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Neutron-deuteron analyzing power data at En = 22.5 MeV
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We present measurements of n-d analyzing power, Ay(θ ), at En = 22.5 MeV. The experiment uses a shielded
neutron source which produced polarized neutrons via the 2H( �d,�n)3He reaction. It also uses a deuterated liquid-
scintillator center detector and six pairs of liquid-scintillator neutron side detectors. Elastic neutron scattering
events are identified by using time-of-flight techniques and by setting a window in the center detector pulse-height
spectrum. The beam polarization is monitored by using a high-pressure helium gas cell and an additional pair of
liquid-scintillator side detectors. The n-d Ay(θ ) data were corrected for finite-geometry and multiple-scattering
effects using a Monte Carlo simulation of the experiment. The 22.5-MeV data demonstrate that the three-nucleon
analyzing power puzzle also exists at this energy. They show a significant discrepancy with predictions of high-
precision nucleon-nucleon potentials alone or combined with Tucscon-Melbourne or Urbana IX three-nucleon
forces, as well as currently available effective-field theory based potentials of next-to-next-to-next-to-leading
order.
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I. INTRODUCTION

Over the past two decades, there has been significant
progress in the theoretical description of three-nucleon (3N )
systems. Rigorous 3N calculations for bound and scattering
states performed using the Faddeev formulation have been
accomplished with nucleon-nucleon (NN ) potential models,
covering Nijmegen, AV18, and CD-Bonn [1–3] alone or
combined with standard 3N forces such as Tucson-Melbourne
(TM99) [4] or Urbana IX (UIX) [5]. With the advance of chiral
effective field theory it became possible to construct two- and
many-body interactions [6–9] and to apply consistent NN and
3N forces (3NF) in 3N calculations.

Numerous experiments performed for neutron-deuteron
and proton-deuteron systems with polarized beams revealed
that, at low energies, data for the analyzing power, Ay(θ ), for
n-d and p-d systems are significantly higher in magnitude than
the predictions of 3N Faddeev calculations based on realistic,
high-precision NN potentials, even when they are combined
with standard 3N forces such as TM99 or UIX [10]. This
discrepancy is part of what has been named the “3N analyzing
power puzzle” (3NAPP).

A useful way to gauge the 3NAPP is the relative difference
(RD) defined as the difference between the experimental data
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and the theoretical values divided by the experimental data at
the extrema of Ay(θ ) [11]. A decade ago, the 3NAPP had been
well established for n-d scattering at neutron energies from 1.2
to 16 MeV. In Ref. [12] it was pointed out that the energy trend
of the RD for n-d scattering in the range En = 1.2 to 10 MeV
was different from that for p-d scattering. Simultaneously, it
was suggested that this difference in behavior was attributable
to the neglect of the Mott-Schwinger interaction between the
magnetic momenta of the incoming nucleon and deuteron in
three-body calculations. Indeed, theoretical calculations soon
confirmed that suggestion, putting the RD for both n-d and
p-d scattering at about 25% for all energies up to 16 MeV
[13,14].

Theoretical investigations revealed that the low energy N -d
Ay(θ ) arises predominantly from the interference between the
3Pj NN force components (3P0, 3P1, and 3P2) and is highly
sensitive to their variation [15]. This suggested that the 3NAPP
might be linked to insufficient knowledge of the experimental
NN phase shifts in these partial waves and, thereby, incorrect
3Pj NN force components. Although this option has been
pursued, it has proven difficult to modify the 3Pj phase shifts
such that they fit all of the existing 2N and 3N data [16].

Another possibility is the action of 3NFs. When standard
3NFs, such as UIX or TM99, are included in three-body
calculations, the effects on Ay(θ ) are insufficient to explain
the data [17]. However, this does not rule out the possibility.
Inconsistency between realistic NN interactions and these
standard 3NFs is a serious drawback. This problem is cured
in the chiral perturbation theory approach, in which NN
interactions and 3NFs are derived in a consistent way.
Therefore, there is hope that the application of chiral forces
will help solve the 3NAPP.

The n-d Ay(θ ) data at En = 30 MeV of Ref. [18] show
that there is still a 3NAPP at this energy but that the RD
is significantly diminished to ≈13%. The lack of n-d Ay(θ )
data between 16 and 30 MeV motivated us to perform
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measurements in this region, to better characterize the energy
dependence of the 3NAPP and to provide data to aid the
theoretical development of NN and 3N potential models.
Our measurement of n-d Ay(θ ) at En = 19.0 MeV confirmed
the existence of the 3NAPP at that energy, with an RD
in the vicinity of 25% [19]. In the present work, we confirm the
3NAPP at 22.5 MeV, and compare our results to other data,
including data for p-d Ay(θ ) at 22.7 MeV [20].

II. EXPERIMENT

Because much of the experimental information for the
present En = 22.5 MeV measurement (for example, all of the
detector dimensions) are the same as in our earlier 19-MeV
measurement [19], we give a shortened treatment here, one that
concentrates on the differences between the two. Polarized
deuterons were produced by Triangle Universities Nuclear
Laboratory’s Atomic Beam Polarized Ion Source (ABPIS),
accelerated through an FN-tandem accelerator, and deflected
by 20◦ to the target room. The target room features a shielded
neutron source, using a thick wall made of concrete, paraffin,
iron, copper, and lead. Originally, we hoped to use a suitable
tritiated target and the 3H( �d,�n)4He neutron source reaction to
start our study in the vicinity of En = 26 MeV. Unfortunately,
it was impossible to secure a tritiated target owing to safety
restrictions. Therefore, we retained the deuterium gas cell used
in our 19-MeV measurement. The gas cell was filled to a
pressure of 7.8 atm and polarized neutrons were produced
via the 2H( �d,�n)3He source reaction at 0◦. The distance from
the center of the gas cell to the front face of the thick wall
was 180 cm. The deuteron polarized beam current reaching
the gas cell was typically 900 nA and the energy spread was
±0.26 MeV. Unfortunately, because the accelerator could not
always be brought reliably to the terminal voltage necessary
(about 10 MV) for the En = 22.5 MeV measurement, we did
not collect as many angle measurements as originally planned.

The center detector (CD) target was a deuterated liquid
scintillator, equivalent to NE232. The center of the CD was
located 312 cm downstream from the center of the deuterium
gas cell and was surrounded by six pairs of neutron side
detectors (filled with NE213 liquid scintillator); the center of
each was 150 cm from the center of the CD. The six angles of
the Ay(θ ) distribution were chosen to ensure adequate spacing
between the side detectors so that rescattering was minimized.
The neutron source was encased by the thick wall, having only
one exit, to form a well-defined neutron beam. Therefore, the
photomultiplier tubes of the CD, the polarimeter gas cell, and
the neutron side detectors were shielded from the direct flux
of the source.

To cancel instrumental asymmetries, the ABPIS flips the
deuteron spin orientation between up and down (in relation to
the scattering plane) at a rate of 10 Hz. The measured analyzing
power is defined as

Ay(θ ) = 1

Pn

ε(θ ). (1)

The quantity ε(θ ) = α−1
α+1 is the asymmetry between the left and

right detectors, where α =
√

LU RD

RU LD
for the angle of interest.

The RU and RD designate the yields for the right detector
when the spin is oriented up and down, respectively (and
similarly with LU and LD for the left detector). The beam
polarization, Pn, was monitored with a polarimeter constructed
of an active gas cell filled to 100 atm with a mixture of 95%
4He gas and 5% xenon gas and two neutron side detectors.
The centers of the side detectors were 40 cm away from the
center of the gas cell. The polarimeter was located 70 cm
upstream from the CD (242 cm downstream from the source
reaction). The polarimeter’s side detectors were mounted at
an angle of θlab = 112◦, at which the n + 4He analyzing
power is large valued and well determined. In special tests,
we used the polarimeter to double-check our beam energy of
En = 22.5 MeV. The n + 4He system has a sharp resonance at
22.16 MeV [21]. By lowering the accelerator terminal voltage,
run to run, and monitoring the polarimeter’s asymmetry, we
observed the resonance at the expected energy.

Each n-d elastic scattering event was triggered by a timing
coincidence between the CD and a particular side detector.
For each event, three signals were utilized: the pulse height
in the CD, the time of flight (TOF) between the CD and the
side detector, and the side-detector signal. The threshold on
the constant fraction device for the CD was kept as high as
possible to lower the computer dead time but not so high
as to cut into the signals associated with the smallest-angle
side detector. The thresholds of the side detectors varied from
En = 4 MeV at the forward angle to En = 0.5 MeV at the
back angle and were set by using the electron-recoil edge of a
137Cs source (corresponding, for NE213, to a neutron energy
of about 2 MeV).

Pulse-shape discrimination (PSD) made use of a charge-
integrating analog-to-digital converter (QDC); one time win-
dow integrated the charge in the entire detector pulse and the
another integrated the charge in the leading edge. For each
detector, a 2D histogram displayed charge in the entire pulse
versus charge in the tail only. Applying a 2D gate drawn around
the desired elastic events eliminated the events owing to γ rays
and reduced the accidental background in the TOF spectra.

Two gates in the TOF spectra were used to create center
detector pulse-height (CDPH) spectra. One cut was placed
around the elastic counts at approximately 25% of the peak
height. A second cut was placed on the lower-time side of
the γ -ray peak to determine the number of accidental counts
(random coincidences). We made the width of the accidental
window greater than that of the elastic window to improve
the statistical sample. Separate CDPH spectra were sorted
according to whether the right or left detector was involved
for spin-up or spin-down events and for elastic or accidental
events (a total of eight spectra for each angle pair). The
accidental-gated CDPH spectra were then normalized and
subtracted from the corresponding elastic-gated spectra.

After accidental subtraction, there was still a small back-
ground on the left side of the CDPH’s elastic peak. A sample
CDPH spectrum is displayed in Fig. 1 for θc.m. = 135.8◦,
where the n-d differential cross section is at a minimum. We
estimated the background by using two windows to the right
and left of the elastic peak (blue vertical lines) and joining them
by a line (dashed slanted line). In the following discussion, we
refer to this estimate of the background as the “fit background.”
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FIG. 1. (Color online) CDPH spectrum corresponding to the
neutron side detector at θc.m. = 135.8◦, after the subtraction of the
accidental background. The red vertical lines are the three yield gates
at 10%, 30%, and 50% of the CDPH peak. The blue vertical lines are
the windows used to define the linear fit background, which is shown
as the dashed slanted line. These data were collected in 3 days of
beam time.

The red vertical lines in Fig. 1 are the three gates used for the
final yields, placed at approximately 10%, 30%, and 50% of
the peak height. In determining the final yields, the 10%, 30%,
and 50% yield windows all produced Ay(θ ) results that were
consistent with each other, within experimental uncertainties.
We judged the 30% window to give a good balance between
maximizing yields and reducing background. Separate tests
using gate scans, in which a narrow yield gate is stepped across
the CDPH spectra, confirmed this choice.

To measure the neutron polarization, Pn, we established
detector yields using a method similar to the one just described
for n-d scattering. Pulse-shape discrimination gates were
determined for the neutron side detectors and in turn were
used to filter the TOF spectra. Gates were then set on the
elastic peaks in the TOF spectra and used to filter the pulse
height of the 4He cell. The resulting pulse-height spectra
clearly delineated the peak owing to the “elastic neutrons” (the
neutrons originating from the source reaction and scattered
elastically from 4He), as can be seen in Fig. 2. During 1 day
of our experiment (out of a total of 8 days) we experienced
difficulty with the polarimeter resolution, causing the lower-
energy “breakup neutrons” (owing to breakup reactions in
the deuterium gas cell) to blur into the elastic peak. For this
portion of the data, we monitored the large breakup-neutron
peak and relied on 2 other days of data using the same beam
tuning to calculate the ratio of the asymmetry of the elastic
neutrons to that of the breakup neutrons. The ratio was found
to be 0.844 ± 0.043. We confirmed that the analyzing power
results were consistent, within uncertainties, if we combined
all three portions using the same beam tuning or if we left out
the portion with poor polarimeter resolution.

The value for polarization of the beam was found by using
Eq. (1) along with an effective n-4He analyzing power. A
Monte Carlo simulation modeled single scattering from 4He
as well as all relevant double-scattering processes involv-
ing helium, xenon, iron, and glass. Consideration of finite
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FIG. 2. (Color online) Pulse-height spectrum for the 4He cell.
The gate on the right (red vertical lines) was used for the yields
of the “elastic neutrons,” while the gate on the left (blue vertical
lines) was used for the “breakup neutrons.” These data were collected
in one day of beam time.

geometry and double scattering reduced the value taken from
an R-matrix analysis from 0.855 to an effective value of
0.833 ± 0.027. The associated uncertainty includes a 3% scale
uncertainty of the R-matrix calculation. The Pn was typically
about 0.52.

III. ANALYSIS OF THE FIT BACKGROUND

Part of the fit background is attributable to multiple
scattering in the target. We determined the magnitude and
the asymmetry of the multiple-scattering background by using
a Monte Carlo simulation, which included three types of
neutron double-scattering events: d-d, d-12C, and 12C-d.
The simulation established the ratio of the double counts
to total counts, Rms, and the analyzing power, Ay ms, for
all three double-scattering processes combined. We also used
the simulation to determine the contribution of “edge-effect
deuterons” (recoil deuterons that hit the edge of the CD before
depositing their full energy in the scintillator), which appear
as a flat shoulder on the left side of the elastic peak. The
simulation computed the ratio of the edge-effect counts to
total counts, Ree, and the analyzing power, Ay ee.

Note that Rms, Ree, and all of the ratios discussed below,
were adjusted to the total number of experimental counts
(owing to all scattering processes). Note also that all of the
ratio values quoted below are based on the 30% CDPH yield
window.

Starting from the experimental yields and analyzing powers
after accidental subtraction (the stage represented by Fig. 1),
we removed multiple-scattering and edge-effect events from
the fit background, to leave a “residual background.” We used
four relations to accomplish this. The first is based on the
experimental analyzing power of the accidental-subtracted
data, Ay asub,

Rasub Ay asub = Rel Ay el + Rms Ay ms

+Ree Ay ee + Rres Ay res. (2)
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The R’s are the ratios for each scattering process (relative to
total experimental counts), where the subscripts asub, el, ms,
ee, and res stand for accidental-subtracted, elastic, multiple-
scattering, edge-effect, and residual-background, respectively.
The second relation states that all components in the yield gate
must add to Rasub,

Rasub = Rel + Rms + Ree + Rres. (3)

Depending on the angle and the electronics settings, Rasub

varied from about 99.5% to 96%. Therefore, the percentage
of accidental counts ranged from 0.5% to 4%. The quantities
Rms, Ay ms, Ree, and Ay ee (and associated uncertainties) were
computed with the Monte Carlo simulation. The ratio Rms

varied from 1.6% at θc.m. = 57.4◦ to 7.6% at θc.m. = 151.4◦,
while Ree ranged from 0.2% to 0.7% across the same angles.

The third relation is based on the experimental analyzing
power of the fit background, Ay fit,

Rfit Ay fit = Rmsfit Ay ms

+Ree Ay ee + Rres Ay res, (4)

where fit refers to the fit background. The fourth relation states
that all of the components of the fit background must add to
Rfit,

Rfit = Rmsfit + Ree + Rres. (5)

The ratio Rfit ranged from about 3% to 10%. The quantity Rmsfit

appearing in Eqs. (4) and (5) is different from Rms appearing
in Eqs. (2) and (3). This is because the shape of the double-
scattering background in the CDPH spectra varies; at forward
angles, it is nearly flat, while at backward angles, it has a
pronounced peak inside the yield gate. The Rms is determined
by finding the ratio of simulated doubles to total counts inside
the yield gate. The Rmsfit is found by using the background
windows to draw a new linear background resting on the left
shoulder of the total double-scattering spectrum; the number
of counts of this new background is found and then its ratio
is taken with the total experimental counts. The Rmsfit varied
from 1.6% at θc.m. = 57.4◦ to 0.8% at θc.m. = 151.4◦.

Equations (2), (3), (4), and (5) allowed us to solve for the
four unknowns Rres, Rel, Ay res, and Ay el. Our determination of
the linear fit background and subtraction of multiple-scattering
and edge-effect counts led to a reliable determination of Rres,
the ratio of the residual-background counts to total counts,
which ranged from about 0.5% to 7%. The ratio of elastic
events to total counts, Rel, was as low as about 80% and as
high as 96%.

The analyzing power of the residual background, Ay res,
is difficult to determine reliably in a low-counting experiment
such as this one. We did three different calculations of the final
analyzing power values, Ay el, for three different treatments of
Ay res. In the first, we allowed the residual background to be
polarized, allowing Ay res to be whatever the above equations
gave. In the second calculation we assumed that the residual
background had an analyzing power of zero (Ay res = 0). In the
third, we assumed that the residual background had the same
analyzing power as that of the elastic peak (Ay res = Ay el).

For three reasons, it is reasonable to assume that Ay res is
between zero and that of the elastic counts. First, none of the

three calculation methods named in the previous paragraph
made significant differences to the final Ay el values beyond
experimental uncertainties. Second, one of the most important
components of the residual background is attributable to the
breakup neutrons, which tail in from the low-energy side
of the elastic peak of Fig. 1. From our experience with
the polarimeter, we know that the breakup events have an
asymmetry that is close to that of the elastic counts. Third, we
performed gate scans from the low-energy left shoulder (which
carries most of the background) to the high-energy shoulder
(which has very few counts). We found that the nominal
asymmetry of the left shoulder did not deviate significantly
from the range between zero and that of the elastic counts.

In light of these three considerations, we defined the final
n-d Ay(θ ) results as the average between the Ay el result using
the unpolarized residual background and the Ay el result using
the residual background with the same polarization as the
elastic counts. As an estimate of the uncertainty associated
with this treatment, we took half of the difference between the
two analyzing power results. We then added this linearly to
the uncertainties of the final Ay(θ ) data.

The library of the Monte Carlo simulation includes
n-dAy(θ ) at 22.5 MeV. Initially, we placed our raw experi-
mental data into the database to perform the first calculations.
We then did a self-consistency check by placing the corrected
n-d Ay(θ ) data into the library and rerunning the simulation.
The analyzing power values for multiple-scattering and edge
effects changed only slightly and introduced even smaller
changes to the final Ay(θ ) data (well within experimental
uncertainties).

IV. RESULTS AND CONCLUSIONS

The final data for n-d Ay(θ ) at En = 22.5 MeV are
displayed in Table I. The statistical uncertainties of the new
data are about twice as large as those for our data at 19.0 MeV
[19]. The data are also displayed in Figs. 3, 4, and 5, along
with an associated Legendre polynomial fit (black dash-dotted
curves). Figure 3 compares our data to the range of results (red
band) obtained from three-body Faddeev calculations using
four realistic, high-precision NN potentials: AV18, CD-Bonn,
Nijmegen1, and Nijmegen2. The prediction of the CD-Bonn
NN potential lies at the outer edge of the red band and is shown
as a black dotted curve. For details of the theoretical formalism
and numerical performance, we refer to Refs. [22,23]. The
small width of that band reflects nearly on-shell equivalence

TABLE I. Present n-d analyzing power data at En = 22.5 MeV.

θc.m. (deg.) Ay(θ ) ± �Ay(θ )

57.4 0.0480 ± 0.0050
85.8 −0.0425 ± 0.0056
110.8 −0.1351 ± 0.0110
124.1 −0.0131 ± 0.0160
135.8 0.2261 ± 0.0214
151.4 0.1064 ± 0.0116
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FIG. 3. (Color online) The present n-d analyzing power data at
22.5 MeV (black dots), with an associated Legendre polynomial
fit (black dash-dotted curve), compared to the results of Faddeev
calculations using different NN potential models. The red band
shows the range of results using AV18, CD-Bonn, Nijmegen1, and
Nijmegen2. The black dotted curve is the Faddeev prediction based
on the CD-Bonn potential.

of these potentials and their high-precision description of
experimental NN phase shifts.

Our data differ notably from Faddeev calculations based
on NN potentials alone. The discrepancies between the
theoretical predictions and the data are especially notable
at the minimum of Ay(θ ) at c.m. angles around 110◦ and
at the maximum at c.m. angles around 140◦. We follow
Ref. [11] and calculate the RDmin+max above 16 MeV using
the predictions of the AV18 potential. In what follows, we
refer to RDmin+max simply as RD. The present data give
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FIG. 4. (Color online) The present n-d analyzing power data at
22.5 MeV (black dots), with an associated Legendre polynomial
fit (black dash-dotted curve), compared to results of Faddeev
calculations when different NN potentials are combined with 3NFs.
The prediction obtained when using AV18 combined with the UIX
3NF is given by the black solid curve, while the prediction of the
AV18 NN potential alone is shown by the black dotted curve.
The blue band shows the range of results when AV18, CD-Bonn,
Nijmegen1, and Nijmegen2 are combined with the TM99 3NF.
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FIG. 5. (Color online) The present n-d analyzing power data at
22.5 MeV (black dots), along with a polynomial fit (black dash-dotted
curve), compared to predictions of Faddeev calculations based on five
different sets of cutoff parameters [7,8] of chiral NN potentials, in
NLO (red band), N2LO (green band), and N3LO (blue band) of the
chiral expansion. The prediction using only the AV18 NN potential
is shown by the black dotted curve.

a RD of 31% ± 7%, thus confirming the 3NAPP for n-d
elastic scattering at En = 22.5 MeV. Our result is consistent
with the discrepancy for Ay(θ ) found in p-d scattering.
Comparing the p-d Ay(θ ) at Ep = 22.7 MeV of Ref. [20]
to a rigorous three-body calculation, Ref. [11] finds an RD
of 25% ± 1%.

It is worth pointing out that the RD for the present 22.5-MeV
data was already large before we applied the corrections of the
previous section. When an associated Legendre polynomial
fit is done to our data back at the stage when only accidental
counts were subtracted, Ay asub in Eq. (2), we find an RD of
28% ± 7%.

The data reviewed in Ref. [11] suggest that the RD for
p-d Ay(θ ) is approximately constant at 25% up to Ep = 22.7
MeV, but reduces to 15% at Ep = 30 MeV. The n-d Ay(θ ) data
now available suggest a similar conclusion for the n-d system.
The 19-MeV n-d data of Ref. [19] give an RD of 26% ± 3%
(using the AV18 potential). The present 22.5-MeV data give
31% ± 7%, suggesting that the RD does not decrease up to
at least En = 22.5 MeV. Meanwhile, the 30-MeV n-d data of
Ref. [18] show a significantly lower RD, of about 13%. We
conclude that both p-d and n-d Ay(θ ) follow a closely similar
trend for the discrepancy between data and theory.

At low incident neutron energies the standard 3NF models
TM99 or UIX are not able to explain the discrepancy between
theory and data for Ay(θ ). At 22.5 MeV, it appears unlikely
that TM99 or UIX can cure the 3NAPP. Figure 4 shows our
data compared to results of 3N Faddeev calculations when
the four NN potentials referred to above are combined with
standard 3NFs. The black dotted curve is a prediction based
on the AV18 potential only, while the black solid curve results
when AV18 is combined with the UIX 3NF [5]. The effect
of adding this 3NF is practically negligible with exception
of the maximum and minimum of Ay(θ ), where it slightly
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decreases the AV18 prediction. The UIX 3NF in combination
with AV18 reproduces the triton binding energy. The blue
band in Fig. 4 results when the TM99 3NF [4] is added to the
CD-Bonn, AV18, Nijmegen1, and Nijmegen2 NN potentials.
Here, the cutoff parameter is adjusted individually to reproduce
the binding energy of 3H. The resulting predictions for Ay(θ )
form the narrow blue band. Clearly, the TM99 3NF effects are
too small to explain the discrepancy with the data.

As mentioned in Sec. I, with the advance of chiral effective
field theory and the construction of NN and 3NFs, it was
hoped that, in higher orders of chiral expansion, consistent
two- and three-body interactions would help to explain the
analyzing power puzzle. 3NFs first appear in the order next-
to-next-to-leading order (N2LO) of chiral expansion [7]. In that
order, it is possible for the first time to remove the inconsistency
between NN and 3NFs in 3N Faddeev calculations [24].

Figure 5 shows that, for En = 22.5 MeV, if the chiral
forces are used instead of the standard NN interactions, then
the predictions for Ay(θ ) vary with the order of the chiral
expansion. Predictions based on the chiral next-to-leading
order (NLO) NN interactions (red band) clearly overestimate
the Ay(θ ) data, while N2LO chiral potentials (green band)
provide quite a good description [25]. When next-to-next-
to-next-to-leading order (N3LO) NN chiral forces are used
(blue band), the picture resembles that of the standard NN
potentials, and a clear discrepancy between data and theory
in the region of Ay(θ ) minimum and maximum appears again
[25]. Such a behavior can be traced back to the fact that only at
the N3LO of the chiral expansion are the experimental NN 3Pj

phases, especially 3P2-3F2, properly reproduced. Therefore, to
answer the question whether consistent chiral NN and 3NFs
provide the explanation of the 3NAPP, one needs to go to at
least the N3LO of the chiral expansion. The first calculations
with N3LO 3NF components [26,27] were recently performed
at low energies [25,28]. They clearly show that the 3NAPP
cannot be explained using this approach. However, because
the 2π -contact term and the 1/m relativistic corrections

were not yet included in these pioneering calculations, a
definitive answer is only possible once the full N3LO 3NF
is included, although the 2π -contact term is not expected to
play any significant role at the low energies considered here. In
addition, one should include the recently derived N4LO 3NF
components [29,30] together with the associated subleading
contributions to the 3N contact interactions, which enter at
that order of the chiral expansion [31].

Because the role of 3NF effects appears to be less than
was surmised some time ago, it is important again to consider
ambiguities in portions of the NN interaction associated with
the 3Pj phase shifts. Owing to the extreme sensivity of N -d
Ay(θ ) to these phase shifts and the difficulty of fitting all 2N
and 3N data simultaneously, it is unlikely that the problem can
be addressed solely through this approach. The current hope
is that a combination of 3NF effects and improvements to our
understanding of the NN interaction, which would lead to a
slight modification of the low-energy 3Pj phase shifts, might
solve the 3NAPP. It is possible that the scarce amount of
low-energy NN data sensitive to these NN force components
will not restrict these phase shifts sufficiently well [32]. In any
case, any explanation of the 3NAPP must be able to account
for a RD for both p-d and n-d Ay(θ ) that is approximately
constant at 25% up to 22.5 MeV. At some point after this, the
RD decreases, reaching about 14% at 30 MeV.
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