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We have evaluated the electron capture rates on 20Ne, 20F, 24Mg, and 24Na and the β decay rates for 20F and
24Na at temperature and density conditions relevant for the late-evolution stages of stars with M = 8M�–12M�.
The rates are based on recent experimental data and large-scale shell-model calculations. We show that the
electron capture rates on 20Ne and 24Mg and the 20F and 24Na β-decay rates are based on data in this astrophysical
range, except for the capture rate on 20Ne, which we predict to have a dominating contribution from the second-
forbidden transition between the 20Ne and 20F ground states in the density range log10 ρYe(g cm−3) = 9.3–9.6.
The dominance of a few individual transitions allows us to present the various rates by analytical expressions at
the relevant astrophysical conditions. We also derive the screening corrections to the rates.
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I. INTRODUCTION

Electron captures on nuclei play a crucial role in the high-
density environment of late-stage stellar evolution [1,2] with
three important consequences. It reduces the pressure which
the degenerate relativistic electron gas can supply against the
gravitational contraction of the stellar core. Furthermore, it
cools the core environment as the neutrinos produced in the
capture process can leave the star virtually unhindered (as
long as the density is less than about 1011 g cm−3) and carry
away energy. Finally, electron captures change protons in the
nucleus into neutrons and hence drive the stellar composition
to be more neutron rich.

Improving on the pioneering work by Fuller, Fowler,
and Newman (FFN) [3,4] and making use of advances in
nuclear modeling and in computational hard- and software
development, electron capture rates have been determined for
sd-shell nuclei (A = 17–39) [5] and for pf -shell nuclei (A =
45–64) [6–8] based on large-scale shell-model diagonalization
calculations. The reliability of the calculations also benefited
strongly from experimental data for the Gamow-Teller (GT+)
distribution in nuclei (e.g., Refs. [9–11]) which determine
the electron capture rates at the stellar conditions for which
nuclei in the mass range A = 17–64 dominate the stellar
matter composition. Indeed, a detailed comparison of stellar
capture rates derived from experimental GT+ distributions
for all pf -shell nuclei, for which data exist, with modern
shell-model rates convincingly validated the use of the latter in
late-stage stellar evolution studies [12] (for applications and
consequences, see Ref. [13]). We note that diagonalization
shell-model calculations are yet not globally feasible for the
very neutron-rich nuclei with A > 64, which dominate the
electron capture at densities in excess of a few 1010 g cm−3

[14] and the respective rates must be determined based on other
approaches such as the random phase approximation (RPA)
with occupation numbers from shell Monte Carlo [15], the

thermofield dynamics approach [16], and finite-temperature
quasiparticle RPA [17,18].

While stellar electron captures usually occur on an en-
semble of nuclei present in the matter composition, capture
on the specific nuclei 20Ne and 24Mg has been identified as
crucial for the core collapse of 8M�–12M� stars [19,20].
Stars in this mass range develop degenerate ONe or ONeMg
cores which are driven towards collapse in a process dubbed
electron capture supernova, triggered by the loss of electron
pressure support owing to electron captures, mainly on the very
abundant nuclear species 20Ne and 24Mg [19–21]. We note that
8M�–12M� stars crucially contribute to the nucleosynthesis
of specific nuclides. Its role for the synthesis of r-process
elements is currently controversially discussed [22,23].

Simulations of late-stage evolution of 8M�–12M� stars
and electron capture supernovae usually adopt the weak-
interaction rates, including those for electron capture on 20Ne
and 24Mg, from the work of Oda et al. [5]. Those authors
made available rate tabulations for an extensive set of nuclei
in the mass range A = 17–39, however, on a rather sparse
temperature-density grid, which is argued to be insufficient
for detailed studies of the evolution stage for which the weak
rates are essential [24]. Shell-model rates for electron captures
on 20Ne and 24Mg had, previous to the work by Oda et al.
[5], been calculated by Takahara et al. [25]. Importantly, the
calculations of Takahara et al. and of Oda et al. had been
performed before the GT strength distributions for 20Ne and
24Mg have been determined by charge-exchange experiments.
Owing to the isospin symmetry of the two nuclei, this goal
could not only be achieved by techniques which determine the
GT+ strength distribution using (d,2He) and (t,3He) reactions,
but also by those measuring the GT− distribution by (p,n) and
(3He,t) reactions. (In the latter, a neutron is changed into a
proton supplying the information required for β− decays).
The availability of these data calls for a reevaluation of the
electron capture rates, which we present in this paper.
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Besides the incorporation of recent experimental GT+ data,
we improve the previous rates also in two other important
aspects. At first we point to the relevance of the ground-
state-to-ground-state transition in the capture on 20Ne, which,
although it is of forbidden nature, is likely to dominate the
capture rate in the astrophysically relevant temperature-density
range for the core evolution of 8M�–12M� stars. Second,
we correct the capture rates for screening effects in the
dense environment (which decrease electron capture rates, but
increase the competing β decays). Our study is completed by a
reevaluation of the rates for electron captures and β decays of
20F and 24Na, which are the daughters of the electron capture
processes on 20Ne and 24Mg, respectively.

We note that the electron capture rate on 20Ne as well
as the 20F β-decay rate is dominated by a few transitions
that are experimentally determined, except for the forbidden
ground-state-to-ground-state transition, for which only an
upper limit is known. The dominance of a few transitions
allows us to present the rates by an analytical expression
for the relevant temperature-density region which removes
uncertainties associated with extrapolations required for rate
tabulations provided on a grid.

II. FORMALISM

A. Rates for electron capture, β decay, and neutrino energy loss

We are interested in electron capture and β− decay rates
for temperatures T = 108 K–1010 K and densities ρ = 108–
1010 g cm−3. Under these conditions, nuclei are fully ionized
and the electrons form a degenerate relativistic Fermi gas.
Hence, the rate formalism as derived by Fuller et al. applies
[3,4], which we summarize in the following.

The total rate for electron capture and β− decay is given by

λα = 1

G(Z,A,T )

∑
if

(2Ji + 1)λα
if e−Ei/(kT ), (1)

where the sums in i and f run over states in the parent
and daughter nuclei, respectively, and the superscript α
stands for electron capture (ec) or β− decay. G(Z,A,T ) =∑

i(2Ji + 1) exp[−Ei/(kT )] is the partition function of the
parent nucleus. The electron capture rate from state i to state
f is given by

λec
if = ln 2

K
Bif �ec(qif ), (2a)

�ec(qif ) =
∫ ∞

wl

wp(qif + w)2F (Z,w)Se(w)dw, (2b)

while for β− decay we have

λ
β−
if = ln 2

K
Bif �β(qif ), (3a)

�β(qif ) =
∫ qif

1
wp(qif − w)2F (Z + 1,w)[1 − Se(w)]dw.

(3b)

The constant K can be determined from superallowed
Fermi transitions and we used K = 6144 ± 2 s [26]. w is the
total, rest mass plus kinetic, energy of the electron in units of

mec
2, and p = √

w2 − 1 is the electron momentum in units of
mec. We have introduced the energy difference between initial
and final nuclear states, qif , in units of mec

2,

qif = Qif

mec2
, Qif = (Mpc2 − Mdc

2 + Ei − Ef ), (4)

where Mp and Md are the nuclear masses of the parent
and daughter nuclei, respectively, while Ei and Ef are the
excitation energies of the initial and final states. We have
calculated the nuclear masses from the tabulated atomic
masses neglecting atomic binding energies. wl is the capture
threshold total energy, rest plus kinetic, in units of mec

2 for
electron capture. Depending on the value of qif one has wl = 1
if qif > −1 or wl = |qif | if qif < −1. Se is the electron
distribution function, which, for the stellar conditions in which
we are interested, is given by a Fermi-Dirac distribution with
temperature T and chemical potential μe,

Se(Ee) = 1

exp
(

Ee−μe

kT

) + 1
, (5)

with Ee = wmec
2. The chemical potential, μe, is determined

from the density inverting the relation

ρYe = mu

π2

(mec

�

)3
∫ ∞

0
(Se − Sp)p2dp, (6)

where mu is the atomic mass unit and Sp is the positron
distribution which is obtained from Se by the replacement
μp = −μe. Note that the density of electron-positron pairs has
been removed in Eq. (6) by forming the difference Se − Sp.

Finally, Bif is the reduced transition probability of the
nuclear transition. Except for the forbidden ground-state-
to-ground-state transition in 20Ne, we only consider GT
contributions:

Bif = Bif (GT) = g2
A

〈f |∣∣∑k σ k tk
±
∣∣|i〉2

2Ji + 1
. (7)

Here the matrix element is reduced with respect to the spin
operator σ only (Racah convention [27]) and the sum runs over
all nucleons. For the isospin operators, t± = (τ x ± iτ y)/2,
we use the convention t+p = n; thus, “+” refers to electron
capture and “−” to β− transitions. gA is the weak axial
coupling constant, gA = −1.26. When using theoretical GT
matrix elements we use an effective coupling constant geff

A =
0.74gA to account for the observed quenching of the GT
strength in shell-model calculations [28–31].

The remaining factor appearing in the phase-space integrals
is the Fermi function, F (Z,w), that corrects the phase-space
integral for the Coulomb distortion of the electron wave
function near the nucleus.

In astrophysical applications, in addition to the weak-
interaction rates, one is also interested in the energy loss by
neutrino emission. This can be determined by including an
additional power of the neutrino energy in Eqs. (2) and (3). In
this case the total neutrino energy-loss rate becomes

ξα = 1

G(Z,A,T )

∑
if

(2Ji + 1)ξα
if e−Ei/(kT ), (8)
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and for the neutrino energy loss owing to electron capture from
state i to state f we have

ξ ec
if = (ln 2)mec

2

K
Bif 	ec(qif ), (9a)

	ec(qif ) =
∫ ∞

wl

wp(qif + w)3F (Z,w)Se(w)dw, (9b)

while for β− decay we have

ξ
β−
if = (ln 2)mec

2

K
Bif 	β(qif ), (10a)

	β(qif ) =
∫ qif

1
wp(qif − w)3F (Z + 1,w)[1 − Se(w)]dw.

(10b)

Similarly, one can compute the average energy of the
emitted neutrino by the ratio

〈Eν〉α = ξα

λα
, (11)

where α stands for either electron capture or β decay.

B. Approximate expressions

The evaluation of electron capture and β-decay rates
requires the calculation of the phase-space integrals appearing
in Eqs. (2), (3), (9), and (10). These integrals make the rates
extremely sensitive to variations of temperature and density.
Because weak interaction-rate tabulations [3,5,8] are normally
provided on a grid of densities and temperatures, this requires
the development of accurate interpolation schemes between
the grid points at which the rates have been evaluated. For the
high-temperature (T > 109 K) and high-density conditions
relevant for presupernova evolution [32], many transitions
from both the initial and the final nuclei contribute to the sum
in Eq. (1) and the density and temperature dependence of the
rates can well be approximated by an effective phase-space
integral, �ec

e , corresponding to the ground-state-to-ground-
state transition. This makes it possible to introduce an effective
〈f t〉 value that is expected to be almost constant over a large
range of temperature and densities [4]:

λec = ln 2
�ec

e

〈f t〉 . (12)

In the present work, we are interested in conditions for
which URCA processes operate in both intermediate-mass
stars [33] and neutron star crust [34]. This corresponds to
temperatures in the range 108–109 K, for which, in contrast
to the presupernova conditions, both electron capture and
β-decay rates are determined by a few transitions (see Sec. III),
with very different phase-space dependencies. The application
of the above approach will result in changes in the effective
〈f t〉 value of several orders of magnitude when the rate
changes from being dominated by one transition to another
transition. Because this occurs in a very narrow density range,
it makes it impractical to use the effective 〈f t〉 formalism
for the rate interpolation. Nevertheless, one can still use the
fact that the rates are determined by a few transitions to
provide accurate analytic expressions for the relevant rates.

This constitutes a generalization of the FFN effective 〈f t〉
formalism and its extension to β-decay rates.

In the evaluation of the phase-space integral in Eq. (12) one
can use the fact that for the large electron energies involved the
Fermi function, F (Z,w), can be approximated up to a constant
factor (which can be subsumed in a redefinition of the matrix
element) by the ratio w/p,

�ec
e (Q,T ,μe) =

∫ ∞

wl

w2(q + w)2Se(w)dw, (13)

where we have made explicit the dependence of the integral
on temperature, electron chemical potential, μe, and Q value
for the ground-state-to-ground-state transition, Q = qmec

2.
�ec

e can be expressed as a combination of relativistic Fermi
integrals (or equivalently polylogarithmic functions, Li),

Fk(η) =
∫ ∞

0

xk

exp(x − η) + 1
dx,

(14)
Fk(η) = −�(k + 1)Lik+1(−eη),

to obtain

�ec
e (Q,T ,μe) =

(
kT

mec2

)5

[F4(η) − 2χF3(η) + χ2F2(η)],

(15)

with η = (μe + Q)/(kT ), χ = Q/(kT ), and we have assumed
that Q < −mec

2, which is the case for all the nuclei considered
here. For the evaluation of the Fermi functions appearing in
Eq. (15) one can use several publicly available numerical
routines both in C [35] and in Fortran [36,37]. Alternatively,
Fuller et al. [4] developed approximations for the Fermi
functions that are valid for η � 0 and η � 0 and reproduce
the exact results with an accuracy of better than 20% around
η ≈ 0:

F0(η) = ln(1 + eη), (16a)

F1(η) =
{

eη η � 0,
1
2η2 + 2 − e−η η > 0,

(16b)

F2(η) =
{

2eη η � 0,
1
3η3 + 4η + 2e−η η > 0,

(16c)

F3(η) =
{

6eη η � 0,

1
4η4 + π2

2 η2 + 12 − 6e−η η > 0,
(16d)

F4(η) =
{

24eη η � 0,

1
5η5 + 2π2

3 η3 + 48η + 24e−η η > 0,
(16e)

F5(η) =
{

120eη η � 0,

1
6η6 + 5π2

6 η4 + 7π4

6 η2 + 240 − 120e−η η > 0,

(16f)

where we have included the expressions for F0(η) and F1(η)
that are necessary for the β-decay rates and corrected for a
typo in the approximation of F5(η) in Ref. [4].

The partial contribution to the total electron capture rate
of an initial state, i, with excitation energy Ei and angular
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momentum Ji to a final state, f , with excitation energy Ef

and angular momentum Jf can be expressed as

�ec
if = (2Ji + 1)e−Ei/(kT )λec

if

= (ln 2)Be
if

K
(2Ji + 1)e−Ei/(kT )�ec

e (Qif ,T ,μe), (17)

with Qif = Q + Ei − Ef . During the early evolution of an
ONeMg core, the electron chemical potential, μe, is typically
much smaller than the magnitude of the capture Q value,
|Qif |; i.e., η � 0. Under these conditions the Fermi integrals
appearing in Eq. (15) can be approximated as Fk(η) ≈ k!eη.
Keeping the leading terms in Eq. (17) we obtain

�ec
if = (ln 2)Be

if

K

(
kT

mec2

)5

2(2Ji + 1)

(
Q + Ei − Ef

kT

)2

× exp

(
Q − Ef + μe

kT

)
. (18)

One can see that the exponential dependence on the
excitation energy of the initial state has disappeared. The
physical reason is that with increasing excitation energy the
exponential decrease in the thermal probability of populating
an excited state is exactly compensated by the exponential
increase in the number of electrons that can contribute to
the capture process. Under these conditions the rate grows
exponentially with increasing electron chemical potential.
This increase holds as long as μe � −Qif and Ei � −Q.
Once the chemical potential μe becomes larger than the
absolute Q value, the Fermi integrals can be approximated as
Fk(η) ≈ ηk+1/(k + 1). It is interesting to consider two possible
limits: (i) The electron Fermi energy is similar to the capture Q
value, μe ≈ |Qif |, and (ii) the electron Fermi energy is much
larger than the capture Q value, μe � |Qif |. In the first case
we obtain

�ec
if = (ln 2)Be

if

3K
(2Ji + 1) exp

(
− Ei

kT

)

× (Q + Ei − Ef )2(μe + Q + Ei − Ef )3

(mec2)5
, (19)

while for the second case we obtain

�ec
if = (ln 2)Be

if

5K
(2Ji + 1) exp

(
− Ei

kT

)

×
(

μe + Q + Ei − Ef

mec2

)5

. (20)

Under these conditions the contribution of excited states is
exponentially suppressed and the capture rate on each state is
almost independent of the temperature.

Similar approximations can be obtained for the neutrino
energy-loss rate. The contribution of a transition from an initial
state i to a final state f is then given by

�ec
if = (2Ji + 1)ξα

if e−Ei/(kT )

= (ln 2)Be
if

K
mec

2(2Ji + 1)e−Ei/(kT )

×	ec
e (Qif ,T ,μe), (21)

with

	ec
e (Q,T ,μe) =

(
kT

mec2

)6

[F5(η) − 2χF4(η) + χ2F3(η)],

(22)

and η = (μe + Q)/(kT ), χ = Q/(kT ).
Again we can obtain approximate expressions for the

limiting cases μe � −Qif ,

�ec
if = (ln 2)Be

if

K

(kT )6

(mec2)5
6(2Ji + 1)

(
Q + Ei − Ef

kT

)2

× exp

(
Q − Ef + μe

kT

)
, (23)

μe ≈ −Qif ,

�ec
if = (ln 2)Be

if

4K
(2Ji + 1) exp

(
− Ei

kT

)

× (Q + Ei − Ef )2(μe + Q + Ei − Ef )4

(mec2)5
, (24)

and μe � −Qif ,

�ec
if = (ln 2)Be

if

6K
(2Ji + 1) exp

(
− Ei

kT

)

× (μe + Q + Ei − Ef )6

(mec2)5
. (25)

Combining Eqs. (18) and (23) one obtains that the average
neutrino energy for conditions μe � −Qif is

〈Eν〉ec ≈ 3kT , (26)

independently of the initial state on which the electron capture
takes place. Similarly from Eqs. (19) and (24) we obtain for
μe ≈ −Qif

〈Eν〉ec = 3
4 (μe + Q + Ei − Ef ), (27)

which agrees with the result of Refs. [38] and [39] (but with a
factor 3/4 instead of 3/5). From Eqs. (20) and (25) we obtain
for μe � −Qif

〈Eν〉ec = 5
6 (μe + Q + Ei − Ef ) ≈ 5

6μe, (28)

recovering the well-known result of Refs. [39,40].
The β-decay rates can also be expressed as combinations of

Fermi functions. For that, one can approximate the phase-space
integral in Eq. (3b) by

�β
e (Q,T ,μe) =

∫ q

1
w2(q − w)2[1 − Se(w)]dw, (29)

with q = Q/(mec
2). This can be expressed in terms of Fermi

functions as

�β
e (Q,T ,μe) =

(
kT

mec2

)5

[−ϑ2(ϑ − χ )2F0(−ηm)

+ 2ϑ(χ2 + 2ϑ2 − 3χϑ)F1(−ηm)

+ (−χ2 − 6ϑ2 + 6χϑ)F2(−ηm)

+ (4ϑ − 2χ )F3(−ηm) − F4(−ηm)

+χ2F2(−η) − 2χF3(−η) + F4(−η)], (30)
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with ϑ = mec
2/(kT ), χ = Q/(kT ), ηm = (μe − mec

2)/(kT ),
and η = (μe − Q)/(kT ). For the conditions in which we
are interested, one has ηm � 1. The Fermi integrals with
arguments −ηm behave like exp(−ηm) and their contributions
can be neglected. Under these conditions, we obtain

�β
e (Q,T ,μe)

=
(

kT

mec2

)5

[F4(−η) − 2χF3(−η) + χ2F2(−η)], (31)

which is very similar to Eq. (15). In the limit where final-state
blocking can be neglected, i.e., μe � mec

2, Eq. (30) reduces to

�β
e (Q,T ,μe) ≈ 1

30 (q − 1)3(6 + 3q + q2), (32)

with q = Q/(mec
2). For partial blocking of the final state,

μe � Q, we obtain

�β
e (Q,T ,μe) ≈ Q2(Q − μe)3

3(mec2)5
. (33)

In the limit of strong final-state blocking, i.e., μe � Q we get

�β
e (Q,T ,μe) ≈ 2

(
kT

mec2

)5 (
Q

kT

)2

exp

(
Q − μe

kT

)
. (34)

For these conditions, the contribution of a transition from an
initial state i to a final state f to the β-decay rate can be
expressed as

�
β
if = (ln 2)Be

if

K

(
kT

mec2

)5

2(2Ji + 1)

(
Q + Ei − Ef

kT

)2

× exp

(
Q − Ef − μe

kT

)
. (35)

As for electron capture, the β-decay rate does not depend
on the excitation energy of the initial state. Furthermore, the
strong similarity with Eq. (18) is remarkable. This shows that β
decays decrease with exactly the same exponential dependence
on μe as the electron captures increase and probes the potential
of Eq. (30) for interpolating β-decay rates under presupernova
conditions.

For the rate of neutrino energy loss by β decay we obtain

	β
e (Q,T ,μe) =

(
kT

mec2

)6

[ϑ2(ϑ − χ )3F0(−ηm)

−ϑ(5ϑ − 2χ )(ϑ − χ )2F1(−ηm)

+ (χ2 + 10ϑ2 − 8χϑ)(ϑ − χ )F2(−ηm)

− (3χ2 + 10ϑ2 − 12χϑ)F3(−ηm)

+ (5ϑ − 3χ )F4(−ηm) − F5(−ηm)

+χ2F3(−η) − 2χF4(−η) + F5(−η)]. (36)

For ηm � 1 the expression reads

	β
e (Q,T ,μe)

=
(

kT

mec2

)6

[F5(−η) − 2χF4(−η) + χ2F3(−η)]. (37)

In the limit of no final-state blocking, i.e., μe � mec
2,

Eq. (36) reduces to

	β
e (Q,T ,μe) ≈ 1

60 (q − 1)4(q2 + 4q + 10). (38)

The average energy of the emitted neutrino becomes

〈Eν〉β = mec
2 (q − 1)(q2 + 4q + 10)

2(q2 + 3q + 6)
≈ mec

2

(
q

2
− 5

q2

)
.

(39)

For partial final-state blocking, μe � Q we get

	β
e (Q,T ,μe) ≈ Q2(Q − μe)4

4mec2
(40)

and for the average energy of the emitted neutrino,

〈Eν〉β = 3
4 (Q + Ei − Ef − μe), (41)

where we have explicitly recovered the dependence on the
excitation energies of initial and final states to make clear the
similarity with Eq. (27) for electron capture.

In the limit of large final-state blocking, i.e., μe � Q, we
obtain

	β
e (Q,T ,μe) ≈ 6

(
kT

mec2

)6 (
Q

kT

)2

exp

(
Q − μe

kT

)
(42)

and for the contribution to the total β-decay rate of the
transition i → f , we obtain

�
β
if = (ln 2)Be

if

K
mec

2

(
kT

mec2

)6

6(2Ji + 1)

(
Q + Ei − Ef

kT

)2

× exp

(
Q − Ef − μe

kT

)
. (43)

This again is remarkably similar to the equivalent expression
for electron capture (23). Under these conditions the average
energy of the emitted neutrino becomes

〈Eν〉β = 3kT (44)

and is independent of the particular transitions that dominate
the rate.

C. Determination of energy generation

Apart of the fact that weak-interaction processes change the
electron content of the star, they are also important because
they can be either a source or loss of energy for the star. The
neutrinos that are produced by the weak interaction leave the
star carrying away part of the energy generated. However,
depending on the conditions, the net energy generation could
still be positive or negative. From basic thermodynamics and
assuming that the time scale to maintain thermodynamical
equilibrium is shorter than the time scale for weak interaction
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processes, we obtain a relation valid at every point of the star,

kT
ds

dt
+

∑
i

μi

dYi

dt
= dq

dt
, (45)

where s is the entropy per nucleon, μi is the chemical potential
including rest mass for species i with abundance Yi , and the
sum runs over all particles including nuclei and electrons.
dq/dt represents the heat per nucleon and time that is being
added to or lost from the region being considered. In the case
of weak processes, heat is lost by neutrinos. In the case of
electron capture in a nucleus a producing a nucleus b with
energy threshold Qec = −Qβ− = −Q, i.e., the ground-state-
to-ground-state Q value, we have

kT
ds

dt
= −dYe

dt
(μe − Q − 〈Eν〉ec) − kT

dYe

dt
ln

[
YaGb

YbGa

]
,

(46)

while for the β decay of nucleus b to a nucleus a we obtain

kT
ds

dt
= dYe

dt
(Q − μe − 〈Eν〉β) + kT

dYe

dt
ln

[
YbGa

YaGb

]
,

(47)

where Ya,b represent the abundances of nuclei a,b and the
second term in both expressions has been obtained assuming
a noninteracting Boltzmann gas expression for the chemical
potential of nuclei. This term is typically negligible except in
the case of very different abundance of nuclei a and b.

Equations (46) and (47) show that the determination
of the energy generation requires only the knowledge of
the average energy of the produced neutrino and it is not
necessary to compute the so-called γ -ray heating rates [5,25],
corresponding to the decay by γ emission of excited states
populated after the weak transition. This does not mean that
transitions to excited states are not important. In fact, they
normally have larger contributions to the energy generation
[41] owing to the fact that the average energy of the neutrinos
is smaller. However, one has also to consider that the weak
process can start in excited states and in that case the γ heating
rates can, in fact, be negative.

As electron captures decrease Ye, while β decays increase
Ye, the energy generation will be positive or negative de-
pending on the sign of the quantity Eec = μe − Q − 〈Eν〉ec

for electron capture and Eβ = Q − μe − 〈Eν〉β for β− decay
[neglecting the second terms in Eqs. (46) and (47)]. Using
energy conservation to relate the energy of the electron and
the energy of the neutrino in Eqs. (9b) and (10b), we obtain
the following relations for electron capture,

〈Ee〉ec + 〈Ei〉ec = 〈Ef 〉ec + Q + 〈Eν〉ec, (48)

and β decay,

〈Ei〉β + Q = 〈Ef 〉β + 〈Ee〉β + 〈Eν〉β, (49)

where 〈Ee〉ec (〈Ee〉β) is the average energy of the captured
electron (emitted electron) and 〈Ei〉ec and 〈Ef 〉ec (〈Ei〉β and
〈Eβ

f 〉) represent the average energy of the initial and final
nuclei in the electron capture (β-decay) process. We can define
the average energy of the produced γ ’s as 〈Eγ 〉α = 〈Ef 〉α −

〈Ei〉α , where α stands for electron capture and β decay. Notice
that this quantity can be negative, meaning that transitions from
excited parent nuclear states dominate the weak process and
the nucleus has to absorb γ radiation to populate these states.
Combining the above expressions, we obtain the following
relations for the quantities Eec and Eβ :

Eec = μe − Q − 〈Eν〉ec = μe − 〈Ee〉ec + 〈Eγ 〉ec, (50a)

Eβ = Q − μe − 〈Eν〉β = 〈Ee〉β + 〈Eγ 〉β − μe. (50b)

Electron captures will be endothermic, i.e., they absorb
energy, when the electron chemical potential is smaller than
Q. Under these conditions 〈Eν〉ec ≈ 3kT [see Eq. (26)] and
Eec ≈ −(Q − μe + 3kT ). Equivalently, this means that the
average energy of the captured electrons is larger than the sum
of the chemical potential and γ -ray energies [42]. Under these
conditions, the electron capture rate is rather small and β decay
is exothermic, i.e., it generates energy, with

Eβ ≈ 〈Eγ 〉β + (Q − 〈Eγ 〉β − μe)/4, (51)

where we have used Eq. (41) to relate the neutrino energy-loss
rate to the average γ energy. Equivalently [see Eq. (50b)], the
sum of the average energies of the electrons and γ ’s produced
by β decay is larger than the electron chemical potential. Under
these conditions, the β decay rate is normally much larger
than the electron capture rate; however, the abundance of the
β-decaying nucleus is still rather small because very little
material has been produced by electron capture.

As the electron chemical potential grows, the net energy
generation in electron capture and β decay could be positive
or negative, depending on the particular temperature/density
conditions and the structure of the nuclei involved.

Electron captures will be exothermic whenever the electron
chemical potential becomes larger than the capture threshold.
For these conditions the electron capture proceeds rapidly and
the heating is large with

Eec ≈ 〈Eγ 〉ec + (μe − Q − 〈Eγ 〉ec)/4, (52)

where we have estimated the neutrino energy loss using
Eq. (27). The energy generation becomes larger the higher the
average energy of the produced γ ’s [41], i.e., the higher the
excitation energy of the final states. The electrons captured
have, on average, energies smaller than the sum of the
electron chemical potential plus the average γ energy [43];
see Eq. (50a). Under these conditions the β-decay rate is
rather small and its contribution to the energy generation is
negligible.

III. RESULTS

A. Rates for the A = 20 nuclei

For the study of the electron capture on 20Ne and the β−
decay of 20F we have adopted the following set of experimental
and calculated transitions. We use the (p,n) data on 20Ne of
Ref. [44] and assume isospin symmetry to determine the GT+
transitions from the 20Ne ground state to low-lying excited
1+ states in 20F. From 20F β decay data [45] we determined
the GT matrix element for the transition from the 2+ state
in 20Ne at Ex = 1.634 MeV to the 2+ 20F ground state. We
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FIG. 1. (Color online) Comparison of our electron capture rate
on 20Ne as function of density and for selected temperatures [top
panel, log10 T (K) = 8.6; bottom panel, log10 T (K) = 9.0] with the
values given by Takahara et al. [25]. The figure shows the four
transitions that fully determine the rate. The rates have not been
corrected for medium effects.

approximate the nonunique second-forbidden transition from
the 2+ ground state in 20Ne to the 2+ ground state in 20F
based on the lower log f t limit obtained in the 20F β− data
(log f t > 10.5) [45]. We note that this value is only slightly
smaller than the average experimental value for nonunique
second-forbidden decays (log f t = 11.0) [46,47].

The experimental data were supplemented by shell-model
GT+ strength functions from the 20Ne first 2+ and 4+ excited
states, and the backresonance transitions corresponding to the
GT− strength on the 2+ ground state and the lowest 3+, 4+, 1+,
5+, and 2+ excited states of 20F. The shell-model calculations
were performed within the complete sd shell using the USDB
interaction [48]. We use experimental values for the excitation
energies whenever they are known.

In Fig. 1 we plot our calculated 20Ne electron capture rates
and compare them to the values presented by Takahara et al.
[25]. The figure shows also the four transitions that determine
the capture rate for the relevant astrophysical conditions. The
difference between the contribution of these four transitions
and the total rate is less than 1% for the relevant range
of temperatures and densities. The values of the GT matrix
elements used are shown in Table I.

For densities at which the electron chemical potential is
smaller than the electron capture threshold the electron capture

TABLE I. Information that determines the electron capture rate
on 20Ne and β decay of 20F for the relevant temperatures and densities.
The ground-state-to-ground-state electron Q value is Qec = −7.535
MeV [49].

Initial 20Ne state Final 20F state Matrix element

J π Energy (MeV) J π Energy (MeV) B

0+ 0 1+ 1.057 0.256
0+ 0 2+ 0 9.72 × 10−7a

2+ 1.634 2+ 0 0.0659
2+ 1.634 3+ 0.656 0.0653b

aUpper experimental limit.
bTheoretical value.

rate can be approximated by Eq. (18), with Q = −7.535 MeV
[49]. Transitions to the final ground state are favored, i.e.,
Ef = 0, which applies for the allowed transition from the first
excited state in 20Ne and for the nonunique second-forbidden
ground-state-to-ground-state transition. Owing to the larger
transition matrix element for the allowed transition and the
lower threshold for capture on the excited state, the allowed
transition from the excited 2+ state dominates the rate as low
densities, as can be seen in Fig. 1.

With increasing density the electron chemical potential be-
comes larger and the individual electron capture rates initially
increase exponentially [see discussion following Eq. (18)].
However, once the electron chemical potential becomes of the
order of the threshold for capture on the 2+ excited state of 20Ne
[Ethres = 5.9 MeV corresponding to log10 ρYe(g cm−3) =
9.2], the contribution to the 20Ne electron capture of the 2+
state behaves according to Eq. (19); i.e., the rate from the 2+
grows like a power of the electron chemical potential and it
is suppressed by the Boltzmann factor exp[−Ei/(kT )], with
Ei = 1.634 MeV. Because the chemical potential is still lower
than the threshold for capture on the ground state to either
the ground state (Ethres = 7.535 MeV) or to the first 1+ state
(Ethres = 8.592 MeV) in 20F, the contributions of these states
to the capture rate grow exponentially and indeed dominate
the rate at higher densities (see Fig. 1). Because the threshold
for the nonunique second-forbidden transition to the ground
state is lower than the one for the allowed transition to the 1+,
it can dominate the rate provided that

�ec(0+ → 2+)

�ec(0+ → 1+)
= 0.77

B(0+ → 2+)

B(0+ → 1+)
exp

(
1.057 MeV

kT

)
> 1. (53)

Using the values of the matrix elements from Table I, the
forbidden contribution dominates the rate for temperatures
smaller than 0.9 GK. Figure 1 shows that this is, in fact, the
case, exemplified for the temperature log10 T (K) = 8.6, in the
density range log10 ρYe(g cm−3) = 9.3–9.6.

The above results have been obtained assuming an allowed
shape for the phase space of the second-forbidden transition.
The shape factor for nonunique second-forbidden transitions
can contain additional powers of the electron energy ranging
from zero to four [50]. A dependence like E2

e will increase
the second-forbidden rate by a factor of 4, while a dependence

045806-7
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like E4
e will result in a rate a factor of 10 larger, compensating

the possible overestimate of the matrix element by the current
experimental upper limit.

Because the second-forbidden transition has not been
included in previous rate estimates [5,25], our rate is larger
in the density regime ρYe = 2–4 × 109 g cm−3. We note that
this difference can amount to several orders of magnitude at
temperatures below 0.9 GK. Hence, even if the forbidden
transition strength is somewhat smaller than the current
experimental upper limit, this state is likely to dominate the rate
in an important temperature-density range for the evolution of
the cores of 8M�–12M� stars.

At densities beyond log10 ρYe(g cm−3) = 9.6, the rate is
given by the GT+ transition from the 20Ne ground state
to the lowest 1+ state in 20F. For this transition we use
the experimental value determined from the (p,n) charge-
exchange experiment of Ref. [44]. This value is in agreement
with the transition strength recently derived from a (p,p′)
experiment [51]. In principle, the GT strength can also be
obtained from the experimental M1 strength between the
respective states. This is, however, model dependent as this
M1 transition has a very strong orbital contribution owing to
the large deformation of 20Ne. Takahara et al. [25] and Oda
et al. [5] had no access to the experimental data and used a
shell-model transition strength instead, which, however, was a
factor of 2 smaller than the experimental value. This explains
the difference between our capture rate at high densities to the
previous calculations.

The most important conclusion from Fig. 1 is that the
electron capture rate on 20Ne is basically fixed by exper-
imental input, with the exception of the density regime
log10 ρYe(g cm−3) = 9.3–9.6 at temperatures T < 109 K,
where the forbidden ground-state-to-ground-state transition
is likely to determine the rate. To put the rate entirely
on experimental values, a measurement of this forbidden
transition is highly desirable.

The β-decay rate of 20F (see Fig. 2) is determined by
the same transitions as the electron capture rate on 20Ne.
At low densities the decay is dominated by the transition
from the ground state of 20F to the 2+ excited state of 20Ne.
However, owing to the presence of a degenerate electron
gas in the stellar environment the β-decay phase space is
reduced, which increases the decay half-life with respect
to conditions in the laboratory. With increasing density the
electron final-state blocking becomes more important and for
densities around log10 ρYe(g cm−3) = 9.2 the above transition
is fully blocked. At this moment the decay proceeds primarily
by either the ground-state-to-ground-state second-forbidden
transition or by the transition from the first 1+ excited state
in 20Ne. The latter transition has a larger phase space but it
is suppressed at low temperatures by the Boltzmann factor.
Similar to electron capture on 20Ne, the forbidden transition
dominates the β-decay rate for temperatures T < 109 K in a
density regime above log10 ρYe(g cm−3) = 9.2.

In Fig. 3 the electron capture rate on 20F is compared with
the values computed by Takahara et al. [25]. In the relevant
temperature and density range the rate is mainly dominated
by the transition from the ground state to the 2+ excited state
in 20O. The matrix elements for the transitions determining

FIG. 2. (Color online) β-decay rate of 20F as a function of density
and for selected temperatures [top panel, log10 T (K) = 8.6; bottom
panel, log10 T (K) = 9.0]. The figure shows the four transitions that
fully determine the rate. The rates have not been corrected for medium
effects.

the rate are given in Table II. The theoretical values have been
determined by a shell-model calculation using the USDB
interaction [48]. At low densities the rate is determined by
the transition from the 1+ excited state of 20F to the ground
state of 20O, which is known experimentally from the β decay
of 20O [45]. Our electron capture rates on 20F agree with the
previous results [5,25].

The rates shown in Figs. 1, 2, and 3 show clear kinks
that mark the transition between density regimes which
are dominated by different individual transitions. Obviously,
the kinks get smeared out with increasing temperature. In
astrophysical simulations a reliable resolution of the kinks
requires either a very fine grid for the tabulation of the rates or
an analytical expression. We provide this analytical expression
in the following.

For electron capture on 20Ne we can write the electron
capture rate, based on the four transitions identified above, as

λec(20Ne)

= ln 2

K

{
5e−E(2+)/kT Be(2+ → 2+)�ec

e [Q(2+ → 2+),T ,μe]

+ 5e−E(2+)/kT Be(2+ → 3+)�ec
e [Q(2+ → 3+),T ,μe]

+Be(0+ → 2+)�ec
e [Q(0+ → 2+),T ,μe]

+Be(0+ → 1+)�ec
e [Q(0+ → 1+),T ,μe]

}
. (54)
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FIG. 3. (Color online) Comparison of our electron capture rate
on 20F as function of density and for selected temperatures [top panel,
log10 T (K) = 8.6; bottom panel, log10 T (K) = 9.0] with the values
given by Takahara et al. [25]. The rates have not been corrected for
medium effects.

The function �ec
e is defined in Eq. (15). All other quantities

necessary for the evaluation of the rate are defined in Table III.
The difference between the effective transition matrix element,
Be, appearing in Table III and the matrix element, B, of Table I
is that the former includes the average value of the Fermi
Coulomb distortion function. This value is equal to 1.267 for
Z = 10. Equation (54) reproduces the electron capture rate on
20Ne if one uses “exact” numerical values for the Fermi inte-
grals. Using the approximate expressions of the Fermi function
defined in Eq. (16), the largest error is around 15%. This

TABLE II. Matrix elements that determine the electron capture
rate on 20F for the relevant temperatures and densities. The ground-
state-to-ground-state electron Q value is Qec = −4.325 MeV [49].

Initial 20F state Final 20O state Matrix element

J π Energy (MeV) J π Energy (MeV) B

2+ 0 2+
1 1.674 0.0229a

2+ 0 2+
2 4.072 0.0436a

3+ 0.656 2+
1 1.674 0.0150a

1+ 1.057 0+ 0 0.378b

aTheoretical value.
bFrom 20O decay [45].

TABLE III. Numerical values of the quantities that determine the
analytical expression for the electron capture rate on 20Ne.

Transition Q value Effective matrix element
J π (20Ne) → J π (20F) (MeV) Be

2+ → 2+ −5.902 0.0835
2+ → 3+ −6.558 0.0827
0+ → 2+ −7.536 1.23 × 10−6

0+ → 1+ −8.592 0.324

uncertainty occurs when the electron Fermi energy is of the
order of the Q value of the dominating transition. The origin
of the uncertainty is mainly attributable to the approximation
made in the Fermi integral of order 2 in Eq. (16c).

The β-decay rate of 20F is given by the same four transitions
as the electron capture on 20Ne for the astrophysically relevant
conditions of interest here. The rate can then be written as

λβ(20F)

= ln 2

5K

{
5Be(2+ → 2+)�β

e [Q(2+ → 2+),T ,μe]

+ 7e−E(3+)/kT Be(3+ → 2+)�β
e [Q(3+ → 2+),T ,μe]

+ 5Be(2+ → 0+)�β
e [Q(2+ → 0+),T ,μe]

+ 3e−E(1+)/kT Be(1+ → 0+)�β
e [Q(1+ → 0+),T ,μe]

}
.

(55)

The function �
β
e is defined in Eq. (31). All other quantities

necessary for the evaluation of the rate are defined in Table IV.
Similarly to the case of electron capture on 20Ne, the rate is
reproduced “exactly” if the Fermi integrals are evaluated to
numerical precision and errors of around 15% are obtained if
one uses the approximate expressions defined in Eq. (16).

Finally, the electron capture rate on 20F can be written as

λec(20F)

= ln 2

5K

{
3e−E(1+)/kT Be(1+ → 0+)�ec

e [Q(1+ → 0+),T ,μe]

+ 7e−E(3+)/kT Be(3+ → 2+
1 )�ec

e [Q(3+ → 2+
1 ),T ,μe]

+5Be(2+ → 2+
1 )�ec

e [Q(2+ → 2+
1 ),T ,μe]

+ 5Be(2+ → 2+
2 )�ec

e [Q(2+ → 2+
2 ),T ,μe]

}
. (56)

The quantities necessary for the evaluation of the rate
are defined in Table V. The difference between the effective
transition matrix element, Be, appearing in Table V and the

TABLE IV. Numerical values of the quantities that determine the
analytical expression for the β decay rate of 20F.

Transition Q value Effective matrix element
J π (20F) → J π (20Ne) (MeV) Be

2+ → 2+ 5.902 0.0835
3+ → 2+ 6.558 0.0591
2+ → 0+ 7.536 2.46 × 10−7

1+ → 0+ 8.592 0.108
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TABLE V. Numerical values of the quantities that determine the
analytical expression for the electron capture on 20F.

Transition Q value Effective matrix element
J π (20F) → J π (20Ne) (MeV) Be

1+ → 0+ −3.268 0.467
3+ → 2+

1 −5.342 0.0185
2+ → 2+

1 −5.998 0.0283
2+ → 2+

2 −8.397 0.0539

matrix element, B, of Table II is that the former includes the
average value of the Fermi Coulomb distortion function. This
value is equal to 1.236 for Z = 9.

The above expressions can be generalized to the calculation
of the neutrino energy-loss rate by simply substituting the
function � by 	 defined in Eqs. (22) and (37) for electron
capture and β decay, respectively.

Coulomb corrections are an important modification of
weak-interaction rates in dense astrophysical environment. In
the following we include screening corrections in our rates
following the generalization of the screening treatment, as
originally developed by Bravo and Garcia-Senz [52], and
presented in detail for electron capture in the appendix of
Ref. [14]. Screening has two effects on electron capture:
The threshold energy in the medium is increased, Qec,med

if =
Qec

if − �Qc(Z) (notice that Qif is negative in our convention),
and the chemical potential of the electrons is reduced,
μmed

e = μe − Vs , where the parameters �Qc(Z) and Vs can
be calculated following [14,52,53]. We note that both effects
reduce the electron capture rate. The opposite is true for
β− decays where screening enhances the rate. At first, the
lowering of the electron chemical potential results in reduction
of the Pauli blocking in the final state, i.e., smaller values of
[1 − Se(ω)] in Eq. (3b). Second, for β decays the change in
threshold is given by Q

β,med
if = Q

β
if + �Qc(Z + 1) (note that

Q
β
if = −Qec

f i).
To demonstrate the effect of screening, we show in Fig. 4

the electron capture rate on 20Ne and the β-decay rate of
20F with and without consideration of Coulomb corrections.
Obviously, the effect is largest at low temperatures because
both rates are more sensitive to modifications of the threshold
energy which changes by 120 keV at the lowest density and
by 270 keV at the highest density considered in Fig. 4. More
importantly, screening corrections change the density at which
electron capture dominates over β decay and can potentially
affect the evolution of the star [54]. In particular, the Coulomb
modifications shift the densities at which URCA pairs operate
in stars to higher densities.

In Fig. 5 we compare the 20Ne electron capture rate with
the rates for the competing 20F β decay and electron capture,
considering Coulomb corrections as discussed above. We
observe that the electron capture rate gets larger than the
competing 20F decay rate for densities larger than ρYe ≈
4 × 109 g cm−3. Because the electron capture rate on 20F is
faster than the one on 20Ne, caused by the smaller Q value,
the capture on 20Ne is followed by a second capture process
leading to 20O.

FIG. 4. (Color online) Electron capture rate on 20Ne and β decay
rate of 20F with and without consideration of medium corrections [top
panel, log10 T (K) = 8.6; bottom panel, log10 T (K) = 9.0].

FIG. 5. (Color online) Rates for electron captures on 20Ne and
20F and β decay of 20F for selected temperatures: log10 T (K) = 8.6
(top panel); log10 T (K) = 9.0 (bottom panel). Medium corrections
are included in the rates.
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FIG. 6. (Color online) Average energy produced (positive) or
absorbed (negative) by electron capture on 20Ne (top panel), β decay
of 20F (middle panel), and electron capture on 20F (bottom panel).

At the densities of concern here the neutrinos produced in
the electron captures and β decays leave the star unhindered
and carry away energy. Depending on the amount of energy
carried away, weak processes can result in a net heating or
cooling of the stellar environment. This depends on the sign
of the quantity E defined in Eqs. (50a) and (50b). Figure 6
shows E , i.e., the average energy produced or absorbed by
the various processes (electron capture on 20Ne, β decay of
20F and electron capture on 20F), compared with the values
provided by Takahara et al. [25]. As discussed in Sec. II C,
at low densities, electron capture is endothermic because
energy has to be absorbed from the medium to populate the
excited states that dominate the rate. Under these conditions
the average energy grows proportional to μe ≈ ρ1/3 until the
rate is dominated by a different transition. At this moment
a sudden change in the growth of the energy generation
takes place. For 20Ne this transition occurs for densities
log10 ρYe(g cm−3) ≈ 9.3 and temperatures smaller than 1 GK,
when the rate is dominated by the second-forbidden transition

to the 20F ground state for both the electron capture on 20Ne
and the β decay of 20F. Because this transition was not included
in the work of Takahara et al. [25], we predict substantially
different values for the energy generation. In the case of β
decay, whenever the energy generation is dominated by a
particular transition, it decreases like μe/4 (see Sec. II C)
and it is positive up to densities for which μe equals the
ground-state-to-ground-state Q value. At these densities, the
20Ne electron capture rate energy generation becomes positive
and changes its growth behavior to μe/4, while β decay, being
Pauli blocked, decreases like −μe. Owing to the smaller Q
value for electron capture on 20F the average energy produced
is positive for most of the density region shown in Fig. 6.
For densities larger than log10 ρYe(g cm−3) ≈ 9.2 the energy
produced by electron capture on 20F dominates over the energy
loss by capture on 20Ne and makes the net energy generation
positive. This density marks the transition at which the net
effect of the sequence of weak-interaction processes changes
from endothermic to exothermic and, correspondingly, the core
temperature increases in stellar evolution models [24]. The
increase in the energy generation by electron capture on 20F at
high densities is attributable to the contribution of transitions
to excited states on 20O (see Fig. 3) that increase the average γ
energy in Eq. (52). We note that the transition at which electron
capture on 20Ne becomes exothermic occurs at slightly higher
densities than for the capture on 20F. This is attributable to
pairing effects, which makes the Q value for the transition
from an even-even nucleus to an odd-odd nucleus larger than
the neighboring one from an odd-odd to an even-even nucleus.

B. Rates for the A = 24 nuclei

Because the evaluation of the electron capture rate on 24Mg
by Takahara et al. [25] and by Oda et al. [5], several important
experimental data sets became available. These include an
improved measurement of the β decay of the 1+ isomeric state
in 24Al which, assuming isospin symmetry, determines the GT
transition from the analog state in 24Na at Ex = 0.426 MeV
to the 24Mg ground state and the two excited 2+ states at
Ex = 1.369 and 4.238 MeV [55]. The GT strength has also
been measured by (p,n) [44], (3He,t) [56], (t,3He) [57], and
(d,2He) [58] charge-exchange reactions, where the first two
can be applied in the case of 24Mg owing to the isospin
symmetry of the nucleus. The various measurements basically
agree on the B(GT) value for the transition from the 1+
isomeric state to the ground state which, as we see below,
determines the electron capture rate on 24Mg for a large range
of the astrophysically relevant temperatures and densities. In
the following we adopt the value B(GT) = 0.094(3), derived
from the β+ decay, for this transition. It is slightly larger than
the values determined from the charge-exchange experiments
(B(GT) = 0.079(2) from (p,n) [44], B(GT) = 0.086(2) from
(3He,t) [56], 0.078(8) ± 0.04 from (d,2He) [58]), except the
strength determined by (t,3He) [57], B(GT) = 0.13(2), which
cannot be separated from the nearby 2+ state. However, the
value adopted by us is noticeably larger than the B(GT) value
used in the previous electron capture rate evaluations [5,25]
derived from β-decay data available at the time these works
were performed.

045806-11
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TABLE VI. Information that determines the electron capture rate
on 24Mg and β decay of 24Na for the relevant temperatures and
densities. The ground-state-to-ground-state electron Q value is Qec =
−6.026 MeV [49].

Initial 24Mg state Final 24Na state Matrix element

J π Energy (MeV) J π Energy (MeV) B

0+ 0 1+
1 0.472 0.094(3)a

0+ 0 1+
2 1.347 1.038(87)b

0+ 0 1+
3 1.89 0.040(13)b

0+ 0 1+
4 3.41 0.460(38)b

2+ 1.369 4+ 0.0 5.0(3) × 10−8c

2+ 1.369 1+ 0.472 0.0046(11)a

2+ 1.369 2+ 0.563 0.032d

aFrom decay of mirror 24Al [55].
bFrom (d,2He) [58].
cFrom 24Na decay [59].
dTheoretical value.

In detail, our input for the calculation of the 24Mg electron
capture rate is based on the 24Al β+ decay data supplying
the GT transitions from the ground state and the lowest
two 2+ states in 24Mg to the 1+ state in 24Na at Ex = 472
keV. From the 24Na β− decay of the 4+ ground state we
adopt the GT transitions from the first 4+ state in 24Mg at
Ex = 4.123 MeV and the second-forbidden transition from
the 2+ state at Ex = 1.369 MeV. The GT values from the
ground state to the other excited 1+ states are taken from the
(3He,t) experiment of Ref. [56]. Finally, we supplement these
data with GT strength distributions for excited states in 24Mg
derived from shell-model calculations performed in the sd shell
and using the USDB interaction. We note that, owing to the
strong angular momentum mismatch, forbidden transitions to
the 24Na 4+ ground state do not contribute to the capture rate.
The energies and B(GT) values which determine the 24Mg
electron capture and β-decay rates at the conditions of interest
here are summarized in Table VI.

Figure 7 shows the electron capture rate on 24Mg in the
astrophysically relevant density range and for selected temper-
atures, not considering medium-induced Coulomb corrections.
For densities 9.0 < log10 ρYe(g cm−3) < 9.5 and the relevant
temperature regime (T = 0.4–1.0) GK, the rate is dominated
by the capture from the 24Mg ground state to the isomeric
state in 24Na at Ex = 0.472 MeV. At the highest temperatures
(the bottom panel of Fig. 7 shows the rate for T = 109 K) the
excited state at Ex = 1.369 MeV gets sufficiently thermally
populated that its transitions to the excited 1+ state at
Ex = 0.472 MeV and 2+ state at Ex = 0.563 MeV slightly
contribute to the rate at densities log10 ρYe(g cm−3) < 9.1. At
higher densities log10 ρYe(g cm−3) > 9.5 the most important
contribution to the rate comes from the strong GT transition
from the ground state to the 1+ state at Ex = 1.347 MeV
(B(GT) = 1.038(87) [58]), which is more than 10 times larger
than the one to the state at Ex = 0.472 MeV and compensates
for the larger phase-space factor of the latter at the higher
densities. Owing to its large B(GT) value of 0.46, the transition
from the ground state to the 1+ state at Ex = 3.41 MeV

FIG. 7. (Color online) Comparison of our electron capture rate
on 24Mg as function of density and for selected temperatures [top
panel, log10 T (K) = 8.6; bottom panel, log10 T (K) = 9.0] with
the values given by Takahara et al. [25]. The figure shows the six
transitions that fully determine the rate. The rates have not been
corrected for medium effects.

contributes on the few percent level at log10 ρYe(g cm−3) =
10. The electron capture rate on 24Mg presented here is entirely
based on experimental input, except for the small contributions
arising from the ground-state transitions to the lowest excited
1+ and 2+ states, for which we adopt the B(GT) values from
a shell-model calculation. These transitions, however, modify
the rate only at low densities [log10 ρYe(g cm−3) < 9.1] and
the highest temperatures of interest.

The present rate is somewhat larger than the one given
by Takahara et al. [25] and by Oda et al. [5]. The main
difference comes from the increase in the B(GT) value for
the ground-state transition to the 1+ state at 472 keV, where
recent experiments [55,56] indicate a noticeably larger value
than that deduced from 24Al decay data available at the time
of the Takahara et al. [25] and Oda et al. [5] works.

Electron capture on 24Mg stands in competition with the β
decay of the daughter 24Na. We have evaluated this β-decay
rate on the basis of the same transitions as adopted in our
calculation of the 24Mg electron capture and summarized in
Table VI. For the conditions of interest here we find that the
24Na β decay is mainly given by the GT transition from the
isomeric 1+ state at excitation energy Ex = 472 keV to the
24Mg ground state, where the GT strength is known from the
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FIG. 8. (Color online) β decay of 24Na as a function of density
and for selected temperatures [top panel, log10 T (K) = 8.6; bottom
panel, log10 T (K) = 9.0]. The figure shows the five transitions that
fully determine the rate. The rates have not been corrected for medium
effects.

decay of the mirror state in 24Al. However, this contribution
depends strongly on temperature via the thermal population
of the initial state. Hence, with decreasing temperature the
second-forbidden transition from the 24Na 4+ ground state to
the 2+ state in 24Mg at Ex = 1.369 MeV grows in importance.
This transition strength is known experimentally from the β
decay of 24Na [59]. We note that at low temperatures (the
top panel of Fig. 8 shows the β decay rate at T = 0.4 GK)
and low densities [log10 ρYe(g cm−3) < 8.75] this forbidden
transition contributes already of order 10% to the total decay
rate and becomes relatively more important at even smaller
temperatures. The contribution of this transition has been
determined assuming an allowed shape for the phase space.
As discussed for 20Ne, it can become even larger if the phase
space deviates from the allowed shape. The GT transition
from the isomeric 1+ state to the ground state gets Pauli
blocked by the presence of the electron sea at densities of order
[log10(ρYe) ≈ 9.3], explaining the strong decrease in its partial
rate. Hence, at higher densities the transition from the second
1+ excited state at Ex = 1.347 MeV to the ground state, having
a larger decay energy, contributes more strongly to the rate,
in particular at the higher temperatures. Finally, we mention
that the GT decay from the 24Na ground state to the excited
state at Ex = 4.123 MeV in 24Mg, which overwhelmingly

FIG. 9. (Color online) Comparison of our electron capture rate
on 24Na as function of density and for selected temperatures [top
panel, log10 T (K) = 8.6; bottom panel, log10 T (K) = 9.0] with the
values given by Takahara et al. [25]. The figure shows the five
transitions that determine the rate. The rates have not been corrected
for medium effects.

dominates the 24Na β decay under terrestrial conditions, is
strongly Pauli blocked under astrophysical conditions with
densities ρYe > 108 g cm−3.

In Fig. 9 we have plotted the electron capture rate on 24Na
at two selected temperatures and the densities of relevance
for the evolution of the ONeMg core in 8M�–12M� stars.
We have evaluated the rate based on experimental energies
and shell-model GT transition rates, supplemented by data
from the decay of 24Ne [60]. In particular, we include the
GT strengths built on all states until 2.5 MeV excitation
energy. The energies and strengths for the transitions that are
relevant to determine the rate are summarized in Table VII.
We confirm the results discussed in Ref. [25]. At low densities
[log10(ρYe) < 9.4], the rate is dominated by the GT transition
from the thermally populated isomeric 1+ state at Ex = 472
keV to the 24Ne ground state, while at the largest densities of
interest [log10(ρYe) ∼ 9.6–10] the transition from the 24Na 4+
ground state to the first excited 3+ has the largest contribution
to the total capture rate, with minor corrections from the
GT transition from the ground state to the second excited
3+ state. Our shell-model calculations give quite similar
transition strengths than the one performed in Ref. [25].
Hence, our rates agree quite well with the previous one in the
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TABLE VII. Information that determines the electron capture
rate on 24Na. The ground-state-to-ground-state electron Q value is
Qec = −2.977 MeV [49].

Initial 24Na state Final 24Ne state Matrix element

J π Energy (MeV) J π Energy (MeV) B

4+ 0 4+
1 3.972 3.8 × 10−3a

4+ 0 3+
1 4.817a 0.232a

4+ 0 3+
2 5.436a 0.058a

4+ 0 4+
2 5.691a 0.030a

1+ 0.472 0+ 0.0 0.091(2)b

aTheoretical value.
bFrom 24Ne decay [60].

respective density ranges. However, at intermediate densities
[log10(ρYe) ∼ 9.4–9.6] the rate is dominated by the transition
from the 24Na ground state to the excited 4+ state in 24Ne.
For this transition our calculation predicts a slightly larger GT
value than that used in Ref. [25], B = 1.5 × 10−3, explaining
the rate differences in this intermediate regime. (Both our
calculations based on the USDB [48] and the calculations
of Takahara et al. [25] based on the USD interaction [29]
predict a very small matrix element and consequently are
rather sensitive to the relatively small differences between
the USD and USDB interactions.) As the relevance of this
contribution decreases with increasing temperature, our 24Na
electron capture rate becomes similar to the one of Ref. [25]
at higher temperatures.

Because the electron capture and β-decay rates for the A =
24 nuclei, presented here, are dominated by a few states, we
can derive analytical rate expressions, following the procedure
as outlined above for the A = 20 nuclei. For electron capture
on 24Mg we can write the electron capture rate, based on
the six transitions identified above, as

λec(24Mg)

= ln 2

K

{
5e−E(2+)/kT Be(2+→1+)�ec

e [Q(2+→1+),T ,μe]

+ 5e−E(2+)/kT Be(2+ → 2+)�ec
e [Q(2+ → 2+),T ,μe]

+Be(0+ → 1+
1 )�ec

e [Q(0+ → 1+
1 ),T ,μe]

+Be(0+ → 1+
2 )�ec

e [Q(0+ → 1+
2 ),T ,μe]

+Be(0+ → 1+
3 )�ec

e [Q(0+ → 1+
3 ),T ,μe]

+Be(0+ → 1+
4 )�ec

e [Q(0+ → 1+
4 ),T ,μe]

}
. (57)

The quantities necessary for the evaluation of the rate are
defined in Table VIII. The difference between the effective
transition matrix element, Be, appearing in Table VIII and the
matrix element, B, of Table VI is that the former includes the
average value of the Fermi Coulomb distortion function. This
value is equal to 1.332 for Z = 12. Equation (57) reproduces
the electron capture rate on 24Mg with a maximum error of
about 20% using the approximate expressions of the Fermi
function defined in Eq. (16). The maximum error occurs
at densities log10(ρYe) = 9.3, where the electron chemical
becomes of the order of the electron capture Q value; for
other conditions the error is of a few percent.

TABLE VIII. Numerical values of the quantities that determine
the analytical expression for the electron capture rate on 24Mg.

Transition Q value Effective matrix element
J π (24Mg) → J π (24Na) (MeV) Be

2+ → 1+ −5.129 0.006 13
2+ → 2+ −5.220 0.0426
0+ → 1+

1 −6.498 0.125
0+ → 1+

2 −7.373 1.383
0+ → 1+

3 −7.916 0.0533
0+ → 1+

4 −9.436 0.613

The β-decay rate of 24Na is given by the five transitions
shown in Fig. 8 for the astrophysical conditions of interest.
The rate can then be written as

λβ(24Na)

= ln 2

9K

{
9Be(4+ → 2+)�β

e [Q(4+ → 2+),T ,μe]

+ 3e−E(1+
1 )/kT Be(1+

1 → 2+)�β
e [Q(1+

1 → 2+),T ,μe]

+ 5e−E(2+)/kT Be(2+ → 2+)�β
e [Q(2+ → 2+),T ,μe]

+ 3e−E(1+
1 )/kT Be(1+

1 → 0+)�β
e [Q(1+

1 → 0+),T ,μe]

+ 3e−E(1+
2 )/kT Be(1+

2 → 0+)�β
e [Q(1+

2 → 0+),T ,μe]
}
.

(58)

The quantities necessary for the evaluation of the rate are
defined in Table IX. Equation (58) reproduces the β-decay
rate of 24Na with a maximum error of around 20%, using
the approximate expressions of the Fermi function defined in
Eq. (16). The maximum error occurs at densities log10(ρYe) =
9.3, where the electron chemical becomes of the order of the
electron capture Q value, for other conditions the error is of a
few percent.

Finally, the electron capture rate on 24Na can be written as

λec(24Na)

= ln 2

9K

{
3e−E(1+)/kT Be(1+ → 0+)�ec

e [Q(1+ → 0+),T ,μe]

+ 9Be(4+ → 4+
1 )�ec

e [Q(4+ → 4+
1 ),T ,μe]

+ 9Be(4+ → 3+
1 )�ec

e [Q(4+ → 3+
1 ),T ,μe]

+ 9Be(4+ → 3+
2 )�ec

e [Q(4+ → 3+
2 ),T ,μe]

+ 9Be(4+ → 4+
2 )�ec

e [Q(4+ → 4+
2 ),T ,μe]

}
. (59)

TABLE IX. Numerical values of the quantities that determine the
analytical expression for the beta decay rate of 24Na.

Transition Q value Effective matrix element
J π (24Mg) → J π (24Na) (MeV) Be

4+ → 2+ 4.657 3.70 × 10−8

1+
1 → 2+ 5.129 0.0102

2+ → 2+ 5.220 0.0426
1+

1 → 0+ 6.498 0.0417
1+

2 → 0+ 7.373 0.461
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TABLE X. Numerical values of the quantities that determine the
analytical expression for the electron capture rate on 24Na.

Transition Q value Effective matrix element
J π (24Na) → J π (24Ne) (MeV) Be

1+ → 0+ −2.505 0.118
4+ → 4+

1 −6.949 4.94 × 10−3

4+ → 3+
1 −7.794 0.301

4+ → 3+
2 −8.413 0.0753

4+ → 4+
2 −8.668 0.0390

The quantities necessary for the evaluation of the rate
are defined in Table X. The difference between the effective
transition matrix element, Be, appearing in Table X and the
matrix element, B, of Table VII is that the former includes
the average value of the Fermi Coulomb distortion function.
This value is equal to 1.299 for Z = 11. Equation (59)
reproduces the β-decay rate of 24Na with a maximum error
of around 10% at temperatures around log10 T (K) = 8.6
using the approximate expressions of the Fermi function
defined in Eq. (16). The maximum error occurs at densities
log10(ρYe) = 9.4, where the electron chemical becomes of
the order of the electron capture Q value for the transition
4+ → 4+

1 . With increasing temperature or for other densities,
the error is of a few percent.

As explained above, medium corrections decrease the
electron capture rates and increase the competing β-decay
rates. This is visible in Fig. 10, where we compare the electron

FIG. 10. (Color online) Electron capture rate on 24Mg and β de-
cay rate of 24Na with and without consideration of medium corrections
[top panel, log10 T (K) = 8.6; bottom panel, log10 T (K) = 9.0].

FIG. 11. (Color online) Rates for electron captures on 24Mg and
24Na and β decay of 24Na for selected temperatures: log10 T (K) = 8.6
(top panel); log10 T (K) = 9.0 (bottom panel). Medium corrections
are included in the rates.

capture rate on 24Mg and the β-decay rate of 24Na calculated
with and without the Coulomb corrections, applying the same
formalism as discussed above for the case of the A = 20 nuclei.
As for the 20Ne-20F pair, the Coulomb corrections also shift
the density at which the 24Mg capture and the 24Na decay rate
become identical towards higher values, again by about 0.05
dex in log10(ρYe). We expect that this shift is a typical value
for sd-shell nuclei at the conditions of the collapsing ONeMg
core and should hence also affect the URCA pairs (23Na-23Ne,
25Mg-25Na, 27Al-27Mg), which play an important role for the
cooling during the collapse [61].

In Fig. 11 we compare the medium-corrected rates for
the A = 24 nuclei and observe that electron capture on
24Mg dominates over 24Na β decay for densities log10 ρYe >
9.3. However, under the astrophysical conditions where the
electron capture rate on 24Mg is larger than the competing
24Na β decay, it is also larger than the capture rate on the
daughter 24Na. The consequence is that once capture on 24Mg
is faster than β decay it is followed by a second capture process,
leading to 24Ne.

In Fig. 12 we plot the quantity E for electron capture on
24Mg and 24Na and for 24Na β decay. The capture on 24Mg is
endothermic up to about log10(ρYe) = 9.3, while the capture
process is exothermic at densities ρYe > 109 g cm−3. As for
the A = 20 nuclei, this difference is attributable to pairing
energy making the Q value for capture on 24Mg larger than for
capture on 24Na. The 24Na β decay is endothermic, explaining
the negative values of E . The kinks in E occur when the rate
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FIG. 12. (Color online) Average energy produced (positive) or
absorbed (negative) by electron capture on 24Mg (top panel), β decay
of 24Na (middle panel), and electron capture on 24Na (bottom panel).

is changing from the dominance of one specific transition
to another. The respective transitions are identified in our
discussion of the individual rates. We observe good agreement
with the results obtained by Takahara et al. [25] for the electron
capture processes (these authors do not give results for the β
decay). For densities log10(ρYe) (g cm−3) > 9.2, the energy
produced by capture on 24Mg becomes positive. This, together
with the fact that capture on 24Na always produces energy
for the conditions considered, marks the transition density
at which the net effect of the sequence of A = 24 weak-
interaction processes changes from endothermic to exothermic
increasing the core temperature in stellar evolution models.

IV. CONCLUSION

We have calculated the rates for electron captures on 20Ne,
20F, 24Mg, and 24Na and β decays of 20F and 24Na, which are
key quantities for studies of the late-time evolution of 8M�–
12M� stars. So far, such late-time studies are based on the

rate evaluations of Refs. [25] and [5]. We have improved these
rates in three important aspects. First, we have incorporated
experimental data from either β decay or charge-exchange
experiments which have not been available at the time when
Takahara et al. [25] and Oda et al. [5] did their work. In our
study the recent experimental data are supplemented by GT
transitions derived from large-scale shell-model calculations,
similar to the procedure in Refs. [5,25]. Importantly, we find
that nuclear physics input into the astrophysically relevant rates
for electron captures on 20Ne and 24Mg and the competing
β decays of the respective daughters is completely based
on experimental data. The exception is the electron capture
on 20Ne in the density regime log10 ρYe = 9.3–9.7. As our
second improvement we point out that at temperatures T <
0.7 × 109 the capture rate is likely to be dominated by the
second-forbidden transition from the 20Ne ground state to the
20F. Experimentally, only an upper limit exists [45], which,
however, is of the order of typical second-forbidden transition
strengths [46,47]. While we have used the upper limit as an
estimate for this transition in our present work, a calculation of
the transition with an appropriate method like the shell model
or an experimental determination is highly desirable.

As the third improvement, we have corrected the various
rates for medium-induced effects. Here we followed the
formalism discussed in Ref. [14] for electron captures and
extended it to the treatment for β decays. The environment
reduces the electron chemical potential and enhances (reduces)
the reaction Q value for electron captures (β decays). As
a consequence, electron capture rates are lower in dense
astrophysical environments than for bare nuclei, while β decay
rates are larger. For the astrophysical conditions here, the
medium corrections change the rates typically by a factor of
order two. The effect is, of course, significantly larger at such
densities where the rates change from dominance of a certain
transition to another (as is the case in the weak processes here),
as these transitions are extremely sensitive to the effective Q
values.

We note that medium effects should also have a significant
effect on the densities at which so-called URCA pairs operate
and influence the late-stage evolution of the stars. As β
decay rates are enhanced and the competing electron capture
rates are lowered, the medium modifications will move the
operation of the URCA pairs to somewhat higher densities.
Because the shifts of the electron chemical potential and of
the Q values are of order 100 keV under the relevant density
(and temperature) conditions encountered, we expect that the
URCA pairs operate at densities which are about 0.1 × 109 g
cm−3 larger than those found in calculations which do not
consider medium corrections on the rate. Stellar evolution
studies which investigate the impact of screening on the URCA
pairs are needed.

We have presented analytical expressions for both electron
capture and β-decay rates that allow for an accurate description
of these processes for conditions at which URCA pairs
operate in both intermediate-mass stars [33] and neutron
stars [34].

Rate tables on fine grids in temperature and density in the
ranges ρYe = 108–1010 g cm−3 and T = 108–1010 K can be
obtained by request from the authors.
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Astrophys. J. 662, 1188 (2007).

[42] S. Miyaji, K. Nomoto, K. Yokoi, and D. Sugimoto, Publ. Astron.
Soc. Jpn. 32, 303 (1980).

[43] K. Nakazawa, Prog. Theor. Phys. 49, 1932 (1973).
[44] B. D. Anderson, N. Tamimi, A. R. Baldwin, M. Elaasar,

R. Madey, D. M. Manley, M. Mostajabodda’vati, J. W. Watson,
W. M. Zhang, and C. C. Foster, Phys. Rev. C 43, 50
(1991).

[45] D. Tilley, C. Cheves, J. Kelley, S. Raman, and H. Weller,
Nucl. Phys. A 636, 249 (1998), data extracted from the ENSDF
database, version (March 17, 2014).

[46] S. Raman and N. B. Gove, Phys. Rev. C 7, 1995 (1973).
[47] F. Didierjean and G. Walter, Report CRN 94-01, Centre de

Recherches Nucleaires Strasbourg, 1994.
[48] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315

(2006).
[49] M. Wang, G. Audi, A. Wapstra, F. Kondev, M. MacCormick,

X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).

045806-17

http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1103/RevModPhys.75.819
http://dx.doi.org/10.1103/RevModPhys.75.819
http://dx.doi.org/10.1103/RevModPhys.75.819
http://dx.doi.org/10.1103/RevModPhys.75.819
http://dx.doi.org/10.1086/190657
http://dx.doi.org/10.1086/190657
http://dx.doi.org/10.1086/190657
http://dx.doi.org/10.1086/190657
http://dx.doi.org/10.1086/190779
http://dx.doi.org/10.1086/190779
http://dx.doi.org/10.1086/190779
http://dx.doi.org/10.1086/159597
http://dx.doi.org/10.1086/159597
http://dx.doi.org/10.1086/159597
http://dx.doi.org/10.1086/159597
http://dx.doi.org/10.1086/163208
http://dx.doi.org/10.1086/163208
http://dx.doi.org/10.1086/163208
http://dx.doi.org/10.1086/163208
http://dx.doi.org/10.1006/adnd.1994.1007
http://dx.doi.org/10.1006/adnd.1994.1007
http://dx.doi.org/10.1006/adnd.1994.1007
http://dx.doi.org/10.1006/adnd.1994.1007
http://dx.doi.org/10.1016/S0375-9474(99)00240-7
http://dx.doi.org/10.1016/S0375-9474(99)00240-7
http://dx.doi.org/10.1016/S0375-9474(99)00240-7
http://dx.doi.org/10.1016/S0375-9474(99)00240-7
http://dx.doi.org/10.1016/S0375-9474(00)00131-7
http://dx.doi.org/10.1016/S0375-9474(00)00131-7
http://dx.doi.org/10.1016/S0375-9474(00)00131-7
http://dx.doi.org/10.1016/S0375-9474(00)00131-7
http://dx.doi.org/10.1006/adnd.2001.0865
http://dx.doi.org/10.1006/adnd.2001.0865
http://dx.doi.org/10.1006/adnd.2001.0865
http://dx.doi.org/10.1006/adnd.2001.0865
http://dx.doi.org/10.1016/j.ppnp.2005.11.019
http://dx.doi.org/10.1016/j.ppnp.2005.11.019
http://dx.doi.org/10.1016/j.ppnp.2005.11.019
http://dx.doi.org/10.1016/j.ppnp.2005.11.019
http://dx.doi.org/10.1016/j.ppnp.2011.01.056
http://dx.doi.org/10.1016/j.ppnp.2011.01.056
http://dx.doi.org/10.1016/j.ppnp.2011.01.056
http://dx.doi.org/10.1016/j.ppnp.2011.01.056
http://dx.doi.org/10.1103/PhysRevLett.107.202501
http://dx.doi.org/10.1103/PhysRevLett.107.202501
http://dx.doi.org/10.1103/PhysRevLett.107.202501
http://dx.doi.org/10.1103/PhysRevLett.107.202501
http://dx.doi.org/10.1103/PhysRevC.86.015809
http://dx.doi.org/10.1103/PhysRevC.86.015809
http://dx.doi.org/10.1103/PhysRevC.86.015809
http://dx.doi.org/10.1103/PhysRevC.86.015809
http://dx.doi.org/10.1016/j.physrep.2007.02.002
http://dx.doi.org/10.1016/j.physrep.2007.02.002
http://dx.doi.org/10.1016/j.physrep.2007.02.002
http://dx.doi.org/10.1016/j.physrep.2007.02.002
http://dx.doi.org/10.1016/j.nuclphysa.2010.09.012
http://dx.doi.org/10.1016/j.nuclphysa.2010.09.012
http://dx.doi.org/10.1016/j.nuclphysa.2010.09.012
http://dx.doi.org/10.1016/j.nuclphysa.2010.09.012
http://dx.doi.org/10.1103/PhysRevLett.90.241102
http://dx.doi.org/10.1103/PhysRevLett.90.241102
http://dx.doi.org/10.1103/PhysRevLett.90.241102
http://dx.doi.org/10.1103/PhysRevLett.90.241102
http://dx.doi.org/10.1103/PhysRevC.81.015804
http://dx.doi.org/10.1103/PhysRevC.81.015804
http://dx.doi.org/10.1103/PhysRevC.81.015804
http://dx.doi.org/10.1103/PhysRevC.81.015804
http://dx.doi.org/10.1103/PhysRevC.80.055801
http://dx.doi.org/10.1103/PhysRevC.80.055801
http://dx.doi.org/10.1103/PhysRevC.80.055801
http://dx.doi.org/10.1103/PhysRevC.80.055801
http://dx.doi.org/10.1103/PhysRevC.83.045807
http://dx.doi.org/10.1103/PhysRevC.83.045807
http://dx.doi.org/10.1103/PhysRevC.83.045807
http://dx.doi.org/10.1103/PhysRevC.83.045807
http://dx.doi.org/10.1086/161749
http://dx.doi.org/10.1086/161749
http://dx.doi.org/10.1086/161749
http://dx.doi.org/10.1086/161749
http://dx.doi.org/10.1086/165716
http://dx.doi.org/10.1086/165716
http://dx.doi.org/10.1086/165716
http://dx.doi.org/10.1103/PhysRevLett.104.251101
http://dx.doi.org/10.1103/PhysRevLett.104.251101
http://dx.doi.org/10.1103/PhysRevLett.104.251101
http://dx.doi.org/10.1103/PhysRevLett.104.251101
http://dx.doi.org/10.1086/522372
http://dx.doi.org/10.1086/522372
http://dx.doi.org/10.1086/522372
http://dx.doi.org/10.1086/522372
http://dx.doi.org/10.1051/0004-6361:20079334
http://dx.doi.org/10.1051/0004-6361:20079334
http://dx.doi.org/10.1051/0004-6361:20079334
http://dx.doi.org/10.1051/0004-6361:20079334
http://dx.doi.org/10.1088/0004-637X/772/2/150
http://dx.doi.org/10.1088/0004-637X/772/2/150
http://dx.doi.org/10.1088/0004-637X/772/2/150
http://dx.doi.org/10.1088/0004-637X/772/2/150
http://dx.doi.org/10.1016/0375-9474(89)90288-1
http://dx.doi.org/10.1016/0375-9474(89)90288-1
http://dx.doi.org/10.1016/0375-9474(89)90288-1
http://dx.doi.org/10.1016/0375-9474(89)90288-1
http://dx.doi.org/10.1103/PhysRevC.79.055502
http://dx.doi.org/10.1103/PhysRevC.79.055502
http://dx.doi.org/10.1103/PhysRevC.79.055502
http://dx.doi.org/10.1103/PhysRevC.79.055502
http://dx.doi.org/10.1103/RevModPhys.64.491
http://dx.doi.org/10.1103/RevModPhys.64.491
http://dx.doi.org/10.1103/RevModPhys.64.491
http://dx.doi.org/10.1103/RevModPhys.64.491
http://dx.doi.org/10.1146/annurev.ns.38.120188.000333
http://dx.doi.org/10.1146/annurev.ns.38.120188.000333
http://dx.doi.org/10.1146/annurev.ns.38.120188.000333
http://dx.doi.org/10.1146/annurev.ns.38.120188.000333
http://dx.doi.org/10.1103/PhysRevC.52.718
http://dx.doi.org/10.1103/PhysRevC.52.718
http://dx.doi.org/10.1103/PhysRevC.52.718
http://dx.doi.org/10.1103/PhysRevC.52.718
http://dx.doi.org/10.1103/PhysRevC.53.R2602
http://dx.doi.org/10.1103/PhysRevC.53.R2602
http://dx.doi.org/10.1103/PhysRevC.53.R2602
http://dx.doi.org/10.1103/PhysRevC.53.R2602
http://dx.doi.org/10.1103/PhysRevLett.86.1678
http://dx.doi.org/10.1103/PhysRevLett.86.1678
http://dx.doi.org/10.1103/PhysRevLett.86.1678
http://dx.doi.org/10.1103/PhysRevLett.86.1678
http://dx.doi.org/10.1007/BF00653278
http://dx.doi.org/10.1007/BF00653278
http://dx.doi.org/10.1007/BF00653278
http://dx.doi.org/10.1007/BF00653278
http://dx.doi.org/10.1038/nature12757
http://dx.doi.org/10.1038/nature12757
http://dx.doi.org/10.1038/nature12757
http://dx.doi.org/10.1038/nature12757
http://dx.doi.org/10.1086/313121
http://dx.doi.org/10.1086/313121
http://dx.doi.org/10.1086/313121
http://dx.doi.org/10.1086/313121
http://dx.doi.org/10.1016/S0010-4655(01)00145-X
http://dx.doi.org/10.1016/S0010-4655(01)00145-X
http://dx.doi.org/10.1016/S0010-4655(01)00145-X
http://dx.doi.org/10.1016/S0010-4655(01)00145-X
http://dx.doi.org/10.1051/0004-6361:20030708
http://dx.doi.org/10.1051/0004-6361:20030708
http://dx.doi.org/10.1051/0004-6361:20030708
http://dx.doi.org/10.1051/0004-6361:20030708
http://dx.doi.org/10.1016/0375-9474(79)90596-7
http://dx.doi.org/10.1016/0375-9474(79)90596-7
http://dx.doi.org/10.1016/0375-9474(79)90596-7
http://dx.doi.org/10.1016/0375-9474(79)90596-7
http://dx.doi.org/10.1086/517869
http://dx.doi.org/10.1086/517869
http://dx.doi.org/10.1086/517869
http://dx.doi.org/10.1086/517869
http://dx.doi.org/10.1143/PTP.49.1932
http://dx.doi.org/10.1143/PTP.49.1932
http://dx.doi.org/10.1143/PTP.49.1932
http://dx.doi.org/10.1143/PTP.49.1932
http://dx.doi.org/10.1103/PhysRevC.43.50
http://dx.doi.org/10.1103/PhysRevC.43.50
http://dx.doi.org/10.1103/PhysRevC.43.50
http://dx.doi.org/10.1103/PhysRevC.43.50
http://dx.doi.org/10.1016/S0375-9474(98)00129-8
http://dx.doi.org/10.1016/S0375-9474(98)00129-8
http://dx.doi.org/10.1016/S0375-9474(98)00129-8
http://dx.doi.org/10.1016/S0375-9474(98)00129-8
http://dx.doi.org/10.1103/PhysRevC.7.1995
http://dx.doi.org/10.1103/PhysRevC.7.1995
http://dx.doi.org/10.1103/PhysRevC.7.1995
http://dx.doi.org/10.1103/PhysRevC.7.1995
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1103/PhysRevC.74.034315
http://dx.doi.org/10.1088/1674-1137/36/12/003
http://dx.doi.org/10.1088/1674-1137/36/12/003
http://dx.doi.org/10.1088/1674-1137/36/12/003
http://dx.doi.org/10.1088/1674-1137/36/12/003
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