |�HFB〉, the mean values of the multipole operators
Q̂μν with ν �= 0 are zero by construction. Aside from the
constraints already mentioned, as well as the usual ones on
both the proton and the neutron numbers, a constraint on the
operator Q̂10 is used to prevent spurious effects associated
with the center-of-mass motion.

The HFB quasiparticle operators [6] have been expanded
in an axially symmetric (deformed) harmonic oscillator (HO)
basis containing states with Jz quantum numbers up to 35/2
and up to 26 quanta in the z direction. The basis quantum
numbers are restricted by the condition

2n⊥ + |m| + 1

q
nz � Mz,MAX, (1)

with Mz,MAX = 17 and q = 1.5. This choice is well suited
for the elongated prolate shapes typical of the fission pro-
cess [23,38]. For each of the considered nuclei and each of
the constrained configurations (Q20,Q30,QNeck, . . . ) the two
lengths bz and b⊥ characterizing the HO basis have been

optimized so as to minimize the total HFB energy. With the
choice of basis size and the minimization of the energy with
the oscillator lengths, the relative energies determining the
dynamics of the fission process are well converged. For the
solution of the HFB equations, an approximate second-order
gradient method [92] has been used. The method is very robust
and the typical number of iterations to converge is quite small
(a few tens) as compared to other methods. In addition, the
complexity in the handling of constraints does not increase
with its number.

Concerning the different interaction terms, the two-body
kinetic energy correction has been fully taken into account
(including exchange and pairing channels) in the variational
procedure. However, the Coulomb exchange term is consid-
ered in the Slater approximation [93], while the Coulomb
and spin-orbit contributions to the pairing field have been
neglected.

The spontaneous fission half-life is computed (in seconds)
with the WKB formalism [42] as

tSF = 2.86 × 10−21 × (1 + e2S), (2)

where the action S along the quadrupole constrained fission
path reads

S =
∫ b

a

dQ20

√
2B(Q20)[V (Q20) − (EGS + E0)]. (3)

Here the integration limits a and b are the classical turning
points [42] below the barrier and corresponding to the
energy EGS + E0. The potential V (Q20) is given by the
HFB energy corrected by the zero-point energies stemming
from the restoration of the rotational symmetry �EROT(Q20)
and the fluctuations in the quadrupole moment �Evib(Q20).
The rotational correction �EROT(Q20) has been computed,
in terms of the Yoccoz moment of inertia, according to the
phenomenological prescription discussed in Refs. [66,67].
This correction plays a key role in determining the shape of the
potential V (Q20) because it can be as large as 6–7 MeV and
its value is proportional to the degree of symmetry breaking,
i.e., the value of the deformation Q20 [78].

Two methods have been used for the evaluation of the
collective mass B(Q20) and the vibrational energy correction
�Evib(Q20). One is the cranking approximation [44–46] to the
ATDHFB scheme [6]. In this case,

BATDHFB(Q20) = 1

2

M−3(Q20)

M2
−1(Q20)

, (4)

where the moments M−n(Q20) of the generating quadrupole
field read

M−n(Q20) =
∑
μν

∣∣Q̂20
μν

∣∣2

(Eμ + Eν)n
(5)

and Q̂20
μν is the 20 component of the quadrupole operator in

the quasiparticle representation [6]. The quasiparticle energies
Eμ are the ones obtained in the solution of the HFB equations.
The ATDHFB zero-point vibrational correction �Evib(Q20) is
given by

�Evib,ATDHFB(Q20) = 1
2G(Q20)B−1

ATDHFB(Q20), (6)

054310-3
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where

G(Q20) = 1

2

M−2(Q20)

M2
−1(Q20)

(7)

is the width of the overlap between two configurations with
similar quadrupole moments.

The second method is based on the Gaussian overlap
approximation (GOA) to the GCM [6]. Here, the collective
mass reads

BGCM(Q20) = 1

2

M2
−2(Q20)

M3
−1(Q20)

(8)

and �Evib,GCM(Q20) is given by Eq. (6) but replacing the
ATDHFB mass with the GCM one. We have evaluated the
spontaneous fission half-life tSF [Eq. (2)] with the two schemes
outlined above. The reason is that the ATDHFB masses
are typically around 1.5 to 2 times larger than the GCM
ones [38,61]. As a consequence, the action in the exponent
defining tSF is, in the ATDHFB case, between 20% and 40%
larger than the GCM one. Depending on the value of the action,
this increase can represent a difference of several orders of
magnitude in the tSF results. We also have to keep in mind
that the inertias are computed in the so-called “perturbative
cranking approximation” that is known to underestimate the
real inertia values by a factor as small as 0.7, implying a
reduction of a typical 15% in the action. For a thorough
comparison of different forms of the collective inertia in
the framework of Skyrme-like EDFs, including the ones in
Eqs. (4) and (8), and including also the different computational
schemes the reader is referred to Ref. [61].

In Eq. (3), the parameter E0 accounts for the true ground-
state energy once the zero-point quadrupole fluctuations are
considered. Although it is not difficult to estimate its value
using the curvature of the energy around the ground-state
minimum and the values of the collective inertias [30], we
have followed the usual recipe [23,38] of considering it as a
free parameter that takes four different values (i.e., E0 = 0.5,
1.0, 1.5, and 2.0 MeV). In this way we can estimate its impact
on the predicted spontaneous fission half-lives.

To summarize the previous discussions, we conclude that
the tSF values obtained within our computational scheme are
subject to several uncertainties related to the following items.

(i) The characteristics of the different parametrizations of
the Gogny-EDF considered.

(ii) The impact of triaxiality in the fission path. It is well
known that the configurations around the top of the
inner barrier can reduce their energies when triaxiality
is allowed. It is also possible in some superheavy
nuclei that their oblate ground state evolves towards
fission through a triaxial path. In our case, we have
kept axial symmetry as a self-consistent symmetry
along the whole fission path to reduce the already
substantial computational effort. However, for a few
selected configurations around the inner barrier we
have allowed triaxiality to set in as to study the
reduction of the inner barrier height. Typically, the
lowering represents at most a few MeV when triaxial
shapes are allowed [18,32]. However, the lowering of

the inner barrier comes together with an increase of
the collective inertia [31,94] that tends to compensate
in the final value of the action. Therefore, the impact
of triaxiality in the final value of tSF is very limited
and it has not been considered in the present study. In
addition, previous studies [31] analyzing the dynamical
path to fission have corroborated the insignificant role
played by triaxiality to determine lifetimes.

(iii) The value of the parameter E0. This is particularly
relevant in the case of long-lived isotopes with wide
and high fission barriers because the different E0 values
provide different classical turning points a and b [see
Eq. (3)] and therefore modify in a substantial way the
final value of the action integral.

(iv) The assumptions involved in the computation of the
collective masses as well as the zero-point corrections
to the HFB energies. Note that, for example, within
the “perturbative cranking” scheme [44–46], only the
zero-order approximation is used instead of the full
linear-response matrix.

(v) Pairing correlations. They play a key role in the
computation of both the zero-point energies associated
with quantum fluctuations and the collective masses. In
fact, as we see in Sec. III D (see also Ref. [38]), changes
of 5% or 10% in the pairing strengths of the original
Gogny-D1M EDF can modify the predicted tSF values
by several orders of magnitude.

As a consequence, the predicted tSF values will have large
theoretical error bars spanning several orders of magnitude,
implying that their absolute values cannot be used with con-
fidence. However, the experimental isotopic and/or isotonic
trends are reproduced with much higher accuracy, giving us
confidence on the validity of our predictions in that respect.

Finally, we have computed the α-decay half-lives using the
parametrization [95]

log10 tα = AZ + B√Qα

+ CZ + D (9)

of the phenomenological Viola-Seaborg formula [59]. The
Qα value (in MeV) is obtained from the calculated binding
energies for uranium and thorium isotopes as

Qα = E(Z,N ) − E(Z − 2,N − 2) − E(2,2). (10)

In Eqs. (9) and (10), Z and N represent the proton and
neutron numbers of the parent nucleus. However, E(2,2) =
−28.295 674 MeV [96], while A = 1.640 62, B = −8.543 99,
C = −0.194 30, and D = −33.9054 [95].

III. DISCUSSION OF THE RESULTS

In this section, we discuss all the results obtained. First, in
Sec. III A, we illustrate the methodology used to compute
the fission observables in the case of 240U. In Sec. III B,
we discuss the Gogny-D1M results for a set of U, Pu, Cm,
Cf, Fm, No, Rf, Sg, and Fl nuclei for which experimental
data are available [87–91]. The aim of these calculations is
to validate D1M as a reasonable parameter set for fission
studies. The systematics, provided by the D1S, D1N, and
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D1M Gogny-EDFs, for the fission paths tSF and tα values,
as well as the fragment mass in the uranium chain 232–280U,
is presented in Sec. III C. Finally, in Sec. III D, we explicitly
discuss the impact of pairing correlations on the predicted
tSF values for 232–280U using a modified Gogny-D1M EDF in
which the pairing interaction strengths are increased by 5%
and 10%, respectively.

A. An illustrative example: The nucleus 240U

In Fig. 1(a), the evolution of the energy as a function of
the mass quadrupole moment for the nucleus 240U as the
system evolves from its ground state to very elongated shapes
is shown. The results obtained with the D1S, D1N, and D1M
parametrizations are depicted. The energies shown in the plot
are the HFB energies plus the ones coming from the zero-point
rotational motion EHFB + �EROT. The zero-point vibrational
energies �Evib (not included in the plot) are always considered
in the evaluation of the lifetimes. The curves labeled D1S(1F),
D1N(1F), and D1M(1F), respectively, correspond to 1F so-
lutions of the HFB equations. To obtain such 1F solutions,
we have first carried out reflection-symmetric Q20-constrained
calculations. Subsequently, for each value of the quadrupole
moment the octupole degree of freedom has been explored
by constraining on a large value of Q30 and then releasing
the constraint to reach the lowest energy solution. Note
that constraints with higher multipolarities are not explicitly
included in these calculations but, as it corresponds to a
self-consistent calculation, the density profile (and therefore
the mean value of the multipole moments) is determined as to
minimize the energy. The only drawback of this procedure is
that with our representation of the energy it is a mere projection
of a multidimensional path. As a consequence, kinks and
multiple branches are common in this type of representation
(the 2F quasifusion solution is an example). To help interpret
the multidimensional energy surface, the values of Q30 and
Q40 (to be discussed below) are very helpful.

Coming back to the figure, the three Gogny-EDFs provide
1F curves with rather similar shapes. The ground state is
located at Q20 = 14 b, while a first fission isomer appears
at Q20 = 42 b. Using the energies EHFB + �EROT, we have
obtained (without triaxiality) the inner barrier heights 9.90,
9.42, and 9.47 MeV with the D1S, D1N, and D1M parametriza-
tions, respectively. Those values, for D1S and D1N, are in
agreement with the values 20 and 18.4 MeV, respectively [62],
of the surface energy coefficient in nuclear matter as . In
a semiclassical picture of fission, the energy as a function
of the driving coordinate (elongation) is the result of the
competition between the increasing surface energy (governed
by the as value) and the decreasing Coulomb repulsion, which
is independent of the nuclear interaction. Unfortunately, the
value of as is not available in the literature for D1M. The
excitation energies of the first fission isomers are 2.66, 2.79,
and 3.61 MeV for D1S, D1N, and D1M, respectively. This
quantity is associated with shell effects and it is usually
believed to be strongly correlated with pairing correlations.
Another noticeable feature from Fig. 1(a) is the emergence of
a second fission isomer around Q20 = 86 b with its associated
third fission barrier. As discussed in Sec. III C, such second
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FIG. 1. (Color online) The HFB plus the zero-point rotational
energies obtained with the D1S, D1N, and D1M EDFs are plotted in
panel (a) as functions of the quadrupole moment Q20 for the nucleus
240U. For each EDF, both the one-fragment (1F) and two-fragment
(2F) solutions are included in the plot. The pairing interaction energies
are depicted in panel (b) for protons (thick lines) and neutrons (thin
lines). The octupole and hexadecapole moments corresponding to the
1F and 2F solutions are given in panel (c). The collective masses
obtained within the ATDHFB approximation are plotted in panel (d).
For more details, see the main text.

fission isomers are also found in the 1F curves of several
uranium isotopes regardless of the Gogny-EDF employed [18].
Coming back to the second fission barrier, its height takes
the values 8.41, 8.91, and 10.21 MeV, for D1S, D1N, and
D1M, respectively. In this case, the trend observed in Ref. [71]
relating the height of the second barrier with as (larger as

leads to larger barrier heights) is not fulfilled. A possible
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explanation is that at such large elongation the exchange
properties of the interactions are more relevant than the surface
properties. For the largest values of the quadrupole moment,
the D1S and D1N curves show a similar decline owing to
the decreasing of Coulomb repulsion. In this region the D1S
curve is a couple of MeV lower in energy than D1N. This
is not consistent with the behavior observed in Ref. [71] for
D1 and D1S and attributed there to the as values of the two
interactions. For D1, with an as coefficient 1.2 MeV larger
than D1S, the HFB energy was around 10 MeV higher than
for D1S. Finally, D1M shows a gentler decline than the ones
provided by the D1N and D1S functionals. This points to
a larger value of as than for D1N and D1S but the first
barrier height values point in the opposite direction of a lower
surface energy coefficient for D1M. These results do not follow
the neat trend observed in Refs. [17,71] in the comparison
between the D1 and D1S parametrizations. This problem
deserves further study, although a possible explanation is
that the properties of the region beyond the first barrier
are driven by quantum effects (exchange and shell effects)
rather than macroscopic properties like the surface energy
coefficient as .

In Fig. 2, the 1F EHFB + �EROT energies obtained in
the axially symmetric calculations for the nucleus 240U are
compared with the ones obtained in the framework of triaxial
calculations (see Ref. [65] for a thorough discussion of the
framework and results with D1M). The curves depicted corre-
spond to the D1M parametrization only, but similar results are
obtained for the other parametrizations. The inclusion of the γ
degree of freedom leads to the lowering of the energies in the
18b � Q20 � 32b range with γ = 12◦ being the largest value
in the region. Compared with the axially symmetric one (i.e.,
9.47 MeV) the height 7.51 MeV of the triaxial inner barrier in
240U displays a reduction of 1.96 MeV.
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FIG. 2. (Color online) The HFB plus the zero-point rotational
energies obtained in the framework of axially symmetric calculations
(black thin curve), based on the Gogny-D1M EDF, for the nucleus
240U are compared with the ones provided by triaxial calculations (red
thick curve). Results are shown for configurations around the inner
fission barrier (see Fig. 1).

Coming back to Fig. 1(a), very steep curves labeled
D1S(2F), D1N(2F), and D1M(2F) are depicted. They cor-
respond to solutions with two well-separated fragments and
their energy corresponds to the quasifusion channel for
the corresponding fragments. These 2F solutions can be
reached, starting from the 1F ones, by constraining the
hexadecapole moment Q̂40 [17,24]. Alternatively, one can
resort to a constraint in the mean value of the necking
operator Q̂Neck(z0,C0) [23,38]. For the nucleus 240U, the 2F
curves seem to intersect the 1F ones around Q20 = 130 b
and exhibit a quasilinear decrease in energy for increasing
values of the quadrupole moment [38]. The intersection of
the 1F and 2F curves appears as a consequence of projecting
multidimensional paths into a one-dimensional plot. Actually,
there is a minimum action path with a ridge connecting the
1F and 2F curves in the collective space. As the determination
of this path is quite cumbersome and its contribution to the
action Eq. (3) is small, we have neglected its contribution to
the action. Within this approximation we take the 2F curves,
for which the charge and mass of the fragments lead to the
minimum energy, as really intersecting the 1F ones. In practice,
we have obtained the 2F curves by constraining the number of
particles in the neck of the parent nucleus to a small value
and then releasing the constraint in a self-consistent HFB
calculation. To asses the stability of the procedure a set of
calculations with different values of the neck parameters z0

and C0 [38] is performed to make sure that the same minimum
is always reached. The steep decrease in the energy of the
2F solutions is a consequence of the direct relationship that
exists in this case between Q20 and the fragments’ separation
distance R. As the quadrupole moment of a 2F solution
increases, the shape of the fragments remains more or less the
same but the distance R between them increases, decreasing
the Coulomb repulsion between fragments and leading to the
observed decrease of the energy [17,97].

The proton and neutron pairing interaction energies Epp =
−1/2Tr (�κ∗), are shown in Fig. 1(b). In the three cases, they
follow the same trend as functions of the quadrupole moment,
being smaller for neutrons (protons) with the D1M (D1N)
parametrization. In all cases, the neutron pairing energies
display minima at Q20 = 0 b around the top of the inner and
second fission barriers as well as around the second fission
isomer. However, Epp exhibits maxima around Q20 = 18 and
50 b, respectively.

The octupole and hexadecapole moments are depicted, as
functions of Q20, in Fig. 1(c). The values obtained with the
three Gogny-EDFs can hardly be distinguished from each
other. However, it is also apparent from the figure that the
moments corresponding to the 1F [i.e., Q30(1F) and Q40(1F)]
and 2F [i.e., Q30(2F) and Q40(2F)] curves are quite different,
reflecting the separation of the paths in the multidimensional
space of parameters.

The collective masses BATDHFB are plotted in Fig. 1(d).
Their evolution, as functions of Q20, is well correlated
with the one of the pairing interaction energies shown in
Fig. 1(b). A similar pattern is found for the GCM masses
(not shown in the plot), though their values are always
smaller than the ATDHFB ones. For example, for Q20 = 18 b
we have obtained the ratios BATDHFB/BGCM = 1.97, 1.98,
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FIG. 3. (Color online) Density contour plots for the nucleus 240U at the quadrupole deformations Q20 = 80 b [panel (a)] and Q20 = 138 b
[panels (b) and (c)]. The density profiles in panels (a) and (b) correspond to 1F configurations, while the one in panel (c) represents a 2F
solution. Results are shown for the parametrization D1M of the Gogny-EDF. Densities are in units of fm−3 and contour lines at drawn at 0.01,
0.05, 0.10, and 0.15 fm−3.

and 1.85 for the D1S, D1N, and D1M parametrizations,
respectively.

With all the previous ingredients at hand, we have computed
the spontaneous fission half-lives using Eq. (2). Because we
take the 1F and 2F curves as intersecting ones and do not
include the effect of triaxiality on the inner barriers, our tSF

values should be regarded as lower bounds [38] to the real
values. For the nucleus 240U, we have obtained (E0 = 1.0
MeV) tSF = 2.612 × 1027 s, 2.161 × 1035 s, and 3.215 × 1042

s in the framework of the ATDHFB scheme for the D1S,
D1N, and D1M parametrizations, respectively. The large
differences in the predicted fission half-lives can be attributed
to the differences in the fission paths and ATDHFB masses
provided by the considered EDFs. To disentangle the different
contributions, we have taken the D1S fission path and the D1N
(D1M) ATDHFB mass to obtain 6.1 × 1026 s (1.5 × 1024 s)
instead of the nominal value 2.612 × 1027 s. We conclude
that the main effect is to be attributed to the different fission
paths. The impact of the wiggles in the masses has also been
estimated by replacing the mass with a smoothed-out mass
(using a three-point filter) and the half-life changes with a
factor 1.2, which is irrelevant in the present context. Using
the GCM inertias, we obtain (again, E0 = 1.0 MeV) smaller
values tSF = 4.089 × 1020, 3.764 × 1026, and 3.552 × 1032 s.
Larger ATDHFB tSF values as compared with the GCM
ones is, as discussed in Sec. III C, a general trend for all
the studied uranium isotopes regardless of the particular
functional employed. We thus see how the differences in the
ATDHFB and GCM masses can have a strong impact on our

predictions for fission observables. This is the reason why,
for each Gogny-EDF, both kinds of collective masses have
been considered in the computation of the spontaneous fission
half-lives. However, increasing E0 leads to smaller tSF values
in either the ATDHFB or the GCM frameworks (see below for
a more quantitative assessment of the effect).

Finally, the density contour plots corresponding to the
nucleus 240U at the quadrupole deformations Q20 = 80 and
138 b are shown in Figs. 3(a), 3(b), and 3(c). Results are
shown only for the Gogny-D1M EDF but similar ones have
been obtained for the other parametrizations. For Q20 = 138 b
two plots are presented corresponding to 1F and 2F solutions,
respectively. The 2F solution in Fig. 3(c) consists of a spherical
132Sn fragment plus an oblate and slightly octupole deformed
108Mo fragment with β2 = −0.22 and β3 = 0.03 (referred
to the fragment’s center of mass). As we see in Sec. III C,
oblate deformed fragments also appear as a result of fissioning
other uranium isotopes. Similar results have been obtained
in a recent study [38] based on the BCPM-EDF [37]. They
deserve further analysis, as it is usually assumed [12,13] that
fission fragments only exhibit prolate deformations. In our
calculations, the deformed oblate fragment acquires this shape
to minimize a large Coulomb repulsion of 195.19 MeV. The 2F
solution shown is the one that minimizes the energy with the
given quadrupole constraint. This does not necessarily mean
that this is the configuration obtained after scission. In fact, it
is observed experimentally that the mass number of the heavy
fragment is close to 140 instead of the 132Sn obtained as the
minimum energy solution. Successful theories of scission [98]
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R. RODRÍGUEZ-GUZMÁN AND L. M. ROBLEDO PHYSICAL REVIEW C 89, 054310 (2014)

postulate that the breaking of the nucleus takes place when
the neck between fragments reaches some critical value. If
we consider the rupture point as the position where the neck
reaches its smallest width, we obtain for the heavy fragment
the values Z = 51.9 and N = 84.5, which are close to Z = 50
and N = 82 of 132Sn but lead to a mass of 136.4, which is
closer to the experimental value. It has to be stressed that the
values obtained should be taken as an approximation to the
peaks of the mass distribution of the fragments. Obviously,
to reproduce the broad mass fragment distribution observed
experimentally, a dynamical theory considering the quantum
mechanic evolution like, for instance, the one of Ref. [99] is
required.

B. Heavy nuclei with known experimental data

In this section, the results obtained with the Gogny-D1M
EDF for the set of nuclei 232–238U, 238–244Pu, 240–248Cm,
250,252Cf, 250–256Fm, 252–256No, 256–260Rf, 258–262Sg, 264Hs,
and 286Fl are discussed. The selected nuclei correspond to
those where experimental data are available [87–89]. Previous
theoretical results, based on the parametrization D1S, have
already been presented in Refs. [18,23,25].

In Table I, we compare the predicted heights for the inner
B th

I and outer B th
II barriers as well as the excitation energies Eth

II
of the fission isomers with the experimental ones B

exp
I , B

exp
II ,

and E
exp
II [87,88]. The theoretical values have been obtained

from the corresponding energies EHFB + �EROT by looking
at the energy differences between the ground-state energy and
the energies of the corresponding maxima and minima. The
axial B th

I values are larger than the experimental ones [87],
reaching a maximal deviation B th

I − B
exp
I = 4.88 MeV in

248Cm. To explore the impact of the γ degree of freedom,
for all the nuclei reported in Table I, we have performed
triaxial calculations for configurations with 10b � Q20 � 40b.
The parameter γ takes on the values 0◦ � γ � 12◦ in this
range of quadrupole deformations. As can be seen from
panels (a) to (n) of Fig. 4 and the numerical values given
in parentheses in the table, the triaxial inner barriers are
systematically lower than the axial ones by up to 3.18 MeV
in 248Cm. They also display the position of the top of the
barrier shifted to higher quadrupole deformations. The triaxial
heights still overestimate the experimental ones. However,
having in mind that the Gogny-D1M EDF has not been
fine tuned to fission data and the large uncertainties in the
extraction of the experimental inner barrier heights (a 1-MeV
error bar is usually presumed), it is more important that the
global trend observed in the experiment and other theoretical
models (see, for example, Refs. [26,33,38] and references
therein) is reasonably well reproduced. The D1M values for
B th

I are consistent with the ones obtained in the framework of
Gogny-D1S calculations [18].

In the case of the outer barriers, the inclusion of reflection-
asymmetric shapes leads to a reduction of a few MeV.
However, we still observe deviations of up to B th

II − B
exp
II =

4.75 MeV with respect to the experimental data. As no
significant effects are expected from triaxiality our results,
as well as previous Gogny-D1S results [18], seem to indicate
that other effects not related to the mass moments may be

TABLE I. The heights of the inner B th
I and second B th

II barriers
as well as the excitation energies Eth

II of the fission isomers,
predicted with the Gogny-D1M EDF, are compared with the available
experimental values B

exp
I , B

exp
II , and E

exp
II [87,88]. The B th

I values
obtained in the framework of triaxial calculations are given in
parentheses. All the theoretical results have been obtained from the
rotational corrected HFB energies. For more details, see the main
text.

Nucleus B th
I B

exp
I Eth

II E
exp
II B th

II B
exp
II

234U 7.60 4.80 3.32 – 8.09 5.50
(7.01)

236U 8.33 5.00 3.17 2.75 8.69 5.67
(7.00)

238U 9.06 6.30 3.37 2.55 9.54 5.50
(7.46)

238Pu 8.77 5.60 3.20 2.40 7.75 5.10
(7.66)

240Pu 9.45 6.05 3.36 2.80 8.57 5.15
(7.70)

242Pu 9.90 5.85 3.57 2.20 9.18 5.05
(7.67)

244Pu 10.16 5.70 3.83 – 9.60 4.85
(7.42)

240Cm 8.98 – 2.55 2.00 6.13 –
(7.87)

242Cm 9.78 6.65 2.77 1.90 6.99 5.00
(8.31)

244Cm 10.38 6.18 3.02 2.20 7.70 5.10
(8.27)

246Cm 10.75 6.00 3.29 – 8.13 4.80
(8.03)

248Cm 10.68 5.80 3.32 – 8.28 4.80
(7.50)

250Cf 11.38 – 2.81 – 7.09 3.80
(8.25)

252Cf 10.96 – 1.37 – 6.79 3.50
(8.07)

required to further decrease the predicted B th
II values. Whether

it is the pairing degree of freedom or effects associated with
symmetry restoration or the collective dynamics is something
that remains to be explored. However, we have to keep in mind
the model-dependent character of the experimental data for
outer barriers heights that makes those quantities less reliable
than the corresponding fission half-lives for a comparison with
theoretical values. In the case of the fission isomer excitation
energy, the largest difference observed Eth

II − E
exp
II =1.37 MeV

occurs for 242Pu.
In Fig. 5 we compare the Gogny-D1M tSF values, ob-

tained for the nuclei 232–238U, 240Pu, 248Cm, 250Cf, 250–256Fm,
252–256No, 256–260Rf, 258–262Sg, 264Hs, and 286Fl within the
GCM and ATDHFB schemes, with the experimental data [89].
Results are shown for E0 = 0.5, 1.0, 1.5, and 2.0 MeV,
respectively (see Sec. II). The effect of triaxiality has not
been taken into account in the calculations. The experimental
fission half-lives expand a range of 27 orders of magnitude. The
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FIG. 4. (Color online) The HFB plus the zero-point rotational energies obtained in the framework of axially symmetric calculations (black
thin curve), based on the Gogny-D1M EDF, for the nuclei 234–238U, 238–244Pu, 240–246Cm, and 250,252Cf are compared with the ones provided by
triaxial calculations (red thick curve). Results are shown for configurations around the inner fission barrier.

theoretical predictions display a larger variability depending
on whether the GCM or ATDHFB scheme is used as well as
on the E0 parameter. For example, differences of up to 12, 9, 7,
and 5 orders of magnitude occur in 232–238U, 238–244Pu, 248Cm,
and 250Cf, for E0 = 0.5 MeV. Such differences become smaller
for the heavier Fm, No, Rf, Sg, Hs, and Fl nuclei. However,
increasing E0 leads to smaller tSF in either of the two schemes.
This reduction is particularly pronounced in the case of nuclei
with higher and wider fission barriers. It is satisfying to observe
that both the GCM and the ATDHFB Gogny-D1M schemes
capture the large reduction of tSF observed experimentally
when going from 232U to 286Fl.

The comparison along isotopic chains reveals that the
trend with neutron number is also reasonably well de-
scribed. For the nuclei depicted in Fig. 5, both our Gogny-
D1M and previous [23,25] Gogny-D1S calculations exhibit
a similar trend as a function of the fissibility parame-
ter Z2/A. However, larger E0 values are required in our
case to improve the comparison with the experimental
data. This is not surprising, as in most cases the Gogny-
D1M 1F curves display a gentler decline for the largest
deformations.

The proton (Z1,Z2), neutron (N1,N2), and mass (A1,A2)
numbers of the 2F solution leading to the minimum energy for
a given quadrupole moment and corresponding to the nuclei
238–244Pu, 248Cm, 250,252Cf, 250–256Fm, 252–256No, 256–260Rf,
258–262Sg, 264Hs, and 286Fl are shown in Fig. 6, as functions of
the fissibility parameter Z2/A of the parent nucleus. Fragment
properties have been obtained from the 2F solutions and
for the largest Q20 values available as to guarantee that
those properties are nearly independent of the quadrupole
moment (which is equivalent to the fragment’s separation for
2F solutions) considered. In our calculations, the proton and
neutron numbers in the fragments are mostly dominated by the
Z = 50 and N = 82 magic numbers. Experimentally [90,91],
the average masses AH of the heavy fission fragments in
238–244Pu, 248Cm, 250,252Cf, and 254,256Fm are nearly constant
with a value around AH = 140 and deviations of 1 or 2 mass
units. As mentioned before, the 2F solution discussed here is
determined by the minimum energy requirement and according
to several models of scission this is not necessarily the
configuration obtained after the breakup of the parent nucleus.
In the previous section, we briefly mentioned that if the
breakup point is taken as the point where the well-developed
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FIG. 5. (Color online) The spontaneous fission half-lives tSF ob-
tained for the nuclei 232–238U, 240Pu, 248Cm, 250Cf, 250–256Fm, 252–256No,
256–260Rf, 258–262Sg, 264Hs, and 286Fl within the GCM and ATDHFB
schemes are depicted as functions of the fissibility parameter Z2/A

and compared with the corresponding experimental data [89]. The
theoretical results, based on the Gogny-D1M EDF, are shown for
E0 = 0.5, 1.0, 1.5, and 2.0 MeV, respectively. For more details, see
the main text.

neck attains its minimum width, then the mass distribution
becomes closer to the experimental values. However, a more
microscopic model including quantum-mechanical effects like
the one of Ref. [99] should be used for a sounder theoretical
description. Because this kind of dynamical model is very
involved computationally we do not dwell on this and we
just keep in mind that the mass distribution of the two
fragments leading to the minimum energy at the HFB level
underestimates the mass of the heavier fragment by a few units.
In addition to this general consideration, we can encounter
locally examples where our model is not able to reproduce
the delicate balance between macroscopic and shell effects
that lead, for example, to mass asymmetric splittings in the
heavy Fm isotopes. As an example, let us mention that a
symmetric splitting is obtained in 256Fm in disagreement with
the rather large mass asymmetry AL/AH = 112/141 observed
experimentally. Similar results have been obtained in previous
calculations with the Gogny-D1S EDF [23]. However, the ratio
AL/AH = 124/136 predicted for 260Rf coincides with the one
reported in Ref. [23].

To summarize the conclusions of this section, it has
been shown that in spite of large theoretical uncertainties
in the choice of the models to describe the relevant quan-
tities, the Gogny-D1M [63] HFB framework provides a
reasonable description of the tendencies with mass number
of the physical observables. This validates the use of this
parametrization to study the systematics of fission paths
and other relevant quantities in the isotopes 232–280U that
is presented in the next section. Results obtained with the
D1S and D1N parameter sets are also discussed to quan-
tify the typical uncertainties associated with the employed
Gogny-EDF.
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FIG. 6. (Color online) In panel (a), the proton (Z1,Z2), neutron
(N1,N2), and mass (A1,A2) numbers of the two fragments resulting
from the fission of 238–244Pu, 248Cm, 250,252Cf, 250–256Fm, 252–256No,
256–260Rf, 258–262Sg, 264Hs, and 286Fl [see panel (b)] are shown as
functions of the fissibility parameter Z2/A in the parent nucleus.
Results have been obtained with the Gogny-D1M EDF. The magic
proton Z = 50 and neutron N = 82 numbers are highlighted with
dashed horizontal lines to guide the eye.

C. Systematics of fission paths, spontaneous fission half-lives,
and fragment mass in uranium isotopes

In Figs. 7, 8, and 9 we have plotted the energies EHFB +
�EROT, obtained with the D1S, D1N, and D1M Gogny-EDFs,
for the nuclei 232–256U [panel (a)] and 258–280U [panel (b)]. Both
the 1F (solid lines) and 2F (dashed lines) curves are shown in
the plots. Starting from 232U (258U) in panel (a) [in panel (b)]
all the curves have been successively shifted by 15 MeV to
accommodate them in a single plot. Before commenting on
more quantitative aspects of the results it is worth noticing
that, regardless of the functional employed, the shapes of the
1F and 2F curves in 232–280U look rather similar, pointing to
equivalent liquid-drop and shell-effect properties of the three
EDFs considered.

As the neutron number increases, we observe a gradual
decrease in the deformations corresponding to the absolute
minima of the 1F curves in Figs. 7, 8, and 9 reaching the
value Q20 ≈ 4 b in the heavier isotopes. The nonzero Q20

value of the ground-state minimum in 270–280U is a direct
consequence of the rotational energy correction that shifts
spherical HFB minima to nonzero quadrupole moments, as it
has already been documented in several regions of the nuclear
chart [66,67,70,78]. If just the HFB energy is considered, these
nuclei have a spherical intrinsic state consequence of neutron
numbers close to N = 184 that is predicted to be a magic
number in our calculations (see below).

An increase in the height of the inner fission barriers and
the widening of the 1F curves is noticed in all the considered
Gogny-EDFs as the two-neutron drip line is approached. As a
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FIG. 7. The HFB plus the zero-point rotational energies obtained with the Gogny-D1S EDF are plotted in panel (a) for the nuclei 232–256U
and in panel (b) for the nuclei 258–280U as functions of the quadrupole moment Q20. Both the one-fragment (1F) and two-fragment (2F) solutions
are shown in the plot with continuous and dashed lines, respectively. Starting from 232U (258U) in panel (a) [panel (b)] all the curves have been
successively shifted by 15 MeV to accommodate them in a single plot. Note that the energy scales span different ranges in each panel. For
more details, see the main text.

consequence, an increase in the spontaneous fission half-lives
for the heavier uranium isotopes is expected. The existence of
second fission isomers in several of the considered nuclei is
also worth mentioning. For example, in 240–252U they exhibit
quadrupole deformations Q20 ≈ 86–96 b. The second fission
isomers are also visible in the 1F curves of heavier isotopes,
though in some cases the situation is not as well defined owing
to the presence of several shallow minima. Similar results have
been recently obtained with the BCPM-EDF [38].

To explore the role of the γ degree of freedom, we have
performed Gogny-D1M triaxial calculations, for the isotopes
232–240,248,254,260,272–280U. The corresponding results for 240U
and 234–238U have already been shown in Figs. 2 and 4,
respectively, but they are included again in Fig. 9 for the sake
of completeness. For the heavier nuclei 248,254,260,272–280U, we
have performed triaxial calculations for 4b � Q20 � 50b, with
γ = 20◦ being the largest value considered. The corresponding
energies are shown in Fig. 9 and thin lines visible in the
neighborhood of the first fission barrier.

To better understand the trends in binding energies for the
uranium isotopes, the two-neutron separation energies (S2N )
are plotted in Fig. 10 for the three sets of calculations. We
observe that whereas the D1N and D1M S2N are rather similar,

the D1S values are typically 1 MeV lower than the previous
ones. These low values for D1S were reported in previous
large-scale calculations [80] and show up as a systematic drift
in the differences between the experimental and theoretical
binding energies in heavy nuclei. In fact, the effort to correct
this drift in the quest for an accurate mass table based on
the Gogny-EDF led to the proposal of both D1N [62] and
D1M [63]. Previous studies [62,63,65,82–85] suggest that,
while improving the description of nuclear masses, both the
D1N and the D1M sets still have the same essential predictive
power to describe low-energy nuclear structure properties as
the Gogny-D1S EDF. Nevertheless, more calculations are still
required to substantiate this conclusion. The main features
observed in the S2N are the plateau between N = 166 and
N = 174 and the sudden drop at N = 186 that signals the
magic number character of N = 184.

In Fig. 11 the excitation energies of the first EI fission
isomers are plotted along with the first barrier height BI in
panel (a). In panel (b) the same quantities, but referred to
the second isomeric well, are shown. The results for the
three EDFs show a similar behavior with neutron number
for the first barrier height BI. A sudden drop is observed at
N = 164 that is correlated with the plateau observed in the
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FIG. 8. The same as Fig. 7 but for the Gogny-D1N EDF.

S2N plot. The excitation energies of the first fission isomer
remain more or less constant with a value around 3 MeV up
to N = 164, where they show a change of tendency and start
to increase linearly with neutron number. At N = 184 there
is a sudden drop accompanied by a drop in BI characteristic
of the filling of a new major shell. As previously mentioned,
for D1M triaxial calculations in the neighborhood of the inner
fission barriers have been carried out. Triaxiality reduces the
BI by 0.55, 0.59, 1.33, 1.60, and 1.96 MeV in the case of
232–240U, respectively. In spite of this reduction, the theoretical
predictions still overestimate the experimental data [87,88] for
234–238U (see, also Table I). However, the axial barrier heights
8.30, 8.02, 8.44, 12.71, 13.32, 13.94, 11.42, and 9.54 MeV in
the nuclei 248,254,260,272–280U are reduced by 2.70, 1.75, 0.56,
1.33, 0.86, 1.04, 1.01, and 0.88 MeV, respectively.

For the second isomeric well the behavior is more erratic
and we can even observe the lack of second isomeric well in
some nuclei. It is also worth noticing the similar predictions
for BII from the three EDFs and the large dispersion in the
predicted EII values.

With all the previous ingredients at hand, we have computed
the spontaneous fission half-lives [Eq. (2)] for the considered
uranium isotopes. The effect of triaxiality is not taken into
account in the calculations. The tSF values, predicted within
the GCM and ATDHFB schemes, are plotted in Fig. 12 as a
function of the neutron number. Results have been obtained
with the Gogny-D1S [panel (a)], Gogny-D1N [panel (b)], and

Gogny-D1M [panel (c)] EDFs. For each parametrization, we
have carried out calculations with E0 = 0.5, 1.0, 1.5, and
2.0 MeV, respectively. The experimental tSF data for 232–238U
are included in the plot.

The tSF values predicted within the ATDHFB approxima-
tion are always larger than the GCM ones for a given E0.
For example, for E0 = 0.5 MeV, differences of up to 12
orders of magnitude are obtained for the lighter isotopes.
Such differences increase with increasing neutron number
reaching 23, 31, and 26 orders of magnitude in the nucleus 276U
with the parametrizations D1S, D1N, and D1M, respectively.
Increasing E0 leads always to a decrease in tSF. It is satisfying
to observe that all the parametrizations lead to the same
trend in tSF, even though D1M provides the largest absolute
values in half-lives and, as discussed in Sec. III B, larger
E0 values are required to improve the agreement with the
available experimental data. This is a consequence of the
shape of the 1F curves provided by the Gogny-D1M EDF
for the considered uranium isotopes that are wider than for the
other EDFs. Regardless of the EDF employed, we observe a
steady increase in the spontaneous fission half-lives for neutron
numbers N � 166, reaching a maximum at N = 184, which
is predicted to be a magic neutron number in our calculations.

In Fig. 12, we have also plotted the α-decay half-lives
computed with a parametrization [95] of the Viola-Seaborg
formula [59] Eq. (9). To this end, we have used the binding
energies obtained for the corresponding uranium and thorium
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FIG. 9. The same as Fig. 7 but for the Gogny-D1M EDF. The energies obtained in the framework of triaxial calculations for the nuclei
232–240,248,254,260,272–280U (labeled as γ ) are also included in the plot.

isotopes [see, Eq. (10)]. Here we stress that, at variance
with the Gogny-D1S [17], both the D1N [62] and D1M [63]
parametrizations have been tailored to give a better description
of the nuclear masses and therefore their α-decay half-lives
are expected to be much more realistic than the D1S ones.
In all cases, a steady increase is observed in tα as a function
of the neutron number. Though the precise value depends on
the selected EDF (i.e., N = 144 for D1S, N = 150 for D1N,
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FIG. 10. (Color online) Two-neutron separation energies S2N as
a function of neutron number.

and N = 156 for D1M), it is clearly seen that, for increasing
neutron number, fission turns out to be faster than α decay.

Our predictions compare well with the semiclassical results
of Ref. [100] using the Extended Thomas-Fermi method for a
Skyrme interaction. In that calculation very high barriers are
predicted for N = 184 in the uranium isotopic chain contrary
to some liquid-drop models. The barrier heights in those
neutron-rich nuclei are correlated to the surface symmetry
energy coefficient ass , an effect that deserves further study for
the Gogny class of energy functionals.

The proton (Z1,Z2), neutron (N1,N2), and mass (A1,A2)
numbers of the 2F solutions for 232–280U are shown in Fig. 13
as functions of the neutron number of the parent nucleus.
Results have been obtained with the Gogny-D1S [panel (a)],
Gogny-D1N [panel (b)], and Gogny-D1M [panel (c)] EDFs.
Except for the nuclei 262–266 U, the neutron number in one of the
fragments always corresponds to the magic number N = 82,
while for the other fragment it increases as a function of the
neutron number in the parent nucleus. The proton number
in one of the fragments is always close to the magic one
Z = 50 for 232–248U and 268–280U, which, in the case of the
light isotopes, agrees well with the experiment [101]. It also
varies almost linearly with the neutron number in the parent
nucleus, except for 238–244U (it stabilizes at Z = 50) and 256U
(symmetric splitting). Note that a symmetric splitting is also
predicted for the nuclei 262,264U with the three EDFs. However,
both the D1S and D1M parametrizations provide for 266U a

054310-13
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FIG. 11. (Color online) Excitation energies EI (EII) and fission
barrier heights BI (BII) for the first (second) well are shown in panels
(a) [(b)].

symmetric splitting while a small difference in the neutron
and proton numbers of the two fragments is obtained with
the Gogny-D1N EDF. The relevance of magic numbers in the
fragment mass distribution is not surprising because it has been
obtained by using a minimum of the energy criteria. Therefore,

as discussed previously, they are not directly comparable to the
real fission mass distribution.

We have also studied the evolution of the shapes in the
fission fragments. A typical outcome of our calculations is
shown in Fig. 14, where the density contour plots for the
nuclei 234U [panel (a)], 256U [panel (b)], and 280U [panel (c)]
are plotted at quadrupole deformations (Q20 = 150, 150,
and 220 b, respectively), corresponding to 2F solutions of
the HFB equations (see Fig. 9). Results are shown for the
parametrization D1M, but similar ones are obtained for the
other Gogny-EDFs. The lighter (heavier) fragment in 234U
(280U) is predicted to be oblate and slightly octupole deformed
with β2 = −0.22 and β3 = 0.02. However, for the isotope 256U
we have obtained two identical fragments with β2 = −0.02
and β3 = 0.01. As already mentioned in Sec. III A, the appear-
ance of oblate fragments in our calculations deserves further
attention as fission fragments are usually assumed [12,13] to
be prolate deformed.

The results discussed in this section, show that the same
trends are obtained with the D1S, D1N, and D1M parametriza-
tions. This gives us confidence in the robustness of our
predictions with respect to the version of the Gogny-EDF
employed. In particular, from the previous results and the ones
discussed in Sec. III B, we conclude that the Gogny-D1M
EDF represents a reasonable starting point to describe fission
properties in the isotopes 232–280U and other heavy nuclei.
With this in mind, we proceed to explicitly discuss the impact
of pairing correlations in the next Sec. III D.

D. Varying pairing strengths in uranium isotopes

In this section, we discuss the impact of the strength
of pairing correlations on the predicted spontaneous fission
half-lives and other relevant fission properties in 232–280U.
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FIG. 12. (Color online) The spontaneous fission half-lives tSF, predicted within the GCM and ATDHFB schemes, for the isotopes 232–280U
are depicted as functions of the neutron number. Results have been obtained with the Gogny-D1S [panel (a)], Gogny-D1N [panel (b)], and
Gogny-D1M [panel (c)] EDFs. For each parametrization, calculations have been carried out with E0 = 0.5, 1.0, 1.5, and 2.0 MeV, respectively.
The experimental tSF values for the nuclei 232–238U are included in the plot. In addition, α-decay half-lives are plotted with short-dashed lines.
For more details, see the main text.
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FIG. 13. (Color online) The proton (Z1,Z2), neutron (N1,N2), and mass (A1,A2) numbers of the two fragments resulting from the fission of
the isotopes 232–280U are shown as functions of the neutron number in the parent nucleus. Results have been obtained with the Gogny-D1S [panel
(a)], Gogny-D1N [panel (b)], and Gogny-D1M [panel (c)] EDFs. The magic proton Z = 50 and neutron N = 82 numbers are highlighted with
dashed horizontal lines to guide the eye.

To this end, we have carried out self-consistent calculations
with a modified Gogny-D1M EDF, in which a multiplicative
factor η has been introduced in front of the HFB pairing
field �kl [6]. The corresponding pairing interaction energy
reads

Epp(η) = −η

2
Tr(�κ∗). (11)

For simplicity, we have considered the same η factor for both
protons and neutrons. In addition to the normal Gogny-D1M
EDF (i.e., η = 1), calculations have then been carried out with
η = 1.05 and 1.10, respectively. Our main reason to consider

different pairing strengths is that they are key ingredients in the
computation of both the collective masses and the zero-point
energies. For example, it has already been shown [42,43] that
the collective mass is inversely proportional to some power of
the pairing gap, i.e., the stronger the pairing correlations are
the smaller the collective masses become. Similar η factors
have been recently used in Ref. [38] as well as to describe
pairing and rotational properties of actinides and superheavy
nuclei in the framework of the RMF approximation (see, for
example, Ref. [36] and references therein).

A typical outcome of our calculations is shown in Fig. 15(a),
where we compare the three fission profiles obtained for
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FIG. 14. (Color online) Density contour plots for the nuclei 234U [panel (a)], 256U [panel (b)], and 280U [panel (c)]. The density profiles
correspond to 2F solutions at the quadrupole deformations Q20 = 150, 150, and 220 b, respectively. Results are shown for the parametrization
D1M of the Gogny-EDF. The density is in units of fm3 and contour lines correspond to densities 0.01, 0.05, 0.10, and 0.15 fm−3.
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FIG. 15. (Color online) The HFB plus the zero-point rotational
energies obtained with the normal (η = 1.00) and modified (η = 1.05
and 1.10) Gogny-D1M EDFs are plotted in panel (a) as functions
of the quadrupole moment Q20 for the nucleus 240U. For each η

value, both the one-fragment (1F) and two-fragment (2F) solutions
are included in the plot. The pairing interaction energies are depicted
in panel (b) for protons (thick lines) and neutrons (thin lines). The
octupole and hexadecapole moments corresponding to the 1F and
2F solutions are given in panel (c). The collective masses obtained
within the ATDHFB approximation are plotted in panel (d). For more
details, see the main text.

the nucleus 240U using the normal (η = 1.00) and modified
(η = 1.05 and 1.10) Gogny-D1M EDFs. For each η value, both
the 1F and the 2F solutions are included in the plot. Except for
the corresponding energy shifts, the 1F and 2F curves in 240U
and all the other uranium isotopes exhibit rather similar energy
shapes. The ground state in 240U located around Q20 = 14 b
and its deformation decreases with increasing η. Increasing the
pairing strength by 5% and 10%, we gain 1.11 and 2.29 MeV
in binding energy, respectively. These quantities have to be
compared to the HFB pairing correlation energy of 1.92 MeV
obtained by subtracting the HFB energy to the Hartree-Fock
one. We observe an increase of around 60% in correlation
energy for η = 1.05, which is consistent with the exponential
dependence of the correlation energy on the pairing strength.
In spite of the large impact on correlation energies other
quantities considered to fix the pairing strength like two
neutron separation energies do not change significantly when
η is increased justifying the range of η values considered.
However, the heights of the inner barriers (8.76 MeV for
η = 1.05 and 8.00 MeV for η = 1.10) display a reduction of
720 KeV and 1.47 MeV when compared to the one obtained
using the normal Gogny-D1M EDF. The excitation energy of
the first fission isomer, located at Q20 = 42 b, is lowered by
50 KeV (η = 1.05) and 140 KeV (η = 1.10).

The proton (dashed lines) and neutron (solid lines) pairing
interaction energies are depicted in Fig. 15(b). They display
similar trends as functions of the quadrupole moment though,
as expected, they become larger with increasing η values. Con-
cerning the multipole moments Q20(1F), Q30(1F), Q20(2F),
and Q30(2F) shown in panel (c), one observes that they lie on
top of each other, for all the considered η values.

In Fig. 15(d), the collective inertia BATDHFB is depicted. The
behavior as a function of the quadrupole moment is similar in
the three cases but the actual values are clearly correlated
with the η factor. This is a direct consequence of the inverse
dependence of the collective mass with the square of the
pairing gap [42,43]. In particular, for η = 1.05 (η = 1.10) the
ATDHFB mass is reduced, on the average, by 28% (46%).
The GCM masses (not shown in the plot) are reduced by 28%
and 35%, respectively. These reductions have a significant
impact on the predicted fission half-lives. For example,
for E0 = 1.0 MeV we have obtained, within the ATDHFB
scheme, tSF = 3.215 × 1042, 3.051 × 1031, and 2.575 × 1023 s
for η = 1.00, η = 1.05, and η = 1.10, respectively.

In Fig. 16 we have plotted the spontaneous fission half-lives
tSF, predicted within the GCM and ATDHFB schemes, for the
isotopes 232–280U as functions of the neutron number. Results
have been obtained with the normal and modified Gogny-D1M
EDFs. Calculations have been carried out with E0 = 0.5 [panel
(a)], 1.0 [panel (b)], 1.5 [panel (c)], and 2.0 MeV [panel (d)].
The experimental tSF values for the nuclei 232–238U are included
in the plot. In addition, α-decay half-lives are plotted with
short-dashed lines.

On the one hand, the results shown in Fig. 16 illustrate the
strong impact that pairing correlations have on the fission half-
lives in the considered uranium isotopes. Increasing η leads
to a reduction in both BATDHFB and BGCM. As a consequence,
for a given E0, we observe a significant decrease in tSF in
either the ATDHFB or the GCM schemes. For example, for
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FIG. 16. (Color online) The spontaneous fission half-lives tSF, predicted within the GCM and ATDHFB schemes, for the isotopes 232–280U
are depicted as functions of the neutron number. Results have been obtained with the normal (η = 1.00) and modified (η = 1.05 and 1.10)
Gogny-D1M EDFs. Calculations have been carried out with E0 = 0.5 [panel (a)], 1.0 [panel (b)], 1.5 [panel (c)], and 2.0 MeV [panel (d)],
respectively. The experimental tSF values for the nuclei 232−238U are included in the plot. In addition, α-decay half-lives are plotted with
short-dashed lines. For more details, see the main text.

E0 = 0.5 MeV and within the GCM scheme, increasing the
pairing strength by 5% (10%) leads to a reduction in tSF of
up to 9 (16) orders of magnitude in the light isotopes. Such
a reduction becomes even more pronounced for the heavier
isotopes, reaching 23 (42) orders of magnitude in the case of
276U. Note that our results for 232–238U agree reasonably well
with the experimental data. However, it is more important that,
in spite of the large variability in the predicted tSF values owing
to pairing correlations, the same global features discussed in
Sec. III C (see Fig. 12) still hold: (1) a steady increase in
the spontaneous fission half-lives is observed for N � 166
reaching a maximum at N = 184; (2) beyond N = 166 the
uranium isotopes can be considered stable with respect to
spontaneous fission; (3) for increasing neutron number, fission
turns out to be faster than α decay, with the transition point
being around N = 144–150.

Once again, we stress that the results discussed in this
section and Sec. III C point to the robustness of the overall trend
predicted for the spontaneous fission half-lives in 232–280U
using the more recent parametrizations of the Gogny-EDF.
They suggest the use of experimental fission data, instead of the
more traditional odd-even staggering, to fine tune the pairing
strengths in those EDFs commonly employed in microscopic
studies. They also point [38] to the relevance of beyond mean
correlations associated with the interplay between pairing
fluctuations and particle-number symmetry restoration [6] in
the description of fission. Given the large uncertainties in the
predicted tSF values in our and other theoretical approaches
with respect to pairing correlations and other building blocks
affecting the WKB formula, it becomes obvious that a direct
comparison with experiment is meaningless. Therefore, only
the global trends, extracted from calculations performed under

the same conditions along series of nuclei and/or isotopes,
should be used to extract conclusions.

IV. CONCLUSIONS

In the present work, we have considered the evaluation of
fission observables within the constrained HFB approximation
based on Gogny-like EDFs. We have presented a detailed
description of the methodology employed to obtain the fission
paths in the studied nuclei. Besides the proton Ẑ and neutron
N̂ number operators, we have considered constraints on the
axially symmetric quadrupole Q̂20 and octupole Q̂30 and Q̂10

operators. In some instances, we have explored the role of the
γ degree of freedom by means of triaxial calculations with
simultaneous constraints on both the Q̂20 and the Q̂22 com-
ponents of the quadrupole moment. However, HFB solutions
corresponding to separated fragments have been reached with
the help of the necking operator Q̂Neck(z0,C0). The 1F curves
obtained in this way exhibit a rich topography including the
ground state minimum, the inner and outer barriers as well as
the first and second fission isomers. For larger deformations
we have found 2F curves displaying a quasilinear decrease
in energy for increasing values of the quadrupole moment.
Zero-point quantum corrections have always been added to
each of the mean-field solutions a posteriori. In particular,
the rotational correction has been computed in terms of the
Yoccoz moment of inertia, while two different schemes (i.e.,
the ATDHFB and GCM ones) have been employed in the
calculation of both the collective inertia and the vibrational
corrections. We have thoroughly discussed the uncertainties
in the predicted spontaneous fission half-lives tSF arising from
different building blocks affecting the WKB formula.
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We have carried out Gogny-D1M calculations for a selected
set of actinides and superheavy elements. The comparison
between the theoretical and experimental inner and second
barrier heights as well as the excitation energies of fission
isomers shows that the global trend observed in the experiment
is reasonably well reproduced. The same is true in the case of
the spontaneous fission half-lives, regardless of whether the
ATDHFB or GCM masses are used. In particular, our results
demonstrate that the Gogny-D1M HFB framework captures
the severe experimental tSF reduction between 232U and 286Fl
as well as the trend along different isotopic chains. Another
relevant source of information is the mass and charge of
the resulting fission fragments, which are determined by the
nuclear shape in the neighborhood of the scission point. In our
calculations the proton and neutron numbers of the fragments
are determined by energetic considerations and therefore they
are mostly dominated by the Z = 50 and N = 82 magic
numbers. Those values, however, underestimate by several
mass units the experimental values pointing to the need of a
better dynamical theory to describe postfission phenomena.
The results obtained validate the D1M Gogny-EDF, originally
tailored to better reproduce nuclear masses, for the study of
fission properties in heavy and superheavy nuclei.

We have performed a systematic study of the fission
properties in uranium nuclei, including very neutron-rich
isotopes up to 280U. To verify the robustness of our predictions,
when extrapolated to very exotic N/Z ratios, calculations
have been carried out with the three most recent incarnations
of the Gogny-EDF, i.e., the parametrizations D1S, D1N, and
D1M. The well-known underbinding of the heavier isotopes
characteristic of the Gogny-D1S EDF is clearly visible in
our calculations. Nevertheless, the fission paths still exhibit
rather similar shapes regardless of the functional employed.
An increase in the height of the inner fission barriers and the
widening of the 1F curves appear as common features as we
approach the two-neutron drip line. Second fission isomers are
predicted for several uranium isotopes. From the systematics
of the spontaneous fission half-lives, we conclude that, even
when subject to large uncertainties, the Gogny HFB framework
produces a trend which is quite robust. In particular, we have
found that

(i) a steady increase in the spontaneous fission half-lives
is observed for N � 166, with a peak at the neutron
magic number N = 184;

(ii) beyond N = 166 the uranium isotopes can be consid-
ered stable with respect to spontaneous fission;

(iii) as a decay mode fission becomes faster than α
emission for increasing neutron number.

In addition, the analysis of the masses and charges of the
fission fragments reveals the key role played by the Z = 50
and N = 82 shell closures in the splitting of the considered
uranium isotopes. Interesting enough, oblate deformed frag-
ments are predicted in our calculations that deserve further
attention because it is usually assumed that fission fragments
exhibit prolate deformations.

In the present study special attention has been paid to
the impact of pairing correlations on the fission properties
in 232–280U. To this end, we have also considered a modified
Gogny-D1M EDF in which the pairing strengths are increased
by 5% and 10%, respectively. On the one hand, our calculations
further corroborate the robustness of the predicted spontaneous
fission half-life systematics. On the other hand, they also
illustrate that modifications of such a small percent in the
pairing strength can have a dramatic impact on the collective
masses, therefore altering the absolute values of the fission
half-lives by several orders of magnitude. Within this context,
we advocate the use of experimental fission data, instead of the
more traditional odd-even staggering, to fine tune the pairing
strengths in those EDFs commonly employed in microscopic
studies. Our results also point to the relevance of beyond mean
correlations associated with the interplay between pairing
fluctuations and particle number symmetry restoration in the
description of nuclear fission.

Last but not least, let us also comment on a more
methodological issue. Given the present state of affairs in
the microscopic computation of spontaneous fission half-lives,
even in the case of state-of-the-art approximations, it is highly
desirable to explore new avenues in which the minimization of
the action S [see Eq. (3)] acquires a central role. The first steps
within the Skyrme-EDF framework have been undertaken very
recently [102]. The action is proportional to the square root
of the collective inertia and therefore any degree of freedom
having an impact on it will play an essential role. In this
respect, pairing correlations should be incorporated as an
important degree of freedom, in addition to the more traditional
quadrupole and octupole moments. Work along these lines is
in progress and will be reported elsewhere.
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[21] S. Pérez-Martı́n and L. M. Robledo, Int. J. Mod. Phys. E 18,

861 (2009).
[22] W. Younes and D. Gogny, Phys. Rev. C 80, 054313 (2009).
[23] M. Warda, J. L. Egido, L. M. Robledo, and K. Pomorski,

Phys. Rev. C 66, 014310 (2002).
[24] J. L. Egido and L. M. Robledo, Phys. Rev. Lett. 85, 1198

(2000).
[25] M. Warda and J. L. Egido, Phys. Rev. C 86, 014322 (2012).
[26] N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, and

J. Pei, Phys. Rev. C 83, 034305 (2011).
[27] J. McDonnell, N. Schunck, and W. Nazarewicz, Proceedings

of the 5th International Conference on “Fission and Properties
of Neutron-Rich Nuclei” (ICFN5) (Sanibel Island, 2012).

[28] J. D. McDonnell, W. Nazarewicz, and J. A. Sheikh, Phys. Rev.
C 87, 054327 (2013).

[29] J. Erler, K. Langanke, H. P. Loens, G. Martı́nez-Pinedo, and
P.-G. Reinhard, Phys. Rev. C 85, 025802 (2012).

[30] A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C 87,
024320 (2013).

[31] A. Baran, K. Pomorski, A. Lukasiak, and A. Sobiczewski,
Nucl. Phys. A 361, 83 (1981).

[32] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 82,
044303 (2010).

[33] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 85,
024314 (2012).

[34] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C 85, 011301
(2012).

[35] S. Karatzikos, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,
Phys. Lett. B 689, 72 (2010).

[36] A. V. Afanasjev and O. Abdurazakov, Phys. Rev. C 88, 014320
(2013).

[37] M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, Phys. Rev.
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A. Deruytter, Nucl. Phys. A 617, 331 (1997).

[91] D. C. Hoffman and M. M. Hoffman, Annu. Rev. Nucl. Sci. 24,
151 (1974).

[92] L. M. Robledo and G. F. Bertsch, Phys. Rev. C 84, 014312
(2011).

[93] C. Titin-Schnaider and Ph. Quentin, Phys. Lett. B 49, 213
(1974).

[94] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and
W. Greiner, Phys. Rev. C 58, 2126 (1998).

[95] T. Dong and Z. Ren, Eur. Phys. J. A 26, 69 (2005).
[96] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729,

337 (2003).
[97] M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).
[98] B. D. Wilkins, E. P. Steinberg, and R. R. Chasman, Phys. Rev.

C 14, 1832 (1976).
[99] H. Goutte, J. F. Berger, P. Casoli, and D. Gogny, Phys. Rev. C

71, 024316 (2005).
[100] A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur,

Nucl. Phys. A 679, 337 (2001).
[101] K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).
[102] J. Sadhukhan, K. Mazurek, A. Baran, J. Dobaczewski, W.

Nazarewicz, and J. A. Sheikh, Phys. Rev. C 88, 064314 (2013).

054310-20

http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1016/S0375-9474(02)01019-9
http://dx.doi.org/10.1103/PhysRevC.65.024304
http://dx.doi.org/10.1103/PhysRevC.65.024304
http://dx.doi.org/10.1103/PhysRevC.65.024304
http://dx.doi.org/10.1103/PhysRevC.65.024304
http://dx.doi.org/10.1140/epja/i2007-10450-2
http://dx.doi.org/10.1140/epja/i2007-10450-2
http://dx.doi.org/10.1140/epja/i2007-10450-2
http://dx.doi.org/10.1140/epja/i2007-10450-2
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1016/j.physletb.2010.06.035
http://dx.doi.org/10.1016/j.physletb.2010.06.035
http://dx.doi.org/10.1016/j.physletb.2010.06.035
http://dx.doi.org/10.1016/j.physletb.2010.06.035
http://dx.doi.org/10.1088/0954-3899/36/11/115104
http://dx.doi.org/10.1088/0954-3899/36/11/115104
http://dx.doi.org/10.1088/0954-3899/36/11/115104
http://dx.doi.org/10.1088/0954-3899/36/11/115104
http://dx.doi.org/10.1103/PhysRevC.82.061302
http://dx.doi.org/10.1103/PhysRevC.82.061302
http://dx.doi.org/10.1103/PhysRevC.82.061302
http://dx.doi.org/10.1103/PhysRevC.82.061302
http://dx.doi.org/10.1103/PhysRevC.83.044307
http://dx.doi.org/10.1103/PhysRevC.83.044307
http://dx.doi.org/10.1103/PhysRevC.83.044307
http://dx.doi.org/10.1103/PhysRevC.83.044307
http://dx.doi.org/10.1088/0954-3899/39/10/105103
http://dx.doi.org/10.1088/0954-3899/39/10/105103
http://dx.doi.org/10.1088/0954-3899/39/10/105103
http://dx.doi.org/10.1088/0954-3899/39/10/105103
http://dx.doi.org/10.1006/ndsh.2002.0018
http://dx.doi.org/10.1006/ndsh.2002.0018
http://dx.doi.org/10.1006/ndsh.2002.0018
http://dx.doi.org/10.1006/ndsh.2002.0018
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://dx.doi.org/10.1016/j.nds.2009.10.004
http://dx.doi.org/10.1351/pac200072081525
http://dx.doi.org/10.1351/pac200072081525
http://dx.doi.org/10.1351/pac200072081525
http://dx.doi.org/10.1351/pac200072081525
http://dx.doi.org/10.1016/S0375-9474(97)00032-8
http://dx.doi.org/10.1016/S0375-9474(97)00032-8
http://dx.doi.org/10.1016/S0375-9474(97)00032-8
http://dx.doi.org/10.1016/S0375-9474(97)00032-8
http://dx.doi.org/10.1146/annurev.ns.24.120174.001055
http://dx.doi.org/10.1146/annurev.ns.24.120174.001055
http://dx.doi.org/10.1146/annurev.ns.24.120174.001055
http://dx.doi.org/10.1146/annurev.ns.24.120174.001055
http://dx.doi.org/10.1103/PhysRevC.84.014312
http://dx.doi.org/10.1103/PhysRevC.84.014312
http://dx.doi.org/10.1103/PhysRevC.84.014312
http://dx.doi.org/10.1103/PhysRevC.84.014312
http://dx.doi.org/10.1016/0370-2693(74)90415-8
http://dx.doi.org/10.1016/0370-2693(74)90415-8
http://dx.doi.org/10.1016/0370-2693(74)90415-8
http://dx.doi.org/10.1016/0370-2693(74)90415-8
http://dx.doi.org/10.1103/PhysRevC.58.2126
http://dx.doi.org/10.1103/PhysRevC.58.2126
http://dx.doi.org/10.1103/PhysRevC.58.2126
http://dx.doi.org/10.1103/PhysRevC.58.2126
http://dx.doi.org/10.1140/epja/i2005-10142-y
http://dx.doi.org/10.1140/epja/i2005-10142-y
http://dx.doi.org/10.1140/epja/i2005-10142-y
http://dx.doi.org/10.1140/epja/i2005-10142-y
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1103/PhysRevC.84.044608
http://dx.doi.org/10.1103/PhysRevC.84.044608
http://dx.doi.org/10.1103/PhysRevC.84.044608
http://dx.doi.org/10.1103/PhysRevC.84.044608
http://dx.doi.org/10.1103/PhysRevC.14.1832
http://dx.doi.org/10.1103/PhysRevC.14.1832
http://dx.doi.org/10.1103/PhysRevC.14.1832
http://dx.doi.org/10.1103/PhysRevC.14.1832
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1016/S0375-9474(00)00358-4
http://dx.doi.org/10.1016/S0375-9474(00)00358-4
http://dx.doi.org/10.1016/S0375-9474(00)00358-4
http://dx.doi.org/10.1016/S0375-9474(00)00358-4
http://dx.doi.org/10.1016/S0375-9474(99)00384-X
http://dx.doi.org/10.1016/S0375-9474(99)00384-X
http://dx.doi.org/10.1016/S0375-9474(99)00384-X
http://dx.doi.org/10.1016/S0375-9474(99)00384-X
http://dx.doi.org/10.1103/PhysRevC.88.064314
http://dx.doi.org/10.1103/PhysRevC.88.064314
http://dx.doi.org/10.1103/PhysRevC.88.064314
http://dx.doi.org/10.1103/PhysRevC.88.064314



