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22Institute of Theoretical and Experimental Physics, Moscow 117259, Russia

23James Madison University, Harrisonburg, Virginia 22807, USA
24Kyungpook National University, Daegu 702-701, Republic of Korea

25LPSC, Universite Joseph Fourier, CNRS/IN2P3, INPG, Grenoble, France
26University of New Hampshire, Durham, New Hampshire 03824-3568, USA

27Norfolk State University, Norfolk, Virginia 23504, USA
28Ohio University, Athens, Ohio 45701, USA

29Old Dominion University, Norfolk, Virginia 23529, USA
30Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA

31Universita’ di Roma Tor Vergata, 00133 Rome, Italy
32Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia

33University of South Carolina, Columbia, South Carolina 29208, USA
34Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

35University of Glasgow, Glasgow G12 8QQ, United Kingdom

0556-2813/2014/89(4)/045206(25) 045206-1 ©2014 American Physical Society



S. TKACHENKO et al. PHYSICAL REVIEW C 89, 045206 (2014)

36University of Richmond, Richmond, Virginia 23173, USA
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Background: Much less is known about neutron structure than that of the proton due to the absence of free
neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring
corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have
significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the
same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the
proton at large x.
Purpose: The Barely Off-shell Nucleon Structure experiment at Jefferson Lab measured the inelastic electron-
deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This
method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model-
independent extraction of the neutron structure function F2(x,Q2) in the resonance and deep-inelastic regions.
Method: A novel compact radial time projection chamber was built to detect protons with momentum between
70 and 150 MeV/c and over a nearly 4π angular range. For the extraction of the free-neutron structure function
F n

2 , spectator protons at backward angles (>100◦ relative to the momentum transfer) and with momenta below
100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons
were detected with Jefferson Lab’s CLAS spectrometer, with data taken at beam energies near 2, 4, and 5 GeV.
Results: The extracted neutron structure function F n

2 and its ratio to the inclusive deuteron structure function F d
2

are presented in both the resonance and the deep-inelastic regions for momentum transfer squared Q2 between
0.7 and 5 GeV2/c2, invariant mass W between 1 and 2.7 GeV/c2, and Bjorken x between 0.25 and 0.6 (in
the deep-inelastic scattering region). The dependence of the semi-inclusive cross section on the spectator proton
momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed.
Conclusions: Our data set on the structure function ratio F n

2 /F d
2 can be used to study neutron resonance

excitations, test quark-hadron duality in the neutron, develop more precise parametrizations of structure functions,
and investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first
glimpse of the asymptotic behavior of d/u at x → 1.

DOI: 10.1103/PhysRevC.89.045206 PACS number(s): 13.60.Hb, 14.20.Dh, 24.85.+p, 25.30.Fj

I. INTRODUCTION

The advent of high-luminosity beams at modern accelerator
facilities such as the Continuous Electron Accelerator Facility
(CEBAF) at Jefferson Lab has opened the way for dedicated
programs of nucleon structure measurements with unprece-
dented precision. The data have allowed phenomena such as
quark-hadron duality and the transition to scaling in transverse
and longitudinal nucleon structure functions to be accurately
verified, as well as precision studies to be conducted of the
flavor and spin structure of the proton in kinematic regions
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previously inaccessible (see, e.g., Refs. [1–3] and references
therein).

In particular, the region of large parton (quark) momen-
tum fraction (x � 0.5), which is experimentally challenging
because of the small cross sections involved, has seen a
resurgence of interest in recent years [4,5], especially at
Jefferson Lab with its unique access to large x. Part of this
interest has been the promise to resolve decades-long questions
about parton distribution functions (PDFs) at large x, such as
the behavior of the unpolarized d/u or polarized �d/d ratios
in the x → 1 limit. At large four-momentum transfer squared,
Q2 � 1 GeV2/c2, these offer relatively clean probes of the
strong interaction dynamics of valence quarks in the nucleon.
To access information on d quarks, and in particular these
ratios, one needs electron-scattering data from both proton and
neutron targets. However, while experiments have been able to
map out in great detail the characteristics of the proton at large
x, determining the corresponding structure of the neutron has
proved to be much more difficult.

At lower values of Q2 (of order 1 GeV2/c2), the large-x
region is dominated by nucleon resonances, among which
the �(1232) is the lowest-mass excitation. A fundamental
question here is whether the ratio σn/σp of neutron- to
proton-inclusive electron-scattering cross sections for the
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N → �(1232) transition is unity, as would be expected for
a pure isovector transition (�I = 1). Existing deuteron elec-
troproduction data [6–8] indicate that the isotensor (�I = 2)
contribution is small but non-negligible. Similarly, comparing
inclusive cross sections on the neutron with those on the proton
for the higher-lying (overlapping) resonance excitations can
provide constraints on the isospin structure of the resonant and
nonresonant contributions to the total cross section. Finally,
neutron structure functions in the resonance region are needed
to conclusively test Bloom-Gilman duality [9] in the neutron.

The absence of free neutron targets has meant that, in
practice, light nuclei such as the deuteron and 3He are routinely
used as effective neutron targets. In regions of kinematics
where most of the neutron’s momentum is carried by a
single valence quark, or where the spectrum is dominated by
resonances, different choices for models of nuclear corrections
can lead to significant uncertainties in the neutron cross
sections [10–15]. Consequently, our ability to determine un-
ambiguously the isospin structure of the nucleon PDFs, as well
as the spectrum of the excited states of the nucleon, has been
severely limited. For example, in the nucleon resonance region
there are large uncertainties in the neutron to N∗ transition
helicity amplitudes extracted from deuteron measurements,
while in the deep-inelastic scattering (DIS) region the d-quark
PDF is poorly determined beyond x ∼ 0.6. Aside from the
intrinsic value of such knowledge, a practical ramification is
that the large-x PDF uncertainties can in some cases propagate
to influence production rates of particles, including those
predicted beyond the standard model, at high-energy colliders
such as the Large Hadron Collider [16,17].

To move beyond this impasse, it has been suggested [18–21]
that one can minimize the nuclear model uncertainties by
selecting (or “tagging”) final states in the electron-deuteron
scattering process in which the proton is produced with
small momentum in the backward hemisphere relative to
the momentum transfer. This minimizes the probability of
rescattering of the “spectator” proton with the rest of the
hadronic debris, thereby ensuring that the reaction took place
on a neutron close to its mass shell [22,23].

The first direct extraction of inclusive scattering data on
a nearly free neutron using this spectator tagging technique
was performed with the Barely Off-shell Nucleon Structure
(BONuS) experiment at Jefferson Lab, which ran in 2005 in
Hall B using CLAS and a novel radial time projection chamber
(RTPC) capable of detecting protons with momenta down to
70 MeV/c. In a first report [24], a representative sample of the
BONuS neutron spectra was presented, allowing a first glimpse
into the inclusive neutron excited mass spectrum and the
neutron Fn

2 structure function at large x, essentially free of nu-
clear correction uncertainties. In this paper we present the full
BONuS data sample. These data cover a large kinematic range,
from the quasielastic peak to the region of final-state hadron
masses W ≈ 2.7 GeV/c2 and Q2 from 0.7 to 5 GeV2/c2.

In Sec. II we review the basic formulas for describing
spectator proton tagging in semi-inclusive scattering from the
deuteron within the impulse approximation (IA) and discuss
various corrections to the IA due to final-state interactions,
nucleon off-shellness, and other effects. An overview of the
experimental setup is presented in Sec. III, where we outline

the novel features of the BONuS RTPC. Details of the data
analysis are given in Sec. IV, which describes the event
selection and background subtraction and two different meth-
ods of analysis. The results of the experiment are presented in
Sec. V. We present results both for the “spectator limit” (slow,
backward protons), which can be used to constrain models of
neutron structure with minimal nuclear binding uncertainties,
and for kinematics in which nuclear and final-state interaction
effects are enhanced (forward and higher-momentum protons).
Our analysis allows us to identify kinematic regions in which
the spectator approximation can be used for extracting the free
neutron structure function. Finally, in Sec. VI we summarize
our findings and discuss future extensions of the spectator
tagging technique planned at the energy-upgraded 12-GeV
Jefferson Lab facility.

II. PHYSICS OVERVIEW

In this section we review the physics motivation for the
BONuS experiment and the formalism employed to analyze
semi-inclusive scattering from the deuteron with a tagged
spectator proton. We discuss the accuracy of the nuclear IA
used to extract the neutron structure function from the semi-
inclusive cross section and examine various corrections to the
IA from final-state interactions and nucleon off-shell effects.

A. Motivation

There are a number of reasons why knowledge of the
free neutron structure functions is vital for our understanding
of the quark structure of the nucleon and nonperturbative
QCD more generally. In the nucleon resonance region,
an accurate determination of neutron structure functions is
needed for the extraction of the full isospin dependence of
the resonant and nonresonant contributions to the inclusive
neutron cross section. Knowledge of the neutron resonance
structure is also needed for the model-independent verification
of Bloom-Gilman duality in the neutron [3,9,25,26] and for
understanding the transition between the resonance and deep-
inelastic regions. While existing model-dependent studies [27]
suggest a common origin of duality for the neutron and proton,
proof of this requires neutron resonance data that are free of
nuclear model assumptions.

Unfortunately, the absence of high-density, free neutron
targets has usually forced neutron structure to be extracted
from inclusive scattering experiments on nuclear targets, such
as the deuteron. Such extractions, however, necessarily involve
model-dependent methods to account for nuclear effects in
the deuteron [27]. The extraction of the neutron structure
function in the resonance region from inclusive nuclear data
is particularly challenging because of Fermi smearing, which
acts to reduce the distinctiveness of the resonance peaks from
the nonresonant background [28].

Of course, definitive tests of quark-hadron duality must
involve data from both the resonance and the DIS regions.
For the latter, the parton model allows the structure of the
nucleon to be characterized in terms of the nucleon’s valence
u- and d-quark momentum distributions. Following many
years of DIS and other high-energy scattering experiments,
a detailed picture has emerged of the structure of the nucleon
at intermediate and small values of Bjorken x. The abundance
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F 2n
F 2p

x

FIG. 1. (Color online) Ratio of inclusive neutron-to-proton struc-
ture functions F n

2 /F
p
2 from the CJ global PDF analysis [13]. The

shaded bands illustrate the range of possible values for the ratio from
nuclear corrections and experimental uncertainties. The vertical arrow
indicates the edge of the region in x where the ratio is constrained by
data (x � 0.8).

of high-precision proton structure function (Fp
2 ) data has, due

to the preferential coupling of the photon to u quarks compared
with d quarks in the proton, allowed an accurate determination
of the u-quark PDF at both small and large values of x.

The corresponding d-quark distribution could be similarly
constrained by neutron structure function (Fn

2 ) data and the
d/u ratio extracted, at leading order in the strong coupling
constant and for x � 0.5, via

d

u
≈ 4Fn

2

/
F

p
2 − 1

4 − Fn
2

/
F

p
2

, (1)

where the approximation neglects strange and heavier quarks.
At high values of x (where large nucleon momenta contribute
significantly in nuclei) the uncertainties associated with the
nuclear corrections propagate to the extracted neutron structure
functions and hence to the Fn

2 /F
p
2 ratio [10–15]. The results

for Fn
2 /F

p
2 from a recent global fit by the CTEQ-Jefferson Lab

(CJ) Collaboration [13] are illustrated in Fig. 1, showing the
uncertainties from both nuclear corrections and experiment.
Beyond x ≈ 0.5 the current data not only prevent us from
understanding the basic nonperturbative dynamics responsible
for the behavior of d/u in the x → 1 limit, for which
predictions range from 0 to ≈0.5 [4,11], but can also impact our
ability to reliably compute QCD cross sections in high-energy
collider experiments which have sensitivity to the d-quark
PDF [17].

Measurement of the free neutron structure function would
also allow for a model-independent determination of the
size of the nuclear correction in the deuteron through the
construction of the Fd

2 /(Fp
2 + Fn

2 ) ratio. This would provide
data that could discriminate between various detailed models
of nuclear effects in the deuteron [18,29–33], thereby solving
the decades-long question about the magnitude of the nuclear
EMC effect in the deuteron. Finally, reliable parametrizations
for Fn

2 are needed to extract ratios of nuclear to nucleon
structure functions from inclusive measurements on nuclear
targets and on spin structure functions from polarization
asymmetries in inclusive scattering.

B. Spectator tagging

Because the deuteron is a weakly bound system with
binding energy εd = −2.2 MeV (only about 0.1% of the
deuteron mass), on average the deuteron structure function
may be reasonably well approximated by a sum of free proton
and neutron structure functions. At large values of x, however,
the deuteron structure functions receive increasingly greater
contributions from nucleons carrying a larger fraction of
the deuteron’s momentum. These contributions are sensitive
to the details of the high-momentum tails of the deuteron
wave function, which are not as well constrained by nucleon-
nucleon scattering data as the low-momentum components.
Consequently, in the high-x region there is a more significant
dependence on the model for the smearing of the nucleon
structure due to binding and Fermi motion effects, as well
as to possible modifications of nucleon structure when the
nucleon is off its mass shell.

The nuclear model uncertainties in the extraction of the
neutron structure function from inclusive electron-deuteron
scattering data can be significantly reduced by detecting
low-momentum protons produced at backward kinematics,
relative to the momentum transfer, in coincidence with the
scattered electron,

e + d → e + ps + X. (2)

The restriction to low momenta ensures that the scattering
takes place on a nearly on-shell neutron [19–21], while
tagging backward-moving spectator protons (ps) minimizes
final-state interaction effects [22,23].

The cross section for the semi-inclusive electroproduction
of a proton with four-momentum p

μ
s = (Es, ps) can be written

in the deuteron rest frame as [21,23]

dσ

dxdQ2d3 ps/Es

= 4πα2
em

xQ4

(
1 − y − x2y2M2

Q2

)

×
[
Fd

L +
(

Q2

2q2
+ tan2 θ

2

)
ν

M
Fd

T

+
√

Q2

2q2
+ tan2 θ

2
cos φ Fd

T L + cos 2φ Fd
T T

]
, (3)

where αem is the electromagnetic fine structure constant and
Es = √

M2 + p2
s and M are the energy and mass, respectively,

of the spectator proton produced at an azimuthal angle φ
around the z axis (defined along the q direction). The four-
momentum transfer to the deuteron is given by qμ = (ν,q),
with Q2 ≡ −q2 and x = Q2/2Mν the usual Bjorken scaling
variable evaluated in the target rest frame. The variable
y = ν/Ee denotes the fractional loss of the electron energy
Ee, and θ is the electron-scattering angle.

The semi-inclusive deuteron structure functions Fd
L , Fd

T ,
Fd

T L, and Fd
T T depend on the variables x and Q2, the light-cone

momentum fraction of the spectator proton αs = (Es − pz
s )/M ,

and the spectator proton transverse momentum p⊥
s . In

terms of the angle between the outgoing spectator proton
and the direction of q, the longitudinal and transverse
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(a) (b)

q

PD
PD

q

psps

p p

W *W *
FSI

FIG. 2. Semi-inclusive scattering from a deuteron with detection
of a spectator proton, ps , within the framework of (a) the nuclear IA
and (b) including the effects of final-state interactions.

spectator momenta are given by pz
s = | ps | cos θpq and p⊥

s =
| ps | sin θpq , respectively. Integrating over the azimuthal angle
φ, the terms proportional to Fd

T L and Fd
T T vanish, and

the cross section of Eq. (3) becomes proportional to the
familiar combination of semi-inclusive (SI) structure functions
(2ν/M) tan2(θ/2) F

d (SI)
1 + F

d (SI)
2 , where

F
d (SI)
1 = 1

2
Fd

T , (4a)

F
d (SI)
2 = Fd

L + x

ρ2
Fd

T , (4b)

with ρ2 = 1 + 4M2x2/Q2. The semi-inclusive structure func-
tions F

d (SI)
1,2 are then related to the inclusive deuteron structure

functions Fd
1,2 simply by integrating over the spectator proton

momentum ps .
In the nuclear IA, illustrated in Fig. 2(a), the virtual

photon scatters incoherently from the bound neutron with
four-momentum pμ, where pμ + p

μ
s = P

μ
d = (Md,0) in the

deuteron rest frame, with Md the deuteron mass. In this case
the semi-inclusive deuteron structure functions can be written
as products of the structure functions of the bound neutron and
the nuclear spectral function S(αs,p

⊥
s ) [21,23],

F
d (SI)
1 (x,Q2,αs,p

⊥
s ) ≈ S(αs,p

⊥
s )

[
F

n,eff
1 (x∗,Q2,α,p⊥)

+ p⊥2

2pq
F

n,eff
2 (x∗,Q2,α,p⊥)

]
, (5a)

F
d (SI)
2 (x,Q2,αs,p⊥s) ≈ S(αs,p

⊥
s )

Mν

pq

{(
1 +

√
1 − Q2

2q2

)2

×
[
α + 2pq

(ν + |q|)Md

]2

+ Q2

2q2

p⊥2
s

M2

}

×F
n,eff
2 (x∗,Q2,α,p⊥), (5b)

where F
n,eff
1,2 are the bound or “effective” neutron structure

functions. In the on-shell limit, the bound neutron structure
functions reduce to the free neutron structure functions,
F

n,eff
1,2 → Fn

1,2, but in general are functions of the off-shell
neutron’s invariant Bjorken variable

x∗ = Q2

2pq
≈ x

α
, (6)

the struck neutron’s light-cone momentum fraction α = 2 −
αs , and its transverse momentum p⊥ = − p⊥

s . Alternatively,
one can also express F

n,eff
1,2 as a function of the final-state

invariant mass squared,

W ∗2 = (p + q)2 = p2 + Q2(1 − x∗)

x∗ , (7)

where p2 = (Md − Es)2 − p2 is the invariant mass squared of
the off-shell nucleon. Note that in the on-shell limit, the struck
nucleon’s Bjorken variable x∗ → x, while W ∗2 reduces to the
invariant mass squared W 2 = M2 + Q2(1 − x)/x for a free
nucleon at rest.

The nuclear spectral function S describes the probability of
finding an off-shell neutron in the deuteron with momentum
(α,p⊥) and an on-shell proton with momentum (αs,p

⊥
s ). It

is determined by the square of the deuteron wave function
|ψd (p)|2 and kinematic factors that depend on the framework
used to compute the nuclear structure function. These factors
coincide in the limit where both nucleons are on shell, but
differ in the off-shell behavior [20,21]. The expressions in
Eqs. (5) for the semi-inclusive structure functions can be used
to extract the free neutron Fn

1,2 structure functions in the limit
αs → 1 and p⊥

s → 0. Of course, the experimental data will
only be available for some minimum value of p⊥

s , which will
introduce some uncertainty into the on-shell extrapolation, as
discussed in the following sections.

While uncertainties in the nucleon-nucleon interaction at
short distances lead to significant dependence of the inclusive
deuteron structure function on the deuteron wave function
for x � 0.6 [13], restricting the spectator proton momenta
to | ps | � 100 MeV/c renders these negligible. Furthermore,
comparisons of spectral functions computed within the instant-
form and light-front formulations suggest [20] that at these
momenta and α � 1.1 the model dependence of the spectral
function is at the few percent level.

C. Beyond the impulse approximation

1. Final-state interactions

Although Eqs. (5) describe semi-inclusive proton produc-
tion in the nuclear IA, interactions between the recoil proton
and the hadronic debris of the scattered neutron, illustrated in
Fig. 2(b), can, in principle, distort the momentum distribution
of the detected protons. Microscopic calculations of the final-
state interaction (FSI) effects within hadronization models and
the distorted wave IA suggest strong suppression of FSIs at
backward spectator proton angles θpq relative to the photon
direction [22,23,34].

The main uncertainty in estimating the role of FSIs is the
spectator proton-hadronic debris (X) scattering cross section
σpX. Frankfurt et al. [34] estimated this from the 2H(e,e′p)n
breakup reaction at high energies using data on soft neutron
production in muon DIS from heavy nuclei [35]. At backward
angles FSIs were found to contribute less than 5% to the cross
section for p⊥

s < 100 MeV/c and αs < 1.5.
In the hadronization model of Ciofi degli Atti et al. [22]

the rescattering cross section σpX was derived from a color
flux tube picture and found to grow logarithmically with
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time. Including the effects of color string breaking and gluon
bremsstrahlung, the resulting FSI corrections were again small
in the backward hemisphere, amounting to �5% for spectator
angles θpq > 120◦ and | ps | � 100 MeV/c. For larger mo-
menta, | ps | ≈ 200 MeV/c, FSIs enhance the spectral function
by ≈20% at backward angles. FSIs are most pronounced
in perpendicular kinematics, θpq ∼ 90◦, where they can be
used as a tool to study the process of hadronization in nuclei.
Models such as that of Ciofi degli Atti et al. [22] predict that
in this angular region, FSI can lead to either a suppression
(for | ps | � 200 MeV/c) or a significant enhancement (for
| ps | � 400 MeV/c) of the cross section. In all existing models,
however, it is clear that FSIs can be minimized to �5%
by restricting proton momenta to | ps | � 100 MeV/c and
spectator angles to θpq � 100◦, which serves as a guide for
the kinematic cuts utilized in the BONuS experiment.

2. Target fragmentation

Backward kinematics also suppresses hadronization of
low-momentum protons produced from the debris of the
struck neutron [19,36,37]. Although a potentially important
contribution in the forward hemisphere (current fragmentation
region), direct fragmentation into protons was found by
Simula [19] to be negligible for θpq � 90◦ even for large
momenta ps .

3. Nucleon off-shell effects

The dependence of the bound neutron structure functions on
the neutron’s off-shell mass squared p2 ≈ M2 + 2Mεd − 2 p2

s

can introduce additional deviations of the extracted structure
functions in Eqs. (5) from their on-shell values. However,
the restriction to low-momentum protons guarantees that the
neutron’s virtuality M2 − p2 does not exceed ≈13 MeV2/c2

for ps = 100 MeV/c and ≈7 MeV2/c2 for ps = 70 MeV/c,
the lower acceptance limit of the BONuS detector.

Determining the effect of the nucleon’s virtuality on
its structure from first principles is extremely challenging
and, in fact, cannot be rigorously defined independently of
the nucleon’s environment. The off-shell effects have been
estimated within several models of the nucleon, including
dynamical quark-diquark models [29,30] and effective models
in which the bound nucleon structure functions are evaluated
at shifted kinematics [38,39].

In the covariant quark-(spectator) diquark model of Mel-
nitchouk et al. [29], scattering from a bound nucleon is de-
scribed in terms of relativistic vertex functions that parametrize
the nucleon-quark-(spectator) diquark interaction, with the
vertex functions constrained by inclusive F

p
2 and Fd

2 data.
The off-shell effects at low ps are small, as expected, and
increase at higher momenta. For ps < 100 MeV/c, the correc-
tion is essentially zero at x ≈ 0.3, and does not exceed ≈1% at
larger x.

A similar model introduced by Gross and Liuti [39]
describes scattering from an off-shell nucleon in terms of a
relativistic quark spectral function, with the bound nucleon
structure function evaluated at a shifted value of x that depends
on the mass of the diquark, the bound nucleon momentum, and
the binding energy. The effects are again small at low spectator

proton momenta, �2% for ps < 100 MeV/c, increasing to
around 5% for ps = 200 MeV/c.

Simply on the basis of kinematics, Heller and Thomas [38]
also estimated the role of nucleon off-shellness within an
instant form approach, in which the bound nucleon structure
function was evaluated at a shifted energy transfer that is
correlated with the degree to which the nucleon is off its energy
shell. The off-shell modifications here were found to be �1%
for low spectator momenta ps ≈ 100 MeV/c.

In all cases considered, therefore, the effects of the neutron’s
off-shellness play only a very minor role as long as spectator
proton momenta are restricted to values ps < 100 MeV/c. At
larger ps the off-shell effects can be studied in conjunction with
data from earlier experiments [40], which measured spectator
proton spectra over the range 280 < ps < 700 MeV/c, as a
means of probing the medium modifications of the nucleon’s
quark structure.

III. EXPERIMENTAL SETUP

The BONuS experiment was conducted in Hall B of
the Thomas Jefferson National Accelerator Facility (TJNAF
or Jefferson Lab). Electrons from the CEBAF beam were
scattered off a deuteron target and detected by CLAS. The
spectator protons were detected with an RTPC designed
specially for this experiment.

CEBAF is a superconducting radio-frequency accelerator
facility capable of delivering continuous polarized electron
beams with energies up to 6 GeV. (It is presently being
upgraded for up to 12-GeV beam energy.) During the BONuS
experiment, beam energies of approximately 1.1, 2.14, 4.23,
and 5.27 GeV with beam currents from 2 nA up to 55 nA were
employed.

A. CLAS

The Hall B end station houses the CEBAF Large Accep-
tance Spectrometer (CLAS). CLAS can detect particles for
θ angles 8◦–142◦ and for approximately 80% of 2π in φ. It
employs a toroidal magnetic field of up to 2 T produced by
six superconducting coils. CLAS consists of several layers of
particle detectors, each separated into six azimuthal sectors by
the torus magnet coils.

(i) Drift chambers (DCs), which determine charged-
particle trajectories. They are capable of a momentum
resolution of δp/p � 0.5% and angular track reso-
lution of δθ � 1 mrad, δφ � 5 mrad for 1 GeV/c
particles [41].

(ii) Cherenkov counters (CCs) for electron-pion separa-
tion (used in the trigger). CLAS CCs are capable of
distinguishing pions and electrons up to momenta of
approximately 2.8 GeV/c [42].

(iii) Scintillation counters (SCs) for time-of-flight (TOF)
measurements. The counters cover the θ range be-
tween 8◦ and 142◦ and the entire active range in φ (for
a total area of 206 m2) [43]. The time resolution of
the system is between 70 ps (for the shortest counters)
and 165 ps (for the longest counters).
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FIG. 3. (Color online) Schematics of the BONuS RTPC. See text for details.

(iv) Electromagnetic calorimeters (ECs) to identify elec-
trons and to detect neutral particles like photons and
neutrons. The ECs are used to trigger on electrons
at energies above 0.5 GeV. The sampling fraction
is approximately 0.3 for electrons of 3 GeV and
greater, and for smaller energies, there is a monotonic
decrease to about 0.25 for electrons of 0.5 GeV [44].
The average rms resolution is 2.3 cm for electron
showers with more than 0.5 GeV of energy deposited
in the scintillator. The timing resolution of the EC for
electrons averages to 200 ps over the entire detector.

All detectors listed above are standard CLAS equipment
and have been in Hall B for over a decade. CLAS is described
in detail in Ref. [45]. They were complemented by a dedicated
RTPC utilizing gas electron multipliers (GEMs) that was built
specifically for this experiment (see below). It was designed
to detect heavily ionizing, slow moving protons that cannot
travel far from the target.

B. Radial time projection chamber

To identify events in which a proton is a mere “spectator”
to the electron-neutron collision, we needed to select events
in which the detected proton is moving backwards with low
momentum (around or below 0.1 GeV/c). To register such
protons, we needed a detector that provides good coverage in

the backward hemisphere (with respect to the direction of the
electron beam) and is close enough to the target to be able to
detect these heavily ionizing low-energy protons before they
get stopped. An RTPC [46] utilizing GEMs was constructed
for this experiment to fulfill these requirements (see Fig. 3).
The RTPC was surrounded by a solenoid magnet, run at 3.5 and
4.7 T, that served to analyze proton momenta and, in addition,
to deflect Moeller electron trajectories, making them stay clear
of all sensitive detector volumes.

The capability of time projection chambers (TPCs) to
provide a complete 3D picture of particle trajectories in the
detector volume, as well as particle identification through
specific energy loss, dE/dx, combined with the low mass
density of this kind of detector, made it a natural choice for
our purposes. The BONuS RTPC utilizes gas for its sensitive
volume to reduce the mass density the protons have to traverse.
The more common axial TPC would not have been a good
choice for the following reasons.

(i) The solenoid magnet length is less than its diameter,
and so it does not have magnetic field lines parallel to
each other over a reasonable length.

(ii) Detecting forward-moving high-momentum particles
with CLAS requires minimizing the end-cap density,
the region where a lot of equipment is normally
situated in axial TPCs.
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FIG. 4. (Color online) BONuS data readout scheme.

(iii) The RTPC configuration made it easier to stay clear
of the Moeller electrons.

RTPCs, in which electrons drift radially outwards from the
cylindrical central cathode to the anode located on a concentric
cylinder, have been previously used, e.g., by the STAR [47] and
CERES [48] collaborations. In this configuration, the electric
and magnetic fields are no longer parallel, which leads to
complex electron drift trajectories. In addition, curved readout
pad planes are required. For these reasons RTPCs have a more
complex structure.

Because the charge collected at the readout pads is propor-
tional to the energy loss of the particle, the signal amplitude
at the pads as a function of time provides information on the
specific energy loss of the particle. A particle’s momentum
and charge can be found from the curvature of its trajectory in
the magnetic field; hence, the particle can be identified. This
requires a quasicontinuous readout of amplitude information
from the pads, generating a potentially large data flow.
We designed the BONuS RTPC around custom integrated
circuits built for the large TPC used in the ALICE heavy-ion
experiment at CERN [49,50] (see Fig. 4).

Figure 3 shows the BONuS RTPC with the integrated 7 atm
deuterium gas target on its axis. The target has a fiducial length
of 17 cm (visible by the RTPC) and inner diameter of 0.6 cm
with 50-μm Kapton walls. The detector surrounds the target
at close distance with the center of the RTPC moved 25 mm
with respect to the target center for better coverage of the
backwards hemisphere, where spectator protons are expected.
Upon exiting the target and traversing a buffer volume filled
with 1 atm helium gas (providing a low-mass-density region
for Moeller electrons to escape in the forward direction),
protons pass a ground plane located at a radius of 2 cm and
then the cathode surface at a radius of 3 cm. Upon traversing
the cathode, the protons enter the sensitive ionization volume
(covering radial distances from 3 to 6 cm), filled with an
approximately 80% He/20% dimethyl ether (DME) mixture.
Helium as the main component of the mixture provides the
necessary low density, which minimizes the energy loss of slow
protons. When traversing the sensitive volume, the spectator
ionizes the gas and the released electrons drift towards the
amplification and readout stages (see below). The drift region

voltage of the RTPC was kept at 1500 V for all runs. The
resulting electric field produces a sufficiently short clearing
time in the drift region without making the cathode voltage so
high that a breakdown could occur.

The BONuS RTPC uses gaseous electron multipliers
(GEMs) [51] to amplify the signal from the drift electrons.
GEM foils are mechanically flexible, robust, and relatively
low-cost structures, which can be used in a variety of gases
and can be placed very close to readout pads, thus decreasing
the effects of charge diffusion. An additional advantage is that
they can be formed into nonplanar shapes; the BONuS RTPC
was the first detector to use cylindrically curved GEM foils.
A total of three GEM layers yielded an overall amplification
factor of over 1000 during the experimental run. The GEM gain
was limited by the requirement that nonlinearities (saturation)
for slow spectator protons had to be avoided. This made the
RTPC fairly insensitive to minimum-ionizing particles (i.e.,
electrons). The first GEM layer is at 6 cm radius, followed
by two more GEM layers at 6.3 and 6.6 cm radius and the
readout pad board at 6.9 cm radius. The space outside the
pad board, within the bore of the solenoidal magnet, was
reserved for preamplifiers and cables. The front and rear
caps of the drift region are made of printed-circuit boards
patterned with metal traces forming the field cage necessary
to make the drift field between the concentric cylinders as
close as possible to that between two infinite concentric
cylinders. The overall length of the active volume is about
20 cm.

The RTPC is segmented into two semicircular halves,
each covering an azimuthal angle of around 150◦. The
readout pads have dimensions of 0.5 × 0.45 cm, thus covering
approximately 3.5◦ in azimuthal angle and 0.45 cm along
the axis of the cylinder each. Pad rows along the axis of the
RTPC are shifted with respect to each other to minimize the
probability of a whole track being contained in the same row
of pads, thus improving the track resolution. The RTPC is
capable of detecting spectator protons with momenta from
0.07 to 0.15 GeV/c. Below this range, protons are stopped too
soon to leave a substantial track in the RTPC, and above that
range, protons are too fast, so that the radius of curvature
of their trajectories is too large to confidently reconstruct
their momenta (often, they are seen as infinite-momentum
particles). Figure 5 shows a reconstructed RTPC event. A
candidate track curved by the solenoid field is shown. The
sizes of the symbols indicate the amount of charge collected
on a pad. The signal was further amplified, processed by the
ALICE readout system, sent to VME crates, and then sent to
readout controllers within the standard CLAS data acquisition
system. This system allowed us to read out approximately
1-kB events at a rate of about 500 Hz.

The BONuS event readout was initiated by the standard
CLAS electron trigger system selecting interactions with a
high probability of having an electron track in CLAS. The
data recorded for each event is composed of the time slices
(in 114-ns increments) and amplitudes (10 bits) of all RTPC
pad signals above threshold for a time period extending from
1.7 μs before to 9.7 μs after a trigger. This interval is about
1.5 times the maximum drift time in the RTPC. See Ref. [46]
for a detailed discussion of the BONuS RTPC.
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FIG. 5. An RTPC event in several views (top row, two-
dimensional projections on end cap and center plane; bottom row,
two different three-dimensional views, the second rotated by 90◦).
Black blobs indicate ionized charge traced back to the spot of the
ionization; solid lines going through them indicate fitted tracks. An
outline of the RTPC is overlaid.

IV. ANALYSIS

A. First-pass analysis

The analysis of the data proceeded in several steps. As a
first step, all detector elements of CLAS and the RTPC were
calibrated. After this, all raw digitizations written to tape were
converted into reconstructed events with momentum four-
vectors assigned to each identified particle. Finally, corrections
to improve the tracking resolution, including effects like
ionization energy loss of all charged particles, were applied.
Most of these steps are part of a standard CLAS analysis
(see, e.g., Ref. [52] for a more detailed description), with the
exception of the work related to the RTPC, which was first
used in this experiment.

1. RTPC calibration

Two kinds of calibrations are needed for the RTPC.

(i) Drift-velocity calibration: finding time-to-distance cor-
respondence for drifting electrons.

(ii) Pad gain calibration: finding the correspondence be-
tween registered charge and ionization energy loss.

For the drift-velocity calibration, ionization electron paths
were generated using the MAGBOLTZ program [53]. The result
is a function converting any pad signal (given by the pad
coordinates and the arrival time Tsig) to a spatial point [46],

(x,y,z) = fxyz(j,Tsig; Vcathode,VGEM,Rgas,Bsol), (8)
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FIG. 6. (Color online) Comparison of electron-scattering angles,
as reported by the RTPC and CLAS, before (a) and after (b)
calibration. The comparison is shown for the left half of the RTPC;
the right half results are similar. Both experimental distributions (thin
colored lines) and Gaussian fits to them (thick lines) are shown.

where j is the pad number and Tsig is the time difference
between the start time (given by the electron trigger) and the
time when the signal was recorded at the pad. The function
fxyz depends on the cathode voltage, Vcathode, the GEM voltage,
VGEM, the solenoidal magnetic field Bsol, and the fraction Rgas

of helium in the He/DME drift gas mixture.
To correct for our imperfect knowledge of the magnetic

field and gas mixture as well as the start-time offset, this
function was fine tuned using information from the CLAS
detector. A special run with an increased RTPC voltage was
conducted so that electrons registered in CLAS were also
visible in the RTPC. Cross-checking information from the
two detectors allowed us to find optimal parameters for the
function fxyz. Figure 6 demonstrates this comparison of track
scattering angles between the RTPC and the CLAS and shows
much better agreement of the angles after the final calibration
of the RTPC (bottom). A similar improvement was seen in the
reconstructed z vertex agreement. Some minor discrepancies
can still be seen in the CLAS-RTPC comparison. Those were
taken care of by means of the RTPC and CLAS momentum
corrections (see below).

By comparing average signal sizes from readout pads, we
found that the effective detector gain varied considerably
across the surface of the RTPC [46], most likely due to
nonuniformities in the GEM foils or their distance from
each other. Therefore, we had to accurately determine the

045206-9



S. TKACHENKO et al. PHYSICAL REVIEW C 89, 045206 (2014)

proton
triton
helium 3
helium 4
deuteron

200

180

160

140

120

100

80

60

40

20

0

70

60

50

40

30

20

10

0
50          100         150          200         250

p/z (MeV/c per unit charge)

dQ
/d

x 
(a

rb
itr

ar
y 

un
its

)

FIG. 7. (Color online) The ionization density distribution of par-
ticles registered by the RTPC after the RTPC gain calibration. The
solid curves are calculated based on the Bethe-Bloch formula for
dE/dx for various particles, in order from bottom to top: proton,
deuteron, triton, helion (3He), α (4He). The target was filled with 4He
gas and the electron energy was 2 GeV for this measurement.

relative responses of all 3200 pads before useful dE/dx
information could be extracted from the data. After the drift-
velocity/trajectory calibration described above, each track mo-
mentum was determined. Using the momentum, the average
dE/dx expected for a proton was calculated for the track
using the Bethe-Bloch formula (see, for example, Ref. [54]).
Using the drift paths obtained in the drift-velocity/trajectory
calibration, the number of ionization electrons expected to drift
to each pad j was determined. Given the measured charge on
that pad, we calibrated its gain G(j ) in an iterative procedure.

The obtained gain-normalization factors were used to scale
the raw pulse heights. The same procedure was repeated
excluding tracks whose measured dE/dx after the first
iteration was inconsistent with that of protons. The second-
pass gain-normalization factors were retained and used for
the final analysis. Figure 7 shows the extracted ionization
density distributions after gain calibration versus measured
momentum, with the expected functional correlation (from the
Bethe-Bloch formula for energy loss dE/dx, which should
be proportional to ionization per unit length) overlaid. One
can clearly distinguish several bands belonging to final-state
protons, deuterons, and heavier nuclei (for these data, the target
was temporarily filled with 4He gas).

2. RTPC momentum corrections

To determine spectator proton momenta at the vertex from
the measured track curvature within the annulus of the sensitive
drift region (ranging from 3 to 6 cm from the beam axis), two
additional corrections were applied.

(i) The track curvature itself was corrected for possible
biases in fitting a helical track to the observed ion-
ization pattern, as well as for finite position resolution,
magnetic field inhomogeneities, and possible deviation
of the ideal (simulated) drift paths and drift velocities
from the actual ones.

(ii) The corrected curvatures were then converted to mo-
menta at the vertex, after accounting for energy loss
in the target gas and the intervening material before
reaching the sensitive drift volume.

The mapping between measured curvature and vertex
momentum was based on a GEANT4 simulation [55]. A
large number of events was generated over the full range
of target z (coordinate along the beam axis) and spectator
proton momenta and angles, ps,θ,φ. They were subsequently
run through a full simulation of the RTPC including signal
conversion and track reconstruction. By comparing the results
of the simulation (in terms of the reconstructed radius
of curvature and angle θ of the tracks) with the thrown
momenta, we extracted a one-to-one correspondence between
the measured radius of curvature and the vertex spectator
momentum, accounting for energy loss (see Ref. [56] for more
details).

To improve the accuracy of the momentum reconstruction,
we used fully exclusive 2H(e,e′pπ−p) events, where the first
three particles were detected with CLAS and the last proton
with the RTPC. We compared the missing momentum from
the electron, pion, and proton measured in CLAS with the
reconstructed momentum of the proton detected in the RTPC.
The average agreement of these two quantities was optimized
by adjusting the six parameters of the following correction
formulas:

Rnew = Rold/(1 + p1Rold + p2), (9a)

θnew = (1 + p3)θold + p4, (9b)

φnew = (1 + p5)φold + p6, (9c)

where Rnew and Rold are the corrected and reconstructed radius
of curvature, respectively, θnew and θold are the corrected and
reconstructed polar angle, respectively, and φnew and φold are
the corrected and reconstructed azimuthal angle, respectively.
p1, . . . ,p6 are the fit parameters. All parameters turned out to
be small, leading to corrections of order 2% on R and less than
1 mrad on θ and φ.

The RTPC-measured momentum distribution of coincident
protons after these two corrections was similar to the one
expected from the pure spectator picture (given by the deuteron
wave function in momentum space), although the measured
spectrum falls off somewhat faster than predicted. This can
be attributed to the RTPC reconstruction efficiency which
falls off for higher spectator momenta (due to insufficient
charge and track curvature for a reliable track reconstruction).
We were able to partially correct this efficiency falloff using
the ratio of the number of fully exclusive 2H(e,e′pπ−p) to
2H(e,e′pπ−)X events, where the first three particles in either
case were detected with CLAS and we looked for the inferred
proton in the RTPC.

3. CLAS momentum corrections

Momenta of particles reconstructed with CLAS were also
corrected for minor imperfections (wire misalignments, torus
and solenoid magnetic field deviations from the ideal field
maps used in the reconstruction, beam offset from the ideal
center line) and effects like multiple scattering and energy loss.
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These corrections have been applied and studied in previous
experiments [40,57]. We determined correction parameters
using a fit to fully exclusive BONuS data (ep → ep and
ep → epπ+π− reactions), following the method described
in Ref. [40]. After applying all corrections, both the centroid
and the widths of the proton missing-mass peaks were well
within the established CLAS resolution and accuracy.

B. Event selection and background subtraction

1. Particle ID cuts

For the selection of semi-inclusive D(e,e′ps)X events, we
developed criteria to identify scattered electrons, e′, detected
by CLAS, and spectator protons, ps , detected by the RTPC.

Trigger particles were identified as electrons if they passed
the following selection cuts.

(i) Track curvature consistent with a negative charge.
(ii) Cherenkov counter signal above the equivalent of two

photoelectrons for momenta below 3.0 GeV/c. Above
this limit, pions can emit Cherenkov radiation and
the CC becomes inefficient for pion discrimination.
(We still required a signal above the equivalent
of one photoelectron in this case, to discriminate
against heavier particles like kaons and protons.) In
addition, geometrical and temporal matching between
the CC signal and the measured track was required
to eliminate coincidences between CC noise and
charged-particle tracks, which can result in pions
masquerading as electrons [58].

(iii) Total energy deposited in the EC above a momentum-
dependent threshold consistent with the EC shower
sampling fraction of ≈0.25–0.3.

(iv) At least 0.06 GeV visible energy in the first (front)
layers of the EC, which is significantly higher than that
expected for minimum-ionizing particles like pions.

(v) Track within the fiducial volume (part of the detector
with high detection efficiency and no physical obstruc-
tions).

In addition, the momentum of the trigger electron was required
to be larger than 20% of the beam energy to avoid the kinematic
region where radiative corrections and backgrounds become
fairly large.

Spectator protons were defined by the following selection
cuts:

(i) reliable fit of the track in the RTPC (χ2/degree of
freedom of the fit less than 4);

(ii) positively charged particle;
(iv) more than five pads register above-threshold charge;
(v) energy loss dE/dx consistent with that expected

for protons (see Fig. 7; particles with energy loss
more than 2 standard deviations above or less than
3 standard deviations below the measured proton
dE/dx distribution were rejected);

(vi) beginning and end point of the ionization trail
reconstructed by the RTPC within 0.5 cm of
the corresponding physical chamber boundary (this
is basically a timing cut, because out-of-time

tracks will be reconstructed at the wrong radial
positions).

(vii) z coordinate of the vertex is inside the fiducial target
region (between −6 cm and +10 cm of the RTPC
center).

In addition, for good electron-proton coincidence events we
required that the difference between the z coordinate of
the electron vertex, ze, as reconstructed by CLAS, and the
z coordinate of the proton vertex, zp, as reconstructed by
the RTPC, be no larger than 1.5 cm (to exclude accidental
coincidences; see below).

Coincident events that passed all cuts were registered in
four-dimensional bins in the kinematic variables x∗ or W ∗, Q2,
ps , and cos θpq . In addition, all electron events from inclusive
D(e,e′)X that pass the electron cuts above were accumulated
in bins of scattered-electron energy, E′, and angle, θe.

2. Accidental background subtraction

While the cut on the distance between electron and
proton vertices (see above) removes most of the accidental
coincidences, the remainder (when the trigger electron and an
unrelated RTPC proton happen to originate within 1.5 cm from
each other) must be quantified and subtracted.

Such random coincidences can be simulated by taking
the trigger electron from one event (without requiring a
matching proton) and the RTPC proton from another event.
Because spectator protons are distributed rather uniformly in
angle (see Sec. V), such pairs provide very good proxies for
true random coincidences. Using kinematic information from
the chosen electron-proton random pair, all quantities in
which real data are binned, Q2, W ∗, x∗, ps , and cos θpq , are
calculated, and the coincidence assigned to the corresponding
bin. If the distance between the vertices of the electron and
the proton, �z = ze − zp, is less than 1.5 cm, the event would
emulate a random coincidence under the signal. If �z is larger
than 2 cm, we consider it a “wing” event. Then, after going
over all the events within a bin, we form a scaling ratio, Racc,
of the number of coincidences under the signal divided by the
number of wing events, separately for each of our kinematic
bins.

All same-event experimental coincidences between elec-
trons and RTPC protons are separated into the same categories,
wing events (those with |�z| > 2 cm) and “signal” (peak)
events (those with |�z| < 1.5 cm). Then, the number of
observed wing events is scaled by the ratio Racc to yield the
number of random coincidences under the peak. The resulting
accidental background events are subtracted from the events
within the peak for each kinematic bin.

A sample of the distribution of both same-event and scaled
random coincidences is shown in Fig. 8; the solid histogram
shows the distribution of coincident events from the same
“beam bucket” while the dashed line shows the simulated
random distribution, normalized to the wings (outside ±2 cm).
One can clearly see that our method leads to an excellent
approximation of the accidental background in the wings.
After subtracting the accidental distribution from the data, the
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FIG. 8. (Color online) Representative plot of the �z distribution
for coincidences (solid histogram) between electrons (in CLAS)
and spectator protons (in the RTPC) from the 5-GeV data set.
Inner vertical lines indicate the region selected for data analysis
(−1.5, . . . , +1.5 cm). The dashed line indicates the corresponding
distribution for accidental coincidences obtained by matching tracks
from different events (see text), cross-normalized to the data outside
the outer vertical lines (−2.0, . . . , +2.0 cm). The good agreement
in the “wings” outside those lines indicates that the shape of the
background is well represented by this method. See text for more
details.

remaining distribution is well described by a Gaussian with a
resolution of about 0.7 cm (1σ ).

3. Pair-symmetric and pion contamination

Electron-scattering experiments typically have to account
for contamination of the electron sample by e+/e− pair-
symmetric contributions as well as the possible contribution
from negative pions misidentified as electrons.

Pair-symmetric background comes from Dalitz decays
(π0 → γ e+e−) and photons converting to e+/e− pairs in-
side the target enclosure. The decay electron can then be
misinterpreted as a scattered beam electron. The rate of this
background (at most a few percent of the electron rate) has
been extensively studied in previous CLAS experiments [57]
for the case of inclusive electron scattering off isoscalar
targets (like deuteron) and can be parametrized with a simple
exponential in both electron and pion momentum and angle.
This parametrization was applied as a correction to the
inclusive D(e,e′)X data (between 0% and 3%, with an average
of about 1%). For the tagged data, the correction should be even
smaller because it is proportional to the rate of π0 and photon
production off the neutron in deuteron (all other channels
are automatically subtracted in our treatment of accidental
backgrounds). We therefore did not correct the tagged data
and instead included an overall systematic uncertainty of 1%
due to pair-symmetric backgrounds.

Negative pions can be misidentified as electrons if they pass
all cuts. The size of this contamination was studied in great
detail for similar kinematics in an earlier experiment [57],
and it was found to be at most 1%–2% for the same set of
electron cuts we applied in this work. Because this correction
is small compared to other possible systematic effects, it was

not applied to the data but included in the total systematic
uncertainty budget.

C. Monte Carlo-based analysis

To extract quantities of interest from the background-
corrected yields, we used two different analysis methods. The
first one uses a full Monte Carlo simulation of the experiment
to correct for acceptance effects (“Monte Carlo method”),
while the second one is based on ratios of measured quantities
only (“Ratio method”). The Ratio method was used for the
extraction of the free neutron structure function Fn

2 reported
by Baillie et al. [24] and in this paper; it is summarized in
Sec. IV D. Some additional results reported below cover a
larger range in spectator momenta and angles of the spectator
proton relative to the momentum transfer vector q and were
obtained using the Monte Carlo method, which is described in
detail in the following. We show a comparison of the results
obtained with both methods in Sec. V C.

1. Event generator

For the Monte Carlo-based analysis, we simulated both
tagged D(e,e′ps)X events (where ps is the spectator proton)
and fully inclusive D(e,e′)X events (to determine empirical
detector inefficiencies not accounted for by our simulation).
For both processes, we used the same-event generator to (at
least partially) cancel model dependencies. We included two
basic processes in the generator.

(i) Elastic scattering off deuteron, D(e,e′)D. We used the
well-known deuteron form factors [59] and the pre-
scription by Mo and Tsai [60] to estimate the radiative
tail contribution from this process to D(e,e′)X, which
turned out to be a very small correction to the inclusive
cross section in our region of interest. (Obviously, it
does not contribute at all to the tagged cross section).

(ii) Quasifree scattering off either a proton or a neutron
inside deuteron, within a simple plane-wave spectator
approximation. This process was further subdivided
into quasielastic scattering (where the struck nucleon
stays intact) and inelastic scattering off one nucleon
(with the other being a spectator). These two processes
are described in more detail below. Our generator
did not contain additional processes like coherent
pion production, FSIs, and other two-nucleon effects;
therefore, the ratio of measured to simulated tagged
data can be interpreted as a direct test of the spectator
picture. However, these processes do not affect the
overall strength of the inclusive cross section signif-
icantly except perhaps in the dip region between the
quasielastic and the � resonance peak.

To simulate scattering off a bound nucleon inside deuteron,
we used a simple spectator formalism where one nucleon is
considered to be on shell and does not participate in the reaction
while the other one is off the mass shell. In this picture,
the energy and momentum of the off-shell bound nucleon
pμ = (E,p) are related to the spectator nucleon momentum
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ps as

E = Md −
√

M2 + p2
s , (10a)

p = −ps , (10b)

with Md the deuteron mass (see Sec. II). The off-shell mass of
the struck nucleon is

M∗ =
√

E2 − p2
s . (11)

The initial momentum of the struck nucleon is generated at
random with weight

P (p) = |ψ(p)|2, (12)

where ψ(p) is the Paris deuteron wave function [61] rescaled
using the light-cone formalism [62] within the approach by
Frankfurt and Strikman [32].

The scattered electron kinematics are generated in the
rest frame of the struck nucleon. The scattered electrons are
distributed according to the radiated cross section on a nucleon
at rest. The distributions are kinematically corrected for the
nucleon off-shell mass. The (quasi)elastic scattering cross
section is given by the Rosenbluth formula,

dσ

d�
=

(
dσ

d�

)
Point

1

ε

[
τG2

M (Q2) + εG2
E(Q2)

] 1

1 + τ
, (13)

where ε = 1/[1 + 2(1 + τ ) tan2(θe/2)] is the linear polariza-
tion of the virtual photon, GE and GM are Sachs form factors,
and τ = Q2/(4M2). We used the parametrization of the proton
form factors by Arrington [12] and the parametrization of
Kubon et al. [63] for GMn and the Galster et al. [64]
parametrization for GEn. Higher-order QED effects and the
elastic radiative tail are calculated using the full prescription
of Mo and Tsai [60].

Inelastic events off protons and neutrons in deuteron are
generated similarly to the quasielastic ones. The cross section
is evaluated using

dσ

dE′ d�
=

(
dσ

d�

)
Point

2MxF2(x,Q2)

εQ2

1 + εR(x,Q2)

1 + R(x,Q2)
, (14)

where

R = σL

σT

= F2

2xF1

(
1 + Q2

ν2

)
− 1,

σL and σT being the longitudinal and transverse virtual pho-
toabsorption cross sections. The proton and neutron structure
functions are taken from Bosted and Christy [65]. Radiative
effects are simulated using the code “RCSLACPOL” [66], which
is based on the prescription by Mo and Tsai. The event
generator also simulates the (rather small) external radiative
energy loss before scattering, due to exit and entrance windows
and gas in the beam path, while external radiative and
other energy losses after the scattering are included in the
detector simulation (see below).

The fully inclusive sample is formed by generating
quasielastic and inelastic events from both the neutron and
the proton (integrated over all spectator momenta), plus the
radiative elastic tail from 2H(e,e′)2H. The simulated tagged
sample contains only quasielastic and inelastic scattering

events off bound neutrons, with information on the generated
spectator proton being kept in addition to that on the scattered
electron.

2. Detector simulation

The generated events are then run through a Monte Carlo
simulation of the experimental setup which includes external
radiation and ionization losses after the scattering. The target
and RTPC parts of the setup are simulated in detail using
the same GEANT4-based simulation package that was used
for the RTPC momentum corrections, described in Sec. IV A 2.
The standard CLAS part of the setup is simulated using
the existing GEANT3-based [67] package called GSIM. After
particle paths through the RTPC are simulated in GEANT4, the
output information at the boundary is written to files which
serve as input for the GSIM package. To simulate inefficiencies
of the CLAS detector, the GSIM post processing (GPP) package
is run after GSIM. It makes the GSIM output look more like real
data by accounting for dead scintillators and wires and adding
some Gaussian smearing to the data to match the measured
detector resolution.

After the generated events are tracked through the simulated
detectors, one obtains files with simulated detector responses
for the generated events. Finally, these files are processed by
the usual data-processing program (RECSIS), the same one used
for processing experimental events. After applying the same
fiducial and kinematic cuts as for the experimental data, we
separately accumulate simulated data from quasielastic as well
as inelastic scattering off a neutron inside deuteron. These data
are binned in the same kinematic bins as the experimental
tagged data.

Then all events from the elastic, quasielastic, and inelastic
simulations are combined, after passing inclusive electron cuts,
to simulate the inclusive electron rate. Pair-symmetric and pion
contamination corrections (see Sec. IV B 3) are applied to these
simulated data. Because the inclusive D(e,e′) cross section is
well known, the ratio of the inclusive data to the simulation can
be used to extract remaining inefficiencies of the trigger and of
detector elements like the CC and the EC that were not fully
implemented in our simulation. For this purpose this ratio is
calculated, for each beam energy, in bins of the final electron
energy and scattering angle, E′ and θe. The tabulated ratio is
used as a weighting factor for each simulated tagged event,
depending on its electron kinematics. This factor turned out to
be around 0.85 on average, with a standard deviation of 0.072
around this mean. We used this standard deviation to estimate
the point-to-point systematic uncertainty of this correction
as 8.5%.

3. Final data set

The remaining steps of the Monte Carlo method require
us to subtract the quasielastic radiative tail from the tagged
neutron data and to normalize our results to account for any
remaining RTPC inefficiency not captured by the GEANT4
simulation. So, as the next step, we normalize the simulated
quasielastic events (including radiative tail) on the bound
neutron to the measured quasielastic strength, integrated over
the region 0.88 GeV/c2 < W ∗ < 1 GeV/c2, for each bin in
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FIG. 9. (Color online) W ∗ distributions (for 1.10 GeV2/c2 <

Q2 < 2.23 GeV2/c2) of measured counts for the 5.3-GeV beam
energy with spectator protons detected at angles greater than about
100◦ and momenta between 70 and 85 MeV/c. The data are shown
before (upper black squares) and after subtraction of accidental
coincidences and other backgrounds (lower blue triangles). Also
shown are the normalized simulated counts for elastic scattering off
a neutron inside the deuteron, including the radiative tail (open red
circles, bottom). Note the good agreement between this simulation
and the data in the quasielastic region, W ∗ < 1 GeV.

Q2 and spectator kinematics. Figure 9 shows the resulting
simulated spectrum as a function of W ∗ for a specific bin in
Q2, spectator kinematics, and beam energy, together with the
data before and after subtracting experimental backgrounds.
The shapes of the simulated and measured spectra agree
well in the region W ∗ < 1 GeV/c2, giving us confidence
that the radiative tail is reasonably well represented by
this procedure. We then subtract this normalized simulated
spectrum from the measured one over the whole W ∗ range to
remove the (quasi-) elastic radiative tail from the measured
spectrum.

The remaining experimental spectrum is due only to
inelastic 2H(e,e′ps)X events and can be compared to the
simulated inelastic spectrum. However, the latter must still
be normalized to account for the overall efficiency of the
RTPC. In particular, we find that the simulation of the RTPC
response did not fully capture the experimentally observed
RTPC track reconstruction efficiency within cuts, and that this
efficiency varies as a function of proton momentum (from
about 0.6 at the lowest ps down to 0.23 at the upper limit of
our ps range). For this reason, we derive a normalization factor
N (ps,Eb) for each of our four bins in spectator momentum
ps . This factor is also allowed to vary between the different
time spans corresponding to each of the beam-energy settings
used in our experiment (indicated by the dependence on the
variable Eb). We determine this factor using events in the range
−1 < cos θpq < −0.2 (backward kinematics). According to
theoretical expectations and our own data (see next section),
the spectator picture works best in this kinematic region.
We match the measured spectrum to the simulated one in a
kinematic region where the ratio between the two is found to
be flat: W ∗ = 2.0–2.2 GeV/c2 for both the 4- and the 5-GeV
data, within the lowest fully accepted Q2 bin for each energy.

The resulting agreement between data and simulation can be
seen in Fig. 13, which shows the ratio between both. This
ratio fluctuates around 1.0 by about ±10% in the chosen W
region, which is consistent with the uncertainty �N (ps,Eb)
we assign to the normalization factor; see next section. Note
that this factor is the same for all bins in spectator angle and in
(W ∗,Q2) for a given beam energy setting and ps bin, allowing
us to study the dependence of the data on these variables
without normalization bias.

After applying the normalization N (ps,Eb) we form
the ratio RD/S between the background and radiative tail-
subtracted tagged data (integrated over a given kinematic
bin) and the normalized simulation. This ratio can then be
used to study the kinematic dependence of any deviations
between our data and our cross-section model; see Sec. V A.
If our spectator cross-section model is valid, RD/S can
be interpreted as the ratio between the effective structure
function F

n,eff
2 (W ∗,Q2,ps, cos θpq) and the model input for

Fn
2 (W ∗,Q2) for each bin:

RD/S =
N

data,corr
2H(e,e′ps )X(W ∗,Q2,ps, cos θpq)

N (ps,Eb)N simul
2H(e,e′ps )X(W ∗,Q2,ps, cos θpq)

=
[

1 + �N (ps,Eb)

N (ps,Eb)

]
F

n,eff
2 (W ∗,Q2,ps, cos θpq)

F
n,model
2 (W ∗,Q2)

,

(15)

where the first factor on the second line accounts for the
possible normalization uncertainty.

As a further result, the value of the effective structure
function F

n,eff
2 for a given kinematic bin in ps, cos θqps

,Q2,
and x∗ or W ∗ can be extracted from the data by multiplying
the ratio RD/S with the model input for the free Fn

2 at the
center of that bin (thus also taking bin centering into account).
This method leads to an (approximate) cancellation of the
model input for Fn

2 because the simulated data are (roughly)
proportional to it, leading to largely unbiased results for F

n,eff
2 .

4. Systematic uncertainties

The total systematic uncertainty on each data point consists
of an overall scale uncertainty and point-to-point uncertainties
due to the various inputs and assumptions for the analysis.
The scale uncertainty, �N (ps,Eb), is due to our RTPC
normalization method (Sec. IV C 3), which relies on the
assumption that our model describes the data accurately for
the kinematic bin chosen to normalize the simulated to the
measured tagged inelastic data. We estimate this uncertainty
by varying the W ∗ range over which we compare data and
simulation, which yields a scale uncertainty of �N (ps,Eb) =
±0.1N (ps,Eb). This includes an uncertainty of 5% for the
model value for Fn

2 in the chosen kinematic range. This scale
uncertainty is not shown on plots, because it affects all the bins
in a given distribution uniformly. The remaining point-to-point
systematic uncertainties are discussed below and summarized
in Table I.

(i) Accidental background subtraction. Our background
subtraction method (see Sec. IV B 2) depends some-
what on the limits chosen for the wings in the �z
distribution that are used to estimate the number
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TABLE I. Point-to-point systematic uncertainties on the extracted structure function F n,eff
2 (W ∗,Q2,ps, cos θpq ) from the Monte Carlo

method. Each uncertainty is shown as a percentage of the structure function.

Source Systematic uncertainty (%) Explanation

e+ 1.0 Effect of pair-symmetric contamination
π− 1.0 Effect of pion contamination
�z 1.0 Accidental background subtraction
eff(E′,θ ) 8.5 Uncertainty of E′- and θe-dependent CLAS efficiency
MC 9.0 Combined uncertainty due to Monte Carlo statistics and systematics

Total 12.5 Added in quadrature

of background events between the cut limits of
−1.5 cm < �z < 1.5 cm. We vary the �z wings from
the standard range (2–16 cm) to a smaller range of
2–9 cm and estimate the systematic uncertainty as
the resulting change in accidental counts subtracted.
This leads to an average systematic uncertainty of
the order of 1% relative to the corrected data, with
most bins having uncertainty under 1%. Uncertainties
on the subtraction of other backgrounds (π− and
pair-symmetric contamination) are of the order of 1%,
as well.

(ii) E′- and θ -dependent acceptance and efficiency uncer-
tainty. This is the uncertainty on the estimate of the
detection efficiency of the CLAS trigger electrons,
calculated using the ratio of measured and simulated
inclusive D(e,e′) event rates (see Sec. IV C 2) as
a function of E′ and θe. The uncertainty on this
efficiency stems mostly from bin-to-bin fluctuations
of the counting statistics and the uncertainty in the
model used for the simulation. It was estimated by
using the standard deviation of these (nearly random)
fluctuations. This yields a kinematics-dependent sys-
tematic uncertainty of 8.5% (see Sec. IV C 3). (An
overall scale uncertainty is already accounted for, as
mentioned above).

(iii) Fn
2 model dependence. An overall scale uncertainty

in our model of Fn
2 of about 5% is included in the

scale factor (see above). Any remaining deviation of
the model from the “true” neutron structure function
is part of the information to be extracted from
the ratio RD/S and cancels largely in the extracted
values for F

n,eff
2 (W ∗,Q2,ps, cos θpq) = RD/SF

n,model
2

because the denominator of RD/S is approximately
proportional to F

n,model
2 . A small residual uncertainty

stems from smearing and radiative effects (that depend
weakly on F

n,model
2 ) and the structure function R used

for the simulation. It is subsumed in the uncertainty
due to the Monte Carlo simulation.

(iv) Monte Carlo simulations. Besides determining the
detection efficiency via inclusive count rates, the
Monte Carlo simulation is used in two different steps
during the data analysis:
(1) to determine the quasielastic radiative tail that is

subtracted from the data in the inelastic region;
(2) to calculate the ratio RD/S between experimental

and simulated inelastic data.

Both steps entail uncertainties due to Monte Carlo
statistics and possible deviations between the simu-
lated detector response and the real performance of
CLAS and the RTPC. (The separate uncertainty due
to the simulation of inclusive D(e,e′) rates has been
discussed above).
The statistical Monte Carlo errors are calculated using
simple counting statistics (Poisson distribution) and
straightforward error propagation. Systematic point-
to-point uncertainties are due to possible inaccu-
racies in our GEANT detector model and residual
dependencies on the structure function models and
radiative corrections [see list entry (iii)]. We kept the
Monte Carlo statistical errors below the systematic
uncertainties in all cases. To estimate the systematic
uncertainty due to the subtraction of the radiative
quasielastic tail, we compared the simulated spectra in
the quasielastic region 0.9 GeV/c2 < W ∗ < 1 GeV/c2

with the measured one (see, e.g., Fig. 9). We concluded
that the normalization of the tail has an uncertainty of
about 10%, due to the slightly different shapes of these
two spectra.

The systematic uncertainties due to E′-θ efficiency, back-
ground subtraction, and Monte Carlo simulation (both parts)
are added in quadrature, yielding a total point-to-point un-
certainty of the ratio RD/S of about 12.5%. To convert these
values to systematic uncertainties of the Fn

2 structure function,
they are multiplied by the value of the model Fn

2 in the
corresponding bin. These systematic uncertainties are shown
as shaded bands in all plots in Sec. V that are based on the
Monte Carlo method. While they depend on kinematics, this
dependence is seen to be a relatively smooth function of
the kinematic variables across the various spectra shown in
Sec. V.

D. Ratio method of extracting free neutron results

1. Overview of the ratio method

The analysis method described up to this point has the
advantage of using the complete available information from
all detector elements of CLAS and the RTPC to correct
the raw data for acceptance, efficiency, radiative effects,
and backgrounds bin by bin over the full kinematic domain
covered by our experiment. This is essential when studying the
dependence of the extracted effective structure function F

n,eff
2
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on all relevant kinematic variables. In contrast, for the purpose
of extracting the (nearly) free neutron structure function
Fn

2 (x,Q2) from our data in the very important proton (VIP)
region (ps < 100 MeV/c, θpq > 100◦) we used the alternative
“ratio method” that is less dependent on accurate knowledge
of detector efficiencies and acceptance. The first publication of
BONuS results [24] is based on this approach. In this section,
we give a somewhat expanded explanation of the ratio method
(more details can be found in [68]). In Sec. V C we compare the
results for Fn

2 (x,Q2) from these two different analyses, which
have partially independent systematic uncertainties. As can be
seen from Fig. 20, the overall agreement is good and increases
our confidence that all systematic experimental uncertainties
of our final result have been properly accounted for.

The ratio method relies on the fact that the acceptance of
the RTPC, after integration over the VIP region, is nearly
independent of W ∗ and Q2 (because it depends only on the
proton kinematics which are weakly correlated with these
variables). Furthermore, the acceptance of CLAS for electrons
within a given bin of W ∗ and Q2 for tagged events is very
close to that for inclusive electrons from D(e,e′)X events in the
equivalent W,Q2 bin, where W 2 = M2

p + 2Mpν − Q2 is the
usual electron missing-mass variable (uncorrected for initial
nucleon kinematics). We can therefore form the ratio of tagged
over inclusive events, Nd(e,e′ps )(W ∗,Q2)/Nd(e,e′)(W,Q2) for
each bin in W ∗ and Q2 (and the same bin in W ). This
ratio can be related to the ratio of structure functions
Fn

2 (W,Q2)/F d
2 (W,Q2) via

Rexp = Nd(e,e′ps )(W ∗,Q2)

Nd(e,e′)(W,Q2)
C(Eb,W

∗,W,Q2)

= Fn
2 (W ∗,Q2)

Fd
2 (W,Q2)

∫
VIP

dαsdp
⊥
s Ap(αs,p

⊥
s )S(αs,p

⊥
s ). (16)

Here C(Eb,W
∗,W,Q2) is a correction factor (close to 1)

that accounts for the slightly different acceptance (due to
slightly different ranges in E′,θe) for inclusive electrons
belonging to the bin (W,Q2) and tagged events belonging
to the bin (W ∗,Q2), as well as different radiative corrections
and background contributions (see below).

The integral in Eq. (16) over the spectral function S(αs,p
⊥
s )

times the acceptance-efficiency product Ap(αs,p
⊥
s ) for the

RTPC is largely independent of kinematics, as stated before,
and taken as a normalization constant for each data-taking
period (corresponding to one of the beam energy settings). It
was determined by matching the extracted Fn

2 /F d
2 to a new fit

to the world data on protons and deuterons [69]; see Sec. V B.
This normalization leads to an overall scale uncertainty of
5%–10% (mostly due to the uncertainty on the fit). Fn

2 can, in
principle, be obtained from the ratio Fn

2 /F d
2 by multiplying it

with the parametrization of Fd
2 from Ref. [69], while the ratio

Fn
2 /F

p
2 can be calculated by multiplying with Fd

2 /F
p
2 , again

from that same parametrization.

2. Analysis details

The ratio method used the same data set as described before,
with the same corrections for RTPC and CLAS momenta,
and the same kinematic cuts. The treatment of accidental

background events was somewhat simplified by assuming a
triangular shape for their distribution as a function of the
proton-electron vertex difference �z. This assumption is a
natural consequence of the convolution of two flat distributions
in z and is born out by the observed shape of “truly” accidental
coincidences; see Fig. 8. We then extrapolate this background
from the wings (outside ±2 cm) of the distribution in �z
into the signal region, |�z| � 1.5 cm. This method gives
essentially the same corrections for accidental backgrounds
as the one described earlier.

The correction factor C(Eb,W
∗,W,Q2) in Eq. (16) is

composed of several contributions, accounting for the (small)
difference in electron acceptance for tagged and inclusive
events (Racc), pair-symmetric (C+

e ), and pion contamination
(Cπ ) and differences in radiative corrections rrc,

C(Eb,W
∗,W,Q2) = RaccC

+
e Cπrrc. (17)

The correction factor Racc is calculated by comparing the
measured inclusive rate Nd(e,e′) to the rate predicted by the
well-known cross section for inclusive scattering off deuteron,
as a function of (E′,θe), yielding an efficiency function
ε(E′,θe). This function is integrated (weighted by the data)
over the range of (E′,θe) belonging to either the bin (W ∗,Q2)
for tagged events or the bin (W,Q2) for inclusive events, and
the ratio yields Racc. Note that the overall luminosity and
average event reconstruction efficiency of CLAS drop out in
this ratio.

Radiated and Born cross-section models, σr and σBorn, for
both electron-neutron and electron-deuteron scattering were
generated by the code of Bosted and Christy [65,70] in
each (W ∗/W,Q2) bin. Radiative effects were again treated
following Mo and Tsai [60]. In our final data sample, we
avoided regions where the elastic tail contribution is larger
than 10%. The radiative correction is the “super-ratio”

rrc = σn
Born

/
σn

r

σ d
Born

/
σd

r

, (18)

where indices n and d denote the neutron and the deuteron,
respectively. Again, this factor is usually very close to 1.

Finally, the relative contaminations of tagged and inclusive
events from pair-symmetric e+e− decays and misidentified
pions were estimated as described in Sec. IV B 3 and the
ratios C+

e and Cπ calculated, together with their systematic
uncertainties.

All statistical errors were properly propagated from the
tagged and inclusive number of counts in each bin. The
systematic uncertainties of each correction factor in Eq. (17)
were estimated and are listed in Table II, together with system-
atic uncertainties due to other sources. Even after including
theoretical uncertainties (first three lines in Table II), the
overall point-to-point systematic uncertainty of the extracted
Fn

2 /F d
2 (about 7.5%)—as well as the derived value of Fn

2
(about 8.7%)—is smaller than the corresponding uncertainty
of the Monte Carlo method. An overall scale uncertainty due
to our cross normalization to existing fits amounts to at most
10% for each beam energy. This scale uncertainty is common
to both methods (because they are both normalized to an
existing parametrization of Fn

2 /F d
2 ) and is not included in
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TABLE II. Point-to-point systematic uncertainties on the extracted structure function ratio Fn
2 (W,Q2)/F d

2 (W,Q2) and the structure function
F n

2 (W,Q2) derived from it, with the ratio method. Each uncertainty is shown as a percentage of the value of the result. An overall normalization
uncertainty of about 7%–10% applies uniformly to the complete data set for each beam energy.

Source Systematic uncertainty (%) Explanation

FSI 5.0 Effect of FSIs [22]
Target fragmentation 1.0 Effect of target fragmentation [36]
Off-shellness 1.0 Effect of nucleon off-shellness [29]
C+

e 1.0 Effect of pair-symmetric contamination
Cπ 1.0 Effect of pion contamination
rrc 2.0 Each value of Born and radiated cross sections has an uncertainty of 1%,

leading to a 2% overall uncertainty
Int 5.0 Possible deviation from the assumption that the integral in Eq. (16) is constant.
F d

2 /F
p
2 4.2 Fits to structure functions have point-to-point uncertainties of 3% [65,70],

leading to a 4.2% overall uncertainty (on extracted F n
2 and F n

2 /F
p
2 values only)

Total 8.7 Added in quadrature

the systematic uncertainty bands shown in the figures in the
next section.

V. RESULTS

In the following, we present the results from our analysis
of the BONuS data. We use the results derived from the Monte
Carlo-based analysis to study deviations from spectator model
expectations, and the ratio method results for final values of
the ratios Fn

2 /F d
2 and Fn

2 /F
p
2 as well as the neutron structure

function Fn
2 in the region where the spectator model is expected

to work well.

A. Comparison with spectator model predictions

The goal of this section is to assess in which kinematic
region the proton spectator model describes the BONuS data
and to gain a quantitative understanding of the deviations from
this spectator picture. To this end, we study the dependence of
the ratio of data to simulation on the kinematics of the spectator
proton for different regions in W ∗ and Q2. Any systematic
dependence on spectator kinematic variables would indicate
deviations from the spectator model, arising, for instance,
from nuclear binding modifications of the effective structure
function F

n,eff
2 , deviations from the input spectral function

S(αs,p
⊥
s ), and effects from FSIs.

As outlined in the previous section, the Monte Carlo-
based analysis leads to extracted values for the ratio RD/S

[Eq. (15)] and the effective neutron structure function
F

n,eff
2 (x∗,Q2,ps, cos θpq) for a grid of values in (x∗,Q2) or

(W ∗,Q2) and averaged over bins in (ps, cos θpq). We used
five bins in Q2 with central values 0.34, 0.61, 0.93, 1.66 and
3.38 GeV2/c2 and four bins in spectator momentum: 70–85,
85–100, 100–120, and 120–150 MeV/c. The dependence of
RD/S on the angle between the spectator momentum and the
direction of momentum transfer is averaged over ten evenly
spaced fine bins over the range −1.0 � cos θpq � 1.0 or,
for studies of the W ∗ or x∗ dependence, in three coarser
bins: backward (−1.0 � cos θpq � −0.2), sideways (−0.2 �
cos θpq � 0.2), and forward (0.2 � cos θpq � −1.0). Simi-
larly, W ∗ is either binned finely in 90 bins of 0.03 GeV/c2

width or more coarsely in six broad regions covering the

quasielastic peak (0.88–1.0 GeV/c2), the � resonance region
(1.0–1.35 GeV/c2), the second resonance (1.35–1.6 GeV/c2)
and third resonance (1.6–1.85 GeV/c2) regions, and two
higher-W regions (1.85–2.2 GeV/c2 and 2.2–2.68 GeV/c2).

1. θ pq dependence

The dependence of the data-to-simulation ratio on the
cosine of the angle θpq gives us the most direct information
on the validity of the spectator picture in different kinematic
domains. In the spectator model this ratio is expected to be
constant (equal to 1, modulo an overall normalization factor).
Any overall trend, such as a monotonic increase or decrease
with cos θpq , would indicate a shortcoming of the deuteron
wave-function model, while FSI effects are expected to give
rise to more complicated structures in this ratio (see Sec. II).
Our data on the cos θpq spectrum for six bins in W ∗, five bins
in Q2, and four bins in ps are included in the supplemental
material for this publication [71]. Here, we discuss a few
representative plots (Figs. 10–12) of this spectrum, for Q2

between 1.10 and 2.23 GeV2/c2.
Figure 10 shows the cos θpq spectrum for a W ∗ bin

covering the second resonance region and four ps bins from
the 5.25-GeV data set. One observes first that the data lie
on average about 10% higher than unity, which could be
attributed to either an overall normalization error or a greater
strength of the neutron structure function in this resonance
region than anticipated by our Fn

2 model. Beyond that, it
is clear that the data for the lowest ps bin fluctuate very
little around this average (most points are less than one
standard deviation away), with the possible exception of a
slight increase at very forward angles (where target remnants
from the struck nucleon might conceivably contribute). The
fact that the cos θpq spectrum is flat at backward angles is
a clear confirmation of the spectator picture for the VIP
region selected to extract the free neutron structure function.
A slightly more pronounced cos θpq dependence is seen in the
next ps bin, and this structure becomes even more prominent
for the highest two ps bins. This indicates that the spectator
mechanism may not be as “pure” at increasing spectator
momentum, as is indeed expected from FSI models.

045206-17



S. TKACHENKO et al. PHYSICAL REVIEW C 89, 045206 (2014)

pqcos 
-0.5 0 0.5

R
at

io

0.6
0.8

1
1.2
1.4
1.6
1.8

2

(a)

pqcos 
-0.5 0 0.5

R
at

io

0.6
0.8

1
1.2
1.4
1.6
1.8

2

(b)

pqcos 
-0.5 0 0.5

R
at

io

0.6
0.8

1
1.2
1.4
1.6
1.8

2

(c)

pqcos 
-0.5 0 0.5

R
at

io

0.6
0.8

1
1.2
1.4
1.6
1.8

2

(d)

FIG. 10. Ratio RD/S of experimental data (with subtracted back-
ground and elastic tail) to the simulation as a function of cos θpq for
a selected bin in Q2 (from 1.10 to 2.23 GeV2/c2) and W ∗ (from
1.35 to 1.6 GeV/c2), for a beam energy of 5.25 GeV. Each panel
corresponds to one of our four bins in the spectator momentum
ps : (a) 70–85 MeV/c, (b) 85–100 MeV/c, (c) 100–120 MeV/c,
(d) 120–150 MeV/c. The error bars are statistical only, with
systematic uncertainties shown as a band at the bottom.

These features become even more evident for the higher
W ∗ bin (at the edge of the DIS region) shown in Fig. 11.
Here, the overall normalization yields an average ratio close
to 1, due to the fact that we used part of this kinematic region
for our cross normalization. The structure that develops as ps

increases shows a clear trend that is statistically significant,
due to the much higher count rate in this bin. While the ratio is
still mostly flat (at least within the systematic uncertainty)
for backward angles and the lower two momentum bins,
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FIG. 11. The same ratio as in Fig. 10, but for a higher bin in W ∗

(from 1.85 to 2.20 GeV/c2).
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FIG. 12. The same ratio as in Fig. 11 for a beam energy of
4.23 GeV.

a significant depression at angles around 90◦ develops at
higher ps . This is consistent with expectations from some
FSI models [22,23], in which strength in this region is shifted
to even higher momenta through reinteraction between the
struck nucleon and the spectator. Comparison with Fig. 12
shows that the beam energy (4.23 GeV in this case) has only a
minor impact on the observed pattern.

Overall we find that the cos θpq dependence is very close
to flat in the backward-angle region for the two lowest ps

bins (the region in which the spectator model should work
well), for nearly all Q2-W ∗ bins. (Some structure visible in the
second-lowest ps bin may, in fact, be “leakage” from higher
spectator momenta, due to kinematic smearing.) This confirms
that this kinematic region is described well by the spectator
picture and therefore well-suited to extract (nearly) free
neutron structure functions. However, significant deviations
from this picture emerge at higher spectator momentum,
consistent with contributions from FSI and perhaps target
nucleon fragmentation. These data will enable tests and
refinements of theoretical models that parametrize deviations
from the spectator model [22,23,34], which in turn would allow
us to correct our Fn

2 data for any residual effects of this kind.

2. W∗ dependence

To explore the deviations of the data from our model as a
function of the invariant final-state mass, we show in Fig. 13
the ratio RS/D(W ∗) for the same bin in Q2 as before and
the highest beam energy, selecting only events in which the
spectator proton moves backwards relative to the momentum
transfer (cos θpq � −0.2). The four panels again show our four
ps bins.

We note first that there appears to be an excess of events
in the region below and around W ∗ = 1.2 GeV/c2, above
the model expectations. Some of this excess may be due to
incomplete subtraction of the quasielastic radiative tail; our
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FIG. 13. Ratio of experimental data (after subtraction of accidental background and elastic tail) to the full simulation with the spectator
model as a function of W ∗. The data are for Q2 from 1.10 to 2.23 GeV2/c2 and cos θpq from −1.0 to −0.2. Again, they are shown in four bins
in the spectator momentum ps : (a) 70–85 MeV/c, (b) 85–100 MeV/c, (c) 100–120 MeV/c, (d) 120–150 MeV/c. The beam energy is 5.3 GeV.
Error bars are statistical only, with systematic uncertainties shown as bands.

systematic uncertainty (shaded band) covers nearly half of the
statistically significant difference. However, it is possible that
our model (which is based on inclusive deuteron data) is indeed
too low in this region, where Fn

2 varies rapidly and therefore
Fermi smearing plays an important role. Similar, if somewhat
smaller, enhancements are also visible in the second resonance
region (around W ∗ = 1.5 and 1.6 GeV/c2) and between W ∗ =
1.8 and 2.0 GeV/c2. Because these features appear in most ps

bins, it is unlikely that they are due to a breakdown of the
spectator picture. A more recent fit to the world inclusive
structure function data [69] shows better agreement with our
data (see Sec. V B).

At W ∗ > 2 GeV, the data (which have been normalized
to the model in the region 2.0 � W ∗ � 2.2 GeV) rarely
differ more from our model than the combined statistical
and systematic uncertainty, although one might discern a
downward-sloping trend with the higher ps bins. Looking at
the same spectra for sideways-moving spectators (see Fig. 14),
we note a more pronounced depletion relative to the model at
W ∗ > 2 GeV, especially for the higher ps bins. This could
be an indication that strength in the region of higher W ∗
is predominantly shifted to other kinematics (e.g., higher
proton recoil momenta), due to FSI between the hadronic
debris from the primary reaction and the spectator proton.
Again, this is consistent with some of the existing models for
FSI [22,23].

Overall, our results exhibit a generally good agreement of
F

n,eff
2 (W ∗) with the model for all but the lowest W ∗ within the

VIP (spectator) region of low ps bin and backward θpq . Any
observed structures in this region are more likely compatible

with deficiencies in our Fn
2 model and the Monte Carlo

simulation of the experiment than with a breakdown of the
spectator picture.

3. Binding effects

We can sharpen the search for possible indications of
binding and off-shell effects in our data by comparing the
x∗ dependence of the effective neutron structure function
for different spectator momenta. Several models of the EMC
effect (see Sec. II C) suggest that the effect can be (partially)
explained by a reduction of Fn

2 if the struck nucleon is far from
its on-shell energy E =

√
M2 + p2, which is equivalent within

the spectator picture to a high-momentum backward-moving
spectator.

We therefore plot ratios of our extracted structure functions
F

n,eff
2 as a function of x∗ for different bins in ps and

our usual range of backward spectator angles; see Figs. 15
and 16. The first figure is for a lower Q2 bin, where the
DIS region ends already around x∗ = 0.35 (indicated by
arrows). It is quite apparent that the ratios are rather flat,
within the statistical uncertainties, even beyond the DIS
region. Systematic uncertainties largely cancel in this ratio. In
particular, there is no indication of a negative slope as seen in
the ratio between nuclear and nucleon structure functions (as in
the EMC effect). The same behavior repeats itself for a higher
Q2 bin (Fig. 16) albeit with significantly larger statistical
errors. (Here, the DIS region extends to about x∗ = 0.52.)
While our statistical precision is not sufficient to rule out a
small ps dependence of the structure function ratio, it appears
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FIG. 14. Same ratio as in Fig. 13 except for sideways spectator angles, −0.2 � cos θpq � 0.2.

that binding effects are still rather small for spectator momenta
up to about 150 MeV/c. The future BONuS measurement
with 12-GeV beam [72] will check this conclusion with much
improved precision.

B. The free neutron structure function

After establishing that the spectator picture is indeed
a reasonably good approximation within our VIP region
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FIG. 15. Ratios of F n,eff
2 (x∗,Q2,ps) for backward spectator mo-

menta in each of the three higher ps bins [(a) = 85–100 MeV/c,
(b) =100–120 MeV/c, (c) =120–150 MeV/c] to F n,eff

2 (x∗,Q2,ps) for
the lowest ps bin. Data are for Q2 = 1.1–2.2 GeV2/c2, cos θpq from
−1.0 to −0.2, and 5.3-GeV beam energy. Error bars are statistical
only. The arrows indicate the approximate location of the edge of the
DIS region, W ∗ = 2 GeV.

(ps � 100 MeV/c, θpq � 100◦), we proceed to extract results
for the (nearly) free neutron for all kinematic bins in W ∗ and
Q2, within the VIP region, using our ratio method. Because
this method determines the ratio of Fn

2 /F d
2 , we show the

results for this (nearly model-independent) quantity in Figs. 17
and 18, separately for our two highest beam energies. The
error bars indicate statistical errors, while the point-to-point
systematic uncertainties are indicated by the band at the
bottom. As explained earlier, there is an overall normalization
uncertainty which means that the data must be multiplied by a
factor determined from other information. For this purpose,
we used a recent update of the Bosted-Christy fit [65] of
the world data on protons and deuterons [69]. This new fit
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FIG. 16. Same as Fig. 15, but for a higher Q2 bin,
2.2–4.5 GeV2/c2.
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FIG. 17. (Color online) F n
2 /F d

2 vs W ∗2 for 4.2-GeV beam energy. The data are from the VIP region ps � 100 MeV/c and θpq � 100◦.
Error bars indicate statistical uncertainties, while the bands show the point-to-point systematic uncertainties. The data have been normalized
to the preliminary new fit of the world data by Christy et al. [69] (see text), which is shown as a solid line. We estimate that there is an overall
normalization uncertainty of up to 10%.

uses a convolution model [28] to combine parametrizations of
proton and neutron structure functions to model the deuteron.
From this fit (which does not yet include the BONuS data),
the ratio Fn

2 /F d
2 can be extracted in a model-dependent way

and we use the result to determine the overall normalization
constants for both beam energies, by minimizing the χ2 of
the normalized data versus the fit. The data shown in Figs. 17
and 18 are the main result of the BONuS experiment; they are
available in tabular form in the Supplemental Material of this
publication [71] and in the CLAS experimental database [73].
We estimate that the normalization uncertainty could be as
large as 10%, by comparing our present result to earlier fits of
Fn

2 /F d
2 [65].

Within the assumptions of the new fit, we can also extract
Fn

2 from the ratio by multiplying it with the fit result for Fd
2 .

Our corresponding results for Fn
2 as a function of W ∗2 are

shown in Fig. 19 in six different slices of Q2, with both beam
energies combined. We point out that these results depend
on the exact functional form used for Fd

2 and could change
if other models are used. The underlying parametrization

for Fn
2 from this new fit is also shown as a solid line.

We note that the agreement between Fn
2 obtained from

the two energies (after cross normalization) is quite good,
increasing our confidence that smaller corrections, such as
those due to radiative effects, detector acceptance, and the
contribution from R = σL/σT are quite small and well under
control.

We also observe a generally good agreement between the
data and the new fit, but with some indications for room to
improve the latter. In particular, the ratio between the strength
at the top of the three resonance “peaks” and the valleys in
between appears larger in some of our data than in the fit.
Such a deviation from the fit (which is based on inclusive
deuteron world data) is understandable, keeping in mind that
our experiment is the first one that does not have to rely on
an unfolding prescription. The Fermi smearing for inclusive
scattering off the deuteron tends to wash out strong resonance
features. Ultimately, BONuS data will be incorporated into
this new fit to further improve its precision in describing the
neutron.

045206-21



S. TKACHENKO et al. PHYSICAL REVIEW C 89, 045206 (2014)

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

2 4 6

F
2n  

/ F
2d

W2(GeV2) W2(GeV2)

0

0.2

0.4

0.6

0.8

2 4 6

FIG. 18. (Color online) Same as Fig. 17, for 5-GeV beam energy.

C. Results in the DIS region

Our second main goal is to pin down the behavior of Fn
2

at large x but in the DIS region (see Sec. II). Unfortunately,
the kinematic reach of the present BONuS experiment was
restricted by the maximum available beam energy (5.25 GeV),
which limits us to x < 0.55 if we require W ∗ > 2 GeV/c2.
Even pushing down to W ∗ > 1.8 GeV/c2 does not extend the
x range much beyond x = 0.6, which is the region where
presently the uncertainty on the down quark distribution
function becomes large. Still, we can compare our results over
the measured range (0.2 < x < 0.65) with existing next-to-
leading-order fits based on world data [13]. In Fig. 20, we
show our results for Fn

2 using both analysis methods.
For both analyses, we select events in the VIP region

(ps � 100 MeV/c, and θpq � 100◦) from the highest beam
energy. We require W ∗ > 1.8 GeV/c2 and integrate over all
Q2 > 1 GeV2/c2 within a given x bin. We convert the values
for Fn

2 /F d
2 from the ratio method once again using the new fit

for Fd
2 , and for the Monte Carlo Method we multiply the ratio

RS/D with the model for Fn
2 used for the generated events in

our simulation. Both results are normalized at x = 0.32 to the
middle of the uncertainty band of the CJ fit [13] (given by the
two solid lines in Fig. 20). In spite of significant differences

between the two approaches, the results of the Monte Carlo
method (“Analysis 1,” inverted triangles) and the ratio method
(“Analysis 2,” squares) agree very well within their systematic
uncertainties (given for Analysis 1 by the shaded band). We
reiterate that, apart from overall normalization factors (not
included in the shaded band), the systematic uncertainties of
the two methods are largely uncorrelated. Most of the data are
within or close to the uncertainty range of the CJ fit, although
some fluctuations (most likely due to remaining resonant
contributions) are visible. (The CJ band does not extend below
x = 0.3 because the fit is restricted to Q2 > 1.6 GeV2/c2 and
our data fall below that value for x � 0.3.)

The ratio Fn
2 /F

p
2 , which is of high interest because of its

relationship to the asymptotic d/u ratio (see Sec. II), can also
be extracted from our data using a suitable model for F

p
2 . We

showed this quantity in our previous publication [24], using the
ratio method. We reproduce this result here in Fig. 21, updated
with the new fit for Fd

2 and F
p
2 . The results are shown for three

lower cuts on the range in W ∗ over which we integrate our
data. The red triangles are for W ∗ > 1.8 GeV, i.e., showing
the same data as in Fig. 20. They agree reasonably well with
the prediction from the CJ fit, but do not extend much beyond
x = 0.6. The black squares (W ∗ > 1.6 GeV) and the blue
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FIG. 19. (Color online) Extracted structure function F n
2 as a function of squared final-state invariant mass W ∗2 for six bins in Q2. Results

are shown for two beam energies, 4.2 GeV (green circles) and 5.3 GeV (red squares). Error bars are statistical only, with systematic uncertainties
for the 5.3-GeV data shown as a band. (Systematic uncertainties of 4.2-GeV are very similar in magnitude to the shown ones). The solid line
indicates a new fit to the world data on deuteron and proton targets that does not include BONuS data (see text).

circles (W ∗ > 1.4 GeV) push this limit to higher x, but some
clear resonant structure can be observed at large x. Taken at
face value, the difference between these integration regions
can be interpreted as a first hint that local duality may not
hold as well for the neutron as for the proton in our kinematic
region. Ultimately, only by repeating this measurement with
significantly higher beam energy can one cleanly extract the
DIS limit for Fn

2 /F
p
2 as x → 1. A corresponding measurement

is planned for the CLAS12 spectrometer at Jefferson Lab after
the upgrade to 11-GeV beam energy is completed [72].

VI. SUMMARY

We have presented the full analysis and final results from
the BONuS experiment, which accessed for the first-time
structure functions of the neutron by tagging spectator protons
in the reaction 2H(e,e′ps). Comparison of our data to a full
Monte Carlo simulation based on the spectator model in the
IA shows generally good agreement for the lowest spectator
momenta (ps = 70–85 MeV/c), especially in the backward
θpq region. Deviations from the spectator picture could be

identified, however, at higher momenta. The results for the
dependence on the spectator proton angle tend to agree with
expectations from target fragmentation models [19,36], with
the data showing an enhancement in the region of forward θpq ,
as well as with FSI models [22], which predict a dip in the
vicinity of θpq = 90◦.

Within the kinematic region of its applicability, the spec-
tator model allows us to extract the ratio Fn

2 /F d
2 of the free

neutron structure function to the deuteron one over a wide
range in x or W and Q2. Comparison to a new, preliminary
fit for this ratio from inclusive deuteron data using Fermi-
smearing models [69] shows overall good agreement, but with
some room for improvement in the detailed description of the
resonance structures present in the data. In the DIS region, our
data agree well with existing PDF parametrizations [13] out to
x ≈ 0.65, where uncertainties become large.

Structure functions extracted from the BONuS experiment
using two different analysis methods are in agreement with
each other, indicating that systematic uncertainties are under
control. The complete data set for Fn

2 /F d
2 over all bins in

(W ∗,Q2) is available from the CLAS database [73] and as
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FIG. 20. (Color online) Results for the neutron structure function
F n

2 (x) (integrated over Q2 > 1 GeV2/c2 while requiring W ∗ >

1.8 GeV/c2) from the Monte Carlo method (labeled “Analysis 1”)
and ratio method (labeled “Analysis 2”). The range of F n

2 from the
CJ fit [13] is shown by the two solid lines. Systematic uncertainties
for the Monte Carlo method are shown as the shaded band. The two
analysis results are cross normalized to the average of the CJ fit at
x = 0.32.

Supplemental Material to this paper [71]. It will aid the im-
provement of existing models and parametrizations of neutron
structure functions. These parametrizations, in turn, are crucial
for other experimental goals, such as the extraction of neutron
spin structure functions from polarization asymmetries, more
precise studies of the nuclear EMC effect via comparisons of
nuclear cross sections with the free proton and neutron cross
sections, as well as reducing uncertainties in PDFs used for
extracting information from collider measurements. Our data
will also provide constraints on the isospin dependence of
nucleon resonant excitations and the nonresonant background,
as well as tests of quark-hadron duality.

A future experiment with the energy-upgraded accelerator
at Jefferson Lab will allow us to both improve the statistical
precision and extend the range in x [72]. This experiment will
finally settle the question about the asymptotic behavior of the
d/u ratio in the limit x → 1.
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FIG. 21. (Color online) Results for the ratio of the neutron to pro-
ton structure functions F n

2 /F
p
2 (x) (integrated over Q2 > 1 GeV2/c2

and three different minimum values for W ∗) from the ratio method.
The uncertainty range from the CJ fit [13] is shown by the (yellow)
shaded band. Systematic uncertainties are shown as the (red) shaded
band at the bottom. Our data are cross normalized to the average of
the CJ fit at x = 0.32. The inset shows the average Q2 for each data
point, separately for the three lower W ∗ limits.
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