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Microscopic benchmark study of triaxiality in low-lying states of 76Kr
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We report on a seven-dimensional generator coordinate calculation in the two deformation parameters β and
γ together with projection on three-dimensional angular momentum and two particle numbers for the low-lying
states in 76Kr. These calculations are based on covariant density functional theory. Excellent agreement is found
with the data for the spectrum and the electric multipole transition strengths. This answers the important question
of dynamic correlations and triaxiality in a fully microscopic way. We find that triaxial configurations dominate
both the ground state and the quasi γ band. This yields a different picture from the simple interpretation in
terms of “coexistence of a prolate ground state with an oblate low-lying excited state,” which is based on the
measured sign of spectroscopic quadrupole moments. This study also provides for the first time a benchmark for
the collective Hamiltonian in five dimensions. Moreover, we point out that the staggering phase of the γ band is
not a safe signature for rigid triaxiality of the low-energy structure.
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I. INTRODUCTION

It has been disclosed by various spectroscopic methods that
atomic nuclei, like other quantum many-body systems such
as molecules, can display a variety of geometrical shapes.
Changes of these shape are connected with collective motion.
Most nuclei with proton and/or neutron open shells are axially
deformed and characterized by the quadrupole deformation
parameter β. Some of them can have even nonaxial shapes
[1,2]. In the past decades, there has been a growing interest
in searching for deformed nuclei with triaxiality, which are
described by the deformation parameters β and γ. The
existence of triaxial shapes in nuclei is of particular interest
because it has provided a novel interpretation of many exotic
phenomena, such as the violation of the K-selection rule in the
decay of high-spin isomers [3], the nuclear wobbling motion
[4,5], and chiral rotations [6–9]. However, whether a nucleus
has rigid triaxiality or γ softness at low energies is full of
controversy. Since triaxiality cannot be measured directly,
most of the discussions are model dependent [10–13].

Recent measurements show evidence of triaxiality for some
nuclei in A ∼ 80 mass region. A typical example is the nucleus
76Kr. In calculations using collective Hamiltonians in five
dimensions (5DCH) derived from energy density functionals
(EDF), triaxiality turns out to be crucial to reproduce the
spectroscopic properties of the low-lying states [14–17]. Later
on, the odd-odd nucleus 80Br showed a pattern of chiral
vibration in the newly measured excited states and was
suggested to be a triaxial nucleus [18]. Most recently, 76Ge
was pointed out to be a typical nucleus with a rigid triaxial
deformation because, for its low-lying states, the staggering
behavior in the γ band [19] is consistent with predictions of
the rigid-triaxial rotor model of Davydov and Filippov (DF)
with γ = 15◦ [20].

In the past decade, several EDF-mapped approaches have
been developed to study nuclear low-lying states with triaxial-
ity. According to the most recent investigations [21] based on
the EDF-mapped interacting boson model (IBM), neither the
rigid-triaxial rotor model of DF [20] nor the γ -unstable rotor
model of Wilets and Jean (WJ) [22] is realized in actual nuclei.
However, the EDF-mapped IBM model is a semimicroscopic
algebraic model in the sense that only the Hamiltonian is
mapped to the energy surface derived from density functional
theory (DFT). Microscopic mass parameters are not used for
this mapping. The information of the underlying shell structure
is not included. The 5DCH method to derive the potential of
the collective Hamiltonian from the energy surface and the
mass parameters from the single-particle wave functions has
turned out to be very successful for a microscopic investigation
of spectroscopic data in nuclei both in nonrelativistic [23,24]
and in relativistic [25–27] density functional theories and
for a global analysis of low-energy nuclear spectroscopy
[28,29].

The form of the collective Bohr Hamiltonian has been
derived in the literature from a microscopic Hamiltonian or
from a microscopic density functional in two rather different
ways, (i) from the generator coordinate method (GCM)
[30–33] and (ii) from time-dependent Hartree–Fock (TDHF)
theory [34–37]. In both cases additional approximations had
to be used.

The derivation from the GCM method stays completely in
the quantum-mechanical framework. It relies on the validity
of the Gaussian overlap approximation (GOA) for the overlaps
between configurations with different deformations [27] and
on the assumption that the collective velocities are small, i.e.,
that the expansion in the collective momenta can be stopped
after the second order.
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In the derivation from TDHF theory, the time-dependent
densities are decomposed into generalized coordinates (time-
even parts) and momenta (time-odd parts) [35]. In this case
the TDHF equations have the form of classical equations
of motion with a classical Hamiltonian function. In the
adiabatic approximation, i.e., in adiabatic time-dependent
Hartree–Fock (ATDHF) theory, one expands this function
in terms of the momenta up to quadratic order. With the
additional assumption, which is equivalent to the choice of
the generator coordinates in the GCM ansatz, that there is a
collective subspace decoupling from the other intrinsic degrees
of freedoms, one neglects coupling terms and is left with a
classical Bohr Hamiltonian in the collective coordinates. In
the final step this function has to be quantized and one obtains
a Bohr Hamiltonian in the collective degrees of freedom.

Up to small details for the zero-point corrections to the
potential energy there is an essential difference between the
two methods in the kinetic terms. The inertia parameters
derived from the GCM method correspond to the Peiers–
Yoccoz inertia [1,38] and the inertia parameters derived from
the ATDHF method correspond to the Thouless–Valatin inertia
[39]. In the case of translational motion, because of Galilean
invariance, the proper inertia is the total mass M = Am
of the nucleus. It turns out that the Thouless–Valatin mass
fulfills this condition, but the Peierls–Yoccoz inertia does
not. The origin of this failure can be traced back to the
fact that, in the conventional GCM method, one integrates
in the Hill—Wheeler integral [40,41] only over the collective
coordinates qi , i.e., the Slater determinants |q〉 are time-even
functions. If one uses an extended GCM method and integrates
as well over the coordinates qi as over the corresponding
momenta pi , one finds the proper value M = Am for the
inertia [42]. It is obvious that, with present computer power,
this extended GCM method cannot be applied. Therefore it is
generally assumed that one should use in the Bohr Hamiltonian
the Thouless–Valatin inertia parameters. On the other side the
full evaluation of these parameters is very complicated, too. It
basically requires the solution of the linear response equation
and an inversion of the random phase approximation (RPA)
matrix at each point on the energy surface [43,44].

Therefore, in most of the realistic applications an additional
approximation is used: the residual interaction is neglected in
the linear response equation. In this case one ends up with the
well-known Inglis–Belyaev formula for the rotational inertia
and with a similar expression for the inertia in the vibrational
degrees of freedom [1]. These parameters are usually called
the cranking inertia or cranking mass parameters. In most
applications of 5DCH based on cranking inertia and mass
parameters the calculated energy of the first-excited 2+

1 state
is usually too large, i.e., the rotational moment of inertia
is too small. Therefore, in most of these applications the
calculated spectrum is rescaled by a factor α ≈ 1.4 [23].
The origin of this discrepancy can be traced back to the
fact that the residual interaction in the denominator of the
Thouless–Valatin inertia is, on average, attractive and therefore
the denominator is reduced. It has been shown in Ref. [44]
that the rotational moment of inertia is increased by a factor
1.3–1.4 when the residual interaction is fully taken into
account.

In the recent years, the adiabatic self-consistent collective
coordinate (adiabatic SCC) method has been proposed to
derive the 5DCH [45,46], where the equations of the SCC
method [47] are solved by using an expansion with respect to
the collective momentum. In this method, both the vibrational
and rotational collective masses were determined by local
normal modes built on constrained HFB states. It has been
shown that the time-odd components of the moving mean-field
significantly increase the vibrational and rotational collective
masses in comparison with the Inglis–Belyaev cranking
masses [16,48–50]. However, these studies are carried out by
using a schematic pairing-plus-quadrupole Hamiltonian within
several major-shell active model spaces both for neutrons and
protons. A calculation with a modern energy functional is still
awaited.

From these considerations it is evident, and this has also
been pointed out in Ref. [17], that the conclusions drawn from
5DCH calculations on the triaxiality in 76Kr might be different
from those based on full projected GCM calculations in the
coordinates β and γ , which in the following we will call, for the
sake of simplicity, “full GCM calculations.” To address the role
of triaxiality and to understand the origin of simple patterns
in the low-energy spectra of complex nuclei, we report in this
work on the first full microscopic calculation with triaxiality
for the low-lying states in 76Kr, which also provides the first
benchmark for the previous algebraic or geometrical model
calculations.

The paper is arranged as follows: In Sec. II we give a
short overview of the theoretical methods used in this work.
Numerical details are discussed in Sec. III and the various
energy surfaces are presented in Sec. IV. Results of the GCM
calculations are compared with those of the 5DCH method
in Sec. V and Sec. VI contains the conclusions of these
investigations.

II. THEORETICAL METHODS

The method used in this investigations is an extension of
the beyond-relativistic mean-field (RMF) approach presented
in Refs. [51,52]. The starting point is provided by fully
self-consistent constrained RMF + BCS calculations. The
constrained quantities are the mass quadrupole moments
〈Q20〉 and 〈Q22〉 related to the triaxial parameters β and
γ. All the mean-field triaxial states are subsequently pro-
jected onto designed particle numbers (N,Z) and angular
momentum (J ) by introducing the techniques of both particle
number projection (PNP) and three-dimensional angular-
momentum projection (3DAMP) [53,54]. In the GCM method
the quadrupole fluctuations about the mean-field solution
are determined variationally by mixing all the projected
states in the Hill–Wheeler integral [40]. This level of im-
plementation is also referred to as multireference (MR)
DFT, which has become a standard and state-of-the art
microscopic model for studying nuclear low-lying collective
excitations [1,55].

The nuclear many-body wave function is given as a linear
combination of projected mean-field configurations generated
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by the collective coordinates of quadrupole deformations,

|JNZ; α〉 =
∑
q,K

f JK
α (q)P̂ J

MKP̂ N P̂ Z|q〉, (1)

where α = 1,2, . . . distinguishes different collective states
with the same angular momentum J , and |q〉 = |β,γ 〉 denotes
a set of RMF + BCS states with deformation parameters
(β,γ ). The operators P̂ N , P̂ Z , and P̂ J

MK project onto good
neutron and proton numbers and onto good angular momen-
tum. The weight coefficients f JK

α (q) are determined by solving
the Hill–Wheeler–Griffin equations [40,41] that are deduced
from the minimization of the energy calculated with the GCM
wave function (1). The solution of these equations provides the
energy levels and all the information needed for calculating the
electric multipole transition strengths. More details about the
calculation of observables within this framework can be found
in Ref. [51]. We note that two similar methods of MR-DFT
(GCM + PN3DAMP) for triaxial nuclei have been developed
recently in the nonrelativistic scheme [56,57].

To provide a benchmark for the 5DCH method, which has
been widely adopted for nuclear low-lying states, we also
carry out the 5DCH calculation based on the same relativistic
EDF and make a detailed comparison with the full GCM
calculation. The collective Hamiltonian that describes the
nuclear excitations of quadrupole vibration, rotation, and their
couplings can be written in the form [23–27]

Ĥ = T̂vib + T̂rot + Vcoll, (2)

where Vcoll is the collective potential that is given by the nuclear
total energy corrected with the zero-point motions of rotation
and vibration [26]. The vibrational kinetic energy reads
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and the rotational kinetic energy is

T̂rot = 1

2

3∑
k=1

Ĵ 2
k

Ik

, (4)

with Ĵk denoting the components of the angular momentum
in the body-fixed frame of a nucleus. It is noted that the mass
parameters Bββ , Bβγ , Bγγ , as well as the moments of inertia
Ik , depend on the quadrupole deformation variables β and
γ. Two additional quantities that appear in the expression for
the vibrational energy, r = B1B2B3 and w = BββBγγ − B2

βγ ,
determine the volume element in the collective space. The
corresponding eigenvalue problem is solved by using an
expansion of eigenfunctions in terms of a complete set of
basis functions that depend on the deformation variables β
and γ and the Euler angles φ, θ , and ψ. The dynamics of

the 5DCH is governed by the seven functions of the intrinsic
deformations β and γ : the collective potential Vcoll, the three
mass parameters Bββ , Bβγ , Bγγ , and the three moments of
inertia Ik , which are determined by the single-(quasi)particle
energies and wave functions from the mean-field calculations
with the cranking approximation [26,27]. We point out here
that we do not introduce a scaling factor for the moments of
inertia in the 5DCH calculations, in contrast to previous studies
in which the scaling factor has often been introduced in order
to reproduce the energy of the first 2+ state.

III. NUMERICAL DETAILS

In the constrained triaxial RMF calculations, parity, x-
simplex symmetry, and time-reversal invariance are imposed.
The relativistic Kohn–Sham equation, i.e., the Dirac equation,
is solved by expanding the Dirac spinors, separately for large
and small components, in the basis of eigenfunctions of a three-
dimensional harmonic oscillator in Cartesian coordinates
[58–60]. Ten major shells are found to be sufficient for the
nuclei under consideration. We use the density functional de-
rived from the relativistic point-coupling Lagrangian PC-PK1
[61], for which dynamic correlation energies were found to
improve its description of nuclear binding energy [62]. Pairing
correlations between the nucleons are treated within the BCS
approximation by using a density-independent δ force with a
smooth pairing window [63]. The strength parameters of the
pairing force are Vn = −349.5 and Vp = −330 MeV fm3 for
neutrons and protons, respectively. The details of the pairing
window are the as same discussed in Ref. [51]. The Gauss–
Legendre quadrature is used for the integrals over the three
Euler angles (φ,θ,ψ) and the gauge angles ϕτ=n,p in the
calculations of the projected kernels. The numbers of mesh
points in the interval [0,π ] are chosen as (Nφ = 10,Nθ =
14,Nψ = 12) and Nϕ = 9. This turns out to be sufficient for
the states with angular momentum J � 6� [64]. For the GCM
calculations we have taken NGCM = 36 relevant intrinsic states
in the (β,γ ) plane. The convergence of this calculation is
checked by increasing or decreasing some configurations and
examining the behavior of the collective wave functions and
the energy dispersions [65]. The Paffian method [66,67] is
implemented to calculate norm overlaps, the phase of which
can be uniquely determined in this way. We note that the full
projected GCM calculations on top of the covariant DFT are
very time consuming. Compared with the other two similar
methods [56,57], the four-component Dirac spinors instead of
two-component Pauli spinors are used for the single-particle
wave functions, which makes the computational effort more
demanding than in the nonrelativistic cases. Specifically,
computing each matrix element in the collective coordinate
space takes about 200 CPU hours with one processor (2.5 GHz
Intel Xeon E5-2640). Parallelization techniques are utilized to
reduce the computing time.

IV. ENERGY SURFACES

Figure 1 displays various potential-energy surfaces in the
(β,γ ) plane for 76Kr. Figure 1(a) shows the mean-field energy
surface obtained by the constrained RMF + BCS method. A
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FIG. 1. (Color online) Potential-energy surfaces in the (β,γ ) plane for 76Kr: (a) constrained RMF + BCS, (b) RMF + BCS with zero-point
corrections, (c) with PNP, and (d) with both PNP and 3DAMP (J = 0). Two neighboring contour lines are separated by 0.25 MeV.

spherical minimum in the energy surface is found, soft along
oblate shapes and competing with a large prolate deformed
minimum. Figure 1(b) shows the collective potential Vcoll

with zero-point corrections that is used in the 5DCH method.
Details are discussed in Ref. [26]. These corrections do not
change the energy surface in a qualitative way, but they lead
to somewhat larger deformations of the minima and therefore
to an enhanced collectivity. Figure 1(c) displays the energy
surfaces obtained from wave functions with exact particle-
number projection (PNP) after the variation and Fig. 1(d)
with additional three-dimensional AMP. PNP alone does not
lead to large deviations from the mean-field surface. 3DAMP,
however, changes the picture considerably. Of particular
interest is here the onset of a triaxial minimum, soft along
the direction connecting the weakly oblate deformed state
(with |β| ≈ 0.2) and the strongly prolate deformed state (with
|β| ≈ 0.5). Both of them become saddle points in the triaxial
energy surface. As shown in Refs. [17,68], the beyond-mean-
field calculation restricted to axial symmetry misinterpreted
the weakly oblate deformed configuration as the ground state
and therefore failed to reproduce the low-energy structure
of the nucleus 76Kr. The failure of the previous studies
without triaxiality can be understood from Fig. 1. Moreover,
even though the previous studies with triaxiality for other
nuclei have already shown that the dynamical correlation
energy from restoration of rotational symmetry can lower the
energy of triaxial states [56,64,69], the phenomenon presented
here is obviously rare and very interesting in the sense
that the energetically favored triaxial states connect oblate
and prolate states of very different deformations, changing

dramatically the topological structure of the energy surface.
This phenomenon seems to be a particular feature of nuclei
of this mass region. A similar phenomenon is also shown in
80Zr in the calculations of Ref. [70] but with the presence of
several local triaxial minima. The description of low-energy
states in nuclei with such complicated structures is definitely
a challenge for a full microscopic model.

V. COMPARISON OF GCM AND 5DCH RESULTS

Since the EDF-mapped 5DCH model has been extensively
adopted to study nuclear low-lying states, it is interesting to
make a detailed comparison between the full GCM calculation
and the 5DCH calculation for 76Kr. The full GCM calculation
can provide a benchmark for the EDF-mapped 5DCH calcu-
lation.

A. Spectra

Figure 2 displays the low-lying spectra of 76Kr. All
the calculations are based on the relativistic point-coupling
Lagrangian PC-PK1 [61]. The full GCM calculation with
number projection and three-dimensional angular-momentum
projection is compared with the experimental data and with
results of the 5DCH calculation, cf. Fig. 9 in Ref. [17], where
we have presented two 5DCH results (Figs. 6 and Fig. 9
in Ref. [17]) for 76Kr using two different pairing forces. To
make a comparison with the present GCM calculation, only
the results by the same pairing force as adopted here are plotted
in Fig. 2(c). Both GCM and 5DCH calculations yield similar

FIG. 2. (Color online) Low-lying spectra and B(E2) values (in e2 fm4) of 76Kr. Results from (b) the full relativistic GCM calculation with
PNP and 3DAMP are compared with (c) 5DCH results (cf. Fig. 9 of Ref. [17]) and with (a) experimental data from Ref. [14].
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TABLE I. Energy levels (in MeV) for low-lying states of 76Kr
derived from triaxial relativistic GCM + PN3DAMP calculations and
from 5DCH calculations are compared with data. Both calculations
are base on the same EDF PC-PK1.

J π Expt. GCM 5DCH

0+
1 0.0 0.0 0.0

2+
1 0.424 0.441 0.508

4+
1 1.035 1.087 1.327

6+
1 1.859 1.975 2.474

8+
1 2.879 3.936

0+
2 0.770 0.876 1.075

2+
3 1.688 1.857 2.111

4+
4 3.073 3.334

2+
2 1.222 1.036 1.171

3+
1 1.756 1.650 1.905

4+
2 1.957 1.864 2.190

5+
1 2.452 2.543 3.018

6+
2 2.763 2.920 3.470

0+
3 1.760 1.816

structures: a ground-state rotational band, a quasi-β band with
a band head Iπ = 0+

2 , and a quasi-γ band with a band head
Iπ = 2+

2 . The results are in good agreement with the data. In
detail, this agreement is excellent for the full GCM-calculation
and is clearly superior to that for the 5DCH result. In particular,
the large electric quadrupole transition from the low-lying 0+

2
state of the quasi-β band to the 2+

1 state in the ground-state
band is reproduced automatically and definitely better than
in the 5DCH calculations. These results settle the important
role of triaxiality, despite the fact that in the mean-field energy
surface the triaxial states are only saddle points, as shown
in Fig. 1(a). PNP does not change the situation very much;
we still have a ridge of roughly 0.5 MeV between the two
axial minima. Only for the case of 3DAMP [Fig. 1(d)] does

this ridge disappear and a shallow triaxial minimum with a
depth of roughly 0.5 MeV develops. The 5DCH method uses
the unprojected energy surface with zero-point corrections
[Fig. 1(b)]. The fact that its spectrum is still rather close to
the full GCM spectrum with 3DAMP must therefore depend
on the behavior of the mass parameters. All these observations
indicate that the role of triaxiality in nuclear low-lying states
cannot be justified simply on the basis of the mean-field energy
surface. As usual the 5DCH spectrum is stretched as compared
to the data. As we see from the 2+

1 level in Table I, the stretching
factor is 1.2, slightly smaller than the usual factor 1.4, but it
increases with increasing spin and, for the 8+

1 , we have already
1.38. On the other hand the GCM spectrum is very close to
the experiment. From the 2+

1 level we derive a very small
stretching factor 1.04 which stays roughly constant.

Figure 3 shows a comparison between the full GCM +
PN3DAMP calculation in the coordinates β and γ with axially
symmetric calculations with the coordinate β only, i.e., along
the two lines in Fig. 1 with γ = 0 (prolate deformations with
β > 0) and γ = 60◦ (oblate deformations with β < 0). It is
evident that a restriction to axial states fails to reproduce the
low-energy structures of the spectrum. As has been found
already in Refs. [17,68] the axial calculation predicts the
coexistence of a weakly oblate ground-state band with a
prolate excited band. Figure 3(c) shows, for the axial case,
a calculation without number projection. The lower part of
the spectrum is very much disturbed in the case without
number projection. It is evident that the band heads 0+

1
and 0+

2 are considerably shifted. This can be understood by
the spurious mixing between the 0+ states in the nucleus
under consideration with corresponding 0+ states in nuclei
with different particle numbers N ± 2 or Z ± 2. This shows
clearly that, in cases of transitional nuclei with flat energy
surfaces, changing considerably with the number of particles,
conservation of particle number is definitely essential for a
full understanding of the experimental data. As discussed in
Ref. [52], it is not guaranteed that the wave functions of GCM
calculations with only angular-momentum projection have the

FIG. 3. (Color online) Same as in Fig. 2. (a) The results from triaxial relativistic GCM calculations with 3DAMP and PNP are compared
with (b) axial calculations with 1DAMP and PNP and with (c) axial calculations with 1DAMP only.
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correct average particle numbers. There are also unphysical
interference terms. On the other side, it is hard to understand
why the 5DCH calculations work so well, because they are
based on the unprojected potential-energy surface. Here the
fermionic degrees of freedom with individual particles are
eliminated and particle number is not an issue. A better
understanding requires further investigations in the future.

B. Collective wave functions

Next we investigate the wave functions resulting from the
two models. In Figs. 4, 5, and 6 we compare the probability
densities ρGCM

Jα (q) obtained from full GCM + PN3DAMP
calculations,

ρGCM
Jα (q) =

∑
K

∣∣∣∣
∑
q ′K ′

[N J
KK ′(q,q ′)

]1/2
f JK ′

α (q ′)
∣∣2

, (5)

FIG. 4. (Color online) Square of the collective wave functions in
the (β,γ ) plane for the ground-state band of 76Kr calculated (a) by
full GCM + PNDAMP and (b) by 5DCH.

FIG. 5. (Color online) Same as in Fig. 4 but for the quasi-β band
calculated (a) by full GCM + PNDAMP and (b) by 5DCH.

where the norm kernel is defined by N J
KK ′ (q,q ′) =

〈q|P̂ J
KK ′ P̂ N P̂ Z|q ′〉, with the corresponding probability den-

sities ρCH
Jα (q) of the 5DCH results

ρCH
Jα (q) =

∑
K

∣∣ψJK
α (q)

∣∣2
β4 sin 3γ, (6)

for the different bands shown in Fig. 2. In Eq. (6), the ψJK
α (q) is

the deformation-dependent part of the collective wave function
in the 5DCH model [27]. We note that the summation of the
probability density in both Eqs. (5) and (6) over the entire
collective coordinates q(β,γ ) is unity.

Figure 4 shows the ground-state band. Triaxial configura-
tions dominate for all angular momenta. At the band head,
i.e., at the ground state we find a relatively broad distribution
extended rather far in the γ direction and concentrated on
a certain range in β values, in general agreement with the
structure of the energy surfaces given in Fig. 1. This is
in particular true for the full GCM calculations, where the
PN3DAMP energy surface in Fig. 1(d) has a clear minimum at
roughly β ≈ 0.4 and γ ≈ 20◦ and the wave function extends
roughly over the full blue area in this figure. With increasing
angular momentum, the distribution in the γ direction becomes
increasingly narrow. This has probably to do with the fact
that the angular momentum is created by aligning partially
certain single-particle angular momenta in one direction and
this favors certain deformations forming a spatial overlap with

054306-6



MICROSCOPIC BENCHMARK STUDY OF TRIAXIALITY IN . . . PHYSICAL REVIEW C 89, 054306 (2014)

FIG. 6. (Color online) Same as in Fig. 4 but for the quasi-γ band
calculated (a) by full GCM + PNDAMP and (b) by 5DCH.

those configurations. In the 5DCH calculations the situation is
very similar. The only difference occurs at angular-momentum
zero, where we find a wave function in 5DCH relatively
concentrated around β ≈ 0.45 and γ ≈ 14◦. This can be
understood qualitatively from the energy surface in Fig. 1(b),
which forms the basis of the 5DCH calculations. Here we have
a minimum in this β,γ region and the ridge at γ ≈ 30◦ forbids

a much further extension in the γ direction. With increasing
angular momentum we find a very close agrement for the
wave functions in both models. In both cases we find wave
functions which are for increasing angular momentum more
and more concentrated in a relatively narrow area in the β-γ
plane. This is interesting because the arguments given above
for the microscopic GCM calculations do not apply directly
to the Bohr model, which has for all angular momenta the
same energy surface given in Fig. 1(b). The origin of this
concentration of the wave function to one narrow area in the
β-γ plane must be caused by the kinetic part of the 5DCH,
i.e., by the mass parameters. Of course this requires further
investigations. A similar concentration of the wave functions in
the present 5DCH calculation has also been reported in 5DCH
calculation based on the quadrupole-plus-pairing model with
the vibrational and rotational mass parameters determined by
local QRPA calculations in Ref. [16] for Kr isotopes and in
Refs. [48,49] for Se isotopes.

In Fig. 5 we show the probability distributions for the
quasi-β band. Again we have a close similarity between
the full GCM calculation and the 5DCH. At the band head,
the low-lying 0+

2 state contains a mixing of weakly oblate
configurations and large prolate configurations, instead of
a pure oblate state. This provides a different picture as
compared with the interpretation of the “coexistence of a
prolate ground state with an oblate low-lying excited state”
based on the measured sign of spectroscopic quadrupole
moments in Ref. [14]. In particular for the GCM calculations,
the probability is concentrated mostly along the symmetry
axis. It shows two peaks. It turns out that the sign of the
corresponding wave function is different on both sides, i.e.,
this wave function has a node. In a simplified picture of a
one-dimensional oscillator potential this would correspond to
the first-excited state of a vibration in β direction. For the
higher members of this band this is, however, no longer true.
We observe a concentration of the probability in the triaxial
regime.

The quasi-γ band in Fig. 6 shows again a very similar
behavior for the GCM and for the 5DCH calculations. For even
angular momenta the probability is distributed over a narrow
region of β values and a rather wide region of γ values in both
cases. On the contrary, the distributions for odd I values are
sharply peaked at β ≈ 0.4 and γ ≈ 20◦. This strong staggering
is also observed in the spectrum in Fig. 3.

C. Quadrupole momenta

In Table II, we give the spectroscopic quadrupole moments
(Qs) from both calculations. The Qs values of the full GCM
calculations are close to those of the 5DCH calculations based
on the same relativistic EDF for most low-lying states except
for the high-lying 2+

3 and 4+
2 states. We note that the 5DCH

results, including the spectra and B(E2) values are not very
sensitive to the underlying EDFs. Both the nonrelativistic
EDFs and the relativistic EDF give similar results. Moreover,
all the calculations predict an opposite sign of Qs to the data
for the 2+

2 state.
In Fig. 7 a detailed comparison is made between full GCM

and 5DCH results for the excitation energies and the electric

054306-7



J. M. YAO, K. HAGINO, Z. P. LI, J. MENG, AND P. RING PHYSICAL REVIEW C 89, 054306 (2014)

TABLE II. Spectroscopic quadrupole moments Qs (in eb) for
low-lying states of 76Kr from triaxial relativistic GCM + PN3DAMP
calculations and from 5DCH calculations based on both nonrelativis-
tic and relativistic EDFs, in comparison with data.

Expt. GCM 5DCH

J π [14] PC-PK1 PC-PK1 [17] SLy6 [17] D1S [14]

2+
1 −0.7 ± 0.2 −0.61 −0.71 −0.72 −0.50

4+
1 −1.7 ± 0.3 −0.95 −0.99 −1.02 −0.85

6+
1 −2.0 ± 0.3 −1.07 −1.11 −1.16 −1.01

2+
3 +1.0 ± 0.4 +0.46 −0.19 −0.29 +0.04

2+
2 −0.7 ± 0.3 +0.36 +0.50 +0.48 +0.26

3+
1 +0.00 +0.00 +0.00

4+
2 +0.02 −0.17 −0.19

5+
1 −0.57 −0.57 −0.58

6+
2 −0.45 −0.60 −0.59

quadrupole transition strengths. It is seen that, as discussed
before, the 5DCH method produces excitation energies sys-
tematically higher than those of the full GCM calculation
by ∼20%. Nevertheless, the B(E2) values obtained by the
5DCH method agree better with the full GCM results, except
for the weak out-of-band E2 transitions 0+

3 → 2+
1 and 2+

2 →
0+

1 . We note that the mass parameters here are calculated
using the perturbative cranking expression, which leads to
systematically larger values than those of the Gaussian overlap
approximation (GOA), as demonstrated in Ref. [71]. In other
words, the excitation energies would be overestimated further
if the GOA mass parameters are used in the 5DCH calculations.
One promising way to achieve an improved description of
excitation energies in 5DCH calculations is staying within
the ATDHF approximation and using the Thouless–Valatin
inertia, which can be obtained either by a self-consistent
cranking calculation using a very small cranking frequency
[29] or by the method based on the rapid convergence of the
expansion of the inertia matrix [44]. Of course, the ATDHF
approach does not justify the zero-point energy corrections for
the potential and the lowering of the energy by additional
correlations. On the other side, as discussed in Ref. [1],
these two parts cancel each other to a large extend and are

FIG. 7. (Color online) Comparison between the results of full
GCM and the 5DCH calculations for the low-lying states in 76Kr.
The same underlying EDF (PC-PK1) is used.

therefore not very essential. The Thouless–Valatin inertia can,
in principle, also be derived from an extended GCM method
including not only the collective coordinates q (time-even
components) but also the corresponding momenta p (time-odd
parts). This is equivalent to the use of complex generator
coordinates. Of course, present computational facilities do not
allow applications of such extended methods in the framework
of realistic density functional theories.

D. Staggering behavior of γ band

Figure 8 displays the staggering behavior

S(J ) = [E(J ) + E(J − 2) − 2E(J − 1)]/E(2+
1 ) (7)

of the odd- and even-spin levels in the quasi-γ band. Both
the full GCM and the 5DCH calculations reproduce the
experimental staggering behavior. However, the dominant
configuration of the ground state is different in these two
calculations. In the 5DCH results the nearly prolate configu-
rations dominate in the ground state (see Fig. 4 and Ref. [17]),
while for the full GCM calculation the triaxial configurations
dominate in the ground state. Therefore, it is interesting
to know whether the staggering phase provides a reliable
fingerprint of rigid triaxiality at low energies. To address this
question, we carry out a PNP + 3DAMP calculation based on
a fixed configuration with β values increasing from 0.2 to 0.6
and with γ = 20◦,30◦, and 40◦, respectively. In Fig. 8 it is
shown that the sign of S(4) and S(5) can be inverted if the

FIG. 8. (Color online) Staggering behavior of γ band in 76Kr
from the full GCM and 5DCH calculation in comparison with the
data. The S(4) and S(5) values from the DF (γ = 30◦) and WJ models
are indicated by horizontal dashed lines.
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configuration is changing from β = 0.2 to β = 0.4. The size
of S(4) increases with the β value after the inversion due to the
decreasing of the energy E(2+

1 ). We note that S(6) follows a
similar behavior as S(4). This implies that the staggering phase
is deformation dependent. The realistic case is of course much
more complicated since all the configurations with different
deformations are mixed in the GCM or 5DCH wave functions.
Similar phenomena were also observed independently in the
most recent triaxial projected shell model (PSM) calculations
for 76Ge [72]. In general, the dominated configuration of the
low-lying state could change dramatically as a function of
angular momentum and as a consequence we will observe a
change of the staggering phase of S(J ). For this reason, it is
not safe to just take the staggering phase of the γ band as a
signature for rigid triaxiality in low-energy states of realistic
nuclei. A clear fingerprint for rigid triaxiality in low-lying
states requires further investigation.

VI. CONCLUSIONS

In this work we have established a state-of-the-art beyond-
relativistic mean-field method that incorporates the full gener-
ator coordinate method together with the techniques of particle
number and three-dimensional angular-momentum projection.
This completely microscopic method has been subsequently
applied for studying the triaxiality in the low-lying states of
76Kr. The low-energy structure has been reproduced very well
provided that the triaxiality is taken into account properly. This
work provides a complete microscopic study of triaxiality in
76Kr and, for the first time, a benchmark for the 5DCH based on
nuclear EDFs. We have made a detailed comparison between

full GCM and 5DCH calculations based on the same EDF. The
EDF-mapped 5DCH turns out to give very close results to the
full GCM calculations, except for an overall overestimation of
the excitation energies by about 20%. The staggering phase
of the γ band has been found to be configuration dependent
and therefore may not be safe to be taken as a signature
of rigid triaxiality at low-energy structure. It would be very
interesting to repeat such studies with similar calculations
based on nonrelativistic EDFs [56,57] and to see whether they
confirm our conclusions.
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[24] L. Próchniak, P. Quentin, D. Samsoen, and J. Libert, Nucl. Phys.

A 730, 59 (2004).
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