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Pionic and hidden-color, six-quark contributions to the deuteron b1 structure function
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The b1 structure function is an observable feature of a spin-1 system sensitive to non-nucleonic components of
the target nuclear wave function. The contributions of exchanged pions in the deuteron are estimated and found
to be of measurable size for values of x of about 0.1. A simple model for a hidden-color, six-quark configuration
(with ∼ 0.15% probability to exist in the deuteron) is proposed and found to give substantial contributions for
values of x > 0.2. Good agreement with Hermes data is obtained. Predictions are made for an upcoming JLab
experiment. The Close and Kumano sum rule is investigated and found to be a useful guide to understanding
various possible effects that may contribute.
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I. INTRODUCTION

Deep inelastic scattering from a spin-one target has features,
residing in the leading-twist b1 structure function, that are not
present for a spin-1/2 target [1,2]. In the quark-parton model

b1 =
∑

q

e2
q

[
q2

↑ − 1

2
(q1

↑ + q1
↑)

]
≡

∑
i

e2
qδqi, (1)

where qm
↑ (qm

↓ ) is the number density of quarks with spin
up(down) along the z axis in a target hadron with helicity
m. The function b1 is called the tensor structure function of
the deuteron because it has been observed by the Hermes
collaboration using a tensor polarized deuteron target [3] for
values of Bjorken 0.01 < x < 0.45. The function b1 takes on
its largest value of about 10−2 at the lowest measured value of
x (0.012), decreases with increasing x through zero and takes
on a minimum value of roughly −4 × 10−3.

The function b1 nearly vanishes if the spin-one target is
made of constituents in a relative s state, and is very small for a
target of spin 1/2 particles moving nonrelativistically in higher
angular momentum states [1,4–6]. Thus one expects [1] that
a nuclear b1 may be dominated by non-nucleonic components
of the target nuclear wave function. Consequently, a Jefferson
Laboratory experiment [7] is planned to measure b1 for values
of x in the range 0.16 < x < 0.49 and 1 < Q2 < 5 GeV2 with
the aim of reducing the error bars.

At very small values of x effects of shadowing (double
scattering) are expected to be important [8–10]. Our focus
here is on the kinematic region of higher values of x that are
available to the JLab experiment. It is therefore natural to think
of the nuclear Sullivan mechanism [11], Fig. 1, in which an
exchanged pion is struck by a virtual photon produced by an
incoming lepton. That the one-pion exchange potential OPEP
gives a tensor force of paramount importance in deuteron
physics is a nuclear physics textbook item [12]. Indeed,
realistic deuteron wave functions can be constructed using
only the OPEP along with a suitable cutoff at short distances
[13–16]. Therefore it is reasonable to estimate the size of
such pionic effects. The present author did this in 1989 con-
ference proceeding [4], finding that the effects are small, see
also [8]. However, as experimental techniques have improved
dramatically, the meaning of small has changed. Therefore,

considering the planned JLab experiment, it is worthwhile to
reassess the size and uncertainties of the pionic effects.

In particular, the Hermes experimental result [3] presents
an interesting puzzle because it observed a significant negative
value of b1 for x = 0.45. At such a value of x, any sea quark
effect such as arising from double-scattering or virtual pions
is completely negligible. Furthermore, the nucleonic contribu-
tions are computed to be very small [4–6], so one must consider
other possibilities. We therefore take up the possibility that
the deuteron has a six-quark component that is orthogonal to
two nucleons. Such configurations are known to be dominated
by the effects of so-called hidden-color states in which two
color-octet baryons combine to form a color singlet [17]. Such
configurations can be generated, for example, if two nucleons
exchange a single gluon leading to a quantum fluctuation
involving an color octet and color anti-octet baryon.

In particular, a component of the deuteron in which all six
quarks are in the same spatial wave function (|6q〉) can be
expressed in terms on nucleon-nucleon NN , Delta-Delta ��,
and hidden color components CC as [17]

|6q〉 =
√

1/9|N2〉 +
√

4/45|�2〉 +
√

4/5|CC〉. (2)

This particular state has an 80% probability of hidden color and
only an 11% probability to be a nucleon-nucleon configuration.
The 80% cited here is a purely algebraic number that applies
only for completely overlapping nucleons. The real question
is the probability that the deuteron consists of 6 quarks are
in the same spatial wave function, which is denoted here as
P6q . Early pioneering work [18] claims a probability for the
|CC〉 admixture in the range of 1% to 1.5% is needed to
describe nucleon-nucleon scattering and deuteron properties.
However, high accuracy conventional nuclear theory calcu-
lations of nucleon-nucleon scattering [19–21] and deuteron
properties [22] provide essentially perfect descriptions of the
data without making explicit reference to hidden color states.
Given the success of those calculation a value of P6q in the
range of 1% to 1.5% can only be taken as an upper limit.
We shall show that a much, much smaller value of P6q can
have a big impact on the computed value of b1. A recent
review of hidden color phenomena is presented in [23]. In the
following, the term |6q〉 is referred to interchangeably as either
a six-quark or hidden color state.

0556-2813/2014/89(4)/045203(9) 045203-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.89.045203


GERALD A. MILLER PHYSICAL REVIEW C 89, 045203 (2014)

π

π

γ∗

γ∗

FIG. 1. (Color online) Forward Compton scattering diagram for
the Sullivan process. The virtual photon γ ∗ encounters an exchanged
pion (dashed line), breaking it up forming a complicated state (blob)
which then emits the pion which is absorbed by another nucleon. The
imaginary part of this graph is related to the deep inelastic structure
functions of the deuteron.

The discovery of the EMC effect [24] caused researchers to
consider the effects of such six-quark states [25] in a variety
of nuclear phenomena [26–28]. Furthermore, the possible
discovery of such a state as a di-baryon resonance has drawn
recent interest [29]. Therefore we propose a model of a
hidden-color six-quark components of the s and d states of
the deuteron. We also note that including a six-quark hidden
color component of the deuteron does not lead to a conflict with
the measured asymptotic d to s ratio of the deuteron [30]. The
EMC effect remains the only nuclear effect that has not been
explained using conventional (nonquark) dynamics [31–33].

Section II provides a brief discussion of the formalism
required to compute deep inelastic scattering cross sections for
nuclei. Section III applies this formalism to compute pionic
contributions to b1. Section IV presents our simple model
for the hidden color s and d states of the deuteron. Our aim
here is only to provide an exploratory calculation to show the
relevance of hidden color to the b! structure function. Section V
compares the effects of pions and hidden color with the existing
Hermes data and makes predictions for the upcoming JLab
experiment. The sum rule of Close and Kumano [34] that∫

dx b1(x) = 0 is discussed in Sec. VI and summary remarks
are presented in Sec. VII.

II. NUCLEAR DEEP INELASTIC SCATTERING

The nuclear dependence of nucleon quark distributions,
known as the EMC effect, has been reviewed many times. See
for example, [31–33]. The techniques for including the effects
of bound nucleons and nuclear virtual pions are well estab-
lished. Structure functions measured in deep-inelastic lepton
scattering are determined by the squares of frame independent
light front (LF) wave functions of the target. We also note
that structure functions, expressed in terms of quark light-cone
correlation functions in which quarks are evaluated at light-like
separations (the quarks are at equal LF times), can be computed

using the target rest frame, see, for example, [35–37]. These
quark light-cone correlations are matrix elements taken within
the target-rest frame wave function. This formulation is used by
all calculations of the EMC effect. Even though the momentum
transfer is high, the observable structure function is determined
by a ground-state matrix element.

III. ONE PION EXCHANGE EFFECTS

A nuclear pion excess as a possible explanation of the EMC
effect was introduced early on by Ericson and Thomas [38].
The motivation for this is that the contribution is expected to
occur at values of Bjorken x ∼ mπ/MN ≈ 1/7 which were
relevant for the EMC experiment. This very same range
of x is also relevant for the HERMES and proposed JLab
experiments.

The pionic contribution to the nuclear quark distribution
for a spin 1 target of Jz = m and atomic number A is given
by [4,39]

�πq(m)(x) =
∫ A

x

dy

y
qπ (x/y)f (m)

π (y), (3)

where qπ (x) is the charged-weighted quark structure function
of the pion (assumed to be the same for nuclear pions as for
free pions):

qπ (x) = 5
9uπ

v (x) + 10
9 ūπ + 2

9 sπ (x), (4)

where uπ
v is the valence u quark distribution of the π+ and sπ

is the sea quark distribution of a flavor symmetric pion sea,
and the probability to find a pion residing in a deuteron D of
Sz = m is given by

f (m)
π (yA) =

∫
dξ−

2π
e−iyAP +

D ξ−〈D,m|φπ (ξ−)φπ (0)|D,m〉c, (5)

where the subscript c stands for connected terms. The matrix
element in Eq. (5) is a light-cone correlation function evaluated
in the laboratory frame, so that P +

D = MD. We suppress
the notation for the Q2 dependence of the pion structure
function, but include its effects in calculations discussed below.
The support of f (m)

π (y) extends to y = A(= 2) because it is
possible, though highly unlikely, that a single pion could carry
the entire plus-component of the nuclear momentum.

The resulting contribution to b1 is given by

bπ
1 (x) = 1

2 (�πq(0)(x) − �πq(1)(x)). (6)

The expression, Eq. (5), for f (m)
π is evaluated by saturating

the intermediate states with two nucleon, one pion states.
We use the nucleon variable y with yM = yAMD (M is the
nucleon mass). Evaluation using nonrelativistic dynamics and
neglecting retardation effects in the pion propagator (so that
q+ = q0 + qz ≈ qz) leads to

f (m)
π (y) = −3yg2

(2π )3

∫
d3q(

q2 + m2
π

)2

G2
A(q2)

G2
A(0)

× δ(My − qz)Fm(q), (7)

with

Fm(q) ≡
∫

d3r〈D,m|e−iq·rσ 1 · q σ 2 · q|D,m〉, (8)
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where r is the displacement between the neutron and proton,
g is the pion-nucleon coupling constant (we use 13.5) and M
is the nucleon mass. The nucleons involved in nonrelativistic
nuclear wave functions are on their mass shell. This means that
one may use the generalized Goldberger-Treiman relation [37]
to relate the pion-nucleon form factor GπN (t) to the axial
form factor:

GπN (t) = M

fπ

GA(t), (9)

where t is the square of the four-momentum transferred to
the nucleons, GA(t) is the axial vector form factor, fπ is
the pion decay constant, and GπN (0) ≈ g. Using Eq. (9)
has obvious practical value because it relates an essentially
unmeasurable quantity GπN with one GA that is constrained
by experiments, and has been used in obtaining Eq. (7). We
use the dipole form: GA(Q2)/GA(0) = 1/(1 + (Q2/M2

A))2,
with MA as the so-called axial mass. The values of MA are
given by MA = 1.03 ± 0.04 GeV as reviewed in [37]. This
range is consistent with the one reported in a later review [40].

To proceed it is convenient to use the following representa-
tion [12] of the deuteron wave function:

〈r|D,m〉

= 1√
4π

[
u(r)

r
|1,m〉 + w(r)

r

(3σ 1 · r̂σ 2 · r̂ − 1)√
8

|1,m〉
]
,

(10)

where |1,m〉 represents the triplet spin wave function. One
might think that it is necessary to use a relativistic deuteron
wave function computed using light front variables. However,
as shown by several authors including [41–44] relativistic
effects in the deuteron are very small, consistent with the
very small binding energy. For a system that is inherently
nonrelativistic one can make the transition to light-front
variables using the simple translation p+ = M + pz, where
M is the constituent mass [45], but there is no need to do that
here.

Using the wave function of Eq. (10) to evaluate the
expression appearing in Eq. (7) yields the results

Fm(q) = Fuu
m (q) + Fuw

m (q) + Fww
m (q), (11)

where

Fuu
±1 = q2

z Iuu0(q), F uu
0 = (

q2
⊥ − q2

z

)
Iuu0(q), (12)

Fuw
±1 = − 1√

2

(
3q2 − q2

z

)
Iuw2(q),

F uw
0 = − 1√

2

(
3q2 − (

q2
⊥ − q2

z

))
Iuw2(q), (13)

Fww
±1 = q2

z Iww0(q) + 1

4

(
3q2 − q2

z

)
Iww2(q), (14)

Fww
0 = (

q2
⊥ − q2

z

)
Iww2(q) + 1

4

(
3q2 − (

q2
⊥ − q2

z

))
Iww2(q),

(15)

IabL(q) ≡
∫ ∞

0
dr a(r)b(r)jL(qr), (16)

where a,b = u,w, L = 0,2, and q2 = q2 = q2
z + q2

⊥. We need
the combinations Fab

0 (q) − Fab
1 (q) ∝ (q2 − 3q2

z ) to compute

b1. Therefore it is useful to define the integral which gives the
individual terms of f (0)

π (y) − f (1)
π (y):

fabL(y) ≡ − 3yg2

(2π )2

∫
d3q(

q2 + m2
π

)2

δ(My − qz)(
1 + q2

M2
A

)4

× (
q2 − 3q2

z

)
IabL(q), (17)

= −3yg2

8π2

∫ ∞

0

dq2
⊥(

q2
⊥ + M2y2 + m2

π

)2

1(
1 + q2

⊥+M2y2

M2
A

)4

× (q2
⊥ − 2M2y2)IabL(

√
q2

⊥ + M2y2). (18)

Then

δfπ (y) ≡ f (0)
π (y) − f (1)

π (y)

= fuu0(y) +
√

2

2
fuw2(y) + fww0(y) − 1

4
fww2(y)

(19)

and

bπ
1 (x) = 1

2

∫ 2

x

dy

y
qπ (x/y)δfπ (y). (20)

The key output of the present section is the function δfπ (y),
which is displayed in Fig. 2. The Argonne V18 deuteron wave
function [20] is used here, but virtually identical results are
obtained with the Reid ’93 potential [47]. Note the double node
structure, a consequence of the tensor nature of the operator,
that can be understood by examining Eq. (17) and the functions
IabL(q). For small values of y, fabL(y) ∝ (−y), but for larger
values of y = qz, the integrand changes sign. A node in the
functions IabL(q) causes another sign change at still larger
values of y. Indeed, we may use Eq. (17) to obtain a sum rule:

∫ 2

0
dy

fabL(y)

y
= 0, (21)

with the 0 resulting from the feature
∫

d3qf (q2)(q2 − 3q2
z ) =

0. This sum rule has been used as a numerical check on the
integrals. No general result for

∫
dy f (y) can be obtained

because of the factor y appearing in front of the integral in
Eq. (17).

FIG. 2. (Color online) δfπ (y) of Eq. (19). The results obtained
with the Argonne V18 deuteron wave function [20] overlap with
those of the Reid ’93 potential [47].

045203-3



GERALD A. MILLER PHYSICAL REVIEW C 89, 045203 (2014)

IV. HIDDEN-COLOR SIX-QUARK STATES

We investigate the possible relevance of hidden-color six-
quark states. There have been many models and attempts to
provide definitive evidence for the existence of such states.
However, no model has been unambiguously and uniquely
verified by experiment. This is because conventional nuclear
theory makes no reference to such states and yet successfully
reproduces all known nuclear phenomena except for the EMC
effect. In this paper, we take the view that the HERMES
observation at x = 0.452 (their largest value of x) may
provide another example requiring unconventional nuclear
wave functions, and therefore may offer an opportunity to
finally learn something definite. The key point is that nucleonic
(and mesonic) effects, as presently computed, offer much
smaller (in magnitude) values of b1 than found by HERMES.
A value of x = 0.452 involves valence quarks. Since nucleons
do not provide a mechanism, one is naturally encouraged to
look at six quark hidden color components, which should have
support at such values of x. Since no definitive model exists,
it is sufficient to use the simplest of many possible models for
the present exploratory calculation.

We proceed by assuming the existence of a deuteron
component consisting of six nonrelativistic quarks in an S
state. As stated in the Introduction, such a state has only a
probability of 1/9 to be a nucleon-nucleon component, and is
to a reasonable approximation a hidden color state, so we use
the terminology six-quark, hidden color state. Then we obtain
the corresponding d state component by promoting any one
of the quarks to a d3/2 state. We define these states by
combining five s-state quarks into a spin 1/2 component,
which couples with the either the s1/2 of d3/2 single-quark state
to make a total angular momentum of 1. We therefore write
the wave functions of these states for a deuteron of Jz = H as

ψj,l,H (p) =
√

Nlfl(p)
∑

ms,mj

Yj lmj

〈
jmj ,

1

2
ms |1H

〉
, (22)

where l,j = s1/2 or d3/2, Nl is a normalization constant
chosen so that

∫
d3pψ̄j,l,H (p)γ +ψj,l,H (p) = 1 and Yj lmj

is
a spinor spherical harmonic. The matrix element for transition
between the l = 0 and l = 2 states is given by the light-cone
distribution:

FH (x6q) = 1

2

∫
d3pψ̄1/2,0,H (p)γ +ψ3/2,2,H (p)

× δ

(
p cos θ + E(p)

M6q

− x6q

)
, (23)

where E(p) =
√

p2 + m2 with m as the quark mass, and M6q

is the mass of the six-quark bag, x6q is the momentum fraction
of the six-quark bag carried by a single quark and x6qM6q =
xM [25]. Note that p cos θ is the third (z) component of
the momentum, so that the plus component of the quark
momentum is E(p) + p cos θ . We take M6q = 2M (its lowest
possible value) to make a conservative estimate.

The term of interest b1(x) is given by

b
6q
1 (x) = 1

2 (2)(F0(x) − F1(x))P6q, (24)

where P6q is the product of the probability amplitudes for the
six-quark states to exist in the deuteron, and the factor of 2
enters because either state can be in the d wave. Evaluation of
FH using Eq. (22) leads to the result

b
6q
1 (x) = −

√
N0N2

2

3

4π

∫
d3pf0f2(3 cos2 θ − 1)

× δ

(
p cos θ + E(p)

M
− x

)
P6q . (25)

To proceed further we specify the wave functions to
be harmonic oscillator wave functions. We take f2(p) =
−p2R2e−p2R2/2, f0(p) = e−p2R2/2, where R is the radius pa-
rameter. Within the present framework, the model is specified
by only three parameters—R, the quark mass m, and P6q .
The key question is whether such a model can reproduce the
HERMES data point at x = 0.452 without using a value of
P6q large enough to conflict with conventional nuclear physics
calculations that do not require a nonzero value [19–22]. In
other words, we ask if the hidden color states provide a
substantial mechanism to make b1 nonzero at large values
of x. We note that the HERMES data have a large error bar,
and our numerical results are chosen to reproduce the central
value.

Our procedure is to adjust the value of P6q to reproduce
the data at that point and see how large a value is needed.
To proceed further, we use a quark mass of 338 MeV [48].
We expect that the six-quark state should be somewhat larger
than that of a nucleon, and therefore choose R to be 1.2 fm.
We shall see that the calculations are not very sensitive to the
exact value of R. The dependence on all three parameters is
examined below.

The evaluation of b
6q
1 (x) proceeds by using d3p =

2πp2dpd cos θ , integrating over cos θ , and changing variables
to u ≡ p2R2. The result is

b
6q
1 (x) = 6MR√

30π

∫ ∞

umin(x)
du e−u[3((x2M2 + m2)R2

+u − 2xMR
√

u + m2R2) − u]P6q, (26)

where

umin(x) ≡ (x2M2 − m2)2R2

4x2M2
. (27)

V. RESULTS

We may now start examining the resulting phenomenology,
considering first the pionic contributions. The quark distribu-
tion function of the pion, qπ is needed to evaluate bπ

1 as shown
in Eq. (20). Evaluation requires knowledge of this function
over a wide range of its argument and x/y can be very small.
However, knowledge of qπ comes from fixed-target Drell-Yan
data at values of x � 0.3 [49,50]. We display the sensitivity to
different versions of qπ in Fig. 3. We display results for the full
and valence distributions of [46], and for the full and valence
distributions of [51] at Q2 = 1.17 GeV2. The sea is important
for values of x less than about 0.1. This is unfortunate because
the Drell-Yan data at large x embody little sensitivity to the sea.
However, the computed values of bπ

1 are not very different for
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FIG. 3. (Color online) Computed values of bπ
1 , for different pion

structure function at Q2 = 1.17 GeV2. Solid lines—full structure
function [46], short-dashed lines (blue)—valence [46], dot dashed
lines (red)—full structure function (mode 3) [51], long dashed lines
(green) (mode 3) [51].

the two parametrizations, except for very small values of x. The
solid and dashed curves show the result of using two different
valence quark distributions of [46] at Q2 = 0.4 GeV2. For Fit
3 (solid) qπ (x) ∼ x−0.3 while for Fit 4 (dashed) qπ (x) ∼ x0.06.

We now turn to the determine the contributions due to
hidden color, b

6q
1 provided by Eq. (26). The value of b

6q
1 (x =

0.452) is relevant because the pionic contribution is negligible,
and the measured value, b1 = −3.8 ± 0.16 × 10−3, differs
from zero. We choose P6q = 0.0015 to reproduce the central
value using R = 1.2 fm and m = 338 MeV. The small value
of P6q shows that the six-quark configuration has great impact
on the computed value of b1. It is noteworthy that such a very,
very small value cannot be ruled out by any observations.
Our value of P6q is very small: small enough to evade
any limits imposed by high accuracy conventional nuclear
theory calculations of nucleon-nucleon scattering [19–21] and
deuteron properties [22] that make no explicit reference to
hidden color states. Our value of 0.0015 is too small to conflict
with conventional nuclear calculations.

The results for b
6q
1 are shown in Fig. 4. Results using the

model parameters R = 1.2 fm, m = 338 MeV are shown as
the solid curves in Figs. 4 a and b, which also displays the
sensitivity to the values of the parameters. There is relatively
little sensitivity to the value of R, but more sensitivity to
the value of m. However, there is wider dependence upon
the choice of models. For example, if the HERMES point
at x = 0.452 is not reproduced, this particular model will be
ruled out. The exponential appearing in Eq. (26) renders the
contribution very small for small values of x. This is seen in
the figure. However, there is a large negative contribution at
values of x ≈ 0.4, as well as a double-node structure. The latter
arises from the factor 3 cos2 θ − 1 appearing in the integrand of
Eq. (25). The contributions of the hidden-color configurations
are generally much smaller than those of exchanged pions
except for values of x larger than about 0.35. We also predict
that, for even larger values of x, b1 changes sign and may
have another maximum. This mechanism allows contributions
at large values of x. A quark in a hidden color, six quark
configuration can have up to two units of x. The parameter
dependence of the model is also explored. Fig. 4 a shows
the dependence on the value of R and Fig. 4 a shows the
dependence on the value of m. For each of the curves P6q is

0.2 0.4 0.6 0.8 x

0.004

0.002

0.002

0.004

0.006
b1
6 q x

0.2 0.4 0.6 0.8 x

0.008

0.006

0.004

0.002

0.002

0.004

0.006
b1
6 q x

(a)

(b)

FIG. 4. (Color online) Computed values of b
6q
1 from Eq. (26).

Sensitivity to parameters is displayed. (a) Solid lines (blue) uses
R = 1.2 fm, m = 338 MeV, long dashed lines (red) R is decreased by
10%, dotted lines (green) R is increased by 10%. (b) Solid lines (blue)
uses R = 1.2 fm, m = 338 MeV, long dashed (red) m is increased by
10%, dotted lines (green), m is decreased by 10%.

chosen so that the value at x = 0.452 is the same. Shifting the
value of R while keeping b

6q
1 (0.452) fixed requires less than

4% changes in the value of P6q . Increasing the value of the
quark mass produces larger effects. Keeping b

6q
1 (0.452) fixed

requires that the value of P6q needs to be decreased by 20% if
the value of the quark mass is increased by 10%, and the value
of P6q needs to be increased by about a factor of 1.8 if the value
of the quark mass is decreased by 10%. In the remainder of this
paper, we use the central values R = 1.2 fm, m = 338 MeV.

At this stage we can assess the size of our computed bπ
1 and

b
6q
1 versus the only existing data [3]. These data is given in

Table I along with our computed values of bπ
1 using the pion

structure functions of Ref. [46] and the three modes of [51].
These modes differ in the fraction of momentum carried by the
sea: 10%, 15%, and 20% for modes 1 and 3, respectively. The
differences obtained by using different structure functions are
generally not larger than the experimental error bars. For values
of x less than about 0.2, there is qualitative agreement between
the measurements and the calculations of bπ

1 (which are
much larger than those of b

6q
1 ), given the stated experimental

uncertainties and the unquantifiable uncertainty caused by
lack of knowledge of the sea. However, the large-magnitude
negative central value measured at x = 0.452 is two standard
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TABLE I. Measured values (in 10−2 units) of the tensor structure function b1. Both the statistical and systematic uncertainties are listed.
The numbers in parenthesis refer to the structure function modes of Ref. [51].

〈Q2〉 b1 ± δb1
stat ± δb1

sys bπ
1 [46] bπ

1 [51] (1) bπ
1 [51] (3) b

6q
1

〈x〉 [GeV2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2]

0.012 0.51 11.20 5.51 2.77 10.5 15.5 24.1 0.00
0.032 1.06 5.50 2.53 1.84 5.6 6.8 8.9 0.00
0.063 1.65 3.82 1.11 0.60 4.2 3.7 4.1 0.00
0.128 2.33 0.29 0.53 0.44 1.6 1.3 1.3 0.01
0.248 3.11 0.29 0.28 0.24 −0.55 0.13 0.12 0.41
0.452 4.69 −0.38 0.16 0.03 −0.02 −0.02 −0.022 −0.38

deviations away from the value provided by bπ
1 but in accord

with the value provided by b
6q
1 . Thus our result is that

one can reproduce the Hermes measurements by using pion
exchange contributions at low values of x and hidden-color
configurations at larger values of x. This is also shown in Fig. 5,
where very good agreement between data and our model can
be observed. The contributions of double scattering [10] are
far smaller than the measurements for the values of x displayed
in the table and in Fig. 5, and are therefore neglected here.

The next step is to make predictions for the JLab experi-
ment. Our results for b1 = bπ

1 + b
6q
1 are shown in Fig. 6. For

values of x less than about 0.2 the computed values of b1 are
dominated by those of bπ

1 . For larger values of x the computed
results are not significantly different from 0. This result com-
bined with the very small large x results for nucleonic [1,5,6]
and double-scattering contributions [8–10], makes the case that
an observation of a value of b1 significantly different than zero
for values of x greater than about 0.3 would represent a discov-
ery of some sort of exotic nuclear physics. Our model Eq. (26)
leads to an effect that does contribute at larger values of x. One
may roughly think of the prediction for the JLab experiment
as arising from bπ

1 for x < 0.2 and from b
6q
1 for x > 0.2.

VI. SUM RULE OF CLOSE AND KUMANO

Close and Kumano [34] found a sum rule that the integral
of b1(x) vanishes: ∫

dxb1(x) = 0, (28)

0.2 0.4 0.6 0.8 x

5

10

15

100 b1(x)

FIG. 5. (Color online) Computed values of b1 = bπ
1 + b

6q
1 from

Eq. (20) and Eq. (26). The pion structure function is that of [46],
model 1.

provided that the sea is unpolarized, as is the case for the
pion contribution discussed here. This sum rule is interesting
because it shows that if b1(x) is significantly different from
0 at one value of x, it must take on significant values of the
opposing sign for other values of x.

A visual inspection of the Fig. 3 shows immediately that
the pionic contribution does not obey this sum rule. This result
can be seen analytically by integrating Eq. (20) over x:

∫ 1

0
dxbπ

1 (x) = 1

2

∫ 1

0
dx

∫ 2

x

dy

y
qπ (x/y)δfπ (y) (29)

= 1

2

∫ 2

0
dyδfπ (y)

∫ 1

0
duqπ (u). (30)

The above result is obtained by interchanging the order of the
integration over x and y and changing variables from x to
u = x/y. There are two reasons why the product of integrals
on the right does not vanish. The first is displayed above in
Eq. (21); the integral of δfπ (y)/y vanishes, so the integral of
δfπ (y) can not vanish. The second is that the integral of the
quark distribution function of the pion is infinite for any of the
published structure functions. Thus the value of the sum rule
is infinity.

Given this violation of the sum rule of Close and Kumano,
it is interesting to see if the extant calculations of other
mechanisms are consistent with the sum rule. Consider first
the nucleonic contribution [1,5,6]. In particular we examine

0.2 0.3 0.4 0.5 0.6 0.7 x

−0.5

0.5

1.0

1.5

2.0

2.5

100 b1(x)

FIG. 6. (Color online) Computed values of 100 (bπ
1 + b

6q
1 ), for

values of Q2 = 1.17, 1.76, 2.12, and 3.25 GeV2 [46] distributions
and for [51] (lowest curve at x = 0.15). For the other curves, bπ

1

increases as Q2 increases for small values of x.
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Eq. (15,16) of [5]:

bN
1 (x) =

∫ 2

x

dy

y
�b(y)F1N (x/y), (31)

�b(y) =
∫

d3pFd (p)(3 cos2 θ − 1)

(
1 + p cos θ

M
+ p2

4M2

)

× δ

(
y − p cos θ + E(p)

M

)
, (32)

F (p) ≡ − 3

4π
√

2
sin α cos αus(p)ud (p) + 3

16π
sin2 αu2

d (p),

(33)

where M is the nucleon mass, E(p) =
√

p2 + M2, and us,ud

are the s and d state components of the deuteron wave function.
The angle θ is the polar angle for the vector p. Integration over
x and repeating the above manipulations leads to the result∫ 1

0
dxbN

1 (x) =
∫ 2

0
dy�b(y)

∫ 1

0
duF1N (u). (34)

There is again a product of integrals, with the one involving
F1N being infinite for any of the published structure functions.
Close and Kumano state that the integral over y vanishes. If
that were correct the value of the sum rule would be zero times
infinity, or indefinite. However, while the integral over y is
very small, we can argue generally that it is nonzero.

First note that∫ 2

0
dy δ

(
y − (E + p cos θ )

M

)
= θ (2M − E − p cos θ ),

(35)

which does not vanish if p > 3/4M . This nonvanishing is
sufficient to show that value of the sum rule takes on the value
infinity because the integral over d3p would not vanish. It is
possible that the integral over d3p could vanish accidentally,
but if such a cancellation occurs for one given deuteron wave
function, it would not occur for another.

We explain this in more detail. The integral over cos θ
appearing in Eq. (32) can be evaluated in closed form with
the result∫ 2

0
dy �b(y)

= π

2
M3

∫ ∞

3
4

dl

l
Fd (p = lM)(4l4 + (98 − 29

√
l2 + 1)l2

− 172
√

l2 + 1 + 179). (36)

The expression within the parenthesis is negative for l =
p/M < 2.63 and the integrand varies as l3Fd (l) for large
values of l. The wave functions us,d (p) each fall at least as
rapidly as 1/p4 for large p, so the integrand falls at least as
fast as 1/l5 for large values of l. Thus the value of integral is
noninfinite and very small. This is because all known deuteron
wave functions are nearly vanishing for p/M > 3/4, and can
be regarded as vanishing for p/M > 2.63. The net result is that
the Close-Kumano sum rule evaluates to the product of a num-
ber of very small magnitude times infinity, which is infinite.

Another known mechanism is double scattering, b(2)
2 (x,Q2).

Here we use the result of [10], obtained after integrating over
k⊥ in their Eq. (20):

b
(2)
2 (x,Q2) = −3

(π )4

Q2

16
√

2α
Im i

∫
d2b

×
∫

dz u0(r)u2(r)
2z2 − b2

(z2 + b2)2

π

a
e− b2

4a

∑
V

eiz/λV

× M4
V(

M2
V + Q2

)2

dσ

dt

∣∣∣∣
γN→V N,t=0

, (37)

where

λV = 2ν

M2
V + Q2

= Q2

Mx
(
M2

V + Q2
) ≡ �V

x
. (38)

The x dependence enters through the dependence of λV on x.
To test the sum rule we integrate over x.

∫ 1

0
dxb

(2)
2 (x,Q2) = −3

(π )4

Q2

16
√

2α

∫
d2b

∫
dz u0(r)u2(r)

× 2z2 − b2

(z2 + b2)2

π

a
e− b2

4a

∑
V

�V

z
sin

z

�V

× M4
V(

M2
V + Q2

)2

dσ

dt

∣∣∣∣
γN→V N,t=0

. (39)

The three-dimensional spatial integral involving (2z2 − b2) =
3z2 − r2 would vanish if multiplied by a function that
depended only on r . However, the integrand contains the
exponential involving b2 and the sin involving z. Therefore the
integral does not vanish and the double scattering term violates
the sum rule. The nonvanishing of the sum rule integral for the
pionic and double scattering mechanisms is in agreement with
an earlier finding by [8].

Thus three published mechanisms that contribute to b1, and
all violate the sum rule of Close and Kumano. However, one
can see from Eq. (25) that∫

dxb
6q
1 (x) = 0. (40)

The integral over all values of x leads to a three-dimensional
integral involving 3 cos2 θ − 1 which must vanish. Moreover,
a glance at Fig. 4 leads to the expectation that the integral
of b

6q
1 (x) over the values of x displayed vanishes. Indeed,

numerical integration leads to a zero within one part in 108.
Furthermore, the model of [1] involving massless relativistic
quarks with j = 3/2 moving in a central potential also satisfies
the sum rule for the same reasons.

Given the different possible values that the integral of b1

may take, it seems reasonable to re-examine the derivation
and meaning of the sum rule of Eq. (28). The key equations of
Ref. [34] are their Eqs. (15,16):

�H,H = 〈p,H |J0(0)|p,H 〉, (41)

1

2
(�0,0 − �1,1) =

∑
i

ei

∫
dxδqA

i,v(x), (42)
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where the sum is over quarks of flavor i and charges ei of a
hadron of z-projection H . The term δqi is defined in Eq. (1),
and involves only valence quarks,which have nonzero integrals
over all x that are related to baryon number and charge.

That the sum rule does not hold for mechanisms in
which b1 is generated by nonvalence quark contributions,
such as the double-scattering and pion exchange mechanisms,
is consistent with the derivation based on valence quark
dominance. The sum rule does not hold for the contributions
of the d state nucleons, but those contributions to b1 are nearly
vanishing for nonzero values of x. The sum rule does hold for
the hidden-color six-quark configurations, in which a valence
quark contributes. Thus the sum rule is a useful guide to the
physics relevant for b1. An observation of its failure means that
sea effects are important. Measuring significant positive and
negative values of b1 at large x could signify the importance
of an exotic valence quark effect.

VII. SUMMARY

This paper contains an evaluation of the pion exchange
and six-quark, hidden-color contribution to the b1 structure
function of the deuteron. The pion-nucleon form factor is con-
strained phenomenologically to reduce a possible uncertainty.
There is some numerical sensitivity to using different pionic
structure functions. The pionic mechanism is sizable for small

values of x, and can reproduce Hermes data [3] for values of
x less than 0.2. A postulated model involving hidden-color
components of the deuteron is shown to complement the
effects of pion exchange in reproducing the Hermes data
for all measured values of x. This model is based on the
accuracy of the Hermes data for its largest value of x = 0.452,
and is chosen for simplicity. Many other models possible
and we welcome further work to improve such models.
Nevertheless, the availability of the Hermes data enables us
to make predictions for an upcoming JLab experiment [7].
The sum-rule of Close and Kumano, Eq. (28) is shown to
be violated for the three previously published mechanisms
that contribute to b1. However, the sum rule holds when the
mechanism involves valence quarks, such as in the present
hidden color model. This means that such contributions (if
nonzero) must yield negative and positive contributions to
b1. Finding such an up-down pattern is an interesting and
significant problem for experimentalists. A clear observation
of such a pattern would provide significant evidence for the
existence of hidden-color components of the deuteron.
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