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Nucleon effective masses within the Brueckner-Hartree-Fock theory:
Impact on stellar neutrino emission
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We calculate the effective masses of neutrons and protons in dense nuclear matter within the microscopic
Brueckner-Hartree-Fock many-body theory and study the impact on the neutrino emissivity processes of neutron
stars. We compare results based on different nucleon-nucleon potentials and nuclear three-body forces. Useful
parametrizations of the numerical results are given. We find substantial in-medium suppression of the emissivities,
strongly dependent on the interactions.
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With the commissioning of increasingly sophisticated
instruments, more and more details of the very faint signals
emitted by neutron stars (NSs) can be quantitatively monitored.
This will allow, in the near-future, an ever-increasing accuracy
to constrain the theoretical ideas on the ultradense matter that
composes these objects.

One important tool of analysis is the temperature-vs-age
cooling diagram, in which currently a few observed NSs
are located. NS cooling is over a vast domain of time
(10−10–105 yr), dominated by neutrino emission due to several
microscopic processes [1]. The theoretical analysis of these
reactions requires, apart from the elementary matrix elements,
knowledge of the density of states of the relevant reaction
partners and thus the nucleon effective masses.

The present report is focused on the problem of the
theoretical determination of this important input information
and reports nucleon effective masses in dense nuclear matter
obtained within the Brueckner-Hartree-Fock (BHF) theoretical
many-body approach. We study the dependence on the
underlying basic two-nucleon and three-nucleon interactions
and provide useful parametrizations of the numerical results.
Finally, some estimates of the related in-medium modification
of the various neutrino emission rates in NS matter are given.
We begin with a short review of the BHF formalism and the
relevant neutrino emission processes, before presenting our
numerical results.

Empirical properties of infinite nuclear matter can be
calculated using many different theoretical approaches. In
this paper we concentrate on the nonrelativistic BHF method,
which is based on a linked-cluster expansion of the energy per
nucleon of nuclear matter [2–4]. The basic ingredient in this
many-body approach is the reaction matrix G, which is the
solution of the Bethe-Goldstone equation

G[ρ; ω] = V +
∑
kakb

V
|kakb〉Q〈kakb|

ω − e(ka) − e(kb)
G[ρ; ω], (1)

where V is the bare nucleon-nucleon (NN) interaction, ρ is
the nucleon number density, and ω the starting energy. The
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single-particle (s.p.) energy

e(k) = e(k; ρ) = k2

2m
+ U (k; ρ) (2)

and the Pauli operator Q determine the propagation of
intermediate baryon pairs. The BHF approximation for the
s.p. potential U (k; ρ) using the continuous choice is

U (k; ρ) = Re
∑
k′�kF

〈kk′|G[ρ; e(k) + e(k′)]|kk′〉a, (3)

and the energy per nucleon is then given by

E

A
= 3

5

k2
F

2m
+ 1

2ρ

∑
k,k′�kF

〈kk′|G[ρ; e(k) + e(k′)]|kk′〉a, (4)

where the subscript a indicates antisymmetrization of the
matrix element. In this scheme, the only input quantity
needed is the bare NN interaction V in the Bethe-Goldstone
equation, (1).

The nuclear equation of state can be calculated with
good accuracy in this two-hole-line approximation with the
continuous choice for the s.p. potential, since the results
in this scheme are quite close to those which also include
the three-hole-line contribution [5]. The dependence on the
NN interaction, also within other many-body approaches, has
recently been systematically investigated in Refs. [6] and [7].

However, it is commonly known that nonrelativistic cal-
culations, based on purely two-body interactions, fail to
reproduce the correct saturation point of symmetric nuclear
matter, which requires the introduction of three-body forces
(TBFs). In our approach, following Ref. [8], the TBF is reduced
to a density-dependent two-body force by averaging over the
position of the third particle, assuming that the probability of
having two particles at a given distance is reduced according
to the two-body correlation function [9,10]. More precisely,
in the current procedure any exchange diagrams involving the
in-medium particle are neglected, but the proper spin-isospin
correlations in the relative 1S0 and 3S1 states are maintained
via the corresponding defect functions. For more details we
refer to [8], [11], and references therein. For the moment a
completely consistent inclusion of TBFs in the BHF formalism
has not been achieved, although there has been some recent
progress [12].
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Following this procedure, we illustrate results for two ap-
proaches to TBFs, i.e., a phenomenological and a microscopic
one. The phenomenological approach is based on the so-called
Urbana model [13]. The two parameters contained in this TBF
have been fine-tuned to get an optimal saturation point [14]
for the Argonne V18 [15] or the CD-Bonn potential [16] that
we use in the following.

The connection between two-body forces and TBFs within
the meson-nucleon theory of the nuclear interaction is ex-
tensively discussed and developed in Refs. [8] and [11]. At
present the theoretical status of microscopically derived TBFs
is still quite rudimentary, however, a tentative approach has
been proposed using the same meson-exchange parameters
as the underlying NN potential. Results have been obtained
with the Argonne V18, the Bonn B, and the Nijmegen 93
potentials [11,17].

The nucleon effective mass m∗ describes the nonlocality
of the s.p. potential felt by a nucleon propagating in the
nuclear medium. It is of great interest since it is closely
related to many nuclear phenomena such as the dynamics of
heavy-ion collisions at intermediate and high energies, the
damping of nuclear excitations and giant resonances, and
the adiabatic temperature of collapsing stellar matter. The
momentum-dependent effective mass is defined in terms of
the s.p. energy,

m∗(k)

m
= k

m

[
de(k)

dk

]−1

, (5)

and clearly arises from both the momentum and the energy
dependence of the microscopic s.p. potential [18]. For the
applications we employ the effective mass taken at the Fermi
surface kFn,p

.
In this work we analyze the effective mass obtained in

the lowest-order BHF approximation discussed above. It
is well known that including second-order rearrangement
contributions to the s.p. potential increases the theoretical m∗
values ([18,19]; see also recent perturbative calculations [20]).
However, inclusion of the rearrangement term would also
require re-examination of the equation of state, since the three-
hole-line contribution is altered by the modification of the s.p.
potential, and it could not be any more negligible [3,4]. We
defer the analysis of this point to future work and concentrate
here, instead, on the dependence of the results with respect to
the choice of the two-body forces and TBFs.

NS matter is composed of asymmetric nuclear matter,
where the effective mass depends both on the nucleon density
and on the proton fraction x = ρp/ρ. The BHF neutron and
proton effective masses in asymmetric matter are displayed in
Fig. 1 as a function of the nucleon density for several values
of the proton fraction. Different choices of the NN potential
and TBF are compared, namely, we display results for the
Argonne V18 potential without TBFs (V18; dash-dotted lines),
with microscopic TBFs (V18 + TBF; dotted lines), and with
phenomenological Urbana TBFs (V18 + UIX; solid lines) and
for the CD-Bonn potential plus Urbana TBFs (CDB + UIX;
dashed lines). We see that without TBFs the values of the
effective masses decrease with increasing nucleon density,
whereas the inclusion of TBFs causes an increase in the values
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FIG. 1. (Color online) Neutron (top) and proton (bottom) effec-
tive mass displayed vs the nucleon density for several values of the
proton fraction: x = 0.1, 0.2, 0.3, 0.4, and 0.5. Results are plotted for
different choices of two- and three-body forces, as discussed in the
text.

at densities above 0.3–0.4 fm−3 for both protons and neutrons
and all considered models. This is due to the repulsive character
of the TBFs at a high density. There is evidently a strong
dependence on the chosen set of interactions, which reflects, in
particular, the current theoretical uncertainty regarding nuclear
TBFs at a high density.

For easy implementation in astrophysical applications, we
provide polynomial fits of the effective masses (valid for ρ �
0.8 fm−3),

m∗

m
(ρ,x) = 1 − (a1 + b1x + c1x

2)ρ

+ (a2 + b2x + c2x
2)ρ2

− (a3 + b3x + c3x
2)ρ3, (6)

whose parameters are reported in Table I.
Now we briefly recall the main neutrino emission mecha-

nisms in NSs and the relevance of the nucleon effective masses,
following closely the detailed treatment given in Ref. [1]. Only
the rates for nonsuperfluid scenarios are given, for which the
dependence on the effective masses is via the general factor

Mij ≡
(

ρp

ρ0

)1/3

M̃ij , M̃ij ≡
(

m∗
n

mn

)i (m∗
p

mp

)j

. (7)
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TABLE I. Parameters of the polynomial fits, Eq. (6), for the neutron and proton effective masses, obtained with different interactions. The
density ρ is understood in units of fm−3 with these coefficients.

a1 b1 c1 a2 b2 c2 a3 b3 c3

V18
p 1.45 0.85 −0.92 2.10 1.26 −0.44 1.13 0.65 0.42
n 0.96 0.92 0.59 1.20 1.38 1.64 0.71 0.65 0.98

V18 + TBF
p 1.67 0.99 −2.47 2.70 1.18 −3.75 1.14 0.88 −2.40
n 0.61 1.55 0.91 0.42 2.01 4.77 −0.17 0.58 4.44

V18 + UIX
p 1.56 1.31 −1.89 3.17 1.26 −1.56 0.79 3.78 −3.81
n 0.88 1.21 1.07 1.64 2.06 2.87 0.78 0.98 1.62

CDB + UIX
p 1.53 0.80 −1.04 3.05 1.06 −1.44 0.43 4.04 −4.42
n 0.95 1.17 0.42 2.44 1.27 −0.05 1.30 0.55 −1.63

In the presence of superfluidity the dependence is highly non-
trivial and requires detailed calculations [1]. In the following
all emissivities Q are given in units of erg cm−3s−1.

In the absence of pairing, three main mechanisms are
usually taken into account: the direct Urca (DU), the modified
Urca (MU), and the NN bremsstrahlung (BNN) processes. By
far the most efficient mechanism of NS cooling is the DU
process, for which the derivation of the emissivity under the
condition of β equilibrium is based on the β-decay theory [21].
The result for npe NS matter is given by

Q(DU) ≈ 4.0 × 1027M11T
6

9 �
(
kFp

+ kFe
− kFn

)
, (8)

where T9 is the temperature in units of 109 K. If muons are
present, then the equivalent DU process may also become
possible, in which case the neutrino emissivity is increased by
a factor of 2.

The emissivities of MU processes in the neutron and proton
branches [22,23] are given, respectively, by

Q(Mn) ≈ 8.1 × 1021M31T
8

9 αnβn, (9)

Q(Mp) ≈ 8.1 × 1021M13T
8

9 αpβp

(
1 − kFe

/4kFp

)
�Mp, (10)

where the factor αn (αp) takes into account the momentum
transfer dependence of the squared reaction matrix element of
the neutron (proton) branch under the Born approximation, and
βn (βp) includes non-Born corrections due to NN interaction
effects, which are not described by the one-pion exchange [1].
The currently adopted values are αp = αn = 1.13 and βp =
βn = 0.68. The main difference between the proton branch
and the neutron branch is the threshold character, since the
proton branch is allowed only if kFn

< 3kFp
+ kFe

, in which
case �Mp = 1. If muons are present in the dense NS matter, the
equivalent MU processes also become possible. Accordingly,
several modifications should be included in Eqs. (9) and (10),
as discussed in Ref. [1].

Following the discussion above, the neutrino emissivity
jumps directly from the value of the MU process to that of the
DU process. Thus, the DU process appears in a step-like man-
ner. In the absence of the DU process, the standard neutrino

luminosity of the npe matter is determined not only by the MU
processes but also by the BNN processes in NN collisions:

N + N → N + N + ν + ν. (11)

These reactions proceed via weak neutral currents and produce
neutrino pairs of any flavor [22,23]. In analogy with the MU
process, the emissivities depend on the employed model of
NN interactions. Contrary to the MU, an elementary act of
the NN bremsstrahlung does not change the composition of
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FIG. 2. (Color online) Proton fraction (upper panel; filled circles
indicate the onset of the DU process) and neutron (middle panel) and
proton (bottom panel) effective masses in β-stable matter obtained
with different interactions.
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FIG. 3. (Color online) Reduction factors Mij (solid lines) and M̃ij (dashed lines) for the various cooling processes in β-stable matter
obtained with different interactions. See text for details.

matter. The BNN evidently has no thresholds associated with
momentum conservation and operates at any density in the
uniform matter. The neutrino emissivity of the BNN processes
in npe NS matter is

Q(Bnn) ≈ 2.3 × 1020 M40T
8

9 αnnβnn(ρn/ρp)1/3, (12)

Q(Bnp) ≈ 4.5 × 1020 M22T
8

9 αnpβnp, (13)

Q(Bpp) ≈ 2.3 × 1020 M04T
8

9 αppβpp. (14)

The dimensionless factors αNN come from the estimates
of the squared matrix elements at ρ = ρ0: αnn = 0.59,
αnp = 1.06, αpp = 0.11. The correction factors βNN are taken
as βnn = 0.56, βnp = 0.66, βpp = 0.70. All three processes
are of comparable intensity, with Q(Bpp) < Q(Bpn) < Q(Bnn).

For the treatment of NS matter we assume, as usual,
charge-neutral, ρp = ρe + ρμ, and β-stable, μn − μp = μe =
μμ, nuclear matter. In Fig. 2 we show our results for this
case, obtained with the different combinations of two- and
three-body potentials introduced before. In the upper panel
the proton fraction is displayed as a function of the nucleon
density, whereas the middle and lower panels show the neutron
and proton effective masses, respectively.

We observe that the inclusion of TBFs increases the proton
fraction [10,17,24] due to the increased repulsion at high
densities, leading to the onset of the DU process in all cases
(at different threshold densities, indicated by markers). The
effective masses also start to increase at high densities due to
the action of TBF, but depend strongly on the interactions: the
V18 + TBF model predicts the strongest, and the CDB + UIX

the weakest, medium effects. Note that the value of the
effective mass in β-stable matter obtained with different
interactions is a consequence, apart from the differences shown
in Fig. 1, also of the different proton fractions, as shown in the
upper panel in Fig. 2.

Finally, we combine the results shown in Fig. 2 in order
to obtain the reduction factors Mij and M̃ij , Eq. (7), for the
different cooling processes. Figure 3 displays the different
factors M11 (for DU), M31, M31 (for MU), and M40, M22, M04

(for BNN) (solid curves) and the corresponding M̃ij factors
(dashed curves). In line with the previous discussion, one notes
again the strong interaction dependence of both the complete
factors Mij and the in-medium modification factors M̃ij . The
latter generally show (apart from the CDB + UIX at high
densities) a reduction in the emissivities due to the general
in-medium reduction of the effective masses.

In conclusion, we have computed nucleon effective masses
in the BHF formalism for dense nuclear matter, employing
different combinations of two-nucleon and three-nucleon
forces. Useful parametrizations of the numerical results have
been provided. The relevant in-medium correction factors for
several neutrino emission processes in β-stable nonsuperfluid
NS matter have then been evaluated in a consistent manner.
We find, in general, in-medium suppression of the emissivities,
which, however, depends strongly on the employed inter-
actions and reflects mainly the current lack of knowledge
regarding nuclear TBFs at high densities. This emphasizes
the need to perform and compare consistent calculations with
given sets of two-body and three-body interactions.
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