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Estimates for temperature in projectile-like fragments in geometric and transport models
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Projectile-like fragments emerging from heavy ion collision have an excitation energy which is often labeled
by a temperature. This temperature was recently calculated using a geometric model. We expand the geometric
model to include dynamic effects using a transport model. The calculated temperatures agree quite well with
values of temperature needed to fit experimental data.
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I. INTRODUCTION

Projectile multifragmentation is a practical tool for pro-
ducing exotic nuclei in the laboratory and remains a very
active field of research both experimentally and theoretically.
This theoretical paper deals with dynamic effects of projectile
fragmentation.

There are many theoretical models for projectile mul-
tifragmentation, including the statistical multifragmentation
model (SMM) [1] (see also Refs. [2] and [3] for application
of SMM to projectile fragmentation), heavy-ion phase-space
exploration (HIPSE) model [4] (see also Ref. [5] for an
application), antisymmetrized molecular dynamics (AMD)
model [6] (see also Ref. [5] for applications), the abrasion-
ablation model of Gaimard, Schmidt, and Brohm [7,8], and
the Empirical parametrization of fragmentation cross sections
(EPAX) [9] model.

In recent years we proposed a model [10–12] for projectile
fragmentation whose predictions were compared with many
experimental data with good success. In contrast with the
models mentioned above, our model uses the concept of
temperature. The concept of temperature is quite familiar
in heavy-ion physics, whether to describe the physics of
participants (where the temperature can be very high) or
the physics of spectators (where the temperature is expected
to be much lower). The “nuclear caloric curve” was much
researched as a signature of phase transition in nuclear
systems [13,14]. Temperature of an emitting zone is often
computed using the Albergo formula [15]. Thus temperature
is a useful concept in projectile spectator physics.

Our model has three parts. To start, we need an abrasion
cross section. For a given impact parameter, this was calculated
using straight-line trajectories for the projectile and the target,
leading to definite mass and shape for the projectile-like frag-
ment (PLF). The PLF created will not be at zero temperature.
Let us label the mass of the PLF by As(b) and the mass of the
projectile by A0. It was conjectured that that the temperature
of the PLF is a universal function of the wound 1.0 − As/A0.
This was parametrized as [11]

T = 7.5 MeV − [As/A0] 4.5 MeV. (1)

A select set of experimental data from Sn-Sn collisions [2]
were used in Ref. [11] to arrive at the numbers above. The

formula was seen to give very reasonable fits for many
experimental data not only for Sn-Sn but other pairs of ions
also. The objective of the present work is to investigate
if we can arrive at the numbers generated by this simple
parametrization from a microscopic theory. We may call
this temperature the primordial temperature. The complete
model does not stop here, of course, and many more steps
are needed to calculate observables. We then postulate that
this hot nuclear system will expand and break up into all
possible composites dictated solely by phase space. This is the
canonical thermodynamic model (CTM) [16]. The resulting
hot composites will further evolve by two-body sequential
decays, leading to the final products measured by experiments.
Experimental results for many pairs of ions in the beam energy
range 140 MeV/nucleon to 1 GeV/nucleon were fitted quite
well by this model [11,12].

Our objective here is to estimate the value of the temperature
of the PLF when it is formed. We estimated this in a geometric
model [17]. As the numerical methods used for the geometric
model will be extended to a dynamical transport model, we
need to review the geometric model first. Conceptually the
geometric model is simple but the calculations are nontrivial.
We assume that the size and shape of the PLF is given by
straight-line cuts and that divisions between participants and
spectators are very clean. This excludes low beam energy. Ex-
periments at Michigan used 140 MeV/nucleon. We made an ad
hoc assumption that we can use straight-line cuts at this beam
energy, and higher and lower energies were not attempted. In
the geometric model, some parts of the projectile are removed,
which leaves the PLF with a crooked shape. Nuclear structure
effects ascribe to this shape an excitation energy. We now
use the CTM [16]. In that model, for a given mass and tem-
perature one can compute the excitation energy per nucleon.
We reverse the procedure to go from excitation energy to
temperature. Note that in the geometric model the beam energy
does not enter the calculation; the only assumption is that it is
large enough for straight-line trajectories to be valid.

In later sections we estimate the PLF temperature from
a transport model Boltzmann-Uehling-Uhlenbeck (BUU)
calculation. These are the principal results of this work.
These calculations can be used for many purposes but we
restrict ourselves only to the objective of trying to deduce a
temperature for the PLF.
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II. THE GEOMETRIC MODEL

Calculations with the geometric model were reported in a
recent paper [17]. As the tecniques used in the model can be
straightforwardly extended to transport model calculations,
we describe this briefly, mostly to establish notation and
formulas that we need later. The idea of the model is this:
When two heavy ions collide, the overlapping parts form
the participant zone, leaving a projectile-like spectator and
a target-like spectator. Here we are only interested in the PLF.
The size and shape of the PLF are taken using straight-line
cuts. What are the mass and the energy of this object?

We start by choosing an impact parameter and boost one
nucleus in its ground state toward the other nucleus, also in its
ground state. We use Thomas-Fermi (TF) solutions for ground
states. The kinetic energy density is given by

T (�r) =
∫

d3pf (�r, �p)p2/2m, (2)

where f (�r, �p) is the phase space density. In the ground state
of a spherical nucleus we have

f (r,p) = 4

h3
θ [pF (r,p) − p]. (3)

This leads to

T = 3h2

10m

[
3

16π

]2/3 ∫
ρ(r)5/3d3r. (4)

For potential energy we take

V = A

∫
d3r

ρ2(r)

2
+ 1

σ + 1
B

∫
ρσ+1(r)d3r

+ 1

2

∫
d3rd3r ′v(�r,�r ′)ρ(�r)ρ(�r ′). (5)

The first two terms are usual zero-range Skyrme inter-
actions; the third term is a finite-range interaction which is
needed to generate a diffuse (as opposed to a sharp) surface.
This term also makes the energy shape dependent. Numerical
methods of constructing TF solutions with such forces are
given in Ref. [18]. For the calculations that follow, we model
the phase-space density of the TF solution by choosing test
particles with appropriate positions and momenta using Monte
Carlo simulations [19]. In most of this work we consider 100
test particles (Ntest = 100) for each nucleon.

Thomas-Fermi solutions for relevant nuclei were con-
structed with following force parameters: The constants A,B,
and σ [Eq. (4)] were taken to be A = −1533.6 MeV fm3,
B = 2805.3 MeV fm7/2, and σ = 7/6. For the finite-range
potential we chose a Yukawa: Vy .

Vy = V0
e−|�r−�r ′|/a

|�r − �r ′|/a , (6)

with V0 = −668.65 MeV and a = 0.45979 fm. These have
been used in the past to construct TF solutions which collide
in heavy-ion collisions [20].

We use the method of test particles to evaluate excitation
energies of a PLF with any given shape. A PLF can be
constructed by removing a set of test particles. Which test

particles will be removed depends upon collision geometry
envisaged. For example, consider central collision of 58Ni on
9Be. Let z to be the beam direction. For impact parameter b = 0
we remove all test particles in 58Ni whose distance from the
center of mass of 58Ni has x2 + y2 < r9

2 where r9 = 2.38 fm is
the half radius of 9Be. The cases of nonzero impact parameters
can be similarly considered.

We point out that this procedure of removing test particles
from the projectile may produce an error if the target is small
and/or for very peripheral collisions even if both the target
and the projectile are heavy. There can be transparency when
small amounts of nuclear matter are traversed. However, this
prescription of removing test particles from the projectile
when they are in the way of the target produces very definite
predictions. The transparency problem is treated well in the
transport model that we discuss later.

Continuing with the geometric model, we have now
obtained the PLF by removing some test particles as described
above. Evaluating the mass number and kinetic energy is
straightforward [17]. Evaluating potential energy requires
much more work. We need a smooth density to be generated
by positions of test particles. We use the method of Lenk
and Pandharipande to obtain this smooth density. Other
methods are possible [19]. Experience has shown that Vlasov
propagation with Lenk-Pandharipande prescription conserves
energy and momenta very well [21]. For the geometric model
time propagation is not needed. We will need that for BUU
calculations in later sections.

The configuration space is divided into cubic lattices. The
lattice points are l fm apart. Thus the configuration space is
discretized into boxes of size l3 fm3. Density at lattice point
rα is defined by

ρL(�rα) =
ANtest∑
i=1

S(�rα − �ri). (7)

The form factor is

S(�r) = 1

Ntest(nl)6
g(x)g(y)g(z), (8)

where

g(q) = (nl − |q|)�(nl − |q|). (9)

The advantage of this form factor is detailed in Ref. [21] so
we do not discuss it here. In this work we have always used
l = 1 fm and n = 1.

It remains to state how we evaluate the potential energy term
[Eq. (5)]. The zero-range Skyrme interaction contributions are
very simple. For example, the first term is calculated by using

A

∫
d3r

ρ2(r)

2
= A

∑
α

(l3)ρ2
L(rα)/2. (10)

With our choice l3 = 1 fm3. The third term in Eq. (5) (the
Yukawa term) is rewritten as 1/2

∑
α ρL( �rα)φL( �rα), where

φ(�r) is the potential at �r due to the Yukawa, i.e., φ(�r) =∫
Vy(|�r − �r ′|)ρ(r ′)d3r ′.
The calculation of Yukawa (and/or Coulomb) potential due

to a charge distribution which is specified at points of cubic
lattices is very nontrivial and involves iterative procedure. This
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has been used a great deal in applications involving time-
dependent Hartree-Fock theory [22–25].

With this method we can calculate the total energy of the
PLF. However, we are interested in excitation energy of the
system, which requires us to find the ground-state energy of
the PLF, which has lost some nucleons from the projectile.
We can use TF theory to find this. Knowing the mass number
and the excitation energy, we use the CTM [16] to deduce the
temperature. Results of the geometric model can be found in a
recent publication [17]. We show some results in the next two
sections.

III. TRANSPORT MODEL: CALCULATIONS I

We begin transport model calculations to identify and
investigate properties of PLF. Two nuclei in their Thomas-
Fermi ground states are boosted towards each other with
appropriate velocities at a given impact parameter. We choose
to calculate first 58Ni on 9Be, which was experimentally
investigated at Michigan State University (MSU) with beam
energy of 140 MeV/nucleon. The calculations here follow
the guidelines of Ref. [19] but some details are altered.
Two-body collisions are calculated as in Appendix B of
Ref. [19], except that pion channels are closed, as here we are
interested only in spectator physics (pions are created in the
participants). In addition, for collision at 140 MeV/nucleon,
pion production in the participant zone should be minuscule.
At 600 MeV/nucleon, the highest beam energy we have used
there could have some spillover effect. We estimate the effect
at the end of Sec. IV. The mean field is that prescribed in
Sec. II: zero-range Skyrme plus the Yukawa of Eq. (6). The
potential energy density is

v[ρ(�r)] = A

2
ρ2(�r) + B

σ + 1
ρσ+1(�r) + 1

2
ρ(�r)φ(�r), (11)

where φ(�r) is the potential generated by the Yukawa:
φ(�r) = ∫

Vy(|�r − �r ′|ρ(�r ′)d3r ′. The Vlasov part is done as in
Eqs. (2.14a) and (2.14b) of Ref. [21]:

�̇ri = ∂H

∂ �pi

= �pi

m
, (12)

�̇pi = −Ntest

∑
α

∂V

∂ρα

�∇iρα, (13)

where V is the total potential energy of the system. The Lenk-
Pandharipande method is necessary here as all other known (to
us) methods have numerical uncertainties in energy evaluation
which can hide the effects we are after. The number of test
particles to represent the phase space is 100 per nucleon.

We exemplify our method with collision at impact param-
eter b = 4 fm. It is useful to work in the projectile frame and
set the target nucleons with the beam velocity in the negative
z direction. Figure 1 shows the test particles at t = 0 fm/c
(when the nuclei are separate), t = 10 fm/c, t = 25 fm/c, and
t = 50 fm/c (Be has traversed the original Ni nucleus). The
calculation was started with the center of Ni at 25 fm; at
the end a large blob remains centered at 25 fm. Clearly this
is the PLF. However, a quantitative estimate of the mass of
the PLF and its energy requires further analysis. This type of
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FIG. 1. (Color online) Time evolution of 58Ni (red [gray]) and
9Be (green [gray]) test particles for 140 MeV/nucleon at impact
parameter b = 4 fm.

analysis was done for each pair of ions and at each impact
parameter, and details vary from case to case. We exemplify
this in one case only.

For the analysis, it is convenient to introduce a kinetic
energy density and a z component of momentum density (we
use pzc rather than pz). Density at lattice point rα is defined
by

ρL(�rα) =
ANtest∑
i=1

S(�rα − �ri). (14)

For kinetic energy density we use

TL(�rα) =
ANtest∑
i=1

TiS(�rα − �ri), (15)

where Ti is the kinetic energy of the ith test particle. It is
also useful to introduce a density for the zth component of
momentum:

(pzc)L(�rα) =
ANtest∑
i=1

(pzc)iS(�rα − �ri). (16)

The symbol α stands for values of the three coordinates of the
lattice point α = (xl,ym,zn). We often, for a fixed value of zn,
sum over xl,ym. For example,

∑
l,m

∑ANtest
i=1 S[(xlymzn) − �ri]

is denoted by ρz(zn), and similarly for kinetic energy or total
energy density T (zn) or ET (zn) and for pzc(zn), etc.

In Fig. 2 we plot ρz(z) as a function of z at t = 0 (when
the the nuclei start to approach each other) and at t = 50 fm/c
(when Be has traversed Ni). Figure 3 adds more details to the
situation at 50 fm/c. At far right one has the PLF. Progressively
towards the left one has the participant zone characterized by
a higher energy per nucleon ET (z)/ρz(z) and lower value of
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FIG. 2. (Color online) ρz(z) variation with z at t = 0 fm/c (black
dashed line) and 50 fm/c (red [gray] solid line) for 140 MeV/nucleon
58Ni on 9Be reaction studied at an impact parameter b = 4 fm.

pzc per nucleon [=pzc(z)/ρz(z)]. Closer to the left edge one
has target spectators. In order to specify the mass number
and energy per nucleon of the PLF we need to specify which
test particles belong to the PLF and which belong to the
rest (participant and target spectators). Our configuration box
stretches from z = 0 to z = 40 fm. If we include all test
particles in this range we have the full system with the total
particle number 67(58 + 9) and the total energy of beam plus
projectile in the projectile frame. Let us consider constructing
a wall at z = 0 and pulling the wall to the right. As we pull,
we leave out the test particles to the left of the wall. With the
test particles to the right of the wall, we compute the number
of nucleons and the total energy per nucleon. The number
of particles goes down and initially the energy per nucleon
will go down also as we are leaving out the target projectiles
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FIG. 3. (Color online) Momentum per nucleon pzc(z)/ρz(z)
(blue [gray] dotted line) and total energy per nucleon ET (z)/ρz(z)
(magenta [gray] solid line) for 140 MeV/nucleon 58Ni on 9Be reaction
at an impact parameter b = 4 fm studied at t = 50 fm/c. Total density
[ρt

z(z)], PLF density [ρp
z (z)], and remaining part density [ρr

z (z)] along
the z direction at t = 50 fm/c are shown by black, red (gray), and
green (gray) dashed lines respectively. For drawing all quantities in
the same scale, pzc(z)/ρz(z) is divided by a factor of 4.
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FIG. 4. Energy per nucleon of the system remaining to the right
side of a wall at different values of z (see Fig. 3) for 140 MeV/nucleon
58Ni on 9Be reaction at an impact parameter b = 4 fm studied at
t = 50 fm/c.

first and then the participants. At some point we enter the
PLF, and if we pull a bit further we are cutting off part of
the PLF, giving it a nonoptimum shape, so the energy per
nucleon will rise. The situation is shown in Fig. 4. The point
which produces this minimum is a reference point. The test
particles to the right are taken to belong to PLF; those to the
left are taken to represent the participants and target spectators.
Not surprisingly, this point is in the neighborhood where both
ET (z)/ρ(z) and pzc/ρ(z) flatten out.

The net end results of some of our BUU calculations are
presented in Fig. 5. In the upper panel we show results for 58Ni
on 9Be at 140 MeV/nucleon. The BUU results are compared
with the geometric model results and graph of Eq. (1). As
conjectured in Ref. [17], the geometric model results are
driven up when dynamics is included. In the lower panel only
BUU calculation results are shown for (a) 40Ca on 9Be at
140 MeV/nucleon, (b)58Ni on 9Be at 140 MeV/nucleon, and
(c) at 400 MeV/nucleon. We are not aware of any experiments
at 400 MeV/nucleon; this was done merely to check if in BUU,
PLF physics is sensitive to beam energy. The geometrical
model assumes it is not.

IV. TRANSPORT MODEL: CALCULATIONS II

Vlasov propagation with Skyrme plus Yukawa for large
ion collisions is not practical. Given nuclear densities on
lattice points, one is required to generate the potential which
arises from the Yukawa interaction. Standard methods require
iterative procedures involving matrices. In the case of Ni on
Be, in the early times of the collision, the matrices are of the
order of 1000 by 1000: As the system expands the matrices
grow in size, reaching about 7000 by 7000 at t = 50 fm/c. If
we want to do large systems (Sn on Sn, for example) very large
computing efforts are required.

To treat large but finite systems we use a mean field
Hamiltonian Lenk and Pandharipande devised for finite nuclei.
The mean field involves not only the local density but also the
derivative of local density up to second order. The derivative
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FIG. 5. (Color online) (a) Temperature profile for 58Ni+9Be re-
action at 140 MeV/nucleon obtained from BUU model calculation
(red [gray] solid line) compared with that calculated from general
formula [Eq. (1)] (green [gray] dashed line) and geometrical model
(black dotted line). (b) Temperature profiles obtained from BUU
calculation for 40Ca+9Be reaction at 140 MeV/nucleon (violet [gray]
dashed line) and 58Ni+9Be reaction at 140 MeV/nucleon (red [gray]
solid line) and at 400 MeV/nucleon (blue [gray] dotted line).

terms do not affect nuclear matter properties but in a finite
system it produces quite realistic diffuse surfaces and liquid-
drop binding energies.

In order to keep the same notation as used in previous
sections, we write the Lenk-Pandharipande mean field as
follows. The mean field potential is

u[ρ(�r)] = Aρ(�r) + Bρσ (�r) + c

ρ
2/3
0

∇2
r

[
ρ(�r)

ρ0

]
. (17)

The potential energy density is

v[ρ(�r)]= A

2
ρ2(�r) + B

σ + 1
ρσ+1(�r) + cρ

1/3
0

2

ρ(�r)

ρ0
∇2

r

[
ρ(�r)

ρ0

]
.

(18)

Since there is no Yukawa term, the values of A and B and
possibly σ need to be changed from the values used in
Sec. II (and the previous section) to keep the property of
nuclear matter unchanged. For calculations reported in this
section the values are A = −2230.0 MeV fm3, B = 2577.85
MeV fm7/2,σ = 7/6. These values are taken from a previous
work [14]. The value of the constant ρ0 is 0.16 fm−3 and the
value of constant c is −6.5 MeV.

The next problem is to find the ground-state energy of
a nucleus with A nucleons. Here we have used a variational
method. A parametrization of realistic density distribution was
given by Myers, which has been used many times for heavy-ion
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FIG. 6. (Color online) pzc vs z variation of projectile (red [gray])
and target (green [gray]) test particles at t = 200 fm/c for 124Sn on
119Sn reaction studied at an impact parameter b = 8 fm with energy (a)
600 MeV/nucleon (relativistic kinematics) and (b) 200 MeV/nucleon
(nonrelativistic kinematics).

collisions [18,26,27]. This parametrization is

ρ(r) = ρM

[
1 −

(
1 + R

a

)
exp(−R/a)

sinh(r/a)

r/a

]
, r < R,

(19)

ρ(r) = ρM [(R/a)cosh(R/a) − sinh(R/a)]
e−r/a

r/a
, r > R.

(20)

There are two parameters here: a, which controls the width
of the surface and ρM (or R), which controls the equivalent
sharp radius. The distribution satisfies 4π

∫ ∞
0 ρ(r)r2dr =

A = 4π
3 ρMR3. Thus no special normalization is required. The

distribution has the advantage that equivalent sharp radius R
is simply proportional to A1/3 while the half-density radius of
a Fermi distribution does not have this simple proportionality.
Comparison with Fig. 2 in Ref. [21] shows that the energy
calculated by this variational calculation is quite close to what
is given by Thomas-Fermi theory.

We do two cases of large colliding systems with the
Lenk-Pandharipande mean fields: 124Sn on 119Sn and 58Ni
on 181Ta. For these large colliding systems we reduced
the number of test particles per nucleon from 100 to 50;
Ntest = 50. Figure 6 shows scatter of test particles in the z,pzc
plane for Sn on Sn at time t = 200 fm/c for beam energy
200 MeV/nucleon and impact parameter 8 fm/c. The plot, as
before, is in the projectile frame and identifies projectile-like
spectator, participant zone, and target-like spectator. In the
200 MeV/nucleon calculations and all calculations in the
previous sections Vlasov propagation is nonrelativistic but
collisions are treated relativistically (Appendix B of Ref. [19]).
Experimental data for 124Sn on 119Sn at 600 MeV/nucleon are
available [2]. For 600 MeV/nucleon beam energy, relativistic
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FIG. 7. (Color online) (a) Temperature profile for 124Sn+119Sn
reaction at 600 MeV/nucleon obtained from BUU model calculation
(red [gray] solid line) compared with that calculated from general
formula [Eq. (1)] (green [gray] dashed line) and geometrical model
(black dotted line). (b) Temperature profile obtained from BUU
calculation for 58Ni+181Ta reaction at 140 MeV/nucleon (violet [gray]
dashed line), 124Sn+119Sn reaction at 600 MeV/nucleon (red [gray]
solid line) and at 200 MeV/nucleon (blue [gray] dotted line).

kinematics is used for propagation of test particles. This
means the following. In the rest frame of each nucleus the
Fermi momenta of test particles are calculated in the standard
fashion except that once they are generated we treat them like
relativistic momenta. Relativistic kinetic energy per nucleon
in the rest frame of the nucleus, on the average, becomes only
slightly different from the nonrelativistic value (about 0.3 MeV
per nucleon). As before, we work in the rest frame of the
projectile and the transformation of momenta of test particles
of the target to the projectile frame is relativistic. In between
collisions, the test particles move with �̇r = ( �pc/erel)c instead
of �p/m. Similarly the change of momentum in test particles
induced by the mean field is considered to be the change in
relativistic momentum. However, these changes made little
difference since in the projectile frame the PLF test particles
move slowly.

The 600 MeV/nucleon results are shown in the upper panel
of Fig. 7. We show BUU results and compare them with the
general formula of Eq. (1). Also plotted are geometric model
results. As expected, the geometric model temperatures are
lower than those obtained from BUU. In the lower panel
of Fig. 7 we plot temperature profiles obtained from BUU
calculations for 58NI+181Ta at 140 MeV/nucleon and for
124Sn+119Sn at 200 MeV/nucleon and at 600 MeV/nucleon.
Experiments for 58Ni+181Ta at 140 MeV/nucleon were done
at Michigan State University.

We return to the discussion of neglecting the pion channel
in 124Sn on 119Sn collision at 600 MeV/nucleon. In the early
applications of BUU, the pion channel was included by adding

the reaction n + n = 
 + n and the reaction 
 + n = n + n.
Number of pions was taken to be the number of 
’s when
collisions were over.

We did calculation with this model for a range of impact
parameters 2 to 10 fm. For brevity we quote number for
b = 6 fm. The total number of n
’s is not negligible; we
estimate this to be about 5 in each event. This number is the
sum of n
’s in the participant region and n
’s in the spectator
regions. However, n
 in the PLF region is small about 0.1.
If we assume that pion emerging from the decay of 
’s in
the participant region stays in the participant region and those
decaying from 
’s in the PLF stay in the PLF this would mean
we get one pion in the PLF in one out of ten events.

Another model would be that when two nucleons collide,
occasionally they produce a pion with a given rapidity. Pions
with rapidities close to that of the PLF then thermalize in
the PLF. The effect on the temperature on the PLF in this
model would be very hard to compute. A similar model has
been employed to calculate hypernucleus production where a
� particle is produced in the participant but with a rapidity
close to that of the PLF. However, in all the applications we
know of, the PLF is assigned an estimated temperature and
the modification of temperature due to � absorption is not
considered [28,29].

V. DISCUSSION

It is quite gratifying that detailed BUU calculations bear
out the two striking features of temperature profile in the PLF.
These are the following: (a) temperatures are of the order
of 6 MeV and (b) there is a very definitive dependence on
the intensive quantity As/A0, with temperature falling as this
increases.

For large ion collisions the PLF slows down slightly in the
laboratory frame (i.e., in the projectile frame it acquires a net
small negative velocity). The PLF is excited. Comparison with
the geometric model seems to confirm that a large part of the
excitation energy owes its origin to nuclear structure effects.
The size of the PLF is also larger than what it would be if
the PLF were in the ground state. Although the shape was not
analyzed, in general, the low-density tail spreads out longer
than in nuclei in their ground state.

There are other published works which are related to the
physics problem we have investigated here. The closest in
spirit and approach is that of Barz et al. [30]. The observables
which originate from the PLF are often calculated using the
SMM model. The starting point of an SMM calculation is
the energy E,As of the system, which will break up into
composites. In SMM these initial conditions are not calculated
but chosen so that they fit many experimental data. The BUU
calculations in Ref. [30] are done to see if these conditions can
be reached for a given impact parameter at a particular time.
The example considered was Au on Cu. Our objective here is
different. For any pair of heavy ions, we do BUU calculations
for many impact parameters b. From BUU calculations at a
given b clear indications of participants, target-like spectator,
and PLF emerge. The PLF has a mass As and an energy
E from which we obtain from this BUU calculation. We
deduce a temperature using the model described in Ref. [11].
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which produces the average energy E. The connection with
experiment is through the single empirical formula, Eq. (1).
This formula was obtained empirically from data of Sn on Sn
at 600 MeV/nucleon but gave good fits to many experimental
data for other ion pairs at different energies. There seems
to be some advantage to taking a constant temperature for
a given b. Constant E for a given b does not seem to work
very well [30]. Constant T implies a distribution in E and this
appears to work well. There are presumably some differences
in the BUU calculations in the earlier pioneering work [30]
and here: in choice of inputs for two-body collisions, the mean
field, and techniques for Vlasov propagation.

Lastly we make a connection between this work and an
earlier work where a fuller description of heavy-ion collision
was proposed [31]. In that model there are fast particles
simulated by intranuclear model and then pre-equilibrium
particle emission (exciton model), leaving a thermalized
residual nucleus which undergoes multifragmentation. The
BUU simulation is an average description of the reaction in
real time. We are only interested in the PLF and it turns out
that at the end of 200 fm/c (for Sn on Sn) or 50 fm/c (for
Ni on Be), a chump of matter appears which clearly looks

like a PLF. In the box where the calculations are done there
are many other particles outside the configuration space of
the PLF. These will fall under the categories of participants,
target spectators (see Sec. III), or in different terminology
fast particles, pre-equilibrium particles, etc. There is some
ambiguity in our calculation about pre-equilibrium emission.
The center of the PLF is quite well located. The choice of
the radius is not precisely deducible from the simulation. This
has a bearing on the number of pre-equilibrium particles. We
estimate that the uncertainty in excitation energy of the PLF is
about 1 MeV/nucleon, which may go down if the simulation
is carried for a longer period of time.
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