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Nuclear electric dipole moments for the lowest 1/2+ states in Xe and Ba isotopes
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The electric dipole moments for the lowest 1/2+ states of Xe and Ba isotopes are calculated in terms of the
nuclear shell model, which includes two-body nucleon interactions violating parity and time-reversal invariance.
Using the wave functions thus obtained, the nuclear electric dipole moments arising from the intrinsic nucleon
electric dipole moments and also from asymmetric charge distribution are calculated. The upper limits for the
nuclear electric dipole moments of Xe and Ba isotopes are estimated.
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I. INTRODUCTION

The search for interactions violating time reversal (T )
invariance is an important part of studies of fundamental
symmetries in nature. The Standard Model in particle physics
violates charge conjugation and parity (CP ) invariance, but
only through a single phase in the Kobayashi-Maskawa matrix
that mixes quark flavors [1]. Nevertheless, it is too weak to
explain the matter-antimatter asymmetry of the Universe [2,3].
The resulting T violation is therefore expected to be very
weak as long as the CPT theorem holds. The manifestations
of CP violation (and therefore, through the CPT theorem,
of T violation) in systems of neutral K and B mesons [4]
set limits on physical effects beyond the Standard Model.
The main hopes for the extraction of nucleon-nucleon and
quark-quark interactions violating fundamental symmetries
emerge from the experiments with atoms and atomic nuclei
[5,6]. For example, the best limits on P - and T -odd forces
have been obtained from the measurements of the atomic
electric dipole moments (EDMs) in the 199Hg [7] and 129Xe
[8] nuclei. With a new device, experimental efforts searching
for an atomic EDM of 129Xe are now in progress [9].

Recently it was reported that the nuclear EDM would
be measured directly by using an ionic atom instead of a
neutral atom [10,11]. For a neutral atom the nuclear EDM is
completely shielded by the surrounding electrons due to the
Schiff theorem [12]. However, for an ionic atom the nuclear
EDM is not shielded completely by electrons and thus it
is meaningful to measure the EDM of the ionic atom [13].
Fujita and Oshima recently calculated the nuclear EDMs of
neutron odd nuclei with even protons in a phenomenological
shell model picture, assuming a relation between the nuclear
EDMs and the magnetic moments [14].

In the previous paper, the nuclear wave functions for Xe
isotopes were calculated in terms of the nuclear shell model,
in which two-body interactions violating P and T invariance
were included in additional to ordinary nuclear forces [15].
Using wave functions thus obtained, the Schiff moments for
the lowest 1/2+ states of Xe isotopes were calculated. The
Schiff moments were utilized to give upper limits of atomic
EDMs for Xe isotopes.
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The nuclear EDM is induced by two different sources of
mechanism. One originates from the intrinsic nucleon EDM,
which was partly reported in Ref. [16]. The other comes from
the two-body nuclear interaction which violates P and T
invariance. In the present paper the EDMs for the lowest 1/2+
states of Xe and Ba isotopes are calculated in terms of the
nuclear shell model from two different sources.

The paper is organized as follows. In Sec. II, the framework
of the nuclear shell model is reviewed. In Sec. III the method
of calculating EDMs is described. In Sec. IV numerical results
are given for the EDMs. Principal results are discussed and
summarized in Sec. V.

II. SHELL MODEL FRAMEWORK

The nuclear shell model is one of the most appropriate
approaches for describing various aspects of nuclear structure.
However, the full-fledged shell model calculation in the mass
A ∼ 130 region is impractical at present because of its huge
dimension of configuration space. To describe the A ∼ 130
nuclei, we adopt the pair truncated shell model [17–19]. In this
model the full shell model space is restricted to the subspace
of collective pairs. A nucleon pair creation operator with total
angular momentum J and its projection M is defined as

Â
†(J )
M (j1j2) =

∑
m1m2

(j1m1j2m2|JM)ĉ†j1m1
ĉ
†
j2m2

, (1)

where ĉ
†
jm stands for the nucleon creation operator in the j

orbital with its projection m and (j1m1j2m2|JM) stands for
a Clebsch-Gordan coefficient. Using this pair, the collective
nucleon pair creation operators with angular momenta zero
(S) and two (D) are defined as

Ŝ† =
∑

j

αj Â
†(0)
0 (jj ), (2)

D̂
†
M =

∑
j1j2

βj1j2Â
†(2)
M (j1j2), (3)

where the structure coefficients α and β are determined by
variation in the present approach.

The model space includes the five levels 0g7/2, 1d5/2, 1d3/2,
0h11/2, and 2s1/2 in the major shell between the magic numbers
50 and 82. In addition, four levels for protons, 1f7/2, 1f5/2,
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FIG. 1. (Color online) Comparison of the experimental energy levels (expt.) with those of the shell model (theory) for 129Xe and 131Ba.
The experimental data are taken from Refs. [20–22].

2p3/2, and 2p1/2, are taken into account above the closed
shell Z = 82. For a description of negative-parity states, we
introduce proton negative-parity (Nk,k = 1,2,3,4,5) pairs

N̂
†(K1)
1M = Â

†(K1)
M (g7/2,f7/2), (4)

N̂
†(K2)
2M = Â

†(K2)
M (d5/2,f5/2), (5)

N̂
†(K3)
3M = Â

†(K3)
M (s1/2,p1/2), (6)

N̂
†(K4)
4M = Â

†(K4)
M (g7/2,f5/2), (7)

N̂
†(K5)
5M = Â

†(K5)
M (d5/2,f7/2), (8)

where the coupled angular momenta take values of K1,2 =
0,1,2,3,4, K3 = 0,1 and K4,5 = 1,2,3,4. Then the SD+Nk-
pair state is constructed as

∣∣Sns Dnd N
nk

k Iη
〉 = (Ŝ†)ns (D̂†)nd (N̂ †

k )nk |−〉, (9)

where ns + nd + nk gives half the number of valence nucleons,
I is a total angular momentum, and η is an additional quantum
number required to completely specify the state. The angular
momentum coupling is carried out exactly, but we abbreviate
its notation.

To describe odd-mass nuclei, we add an unpaired nucleon
in the j orbital to the SD-pair states. The state is now written as

|jSns Dnd Iη〉 = [ĉ†j |Sns Dnd I ′η〉](I ), (10)

where I ′ is the total angular momentum of the SD pair
state, I is the total angular momentum of the SD pair plus

one-particle state, and η is an additional quantum number.
Using the SD pair plus one-particle state in neutron space
and the SD+Nk-pair state in proton space, we can express
the many-body wave function of the odd-even (neutron-odd
and proton-even) nucleus with a total spin I and its projection
M as

|�(IMη)〉 = [|jnS
n̄s Dn̄d Inηn〉 ⊗ ∣∣Sns Dnd N

nk

k Ipηp

〉](I )
M

,

(11)

where 2(n̄s + n̄d ) + 1 and 2(ns + nd + nk) are numbers of
valence neutron holes and proton particles, respectively.

As an effective two-body interaction, we employ the
monopole and quadrupole pairing plus quadrupole-quadrupole
interaction. The effective shell model Hamiltonian is written
as

Ĥ0 = Ĥn + Ĥp + Ĥnp, (12)

where Ĥn, Ĥp, and Ĥnp represent the interaction among
neutrons, the interaction among protons, and the interaction
between neutrons and protons, respectively. The explicit form
of the Hamiltonian and the interaction strengths were reported
in Ref. [15].

The Hamiltonian in Eq. (12) is diagonalized in terms of the
many-body basis wave functions in Eq. (11) as

Ĥ0

∣∣Iπ
k

〉 = E
(
Iπ
k

)∣∣Iπ
k

〉
, (13)

where |Iπ
k 〉 is the normalized eigenvector for the kth state with

spin I and parity π , and E(Iπ
k ) is the eigenenergy for the state

|Iπ
k 〉. In Fig. 1, the theoretical energy levels are compared with

the experimental data for 129Xe and 131Ba. For both nuclei there
exist one-to-one correspondences between the theoretical and
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FIG. 2. (Color online) Density of the 1/2− states ρ(Ek) in
(a) 129Xe and (b) 131Ba.

experimental levels for the 1/2+
1 , 3/2+

1 , 3/2+
2 , and 5/2+

1 states.
Concerning the negative-parity states, the level ordering of the
11/2−

1 and 9/2−
1 states is reversely predicted for 129Xe. In

contrast, the shell model calculation reproduces quite well the
correct ordering of these states for 131Ba.

The density of the 1/2− states is defined as

ρ(Ek) = dN

dE

∣∣∣∣
E=Ek

, (14)

where Ek is the excitation energy Ek = E( 1
2

−
k

) − E( 1
2

+
1 ). We

take dE = 0.2 MeV and dN is the number of the 1/2− states
in the range dE. In Fig. 2, we show the densities of the 1/2−
states for 129Xe and 131Ba. For each nucleus, the density of
states, ρ, has a Gaussian shape and increases exponentially
between 8 and 12 MeV. At 13 MeV (14 MeV) for 129Xe
(131Ba) it becomes maximum, but the contribution of each state
above 12 MeV to the EDM is marginal, which is discussed in
Sec. IV.

III. ELECTRIC DIPOLE MOMENTS

The nuclear EDM comes from two independent origins.
One arises from the asymmetric nuclear charge distribution
and the other is induced from the intrinsic nucleon EDM. The
EDM operator is expressed as the sum of two terms:

D̂ = D̂ch + D̂int, (15)

where D̂ch originates from the asymmetric nuclear charge
distribution

D̂ch =
A∑

i=1

ei (r i − R) . (16)

Here A is the mass number of a specific nucleus, and r i and ei

are the position and the charge for the ith nucleon, respectively.
We take ei = 0 for a neutron and ei = e for a proton. The R
represents the center of mass of the nucleus. The D̂int is the
EDM operator arising from the intrinsic nucleon EDM, which
is expressed as

D̂int =
A∑

i=1

d̂i . (17)

Here d̂ i indicates the intrinsic nucleon EDM operator for
the ith nucleon, which is expressed in the nonrelativistic
approximation as

d̂i = 1
2

[
(1 − τiz)dnσ̂

n
i + (1 + τiz)dpσ̂

p
i

]
. (18)

Here τiz represents the third component of isotopic operator,
dn and dp are the intrinsic EDMs for a neutron and a proton,
respectively, and σ̂ t

i represents the Pauli spin operator for the
neutron (t = n) or the proton (t = p).

When a nuclear PT -violating two-body interaction is
introduced, the total Hamiltonian is now written as

Ĥ = Ĥ0 + V PT
π(I ), (19)

where Ĥ0 is the Hamiltonian in Eq. (12), and V PT
π(I ) is a two-

body nuclear interaction violating P and T invariance. We
adopt three isospin types [23–25] for the nuclear PT -violating
two-body interaction. The isoscalar (I = 0), isovector (I = 1),
and isotensor (I = 2) interactions are respectively written as

V PT
π(0) = F0(τ 1 · τ 2) (σ 1 − σ 2) · rf (r), (20)

V PT
π(1) = F1[(τ1z + τ2z)(σ 1 − σ 2)

+ (τ1z − τ2z)(σ 1 + σ 2)] · rf (r), (21)

V PT
π(2) = F2

(
3τ1zτ2z − τ 1 · τ 2

)
(σ 1 − σ 2) · rf (r), (22)

where

f (r) = exp(−mπr)

mπr2

(
1 + 1

mπr

)
, (23)

with r = r1 − r2, and r = |r|. The coefficients FI are ex-
pressed as

F0 = − 1

8π

m2
π

MN

ḡ(0)g, (24)

F1 = − 1

16π

m2
π

MN

ḡ(1)g, (25)

F2 = − 1

8π

m2
π

MN

ḡ(2)g, (26)

where MN is the mass of a nucleon, mπ is the mass of a pion, g
is the strong πNN coupling constant, and ḡ(I ) with isospin I
is the strong πNN constant which breaks P and T invariance.

We treat the nuclear PT -violating two-body interaction as
a perturbation. Then the total wave function of the first 1/2+
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state, | 1
2

+
1 〉〉, is given as

∣∣ 1
2

+
1

〉〉 = ∣∣ 1
2

+
1

〉 + ∑
k=1

1

E
(+)
1 − E

(−)
k

〈
1
2

−
k

∣∣V PT
π(I )

∣∣ 1
2

+
1

〉∣∣ 1
2

−
k

〉
,

(27)

where | 1
2

π

k
〉 is an unperturbed state given by Eq. (13). All these

states have projection (spin third component) 1/2. Using the
notation in Eq. (13), we identify the energy as E

(π)
k = E( 1

2
π

k
).

The nuclear EDM for the first 1/2+ state is expressed as

dN = 〈〈
1
2

+
1

∣∣D̂z

∣∣ 1
2

+
1

〉〉 = dN,ch + dN,int. (28)

The EDM coming from the intrinsic nucleon EDM, dN,int, is
expressed as

dN,int = 〈〈
1
2

+
1

∣∣D̂int,z

∣∣ 1
2

+
1

〉〉 = 〈
1
2

+
1

∣∣D̂int,z

∣∣ 1
2

+
1

〉
, (29)

where D̂int,z is the third coordinate component of D̂int. The
nuclear EDM caused by charge asymmetry, dN,ch, is expressed
as

dN,ch = 〈〈
1
2

+
1

∣∣D̂ch,z

∣∣ 1
2

+
1

〉〉

=
∑
k=1

〈
1
2

+
1

∣∣D̂ch,z

∣∣ 1
2

−
k

〉〈
1
2

−
k

∣∣V PT
π(I )

∣∣ 1
2

+
1

〉
E

(+)
1 − E

(−)
k

+ c.c., (30)

where D̂ch,z is the third coordinate component of D̂ch.
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FIG. 3. (Color online) Strength function for the EDM operator in
(a) 129Xe and (b) 131Ba.

IV. NUMERICAL RESULTS

We define the partial contribution of the kth state
∣∣ 1

2
−
k

〉
to

the EDM by

d(I )(k) =
〈

1
2

+
1

∣∣D̂ch,z

∣∣ 1
2

−
k

〉〈
1
2

−
k

∣∣V PT
π(I )

∣∣ 1
2

+
1

〉
E

(+)
1 − E

(−)
k

+ c.c. (31)

In evaluating Eq. (31), the strength function for the EDM
operator is given by

D (k) = 〈
1
2

+
1

∣∣D̂ch,z

∣∣ 1
2

−
k

〉
, (32)

which is shown for 129Xe and 131Ba in Fig. 3. There exist
several strong strengths in the range between 6 and 10 MeV.

In Fig. 4 we show the off-diagonal potential matrix elements

V(I ) (k) = 〈
1
2

−
k

∣∣V PT
π(I )

∣∣ 1
2

+
1

〉
, (33)

for the isoscalar (I = 0) part. In contrast to the strength
function for the EDM, there are now two large contributions
just above 6.8 MeV (7.0 MeV) in the enlarged scale for 129Xe
(131Ba).

In Fig. 5, the partial contribution d(I )(k) to the EDM for
the isoscalar (I = 0) two-body interaction in 129Xe and 131Ba
is shown as a function of the excitation energy Ek (Ek =
E

(−)
k − E

(+)
1 ). The “SUM” indicates the sum of each EDM

contribution defined by

dSUM
(I ) (k) =

k∑
i=1

d(I )(i), (34)
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FIG. 4. (Color online) Off-diagonal potential matrix elements
between 1/2+

1 state and 1/2−
k state for the isoscalar interaction within

the energy ranges below 7.03 MeV (left panel) and above 7.03 MeV
in (a) 129Xe and (b) 131Ba.
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where the summation is taken over contributions from the first
state to the kth state with spin 1/2 and negative parity. Almost
no contributions are seen above 12.0 MeV. This behavior is
analogous to the Schiff moments studied in the previous paper
[15]. The total sum for the isoscalar (I = 0) in 129Xe results in

dN,ch = 7.04 × 10−18ḡ(0)g e cm. (35)

In Figs. 6 and 7 we show the partial contributions to the
EDMs and their total sums, respectively, for isovector (I = 1)
and isotensor (I = 2) two-body interactions. All three isospin
EDMs resemble one another, but especially isovector and
isotensor moments look quite similar to each other except
for absolute values. In Table I we show the results of EDMs in
units of ḡ(I )g e cm (I = 0,1,2) for Xe and Ba isotopes.

As shown in Eq. (28), the contribution to the EDM also
comes from the intrinsic nucleon EDM. The nuclear EDM

TABLE I. EDMs in units of 10−17ḡ(I )g e cm (I = 0,1,2).

Nucleus 129Xe 131Xe 133Xe 135Xe

Isoscalar (I = 0) 0.704 0.027 −0.859 −0.557
Isovector (I = 1) 0.735 0.339 −0.161 0.090
Isotensor (I = 2) 3.71 2.01 −0.107 1.10

Nucleus 131Ba 133Ba 135Ba 137Ba

Isoscalar (I = 0) 0.045 −2.67 −3.58 −4.83
Isovector (I = 1) 0.213 −0.826 −1.34 −1.48
Isotensor (I = 2) 1.23 −2.29 −4.45 −4.06
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FIG. 6. (Color online) Same as in Fig. 5, but for the isovector
(I = 1) type two-body interaction.

dN,int is expressed as

dN,int = 〈
1
2

+
1

∣∣D̂int,z

∣∣ 1
2

+
1

〉 = 〈
σ̂ n

z

〉
dn + 〈

σ̂ p
z

〉
dp, (36)

where 〈σ̂ t
z 〉 is the expectation value of the spin operator σ̂ t

z

(t = n or p) in terms of the shell model wave function.
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FIG. 7. (Color online) Same as in Fig. 5, but for the isotensor
(I = 2) type two-body interaction.
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Since 〈σ̂ t
z 〉 = 1 for any single-particle state, 〈σ̂ t

z 〉 can be
understood as a reduction factor or a quenching factor from its
single-particle estimate. In Fig. 8 the quenching factors 〈σ̂ t

z 〉
are shown. Although the factors for the proton are marginally
small, those for the neutron are comparable to its intrinsic
value dn. The quenching factors take the values between 0.23
and 0.98 for Xe isotopes and the values between 0.11 and 0.98
for Ba isotopes.

V. SUMMARY AND DISCUSSION

The nuclear EDM of a specific nucleus consists of two
terms: one which arises from asymmetric nuclear charge
distribution and the other which is induced from the intrinsic
nucleon EDM.

For the first contribution coming from the isoscalar inter-
action, we have for the EDM of 129Xe nucleus,

|dN,ch(129Xe)| = 7.04 × 10−18ḡ(0)g e cm. (37)

Using a relation between the isoscalar coupling ḡ(0) and the
CP -violating phase θ̄ in the QCD Lagrangian, ḡ(0) = 0.027θ̄
[26], and adopting the standard value g = 13.5, we have

|dN,ch(129Xe)| = 2.6 × 10−18θ̄ e cm. (38)

TABLE II. Estimated upper limits for the nuclear EDMs which
arise from asymmetric nuclear charge distribution for the lowest 1/2+

states of Xe isotopes in units of 10−27 e cm.

Nucleus 129Xe 131Xe 133Xe 135Xe

Isoscalar (I = 0) 0.77 0.029 0.94 0.61
Isovector (I = 1) 0.80 0.37 0.18 0.099
Isotensor (I = 2) 4.1 2.2 0.12 1.2

Nucleus 131Ba 133Ba 135Ba 137Ba

Isoscalar (I = 0) 0.049 2.9 3.9 5.3
Isovector (I = 1) 0.23 0.90 1.5 1.6
Isotensor (I = 2) 1.3 2.5 4.9 4.4

TABLE III. The neutron quenching factor 〈σ̂ n
z 〉 and the upper

limit of the nuclear EDM dN (in 10−26 e cm) for each nuclear 1/2+
1

state.

Nucleus 〈σ̂ n
z 〉 dN,int (upper limit)

129Xe +0.2306 0.67
131Xe +0.4644 1.3
133Xe +0.6546 1.9
135Xe +0.9777 2.8
131Ba +0.1090 0.32
133Ba +0.3537 1.0
135Ba +0.4360 1.3
137Ba +0.9811 2.8

Also, using the upper limit θ̄ = 3 × 10−10 obtained by the
199Hg experiment [7], we estimate the upper limit for 129Xe,

|dN,ch(129Xe)| < 7.7 × 10−28 e cm, (39)

for the isoscalar contribution. Assuming that the same relation
ḡ(I ) = 0.027θ̄ holds for the isovector and isotensor interac-
tions, we can predict other results shown in Table II.

Now let us calculate the second contribution coming from
the intrinsic nucleon EDM. In the case of 129Xe, the neutron
quenching factor is 〈σ̂ n

z 〉 = +0.2306. Using the upper limit for
the neutron EDM, |dn| < 2.9 × 10−26 e cm [27], we predict
the upper limit for the nuclear EDM of 129Xe:

|dN,int(
129Xe)| < 6.7 × 10−27 e cm, (40)

which is nearly the upper limit of the experimentally observed
atomic EDM [8], |d(129Xe)| < 4.1 × 10−27 e cm. The results
for other nuclear EDMs are shown in Table III.

In summary the electric dipole moments (EDMs) for the
lowest 1/2+ states of Xe isotopes are calculated in terms of
the nuclear shell model, which includes two-body nucleon
interactions violating parity and time-reversal invariance. In
addition, using the wave functions thus obtained, the nuclear
EDMs arising from the intrinsic nucleon EDMs are calculated.
The upper limits for the nuclear EDM of the Xe and Ba isotopes
are estimated.
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