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Influence of multiphonon excitations and transfer on the fusion of Ca+Zr
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Fusion data for 48Ca + 90,96Zr are analyzed by coupled-channels calculations that are based on the M3Y +
repulsion, double-folding potential. By applying a previously determined nuclear density of 48Ca, the neutron
densities of the zirconium isotopes are adjusted to optimize the fit to the fusion data, whereas the proton densities
are determined by electron-scattering experiments. It is shown that the fusion data can be explained fairly well
by including couplings to one- and two-phonon excitations of the reacting nuclei and to one- and two-nucleon
transfer reactions but there is also some sensitivity to multiphonon excitations. The neutron skin thicknesses
extracted for the two zirconium isotopes are consistent with antiproton measurements. The densities of the
zirconium isotopes are used together with the previously determined nuclear density of 40Ca to calculate the
M3Y + repulsion potentials and predict the fusion cross sections of 40Ca + 90,96Zr. The predicted cross sections
for 40Ca + 90Zr are in reasonable agreement with the data when the influence of multiphonon excitations and a
modest transfer is considered. The prediction of the 40Ca + 96Zr fusion cross section, on the other hand, is poor
and underpredicts the data by 30% to 40%. Although couplings to transfer channels with positive Q values were
expected to play an important role, they are not able to explain the data, primarily because the predicted Coulomb
barrier is about 1.5 MeV too high. Possible reasons for this failure are discussed.
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I. INTRODUCTION

Heavy-ion fusion reactions have been studied extensively
over the past two decades. One of the early goals was to
explain the barrier distributions that have been extracted from
measurements [1]. There is another interesting and somewhat
related question: What is the influence of transfer? This issue
was first raised by Beckerman et al. [2], who observed a large
enhancement in the subbarrier fusion of 58Ni + 64Ni compared
to an interpolation between the fusion cross sections for the two
symmetric systems, 58Ni + 58Ni and 64Ni + 64Ni. A similar
observation was made in the fusion of 40Ca + 48Ca [3], which
is strongly enhanced at subbarrier energies and suppressed
at high energies compared to the expectation based on the
fusion data for the two symmetric systems, 48Ca + 48Ca [4]
and 40Ca + 40Ca [5].

It was realized early on that the influence of transfer on
fusion can be large when the effective Q value for transfer
is large and positive [6], as is the case for 58Ni + 64Ni
and 40Ca + 48Ca. Couplings to transfer channels with large
negative Q values, on the other hand, are expected to have a
much smaller effect. The coupling to such reaction channels
results in an energy shift of the calculated cross section, owing
to an adiabatic renormalization of the ion-ion potential [7].
However, it can be difficult to disentangle this effect from
uncertainties in the ion-ion potential and the effect is therefore
often ignored.

A more recent observation is that fusion data are often
hindered at extreme subbarrier energies [8] when compared
to coupled-channels calculations that use the standard or
empirical Woods-Saxon potential which has been extracted
from elastic scattering data [9]. Another observation is that the
data are often suppressed at energies far above the Coulomb
barrier when compared to calculations that use the same

potential [10]. Both phenomena and ways to explain them were
discussed in a recent review of heavy-ion fusion reactions [11].

Excellent examples on all of the above phenomena are
observed in the data for the fusion of 40Ca with 90,96Zr [12] and
48Ca with 90,96Zr [13]. The fusion data for 40Ca + 96Zr [12]
were recently supplemented with new measurements [14] that
went down to a lowest cross section of 2.4 ± 1.7 μb. The
data for this system are particularly interesting because they
are strongly enhanced at subbarrier energies compared with
the data of the other Ca + Zr systems. Moreover, they do not
show any sign of a fusion hindrance at the lowest energies.
These features are ascribed to the influence of couplings to
transfer channels, which is expected to be strong because the
effective Q values for one- and two-nucleon transfer are all
positive. The influence of transfer on the fusion of 48Ca + 96Zr,
on the other hand, is expected to be small because all of the
effective Q values for transfer are large and negative.

In view of the complexity of the Ca + Zr fusion data, it
is of great interest to perform a systematic coupled-channels
calculations analysis of the fusion data for the four systems.
The basic calculations presented here include couplings to
one- and two-phonon excitations, as well as mutual excitations
of the low-lying surface modes in the reacting nuclei. More
complex calculations that include couplings of up to three-
phonon excitations and to one- and two-nucleon transfer
channels are also performed. The motivation is to explore their
influence on fusion and try to isolate the influence of transfer
from other reaction channels.

The simplest case of the four Ca + Zr systems mentioned
above is possibly the fusion of 48Ca + 96Zr, primarily because
the effective Q values for one- and two-nucleon transfer are
all negative, and the influence of transfer is therefore expected
to be weak. The fusion data for this system have already been
explained fairly well by coupled-channels calculations [15]
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that used the M3Y + repulsion (M3Y + rep) potential and
included couplings to one- and two-phonon excitations of the
low-lying surface modes. The potential was calculated using
the double-folding technique [16], which is also used in this
work.

The nuclear densities of the two calcium isotopes that are
used were determined previously in Refs. [5,17] by analyzing
the fusion data for 40Ca + 40Ca [5] and 48Ca + 48Ca [17].
The nuclear density parameters of the two Zr isotopes are
determined by analyzing the data for the 48Ca-induced fusion
reactions with 90Zr and 96Zr that were measured by Stefanini
et al. [13]. Having determined these parameters, one can then
predict the ion-ion potentials and the cross sections for the
fusion of 40Ca with 90Zr and 96Zr. The quality of the predictions
is tested by comparing to the data of Timmers et al. [12] and
Stefanini et al. [14].

The basic ingredients of the coupled-channels technique
are summarized in Sec. II. The analysis of the data for the
48Ca-induced fusion with 90Zr and 96Zr is presented in Sec. III.
The predicted cross sections for the fusion of 40Ca with the
two zirconium isotopes are compared to the data in Sec. IV,
and Sec. V contains the conclusions.

II. COUPLED-CHANNELS CALCULATIONS

The coupled-channels calculations that are presented are
similar to those that were performed, for example, in the
analysis of the fusion data for the calcium isotopes [5,17] and
for 48Ca + 96Zr [15]. The main ingredients that are relevant
to the discussion here are summarized below. The radii of the
reacting nuclei are expressed as Ri = R

(0)
i + δRi , where

δRi = R
(0)
i

∑
nλμ

αinλμY ∗
λμ(r̂) (1)

is the nuclear surface distortion, αinλμ are the dynamic
deformation amplitudes, and r̂ is a unit vector along the line
between the centers of the reacting nuclei.

In this work the isocentrifugal approximation [18] is
adopted to reduce the number of coupled equations. This
approximation is equivalent to the rotating frame approxima-
tion [19,20] in which the z axis points along the direction of r̂ .
The spherical harmonics that appear in Eq. (1) can therefore
be replaced by Y ∗

λμ(r̂) = δμ,0
√

(2λ + 1)/(4π ). That implies
that the magnetic quantum numbers of the reacting nuclei
are conserved. Because the magnetic quantum numbers of
even-even nuclei are zero in the entrance channel, they will
remain zero throughout the reaction.

The off-diagonal matrix elements of the surface distortion
[Eq. (1)] that connect the ground state |0〉 to an excited state
|inλ0〉 in nucleus i, have the following form in the rotating
frame approximation (see Refs. [21,22]):

〈inλ0|δRi |0〉 = βinλR
(0)
i√

4π
. (2)

Here λ is the multipolarity of the excitation and βinλ is
the deformation parameter. There are actually two types
of deformation parameters, one associated with the nuclear

induced excitation, βN
nλ, and one with Coulomb excitation,

βC
nλ.

The nuclear induced excitations are generated in this work
by an expansion of the nuclear field up to second order in the
total nuclear surface distortion, δR = δR1 + δR2. The nuclear
interaction is therefore approximated by [21–23]

VN = U (r) − dU (r)

dr
δR + 1

2

d2U (r)

dr2
[(δR)2 − 〈0|(δR)2|0〉],

(3)

where U (r) is the ion-ion potential, which is the nuclear
interaction in the entrance channel. The expression (3) has been
constructed in such a way that the ground-state expectation
value 〈0|VN |0〉 is identical to the ion-ion potential U (r).
The off-diagonal matrix elements of the nuclear interaction
can be generated in the harmonic approximation from matrix
elements of the form given in Eq. (2).

The Coulomb excitation is usually described by an ex-
pansion of the Coulomb field up to first order in the
surface deformation, because it has been shown by Hagino
et al. [24] that higher-order corrections to the Coulomb field
can safely be ignored. The expression for the Coulomb field is
therefore [21,22]

VC = Z1Z2e
2

r
+ Z1Z2e

2

r

∑
inλ

3

2λ + 1

(
RC

i

r

)λ

×
∑

μ

αinλμY ∗
λμ(r̂), (4)

where RC
i = 1.20 A

1/3
i is the Coulomb radius of nucleus i.

Matrix elements of the Coulomb interaction (4) are determined
by matrix elements of the surface deformation [22],

〈inλ|αinλμ|0〉 = βC
inλ√

2λ + 1
, (5)

which are here expressed in terms of the Coulomb deformation
parameters βC

nλ. These parameters can be obtained from the
so-called reduced transition probability B(Eλ) that can be
found, for example, in Refs. [25,26]. The relation between the
two quantities is [22]

B(Eλ,0 → nλ) =
(

3ZeβC
nλ Rλ

4π

)2

. (6)

The nuclear deformation parameter βN
nλ is often assumed to

be identical to the Coulomb deformation parameter simply
because other information is not available. However, the
nuclear deformation parameters have in some cases been
determined by analyzing the angular distributions for inelastic
scattering.

Fusion data of lighter and medium heavy systems can
often be explained fairly well by coupled-channels calculations
that are based on the second-order nuclear (3) and the
first-order Coulomb (4) interactions and include up to two-
phonon excitations. This model is also the starting point
of the calculations performed in this work. However, it is
necessary to consider higher-order couplings and include
higher multiphonon excitations if one wants to explain the
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fusion data of heavy and soft systems (see Refs. [23,24]). The
influence of up to three-phonon excitations will therefore be
explored but the expansion of the nuclear interaction [Eq. (3)]
will still be truncated at the second-order level.

The fusion cross section is primarily determined by the
ingoing flux obtained from the ingoing-wave boundary condi-
tions that are imposed at the minimum of the pocket in the en-
trance channel potential. This definition is supplemented with
the absorption in a weak and short-ranged imaginary potential,

W (r) = −W0

1 + exp[(r − Rw)/aw]
, (7)

where Rw is the position of the pocket in the entrance channel
potential. The diffuseness aw is set to 0.2 fm, whereas the
strength W0 is set to either 2 or 5 MeV, as explained in the de-
scription of the calculations. The strength of the short-ranged
imaginary potential is not a serious issue when a standard
Woods-Saxon potential is used because the calculated cross
sections are relatively insensitive to the value of W0. It is a more
delicate issue when the shallow M3Y + rep potential is used.

A. The ion-ion potential

The coupled-channels calculations are based on the M3Y +
rep potential, the calculation of which is described in Ref. [16].
The M3Y potential alone, UM3Y, is calculated using the double-
folding expression,

UM3Y(r) =
∫

dr1

∫
dr2 ρ1(r1) ρ2(r2) vM3Y(r + r2 − r1), (8)

where ρi(r) are the nuclear densities of the reacting nuclei, and
vM3Y(r) is the effective M3Y (direct + exchange) interaction.
The densities are parametrized in terms of the symmetrized
Fermi function introduced in Ref. [27] with a fixed diffuseness
and an adjustable radius.

The M3Y potential UM3Y is extremely deep for overlapping
nuclei and it produces a pocket in the entrance channel
potential that is deeper than the ground-state energy of the
compound nucleus. This unphysical condition is repaired by
introducing a repulsive potential. The repulsive part Urep of the
M3Y + rep potential [16], UM3Y + Urep, is calculated from an
expression that is similar to Eq. (8),

Urep(r) =
∫

dr1

∫
dr2 ρ̂1(r1) ρ̂2(r2) vrep(r + r2 − r1). (9)

Here the effective interaction vrep is assumed to be a simple
contact interaction,

vrep(r) = Vrepδ(r). (10)

The nuclear densities ρ̂i(r) that are used to calculate the
repulsive potential [Eq. (9)] are assumed to have the same
radii as those that are used to calculate the M3Y potential,
UM3Y, but the diffuseness ar is different and is treated as an
adjustable parameter [16].

The strength of the repulsive interaction Vrep is calibrated
(once the radii and value of ar have been chosen) to produce
a nuclear incompressibility K of the compound nucleus that
is consistent with the values tabulated in the work of Myers
and Świa̧tecki [28]. The procedure is explained in detail in

TABLE I. Parameters of the densities in 40,48Ca and 90,96Zr: the
diffuseness ar associated with the repulsion [Eq. (9)], the radius
R, the diffuseness a, and, in the last column, the rms radius. The
matter density parameters for the calcium isotopes were determined
previously [5,17]. The second column shows the fusion reaction
that was used to determine the parameters. The parameters for the
proton (p) densities in 90Zr and 96Zr reproduce the point-proton
rms radii, 〈r2〉pp = 4.198 and 4.281 fm, respectively, extracted from
the measured charge radii [34]. The parameters for the neutron (n)
densities in 90Zr and 96Zr are from Tables IV and V.

Nucleus Reaction ar (fm) R (fm) a (fm) 〈r2〉1/2 (fm)

40Ca 40Ca + 40Ca [5] 0.42 3.47 0.56 3.400
48Ca 48Ca + 48Ca [17] 0.43 3.798 0.54 3.562
90Zr (p) 4.72 0.56 4.207
90Zr (n) 48Ca + 90Zr Ch-15 0.40 4.925 0.56 4.346
90Zr (n) 48Ca + 90Zr Ch-45 0.39 4.835 0.56 4.285
96Zr (p) 4.86 0.55 4.284
96Zr (n) 48Ca + 96Zr Ch-15 0.395 5.20 0.55 4.517
96Zr (n) 48Ca + 96Zr Ch-72 0.395 5.10 0.55 4.448

Ref. [16]. There are therefore two adjustable parameters for
each of the reacting nuclei, namely, the radius of the density
and the diffuseness associated with the repulsive part of
the interaction. While the height of the Coulomb barrier is
primarily determined by the radius parameter, the diffuseness
parameter ar controls the thickness of the barrier and the
depth of the pocket in the entrance channel potential. Both
parameters are adjusted to optimize the fit to the fusion data.
This scheme was used in the analysis of the fusion data for the
two symmetric systems, 40Ca + 40Ca [5] and 48Ca + 48Ca [17],
and the parameters of the densities that were obtained are
shown in Table I.

By adopting the density of 48Ca that was obtained in a
previous work [17], one can now analyze the 48Ca + 90,96Zr
fusion data and determine the density parameters of the two
zirconium nuclei. Actually, because the point-proton densities
are fairly well known from electron scattering experiments,
it is better to adopt these densities and instead calibrate the
point-neutron densities to provide an optimum fit to the fusion
data. The parameters that have been obtained are shown in
Table I. The results suggest that both isotopes have a neutron
skin, which is defined as the difference between the rms radii
if the point-neutron and point-proton densities,

δrnp = 〈r2〉1/2
n − 〈r2〉1/2

p . (11)

As a consistency check of the analysis, one can compare
the neutron skin thickness extracted from the fusion data
to the values that have been obtained in other experiments.
Thus, if the extracted neutron skin is too thick, that would
indicate that some of the couplings were too weak or that
some important reaction channels were missing in the coupled-
channels calculations. However, if the extracted neutron skin
is too thin, that would indicate that the coupling strengths to
certain reaction channels were too strong.

We have chosen in this work to compare the extracted
neutron skin thickness to the values that have been obtained
in antiproton experiments [29]. One reason is that systematic
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TABLE II. Adopted structure of the excited states in 40Ca [5,35],
48Ca [17,35], and 90,96Zr [25,26]. Note the 3− and 5− excitations in
90Zr are combined into one effective 3− state.

Nucleus λπ Ex (MeV) B(Eλ) (W.u.) βC
λ σC

λ (fm) σN
λ (fm)

40Ca 2+ 3.904 2.26(14) 0.119 0.138 0.125
3− 3.737 27(4) 0.402 0.465 0.315
5− 4.491 16 0.297 0.344 0.175

48Ca 2+ 3.832 1.71(9) 0.102 0.126 0.190
3− 4.507 5.0(8) 0.203 0.250 0.190

Ignore 5− 5.146 0.3 0.040 0.049 0.038
90Zr 2+ 2.186 5.37(20) 0.092 0.140 0.140

5− 2.319 8.7(4) 0.108 0.164 0.164
Ref. [26] 3− 2.748 28.9(15) 0.210 0.319 0.319
Effective 3− 2.658 0.236 0.358 0.358
96Zr 2+ 1.751 4(3) 0.079 0.123 0.123

3− 1.897 57(4) 0.295 0.457 0.457

results have been obtained with this method for a wide range
of nuclei. Another reason is that the uncertainties of this
method are not unreasonable in comparison to other methods.
A better value could possibly be obtained by measuring
the parity-violating asymmetry in the elastic scattering of
polarized electrons but that has not yet been achieved [30].

The values of the neutron skin thickness obtained with
different methods are compared in Fig. 7 of Ref. [31]
for a 208Pb target. The figure shows that the antiproton
experiment [29] (δnp = 0.15 ± 0.02 fm) is consistent with a
measurement of the dipole polarizability obtained in inelastic
proton scattering [31] (δrnp = 0.165 ± 0.026 fm). The elastic
proton scattering data give slightly larger values of the neutron
skin thickness, but a previous analysis at 800 MeV [32] gave
a result (δrnp = 0.14 ± 0.04 fm) that is close to the value
of the antiproton experiment. Thus, it appears that proton
and antiproton experiments are in fairly good agreement for
208Pb, and a similar result (δnp = 0.16 ± 0.04 fm) has also
been obtained in (3He,t) charge-exchange reactions [33]. The
parity-violating asymmetry experiment [30], however, gave a
larger and more uncertain value, δrnp = 0.33+0.16

−0.18 fm.

B. Nuclear structure input

The deformation parameter for Coulomb and nuclear
induced excitations, βC

λ and βN
λ , respectively, are not always

identical, as discussed in Sec. II. An example is the excitation
of the calcium isotopes [35], where an analysis of the
16O + 40,48Ca elastic and inelastic scattering data gave nuclear
deformation parameters that were significantly smaller than
the adopted values for Coulomb excitation. The two types of
deformation parameters are compared in Table II in terms of
the quantity

σλ = βλR√
4π

, (12)

which is just the matrix elements of the surface distortion,
Eq. (2). The nuclear deformation parameters for the two
zirconium isotopes are not known, so they are assumed to
be identical to the Coulomb deformation parameters.

The basic structure input to the calculations is summarized
in Table II. When excitations of multiphonon states are
considered, it is assumed that the couplings to these states
can be calculated in the harmonic oscillator model from the
values of βλ that describe the one-phonon excitation. It must be
emphasized that this approximation may not always be realistic
and the calculations that include multiphonon excitations may
therefore be uncertain.

The basic two-phonon calculation includes one- and two-
phonon excitations of the low-lying 2+ and 3− states in
projectile and target, as well as mutual excitations of these
states. That results in a total of 15 channels (including the
elastic) and is referred to as the Ch-15 calculation. The 5− state
in 48Ca is relatively weak and is ignored. The 5− excitation
in 90Zr is stronger but it is combined with the 3− excitation
in the same nucleus into one effective 3− channel. The basic
two-phonon calculation performed for the 48Ca-induced fusion
with 90Zr and 96Zr are therefore Ch-15 calculations and they
are reported in Sec. III.

The 5− excitation in 40Ca is relatively strong and it
is therefore included explicitly in the calculations of the
40Ca-induced fusion reactions with the zirconium isotopes.
However, the two-phonon excitations of the 2+ states in
projectile and target are relatively weak and they are therefore
ignored, and so is the two-phonon excitation of the 5−
state. The basic two-phonon calculation (that includes mutual
excitations) has 18 coupled channels, and the results of this
Ch-18 calculation are reported in Sec. IV.

The sensitivity to multiphonon excitations is investigated
by considering the effect of up to three-phonon excitations.
These calculations are not meant to be complete because the
number of channels can easily become very large. The detailed
calculations are described in Secs. III and IV.

C. Transfer reactions

The effective Q value for transfer reactions is defined in
terms of the true Q value [6],

Qeff = Q + 	VCB, (13)

where 	VCB is difference in the height of the Coulomb barrier
in the entrance and in the exit channel. The general experience
is that couplings to transfer reactions with positive effective
Q values can have a strong effect and enhance the subbarrier
fusion cross section [6], whereas the effect of transfer channels
with large negative Q values is weaker and leads to an adiabatic
renormalization of the ion-ion potential [7].

The effective Q values for the most favorable one- and
two-nucleon transfer reactions in Ca + Zr collisions are shown
in Table III. They are all negative for 48Ca + 96Zr and couplings
to transfer channels were ignored in the previous work [15],
but they are considered in this work. The effective Q values for
some of the other isotope combinations are positive and their
influence on fusion will therefore be considered. The effective
Q values for pair transfer are particularly large and positive
in 40Ca + 96Zr collisions and the influence of pair transfer is
expected to play an important role in the fusion of this system.

The influence of transfer reactions is described by the model
introduced in Ref. [36]. The model assumes that excitations
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TABLE III. Effective Q values (in MeV) for the most favorable
one-nucleon and two-nucleon transfer reactions in 40Ca + 90,96Zr and
48Ca + 90,96Zr collisions and the adopted strength σ2p (in fm) of the
pair transfer.

System Q1n Q2n Q1p Q2p σ2p

48Ca + 96Zr − 2.64 − 2.67 − 4.07 − 3.49 0.05
48Ca + 90Zr − 2.83 − 1.55 − 0.92 +2.22 0.15
40Ca + 90Zr − 3.50 − 1.25 − 0.73 +3.05 0.035
40Ca + 96Zr +0.61 +5.73 +1.55 +7.63 0.50

and transfer are independent degrees of freedom. The two-
nucleon transfer is treated as both a direct and a successive
process. The direct two-nucleon (or pair) transfer is described
by the monopole form factor [37],

F2p = −σ2p

dU

dr
. (14)

The parameters of the one-nucleon transfer channels are
specified later on for each of the four systems. It is unfortu-
nately not feasible to consider all transfer channels. The choice
of the transfer mode considered, either proton or neutron,
is therefore made according to which transfer mode has the
larger Q value for pair transfer. The strength of the pair
transfer, σ2p, is adjusted in each case to optimize the fit of
the calculated cross section to the fusion data. This empirical
approach is adopted here because the pair transfer strength is
not always known. The approach could be misleading because
the adjusted strength could very well simulate the effect of
couplings to other reaction channels that are not included
explicitly in the calculation. However, if the cross sections for
one- and two-nucleon transfer were known experimentally, one
could calibrate the strengths of the transfer couplings so that
the transfer data were reproduced as it was done in Ref. [36].

The influence on fusion of a particular reaction channel
is primarily determined by the Q value of the reaction
and by the strength of the coupling at the Coulomb barrier
according to the constant coupling model of Dasso et al. [38].
The influence of the direct two-nucleon transfer is therefore
expected to be stronger than the influence of one-nucleon
transfer because the pair-transfer form factor [Eq. (14)] is short
ranged and relatively large at the Coulomb barrier, whereas
the one-nucleon transfer form factor has a longer range and
is relatively weak at the location of the Coulomb barrier. The
cross section for one-nucleon transfer may very well be larger
than the cross section for the two-nucleon transfer but that
does not necessarily imply that the one-nucleon transfer has a
large impact on fusion.

The couplings to one- and two-nucleon transfer are included
in the coupled-channels calculations, as described in the model
of Ref. [36]. The model assumes, as mentioned earlier, that
excitations and transfer are independent degrees of freedom.
Thus, if there are 15 elastic and inelastic channels in the
entrance channel mass partition, then the number is 30
channels (Ch-30) when one-nucleon transfer is included and
45 channels (Ch-45) when both one- and two-nucleon transfer
are considered.

III. ANALYSIS OF 48Ca-INDUCED FUSION

The 48Ca + 90,96Zr fusion data [13] are analyzed by
coupled-channels calculations that use the M3Y + rep,
double-folding potential. The nuclear density of 48Ca was
determined previously [17] by analyzing the 48Ca + 48Ca
fusion data [4] and it is used here to determine the densities
of the two zirconium isotopes that provide the best fit to the
48Ca + 90,96Zr fusion data. The repulsive part of the M3Y +
rep interaction is calibrated to produce the incompressibilities
K = 227.9 and 223.7 MeV, respectively, that are predicted
for the two compound nuclei, 138Nd and 144Nd [28]. The
overall systematic uncertainty of the experiment [13] is 14%,
whereas the relative errors are mainly determined by statistics.
A systematic error of 5% is therefore adopted in the χ2 analysis
of the data.

The data are also analyzed by adopting the standard Woods-
Saxon parametrization of the ion-ion potential [9]. The best fit
to the data is achieved by adjusting the radius of the Woods-
Saxon well. Some of the results are reported here because
they provide useful information when compared to the results
obtained with the M3Y + rep potential. Thus, a large value
of the χ2/N obtained with the Woods-Saxon potential may
indicate a hindrance of the fusion data at very low energies, as
discussed by Jiang et al. [8], or a suppression of the fusion data
at high energies, as discussed by Newton et al. [10]. The χ2/N
is expected to be smaller when the M3Y + rep potential is
used because this potential usually resolves the discrepancies
with the data at both very low and very high energies [16].
However, the situation is not always so straightforward because
there are other issues that can play a role, for example,
the influence of couplings to multiphonon excitations and
transfer reactions.

The results of the analysis of the fusion data that is based on
the M3Y + rep potential and includes couplings to one- and
two-phonon excitations are shown in Fig. 1. The calculations
have 15 channels and are denoted Ch-15 in the figure. The
neutron densities of the two zirconium isotopes were adjusted
as described previously to optimize the fit to the data. The
two parameters of the neutron density that were obtained,
namely, the radius Rn and the diffuseness ar associated with
the repulsion, are shown in Tables IV and V. Also shown
is the height VCB of the Coulomb barrier in the entrance
channel, as well as the quality of fit to the data in terms
of the χ2/N . The fits to the data in Ch-15 calculations
are not perfect and it is discussed below how they can be
improved by considering the effect of transfer and multiphonon
excitations.

A. 48Ca + 90Zr

The fit to the 48Ca + 90Zr fusion data shown in Fig. 1 is
poor. It is seen that the Ch-15 calculation underpredicts the
data at subbarrier energies [see Fig. 1(a)] and exceeds them
at high energies [see Fig. 1(b)]. It turns out that a previous
analysis that used a standard Woods-Saxon potential with
diffuseness a = 0.68 fm gave essentially the same result [13].
It is shown below that it is possible to achieve a much better
fit by including couplings to one- and two-proton transfer
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FIG. 1. (Color online) The measured cross sections for the fusion of 48Ca + 90,96Zr [13] are compared to Ch-15 calculations that are based
on the M3Y + rep potential. The Ch-1 no-coupling calculations are also shown. The cross sections are shown in a logarithmic (a) and a linear
plot (b).

reactions. The calculation is denoted Ch-45 and contains 45
coupled channels, as explained in Sec. II C.

Effects of transfer. The best fit to the data in Ch-45
calculations is achieved by adjusting the strength σ2p of
the two-proton transfer [Eq. (14)], as well as the radius of
the neutron density in 90Zr. The effective Q value for the
one-proton transfer, from fully occupied p1/2 orbit in 90Zr
to the unoccupied f7/2 proton orbit outside 48Ca, is set to
−0.92 MeV (see Table III). The effective Q value for two-
proton transfer is +2.22 MeV but the value Q2p = +1 MeV
is adopted here because it provides the best fit to the data. The
neutron transfer is ignored because the Q values are negative
so the influence on fusion is expected to be smaller.

The adjusted Ch-45 calculations are in good agreement with
the data, with a χ2/N = 1.06 for the standard Woods-Saxon
potential and χ2/N = 0.69 for the M3Y + rep potential (see
Table IV). The two calculations are compared to the data in
Fig. 2. The calculation with the Woods-Saxon potential (WS
Ch-45) exceeds the high-energy data. This is in qualitative
agreement with the systematics found by Newton et al. [10].
The calculation based on the M3Y + rep potential resolves the
discrepancy at high energies and provides an almost perfect fit.

TABLE IV. Best fits to the 48Ca + 90Zr fusion data of Ref. [13].
The χ 2/N (last column) includes a 5% systematic error. The first
column shows the type of calculation. The second column indicates
the type of ion-ion potential, either the Woods-Saxon (WS) potential
or the diffuseness ar of the 90Zr density associated with the repulsive
part of the M3Y + rep potential. The third column is the radius, either
of the WS potential or the neutron density in 90Zr. The radius of the
proton density was set to 4.72 fm. The height of the Coulomb barrier
is listed in the fourth column.

Calculation ar (fm) R (fm) VCB (MeV) χ 2/N

Ch-15 WS 9.539 96.89 3.59
Ch-45 WS 9.527 97.00 1.06
Ch-15 0.40 4.925 97.02 3.12
Ch-23 0.40 4.925 97.02 2.30
Ch-45 0.39 4.835 97.20 0.69
Ch-69 0.39 4.835 97.20 0.69

The adjusted pair-transfer strength is σ2p = 0.15 fm in both
calculations and it produces a pair-transfer cross section of the
order of 80 mb at 110 MeV.

The influence of transfer on the fusion of 48Ca + 90Zr is
relatively modest at high energies, where it reduces the cross
section slightly and brings it into better agreement with the
data. The effect is much larger at low energies. This can be seen
in Fig. 3, where the results of Ch-15 and Ch-45 calculations
are compared to the data. Both calculations apply the M3Y +
rep potential that gives the best fit in Ch-45 calculations (see
Table IV). The fit of the Ch-15 calculation is therefore not as
good as obtained in the Ch-15 calculation shown in Fig. 1. It
is shown here so one can see directly the effect of transfer by
comparing the Ch-15 and Ch-45 calculations.

Effects of multiphonon excitations. To limit the number
of channels in calculations that include up to three-phonon
excitations, we first exclude the two-phonon excitations of
the 2+ states in projectile and target because the excitation
strength is relatively weak (see Table II, where β2 ≈ 0.1). The
number of channels in the basic two-phonon calculation is
therefore reduced from 15 to 13 channels. This calculation
is supplemented with the simultaneous excitation of three
different one-phonon states and with the combined excitation

TABLE V. Best fits to the 48Ca + 96Zr fusion data of Ref. [13].
The χ 2/N (last column) includes a 5% systematic error. The first
column shows the type of calculation. The second column indicates
the type of ion-ion potential, either the Woods-Saxon (WS) or the
diffuseness ar of the 96Zr density associated with the repulsive part
of the M3Y + rep potential. The third column is the radius, either
of the WS potential or the neutron density in 96Zr. The radius of the
proton density was set to 4.86 fm. The height of the Coulomb barrier
is listed in the fourth column.

Calculation ar (fm) R (fm) VCB (MeV) χ 2/N

Ch-15 WS 9.689 95.40 1.53
Ch-24 WS 9.671 95.56 3.43
Ch-15 0.395 5.20 95.54 1.49
Ch-23 0.395 5.20 95.54 2.16
Ch-24 0.395 5.10 95.86 2.22
Ch-72 0.395 5.10 95.86 0.76
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FIG. 2. (Color online) Linear plot of cross sections for the fusion
of 48Ca + 90Zr [13]. The best Ch-45 calculations for the Woods-Saxon
(WS) and the M3Y + rep potentials are shown. The no-coupling
calculation Ch-1 based on the M3Y + rep potential is also shown.
All calculations use a short-ranged absorption with W0 = 2 MeV.

of a one-phonon and a two-phonon state. The explicit three-
phonon excitation of any particular one-phonon state is
ignored. The total number of channels in the 48Ca-induced
reactions is therefore 23 and the calculation is referred to as
the Ch-23 three-phonon calculation.

The effect of couplings to three-phonon excitations turns
out to be relatively modest. The best Ch-23 calculation has
a χ2/N of 2.3 in contrast to the much smaller value of
0.69 obtained in the Ch-45 calculation discussed above that
included the effect of transfer and two-phonon excitations.
This conclusion is confirmed by Ch-69 calculations that
include the combined effect of transfer and up to three-phonon
excitations because the χ2/N is the same as obtained in Ch-45
calculations (see Table IV).

Although the couplings to three-phonon excitations do
not play any major role in the overall χ2 fit to the fusion
data, their influence can be seen in the barrier distribution
for fusion, which is defined as the second derivative of the
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FIG. 3. (Color online) Cross sections for the fusion of 48Ca +
90Zr [13] are compared to Ch-15 and Ch-45 calculations that are
based on the M3Y + rep potential that gives the best fit in Ch-45
calculations. The result of the no-coupling limit (Ch-1) and the
predicted 2N cross sections are also shown.

energy-weighted cross section [39],

B(E) = d2(Eσ )

dE2
. (15)

The distribution is calculated using the finite difference method
with an energy step of 	E = 2 MeV. The distributions one
obtains for the fusion of 48Ca + 90Zr are illustrated in Fig. 4(a).
The Ch-15 calculation is seen to consist of two isolated peaks,
whereas the measured distribution is broad and asymmetric.
The Ch-23 calculation shows a slight improvement and so does
the Ch-69 calculation but the distribution is still dominated by
two peaks.

The discrepancy with the measured barrier distribution
suggests that some important reaction mechanism is still
missing, or maybe the reaction model used here, which
assumes that excitation and transfer are independent degrees
of freedom, is unrealistic. Another possibility is that couplings
to a large number of (noncollective) excitation and transfer
channels, with a wide range of Q values, would smear
the calculated barrier distribution and bring it into better
agreement with the measurement. A similar hypothesis was
proposed by Yusa et al. [40], but it did not explain the data in
the case they studied.

The first derivative of the energy-weighted cross section
is shown in Fig. 4(b). By comparing the Ch-15 and Ch-23
calculations it is seen that the influence of multiphonon
excitations is weak, and by comparing the Ch-23 and Ch-69
calculations it is seen that the influence of transfer is relatively
modest at high energies.

As a final test of the convergence of the results obtained
in the analysis of the fusion data, it is useful to take a look at
the neutron densities that have been extracted. The parameters
of the assumed point-proton and the extracted point-neutron
densities of 90Zr are listed in Table I. From the associated rms
radii given in column 5 one can now determine the thickness of
the neutron skin, δrnp, defined in Eq. (11). The skin thickness
decreases as the number of channels increases, from δrnp =
0.14 fm in the Ch-15 calculation, to δrnp = 0.08 fm in the
Ch-45 calculation. The latter value is in surprisingly good
agreement with the antiproton experiment [29] that gave the
value δrnp = 0.09 ± 0.025 fm.

B. 48Ca + 96Zr

The Ch-15 fit to the 48Ca + 96Zr data shown in Fig. 1 looks
reasonable and has a χ2/N = 1.5. The calculation is essentially
the same as that published in Ref. [15]. There are some
discrepancies at high energies [see the linear plot in Fig. 1(b)],
where the data exceed the calculation. This is the opposite of
the systematics trend discussed by Newton et al. [10]. Ways
to eliminate the discrepancies are discussed below.

It is interesting that the χ2/N shown in Table V are
the same in the Ch-15 calculations that are based on the
Woods-Saxon and on the M3Y + rep potential, respectively.
This is misleading because the data are actually hindered at
low energies compared to calculations that use a standard
Woods-Saxon potential. This was already demonstrated in
Ref. [15]. One would therefore expect that the M3Y + rep
potential would provide the best description to the data.
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FIG. 4. (Color online) Barrier distributions (a) and the first derivative (b) of the energy-weighted cross sections for the fusion of 48Ca +
90Zr [13]. The calculations used the M3Y + rep potential with the radius Rn = 4.835 fm of the neutron density in 90Zr. The energy of the
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The main reason this is not the case is that the Ch-15
calculation, which uses the M3Y + rep potential and a weak,
short-ranged imaginary potential, underestimates the data at
high energies. This problem was solved in Ref. [15] by
applying a stronger short-ranged imaginary potential, which
should simulate the effect of couplings to channels that were
not included explicitly in the calculations. It would be more
satisfactory if one could explain the fusion data without
resorting to a strong imaginary potential. The influence of
couplings to multiphonon excitations and transfer reactions is
therefore investigated below.

Effects of multiphonon excitations. The influence of multi-
phonon excitations can be seen in the barrier distribution for
fusion. This was demonstrated in the original analysis [13],
where it was shown that some of the structures that appear
in the measured distribution can be explained by considering
multiphonon excitations of the low-lying 3− state in 96Zr. This
explanation was confirmed in Ref. [15].

The cleanest way to study the influence of multiphonon
excitations is to repeat the data analysis with an increasing
number of channels and plot the χ2/N as a function of the
radius Rn of the neutron density. The results of the analysis
are shown in Fig. 5. The calculations employed the fixed
value W0 = 5 MeV of the short-ranged imaginary potential,
and a fixed diffuseness of ar = 0.395 fm associated with the
repulsive part of the M3Y + rep potential. The latter value
gives the optimum fit to the data in the Ch-15 calculations
discussed above.

The χ2/N obtained in Ch-15 and Ch-23 calculations are
shown in Fig. 5. They are similar in magnitude and both
have a minimum near Rn = 5.20 fm. It is therefore concluded
that the three-phonon excitations that are included in Ch-23
calculations have a relatively modest influence on the fusion.
The Ch-24 calculations which, in addition to the states of
the Ch-23 calculation, include the three-phonon excitation of
the low-lying 3− state in 96Zr, have a minimum near Rn =
5.10 fm. That is a significant change in radius, from the 5.20
to 5.10 fm. It implies that the neutron skin thickness of 96Zr is
reduced from 0.23 fm in the Ch-15 calculation to 0.16 fm in the
Ch-72 calculation (see Table I). The latter result is consistent
with the neutron skin thickness δrnp = 0.12 ± 0.05 fm that
was obtained in the antiproton experiment [29].

Influence of transfer. Finally, the influence of transfer
channels is studied in Ch-72 calculations that are based on
the same excitation channels that were used in the Ch-24
calculations discussed above and include, in addition, the
one- and two-neutron transfer. The neutron transfer channels
are chosen here because they have the most favorable Q
values (see Table III). The one-neutron transfer, from the fully
occupied d5/2 orbit in 96Zr to the unoccupied p1/2 state in
48Ca, has the effective Q value Q1n = −2.64 MeV and the
two-neutron transfer has the Q value Q2n = −2.67 MeV. The
best fit to the data in Ch-72 calculations is achieved for a
modest pair-transfer strength of σ2p = 0.05 fm.

The χ2/N for Ch-72 calculations is shown in Fig. 5. It has
a minimum at the radius Rn = 5.10 fm, which gave the best
fit in the Ch-24 calculations discussed above and is consistent
with the measured neutron skin thickness of Ref. [29]. In other
words, the influence of transfer does not affect the radius of the
neutron density that is extracted from the analysis of the fusion
data. However, it improves the fit to the data by reducing the
χ2/N considerably.

The calculated cross sections, obtained with the radius
Rn = 5.1 fm of the neutron density in 96Zr, are compared
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FIG. 5. (Color online) The χ 2/N for the 48Ca + 96Zr fusion
data [13] obtained in Ch-15, Ch-23, Ch-24, and Ch-72 coupled-
channels calculations as function of the radius Rn of the neutron
density of 96Zr.
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FIG. 6. (Color online) Logarithmic (a) and linear plot (b) of the measured fusion cross sections for 48Ca + 96Zr [13] are compared to
coupled-channels calculations that are based on the M3Y + rep potential, obtained with a radius Rn = 5.1 fm of the neutron density in 96Zr.

to the data in Fig. 6(a). It is seen that it is the combined
effect of couplings to multiphonon excitations (in Ch-24
calculations) and one- and two-neutron transfer reactions (in
Ch-72 calculations) that provides the good agreement with
the data at low energies. At high energies, it is primarily the
effect of the multiphonon excitations in Ch-24 calculations
that brings the calculated cross section into good agreement
with the data. This is illustrated in Fig. 6(b) but it is difficult
to see because the Ch-24 calculation is covered by the Ch-72
calculation that in addition includes the effects of transfer. In
other words, the influence of transfer is small at high energies.

Derivatives of the cross section. At this point it is of interest
to compare the barrier distribution [Eq. (15)] extracted from
the experiment to some of the calculations discussed above.
The comparison is made in Fig. 7(a). It is seen that the
barrier distribution for the best Ch-15 calculation consists of
two strong peaks and a broader bump near 105 MeV. The
Ch-24 calculation has three major peaks that agree fairly well
with the structures that are observed in the measured barrier
distribution. Finally, the best Ch-72 calculation shows that the
influence of transfer is minor but it does improve the shape of
the distribution slightly in comparison to the measured barrier
distribution.

A good way to illustrate the behavior of the cross sections
at high energies is to plot the derivative of the energy-weighted
cross sections. The measured and calculated results are shown
in Fig. 7(b). The calculations were all performed with the
same M3Y + rep potential that provides the optimum fit to the
data (as discussed above) in Ch-24 and Ch-72 calculations
and is determined by the neutron density with the radius
Rn = 5.10 fm. It is seen that the Ch-15 calculation does a
poor job in reproducing the data, whereas the Ch-24 and
Ch-72 calculations give almost identical results and are both
in excellent agreement with the high-energy data.

It should be emphasized that there are uncertainties in
the choice of the nuclear structure input to multiphonon
excitations. For example, the multiphonon excitations are
described by the harmonic oscillator model but that may
not be a realistic assumption. It is also assumed that the βλ

values are the same for the Coulomb and nuclear induced
excitations of the zirconium isotopes but that is not necessarily
a valid assumption. However, the excellent agreement with the
fusion data that is achieved when the three-phonon octupole
excitation of 96Zr is included, and the consistency of the
extracted neutron density with the measured neutron skin, is
very encouraging. These findings will hopefully stimulate a
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search for such multiphonon excitations in nuclear structure
measurements.

IV. PREDICTIONS OF THE 40Ca-INDUCED FUSION

The nuclear density of 40Ca that was determined in a
previous analysis of 40Ca + 40Ca fusion data [5] can now be
combined with the densities of the two zirconium isotopes
to calculate the M3Y + rep potentials for 40Ca + 90,96Zr. The
repulsive part of the interaction is calibrated to produce the
incompressibilities K = 232.1 and 229.1 MeV, respectively,
that are predicted for the two compound nuclei, 130Nd and
136Nd [28].

The basic two-phonon calculation for the 40Ca-induced
fusion reactions has 18 channels as described in Sec. II B. The
three-phonon calculation for the fusion of 40Ca + 96Zr that is
built on the Ch-18 two-phonon calculation has 36 channels.
That number is reduced to 30 channels by eliminating the
states with an excitation energy larger than 10 MeV. A
similar Ch-30 calculation is constructed for 40Ca + 90Zr by
eliminating excitations larger than 10.5 MeV.

A. 40Ca + 90Zr

The cross sections one obtains for this system in the Ch-
18 coupled-channels calculations are shown by the (green)
dashed curve in Fig. 8. The calculation underpredicts the low-
energy data as illustrated in Fig. 8(a), and it is also too small
at high energies, as shown in Fig. 8(b). One way to reduce
the discrepancies with the data is to include couplings to one-
and two-proton transfer channels. The effective Q value for
one-proton transfer, from the d3/2 orbit in 40Ca to the empty
g9/2 orbit in 90Zr, is −0.73 MeV (see Table III). The effective
Q value for two-proton transfer is +3.05 MeV, but it is set
equal to +1 MeV in the calculations, as it was done in the
calculations for 48Ca + 90Zr, because that value provides the
best description of the fusion data. The strength of the pair-
transfer σ2p is adjusted to optimize the fit to the data.

Influence of transfer. The calculation with one- and two-
proton transfer that is built on the Ch-18 calculation has 54
channels and is shown by the solid curve in Fig. 8(a). The

optimum strength of the pair transfer is σ2p = 0.035 fm, which
produces a modest pair transfer cross section of 34 mb at
110 MeV. Although the transfer improves the fit to the data,
in particular at low energies, there are still some discrepancies
at high energies, where the data exceed the calculated cross
sections by 10%–20%.

Effects of multiphonon excitations. The result of the three-
phonon calculation Ch-30 is shown by the solid curve in
Fig. 8(b). The calculation is in slightly better agreement with
the data at high energy but the overall χ2/N is the same as
obtained in the Ch-18 calculation (see Table VI). One could
also include transfer channels in combination with the Ch-30
multiphonon excitation channels discussed above. However,
the resulting Ch-90 calculation does not improve the χ2/N
by much (see Table VI). The reason is that the couplings
to transfer channels enhance the fusion cross section at low
energy but it does not have much effect at high energy where
the discrepancy with the data is the largest.

TABLE VI. Analysis of the 40Ca + 90Zr fusion data [13]. The
χ 2/N (last column) includes a 7% systematic error. The type of
calculation is listed in the first column. The second column is the
adjusted radius of the WS potential, or the radius of the neutron
density in 90Zr obtained in the Ch-69, M3Y + rep calculation of
Table IV. The third and fourth columns show, respectively, the
minimum of the pocket and the height of the Coulomb barrier in
the entrance channel potential.

Calculation R (fm) Vmin (MeV) VCB (MeV) χ 2/N

WS Ch-18 9.312 78.91 99.49 2.60
WS Ch-30 9.302 79.08 99.58 3.92
Ws Ch-27 9.327 78.66 99.34 1.65
Ch-18 4.835 86.15 99.61 4.94
Ch-30 4.835 86.15 99.61 4.94
Ch-27 4.835 86.15 99.61 3.37
Ch-54 4.835 86.15 99.61 2.53
Ch-90 4.835 86.15 99.61 4.25
Ch-81 4.835 86.15 99.61 1.85
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It is surprising that multiphonon excitations apparently
do not improve the fit to the 40Ca + 90Zr fusion data. This
statement is based on the observation that the χ2/N is the same
in the Ch-18 and Ch-30 calculations. A possible explanation
for this result is that the effect of multiphonon excitations are
exaggerated in the Ch-30 calculation. Since the multiphonon
excitations of 90Zr were tested in Sec. II A and found to
be reasonable, one could instead question the multiphonon
excitations of 40Ca. The octupole excitation of 40Ca, for
example, is very strong but it is possible that the two-phonon
excitation of this state is not as collective as described by
the harmonic oscillator model. In fact, it turns out that one
can achieve a much better fit to the data by excluding the
two-phonon excitation of the 3− state in 40Ca. The basic
two-phonon calculation will then have 17 channels (Ch-17)
and the basic three-phonon calculations will now contain 27
channels (Ch-27). The calculation Ch-81 that is built on the
Ch-27 calculation and includes in addition couplings to the
one- and two-proton transfer channels, provides the best fit to
the data with a χ2/N = 1.85. The best fit is achieved with a
modest pair-transfer strength of σ2p = 0.035 fm.

Derivatives of the cross section. The influence of couplings
to multiphonon excitations and transfer channels on the barrier
distribution and the first derivative of the energy-weighted
cross sections is illustrated in Figs. 9(a) and 9(b), respectively.
It is seen that the influence of multiphonon excitations in Ch-27
calculations improves the agreement with the shape of the
measured barrier distribution in comparison to the Ch-18 two-
phonon calculation, but some discrepancies remain. It is also
seen that the influence of transfer, which improves the overall
χ2/N considerably in Ch-81 calculations, has only a minor
effect on the barrier distribution and on the first derivative of
the energy-weighted cross section.

The above discussion shows that the predicted ion-ion
potential for 40Ca + 90Zr is reasonable and provides a good
starting point for the analysis of the fusion data. Moreover,
the agreement of the Ch-81 calculation with the fusion data is
satisfactory in view of the uncertainties that exist in the nuclear
structure input to multiphonon excitations.

It should be pointed out that the fusion data for 40Ca +
90Zr do not follow the trend that is observed in the fusion of
other heavy-ion systems. For example, the high-energy data are
enhanced compared to calculations that use a standard Woods-
Saxon potential. This is illustrated in Fig. 8(b), where the
top curve is a Ch-30 calculation that used a standard Woods-
Saxon potential with an adjusted radius. It is seen that the data
exceed this calculation at high energies. This is opposite to the
systematics pointed out by Newton et al. [10], who showed
that most data sets are suppressed at high energies compared
to calculations that use a standard Woods-Saxon potential of
the form proposed in Ref. [9].

Other calculations that use a standard Woods-Saxon po-
tential were also performed. The radius of the potential was
adjusted in each case to optimize the fit to the data. It turns
out that the couplings to transfer channels do not improve the
fit to the data. The parameters of the best Ch-18, Ch-30, and
Ch-27 calculations are shown in Table VI, and it is seen that
the smallest χ2/N is achieved in the Ch-27 calculation. The fit
is essentially as good as obtained in the Ch-81 calculation that

used the M3Y + rep potential. The reason is that the smallest
measured cross section is about 1 mb so the expected fusion
hindrance at very low energies has not yet set in.

B. 40Ca + 96Zr

The fusion data for this system [12,14] were recently
analyzed by coupled-channels calculations that used a stan-
dard Woods-Saxon potential. The Ch-23 calculations that
were performed included one-, two-, and some three-phonon
excitations, and the Ch-69 calculations included in addition
the couplings to one- and two-neutron transfer channels. The
one-neutron transfer, from the fully occupied d5/2 orbit in
96Zr to the unoccupied f7/2 state in 40Ca, has an effective
Q value of +0.61 MeV (see Table III), and the effective Q
value for two-neutron transfer was set to +1 MeV with a
large pair-transfer strength of σ2p = 0.5 fm. The radius of the
Woods-Saxon well (R = 9.60 fm) was chosen to optimize the
fit to the data above 100 MeV (see Ref. [14] for details.)

Calculations similar to those performed in Ref. [14] are
repeated here with Ch-28 and Ch-84 calculations that use
the same Woods-Saxon potential. The choice of channels was
made because it is consistent with the best description of the
40Ca + 90Zr fusion data that was achieved in the previous
section with the Ch-27 and Ch-81 calculations. The only
difference is that the Ch-27 calculation is supplemented with
the three-phonon excitation of the soft octupole mode in 96Zr.
The results of the calculations are presented in Fig. 10, together
with the data of Timmers et al. [12] and the new data by
Stefanini et al. [14] that extend the previous measurement
down to 2.4 μb. It is seen that the Ch-84 calculation shown in
Fig. 10(b) provides an excellent fit to the data at high energies.
The result is similar to the Ch-69 calculation presented in
Ref. [14], and the χ2/N of the two calculations are essentially
the same (see Table VII).

It is interesting to study the sensitivity to the different
couplings in the high-energy behavior of the calculated
cross sections. The coupling to one-phonon excitations
(Ch-6) reduces the cross section compared to the no-coupling
calculation (Ch-1). The effect of multiphonon excitations in

TABLE VII. Analysis of the 40Ca + 96Zr fusion data [13]. The
χ 2/N in the (last column) includes a 7% systematic error. The type
of calculation is listed in the first column. The second column is the
adjusted radius of the WS potential, or the radius of neutron density
in 96Zr obtained in the Ch-72, M3Y + rep calculation of Table V.
The third and fourth columns show, respectively, the minimum of the
pocket and the height of the Coulomb barrier in the entrance channel
potential. The last two lines show the results of Ch-69 and Ch-84
calculations that use the pure M3Y potential, i.e., for Vrep = 0.

Calculation R (fm) Vmin (MeV) VCB (MeV) χ 2/N

WS Ch-69 9.599 73.62 96.62 4.0
WS Ch-84 9.599 73.62 96.62 4.1
Ch-69 5.10 87.5 98.13 22
Ch-84 5.10 87.5 98.13 23
Ch-69 Vrep = 0 5.10 − 311 97.20 5.3
Ch-84 Vrep = 0 5.10 − 311 97.20 6.0
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FIG. 9. (Color online) Barrier distributions (a) and first derivative (b) of the energy-weighted cross sections for the fusion of 40Ca + 90Zr.
The coupled-channels calculations use the predicted M3Y + rep potential. The large triangle in (a) indicates the energy of the Coulomb barrier.

the Ch-28 calculation is to enhance the calculated cross section
so it exceeds the data at high energies. Finally, the coupling to
transfer channels is so strong in the Ch-84 calculation that it
reduces the calculated cross section at high energy and brings
it into agreement with the data. In fact, this behavior was
utilized in Ref. [14] to calibrate the strength of the pair-transfer
coupling.

The Ch-84 calculation shown in Fig. 10(a) underpredicts
the data at the lowest energies. Although it is possible to
improve the fit to the low-energy data by increasing the strength
of the pair-transfer coupling, such an increase would cause
a reduction of the calculated cross section at high energies,
which would deteriorate to overall agreement with the data.

The most interesting question is now, how well does a Ch-84
calculation that is based on the predicted M3Y + rep potential
agree with the data? The result is shown in Fig. 11. It is seen that
the prediction of the data is poor, at both low and high energies.
The poor result at low energies [see Fig. 11(a)] is primarily
caused by the shallow pocket of the entrance channel potential
which has a minimum of 87.5 MeV, whereas the data extend
down to 84.2 MeV. The Ch-84 calculation has a threshold near
88 MeV, but it does extend to energies below the minimum

of the pocket. One reason is that fusion can still occur below
the minimum of the pocket through the pair-transfer channel,
which has a positive Q value.

The failure at high energies of the calculation that is based
on the predicted M3Y + rep potential is illustrated in the linear
plot of Fig. 11(b). The Ch-6 calculation is far below the data but
the effect of multiphonon excitations in the Ch-28 calculation
is to enhance the calculated cross section. However, the Ch-
28 calculation shown in Fig. 11(b) is 10%–20% below the
data, and this discrepancy increases to 30%–50% in the Ch-
84 calculation where the effect of transfer is included. It is
therefore not possible to improve the agreement with data by
increasing the strength of the pair transfer. A larger transfer
strength may improve the calculation at energies below the
Coulomb barrier but it will reduce the calculated cross section
even further below the data at high energies.

The results of the data analysis are shown in Table VII. It
is seen that the calculations that use the predicted M3Y + rep
potential have a χ2/N that is much larger than obtained with
a standard Woods-Saxon potential. The main reasons are that
the pocket in the entrance channel potential for the M3Y + rep
interaction is too shallow (Vmin = 87.5 MeV) and the Coulomb
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Table VII).
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barrier is too high (VCBV = 98.13 MeV) compared to the
entrance channel potential of the adjusted Woods-Saxon
potential. These features are illustrated in Fig. 12, where the
entrance channel potentials of the different nuclear interactions
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FIG. 12. (Color online) Entrance channel potentials for 40Ca +
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are compared. Another observation in this figure is that the
entrance channel potential for the pure M3Y interaction is very
deep, even deeper than the energy of the compound nucleus
136Nd, but the barrier height is slightly larger than obtained
with the Woods-Saxon potential.

The systematics of the height of the Coulomb barrier for
the four Ca + Zr systems and for the two types of potentials
considered in this work is illustrated in Fig. 13. It is seen that
the barrier heights for the Woods-Saxon and the M3Y + rep
potentials are almost identical for three of the systems, but
they are different for 40Ca + 96Zr. The M3Y + rep interaction
produces a Coulomb barrier that is about 1.5 MeV higher
than obtained with the Woods-Saxon potential. The height
obtained with the pure M3Y interaction, however, is only
0.6 MeV larger than the value obtained with the Woods-Saxon
potential. This result indicates that one would achieve a better
agreement with the data by simply ignoring the repulsive part
of the double-folding potential. This expectation is confirmed
by detailed calculations. The last two lines of Table VII show
the results one obtains for the pure M3Y interaction, i.e., for
Vrep = 0. It is seen that the χ2/N is much better than obtained
with the M3Y + rep potential.

The conclusion that the fusion hindrance phenomenon does
not occur in the fusion of 40Ca + 96Zr is supported by the
fact that the adjusted Woods-Saxon, and even the pure M3Y
potential, provides a better description of the data than the
M3Y + rep potentia1 does. The absence of a hindrance at
very low energies appears to be consistent with the fact that
the Q values for pair transfer are large and positive for this
system (see Table III). The valence nucleons can therefore
flow more freely from one nucleus to the other without being
hindered by Pauli blocking. If this interpretation is correct,
the disappearance—or at least a reduction—of the repulsive
part of the nuclear interaction should also occur in reactions
of other heavy-ion systems with large positive Q values for
transfer. This mechanism will affect the isotope dependence
of the height of the Coulomb barrier and lower it for systems
that have large positive Q values for two-nucleon transfer
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reactions. In this connection it would be desirable to develop a
scheme by which the repulsive part of the nuclear interaction
can be calculated explicitly by considering the effect of Pauli
blocking.

V. CONCLUSION

We have performed a systematic coupled-channels analysis
of the fusion data for the four systems, 40,48Ca + 90,96Zr, using
both a standard Woods-Saxon and the M3Y + rep, double-
folding potential. While it is possible to reproduce the data
for three of the systems in a consistent way by using the
M3Y + rep potential and a realistic nuclear structure input, it
is not possible to explain the 40Ca + 96Zr fusion data within
the same framework. The data for the latter system are better
described by the pure M3Y potential or by a standard Woods-
Saxon potential.

One of the goals of this work was to test how well the
M3Y + rep, double-folding potential can be used to predict
the ion-ion potential once the densities of the reacting nuclei
are known. The nuclear densities of the two calcium nuclei
were determined in previous analyses of Ca + Ca fusion data.
The neutron densities of the two zirconium isotopes were
determined by analyzing the fusion data induced by 48Ca,
whereas the proton densities were constrained by electron
scattering. The neutron skin thickness of each of the two
zirconium isotopes extracted from the analysis of the fusion
data is consistent with the results of antiproton experiments.
This is a nice consistency check of the coupled-channels
calculations.

The predicting power of the double-folding method was
tested by calculating the M3Y + rep potential for the 40Ca-
induced reactions with the two zirconium isotopes and analyz-
ing the fusion data with coupled-channels calculations. This
approach worked fairly well for 40Ca + 90Zr but it failed for
40Ca + 96Zr, primarily because the predicted Coulomb barrier
is too high and the pocket in the entrance channel potential is
too shallow.

Although the influence of transfer plays a role in explaining
the fusion data for most of the Ca + Zr systems, it is only
in the case of 40Ca + 96Zr that transfer is expected to have
a major impact. This feature was recognized in the original
work of Timmers et al. [12], where the effect of transfer was
expected to be the reason for the large enhancement of the
measured subbarrier fusion cross sections. The surprising new
result is that the ion-ion potential predicted for this system
by the M3Y + rep interaction is unrealistic. The failure of
the prediction is ascribed to the influence of transfer reactions
which is expected to be particularly strong because the transfer
Q values are large and positive and the transfer can therefore
occur without the hindrance imposed by Pauli blocking.

The repulsive part of the M3Y + rep potential, which
explains the hindrance phenomenon observed in the fusion
of many heavy-ion systems at extreme subbarrier energies, is
usually calibrated to produce a realistic nuclear incompress-
ibility for overlapping nuclei. The present work suggests that
the fusion hindrance and the hindrance of transfer reactions
imposed by the Pauli blocking are somehow related, because
they are both absent in reactions of 40Ca + 96Zr. In this
connection it would be very attractive if one could calculate
the repulsive part of the ion-ion potential by considering the
effect of Pauli blocking explicitly.

The analysis of the different data sets revealed a number
of interesting problems. For example, the fusion data for
48Ca + 90Zr are suppressed at high energies compared to
calculations that use a standard Woods-Saxon potential, but
this discrepancy was removed by applying the M3Y + rep
potential. Another problem is that some of the data sets
are enhanced at high energies compared to coupled-channels
calculations that include couplings to one- and two-phonon
excitations. The problem was resolved for 48Ca + 96Zr by
considering the influence of three-phonon excitations. Finally,
the calculated barrier distribution for fusion consists typically
of a few strong peaks, whereas the measured distribution is
sometimes broad and smooth. This difference may be caused
by the simplified models of excitations and transfer that are
used in the calculations.

A good explanation of the 40Ca + 96Zr fusion data is still
missing. We have shown that it is not possible to predict the
ion-ion potential reliably for this system by the double-folding
technique. It appears that an adjusted Woods-Saxon potential,
or even the pure M3Y potential, provides a much more realistic
description. However, none of the calculations can account
for the data at the lowest energies. A clear improvement of
the coupled-channels calculations would be to calibrate the
transfer couplings, in particular for the two-nucleon transfer, so
that the transfer data were reproduced by the calculations. This
approach is currently being pursued. Another possibility is to
apply a more realistic ion-ion potentials in the exit channels.
This idea was proposed by Sargsyan et al. [41], who used
ion-ion potentials in the exit channels for transfer reactions
that are different from the entrance channel potential because
of deformation effects. Both approaches are worth pursuing.
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