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Elastic scattering and total reaction cross section for the 7Be + 27Al system at near-barrier energies
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I. INTRODUCTION

The investigation of scattering and reaction mechanisms in-
volving light weakly bound nuclei, both stable and radioactive,
at near-barrier energies, has been a subject of great interest in
the last years [1–4].

Theoretical and experimental works have been devoted to
study the effect of the breakup channel on the fusion and total
reaction cross sections, the relative importance of the breakup
cross section when compared with fusion and direct transfer
cross sections, and the energy dependence of the interacting
potential in the scattering process, among other topics. Usually
the weakly bound nuclei are the projectiles, which may be
stable (6Li, 7Li, and 9Be) and radioactive of different types: no
halo (8Li, 7Be), neutron halo (6,8He, 11Be, 11Li), and proton
halo (8B).

Particularly the behavior of the energy dependence of the
optical potential in the elastic scattering has been investigated
in recent years. For tightly bound nuclei is well known the phe-
nomenon called threshold anomaly (TA) [5–7], corresponding
to a rapid variation of both the real and imaginary parts of
the potential when the bombarding energy decreases towards
the Coulomb barrier energy. The TA is then characterized
by a localized peak in the real part of the potential and a
sharp decrease of the imaginary part as the bombarding energy
decreases towards the Coulomb barrier. The behavior of the
imaginary part of the potential is related with the closing of
reaction channels when the energy approaches the Coulomb
barrier. When at least one of the colliding nuclei is weakly
bound, the breakup channel may become important and it is
experimentally verified that this mechanism has an excitation
function that does not decrease sharply at energies below the
Coulomb barrier, and may lead to the so called breakup thresh-
old anomaly (BTA) [8,9], when the imaginary potential may

even increase as the energy decreases near and below the bar-
rier. This behavior has been observed in the energy dependence
of optical potentials obtained by fitting the elastic scattering
of several systems involving 6Li, 6He, and 8B projectiles.

Experimentally, the investigation of the presence of TA
or BTA through the analysis of elastic scattering angular
distributions is a very difficult task, since it can only be
assessed at near and below barrier energies, where the elastic
scattering is predominantly of the Rutherford type, and small
deviations from it may only be obtained from very precise
measurements.

In the present work we try to contribute to the investigation
of the behavior of the interaction optical potential in the
scattering of weakly bound nuclei by measuring elastic
scattering angular distributions, at near-barrier energies, for
the nonhalo radioactive 7Be projectile on the light 27Al target.
7Be breaks up into 4He + 3He, with breakup threshold
energy Sα = 1.58 MeV. It is the core of the proton-halo 8B
nucleus, which breaks up into 7Be + p with threshold energy
Sp = 0.138 MeV and can supply valuable information of
astrophysical interest, especially related to its production rate.
It is also particularly interesting to compare the behavior of
the 7Be scattering and reaction cross sections with those for
the stable weakly bound nuclei:

(i) 7Li is its mirror nucleus, it has breakup (α + t)
threshold energy of 2.47 MeV and one bound excited
state at 0.478 MeV.

(ii) 9Be is its stable isotope with breakup (8Be + n)
threshold energy of 1.67 MeV and no bound excited
state.

(iii) 6Li has a similar breakup (α + d) threshold energy of
1.48 MeV and also no bound excited state.
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So far, one knows that the total reaction cross sections for
the three stable weakly bound nuclei with the 27Al target are
enhanced when compared with tightly bound projectiles and
the same target [10].

In Sec. II of this paper we give experimental details.
In Sec. III optical model analysis of the measured elastic
scattering angular distributions is presented in order to study
the energy dependence of the interaction potential at near-
barrier energies. The derived reaction cross sections are
compared with other systems in Sec. IV. Finally, we mention
some conclusions in Sec. V.

II. EXPERIMENTAL SETUP

The 7Be + 27Al elastic scattering experiments have been
performed using the RIBRAS [11] and TwinSol [12] radioac-
tive ion beam facilities (RIB) installed respectively at the
Nuclear Physics Open Laboratory (LAFN) of the University
of São Paulo and the Nuclear Structure Laboratory (NSL) of
the University of Notre Dame, USA. The two systems are very
similar and the difference between the experiments is that
measurements in the RIBRAS system have been performed
using the intermediate scattering chamber between the two
solenoids whereas in the Twinsol experiment, the scattering
chamber after the second solenoid was used. In both cases, the
7Be secondary beam is produced by the one-proton transfer
reaction 3He (6Li, 7Be). A 3He gas cell production target is
bombarded by a 6Li3+ primary beam. Except for the 17.2-MeV
experiment, performed at RIBRAS, all other measurements
have been performed using 8B as the leading beam, namely,
the solenoid current has been adjusted for the magnetic rigidity
of 8B produced by the 3He (6Li, 8B) reaction and the 7Be,
6Li, and the α peaks seen in the spectra are part of the
cocktail beam of particles with the same magnetic rigidity,
accepted by the solenoids. The 8B analysis is underway.
27Al and 197Au secondary targets have been used in both
experiments, the latter for normalization purposes, since the
scattering of 7Be by the gold target is pure Rutherford in
the energy range of the experiments. The nominal Coulomb
barrier for the 7Be + 27Al system, calculated by the São Paulo
potential [13], is 8.3 MeV in the center-of-mass reference
system, corresponding to 10.5 MeV in the laboratory system.

A. RIBRAS

The measurements at RIBRAS have been performed using
7Be secondary beams produced with energies Elab = 12.3 and
17.2 MeV (see Table I). Although only one of the two solenoids
of this system has been used to select the beam, several
experiments have been successfully performed previously; see
Refs. [10,14–19]. The 6Li3+ primary beam was produced and
accelerated in the 8-UD Pelletron Tandem of the University
of São Paulo with Elab = 22.0 and 27.3 MeV and intensity of
300 nAe. The primary target consists of a gas cell with a length
of 3.6 cm with entrance and exit windows of 2.2 μm Havar
filled with 3He gas at 1 atm. A Faraday cup after the primary
target suppresses the primary beam and measures its intensity
by current integration during each run. The secondary beam
consists of a cocktail of α, 6Li, 7Be, and 8B particles. The

TABLE I. Summary of 7Be energies and 27Al target thickness for
this work.

7Be beam energy (MeV) 27Al target Laboratory

Equivalent incident outgoing �E thickness
energy (mg/cm2)

10.0 12.3 8.2 4.1 2.1 RIBRAS
13.8 15.9 12.1 3.8 2.3 TwinSol
15.2 19.7 11.9 7.8 5.0 TwinSol
15.4 17.2 13.9 3.3 2.1 RIBRAS

27Al and 197Au secondary targets’ thickness were of 2.1 and
4.6 mg/cm2, respectively. The detection setup consisted of
�E − E telescopes with thicknesses of 20 and 1000 μm and
single silicon E detectors of 1000 μm. The solid angles were
limited by collimators placed in front of the detectors and were
about 13 msr. The �E − E telescopes were placed at forward
angles so that 7Be and 8B particles still had sufficient energy
to go through the 20-μm �E detector allowing for particle
identification of the secondary beam. Once the identification
had been performed, we used single E detectors for elastic
scattering measurements in an angular range from 15 to 80◦
in the center-of-mass reference system, with 5.0◦ steps and an
angular resolution of 3.0◦. Measurements with the 197Au target
were performed before and after the 27Al target runs to check
for 7Be production rate in order to guarantee that the secondary
beam production was monitored during the data acquisition.
The 7Be energies were determined by energy measurements in
the detectors, which were calibrated using a 241Am radioactive
source.

Figure 1 shows a �E − Eresidual biparametric spectrum
for the scattering of the cocktail of beams on 27Al at the

FIG. 1. (Color online) Biparametric spectrum for incident energy
Elab(7Be) = 12.3 MeV (10.0 MeV equivalent energy) and θlab = 20◦,
obtained in São Paulo (RIBRAS). E is the residual energy in the
detector.
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FIG. 2. One-dimensional spectrum for θlab = 40◦ obtained at
RIBRAS, where 7Be was the leading beam with incident energy
of 17.2 MeV and equivalent energy of 15.4 MeV.

incident energy of Elab(7Be) = 12.3 MeV and θlab = 20◦. 8B
was the leading beam in this case. 7Be events are clearly
distinguishable from 6Li, 8B, and other contaminants. Below
the 6Li contour one observes two peaks corresponding to light
particle contaminations such as protons, deuterons, tritons (the
lowest peak), and α particles. These particles, which are always
present in experiments by the in-flight method, are produced in
reactions between the 6Li primary beam and the 3He primary
target. Usually these light particles have magnetic rigidity
higher than 7Be3+ which generates energy degraded events
falling in the Bρ selection band of the solenoid. To wash
out such light particles it would be necessary to perform an
additional velocity selection. Nevertheless, contaminant peaks
are well separated from the 7Be peak and then do not affect
our data reduction.

Figure 2 shows a one-dimensional spectrum (single E
detector) for the cocktail beam scattered on the 27Al target,
where 7Be was the leading beam with incident energy of
17.2 MeV. One can see that the 7Be peak is clearly separated
from the 6Li contaminant peaks.

B. TwinSol

The measurements at Elab(7Be) = 15.9 and 19.7 MeV
incident energies have been performed in the 10-MV Tandem
of the Nuclear Structure Laboratory of the University of Notre
Dame, associated with the TwinSol system. The 7Be beam
corresponds to a contaminant fraction of the 8B leading beam.
After the solenoid selection, the 7Be and 8B beams have the
same magnetic rigidity (no degrador has been used in between
the two solenoids) and it is simple to determine the 7Be initial
beam energy. Secondary targets of 27Al 2.3 mg/cm2 (for
Elab = 15.9 MeV) and 5.0 mg/cm2 (for Elab = 19.7 MeV)
and one 197Au target of 0.985 mg/cm2 were used. It shall be
pointed out that the 7Be energies quoted above are the beam
energies before the target. The effect of the target thickness
and the energy loss in the target will be discussed in detail in
the next subsection.

The averaged intensity of the 7Be beam was about 104 pps
for a 6Li beam intensity of 350 nAe. The detection setup was
composed of four position sensitive detectors (x − y PSD)

of 23 × 23 mm placed at fixed angular positions to cover an
angular range from 20◦ to 55◦, in the laboratory frame. A single
�E − E telescope (20–1000 μm) placed at 15◦ was used to
identify the α, 6Li, 7Be, and 8B particles.

C. Energy loss in the target

An important point that deserves a more detailed discussion
is the effect of the energy loss in the target in the present
experiment. Some of the targets are rather thick and the beam
energy loss represents a considerable amount of the total beam
energy. As a consequence, what we are really measuring is a
cross section averaged over the energy range of the beam
in the target. Considering that the target can be divided in
slices dx, the number of counts in the detector due to a
given slice is dN = Nbeamdx��σ (E)

J
where Nbeam stands for the

number of beam particles incident in the target, dx is an
infinitesimal slice of the target in units of atoms/cm2, ��
is the detector solid angle, and σ (E) the differential cross
section at the energy E in the middle of the slice. J is the
Jacobian factor of the transformation from the laboratory to the
center-of-mass system. By integrating the above equation over
the target thickness one obtains N = Nbeam��

J

∫ E1

E0
σ (E) dx

dE
dE

where dx
dE

is the reciprocal of the beam stopping power and
E0 and E1 are the energies before and after the target. Using
the approximation dx

dE
≈ �x

�E
one can take this term out of

the integral and one sees that σav = 1
�E

∫ E1

E0
σ (E)dE is the

measured quantity. Taking the Rutherford cross section energy
dependence σ (E) ∝ 1

E2 one can easily solve this integral
and one sees that there is an equivalent energy such that
σ (Eeq) = σav with Eeq = √

E0E1. The equivalent energy is
then given by the geometrical mean of the energies before and
after the target. The geometrical mean usually differs from the
energy in the middle of the target by a factor that depends on
the target thickness. In the present experiment, the worst case
is for the 5 mg/cm2 target where this difference is of about 6%.

Of course, taking the equivalent energy as the geometrical
mean of the energies before and after the target is rigorously
valid only for pure Rutherford scattering, however, as we are
close to the Coulomb barrier, deviations from the Rutherford
cross section only contribute to a small correction on the
averaged energies and in fact do not affect our results.
Nevertheless, we performed Monte Carlo numerical simula-
tions using realistic optical potentials and the results for the
equivalent energies are very similar, within a few percent, to
the ones obtained using the above expression.

From now on, all the theoretical analysis in this paper will
be performed at the equivalent energies as defined above.

In Table I we summarize all four experimental setups
regarding incident energies, equivalent energies, and 27Al
target thickness.

D. The angular distributions

The elastic scattering angular distributions are shown in
Fig. 3. They have been determined using Eq. (1) given below,
where the 7Be + 27Al cross sections are normalized by the
Rutherford scattering of 7Be by 197Au at a proper energy,
independently of solid angle of the detectors. The error bars
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FIG. 3. Fits of the elastic scattering angular distributions using
the São Paulo potential.

are essentially due to statistical countings,
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NAu
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Nx
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J x

JAu

NAu
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Nx
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σAu
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. (1)

In Eq. (1), x stands for the 27Al target, Nc is the elastic peak
integral (27Al or 197Au), Ninc is the number of incident 7Be
particles during the run, J is the Jacobian to transform from
laboratory to center-of-mass frames, and Na is the density of

the secondary target in atoms/cm2. The ratio NAu
inc

Nx
inc

is taken
as equal to the ratio of the primary beam integrated flux
respectively with the gold and aluminum target runs. The
primary beam flux is integrated during each run by a Faraday
cup placed just after the primary target (see for instance [14]).
The ideal situation would be to have aluminum and gold in the
same target, to allow an on-line run normalization. However, in
experiments using secondary beams by the in-flight method,
usually the experimental energy resolution is not sufficient
to separate the aluminum and gold peaks, mainly at forward
angles where the present measurements have been performed.

Actually the detector energy resolution does not allow us
to separate contributions, in the elastic peak, coming from the
excitations of the low lying states of the projectile and target
(inelastic scattering). To assess the effect of inelastic on the
elastic channel we performed coupled channel calculations
including the first excited state of the projectile (1/2− at
0.429 MeV) and the first two excited states of the target (1/2+
and 3/2+ at 0.844 and 1.014 MeV). Our calculations indicate
that the effect of those inelastic contributions are rather small
and can be neglected in the present measurements. The largest
contribution was for the most backward angle and for the
highest energy (15.4 MeV), and is of about 3% .For this reason
we will consider our data as pure elastic angular distributions
in what follows.

III. OPTICAL MODEL ANALYSIS OF ELASTIC
SCATTERING ANGULAR DISTRIBUTIONS

In this section we present the analysis of the experimental
elastic scattering angular distributions. We use two different
kinds of potentials, in order to check the consistency of results
that should be model independent. In Sec. III A we describe
the analysis performed by using the double-folding São
Paulo potential (SPP) [13]. The second analysis (Sec. III B)
uses a phenomenological Woods-Saxon form factor for the
interaction potential. Both analyses were performed using the
FRESCO code [20].

A. Analysis using the double-folding São Paulo potential

The São Paulo potential (SPP) [13] is an optical potential
which has been successfully used to describe a large variety
of systems in a wide energy range, including fusion excitation
functions, barrier distributions, and elastic scattering of several
weakly bound systems. The energy dependence of the bare
interaction arises from the use of a local equivalent model
based on the nonlocal nature of the interaction. Within a limited
range of energy, as in the present work, it can be considered
simply as a double-folding potential based on an extensive
systematization of nuclear densities extracted from elastic
scattering data and Dirac-Hartree-Bogoliubov calculations. In
the present work it is assumed that the imaginary part of the
interaction has the same shape as the real part. The data fit
procedure is performed with only two free parameters, the
normalization factors (strengths) for the real and imaginary
parts, NR and NI . The best fits of the elastic scattering angular
distributions are shown in Fig. 3.

The normalization parameters obtained from the best fits
for each energy are shown in Table II, together with the
corresponding total reaction cross sections. A χ2 analysis
did not provide a reliable estimation for the errors of the
normalization factors mainly due to the large error bars of the
experimental data and the small number of points in the angular
distributions. Alternatively, the errors on the normalization
parameters have been estimated from different calculations
in which NR and NI were varied to produce equally good
fits within the error bars of the experimental data. With
this procedure, at least 15 acceptable values of NR and NI

have been obtained for each energy and their average and
standard deviation have been calculated and are presented in
Table II.

It is quite clear from Table II that the errors of the normal-
ization factors are huge and do not allow any conclusion about

TABLE II. Values of the strengths of the real and imaginary parts
of the São Paulo potential which fit the elastic scattering angular
distributions, and the derived total reaction cross sections.

Elab (MeV) Ec.m. (MeV) NR NI σreac (mb)

10.0 7.9 1.0 +2.8
−1.0 1.5 +2.0

−1.5 171 ± 92
13.8 11.0 1.3 ± 0.9 1.5 ± 1.0 737 ± 81
15.2 12.1 1.6 ± 0.8 0.9 ± 0.8 951 ± 70
15.4 12.2 1.3 ± 1.0 1.0 ± 0.9 998 ± 74
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the energy dependence of the optical potential. Basically all
results are consistent with NR = NI = 1 which corresponds
to the standard São Paulo potential.

However, the error bars in the total reaction cross section
obtained from this analysis are much smaller and permit a
comparison with other systems which will be presented in the
next sections.

B. Analysis using the phenomenological Woods-Saxon potential

As a second approach for the fit of the elastic scatter-
ing angular distribution data, we use the phenomenological
Woods-Saxon potential. The optical model potential U (r) used
to derive the elastic scattering differential cross sections is
given by the following equation:

U (r) = VCoul(r) − V0f (r,Rr,ar ) − iWof (r,Ri,ai), (2)

where VCoul is the Coulomb potential of a uniformly charged
sphere of radius RC = 1.25(A1/3

p + A
1/3
t ) fm, Ap and At

are the mass numbers of the projectile and target respec-
tively; f represents the Woods-Saxon form function which is
given by

f (r,R,a) = 1

1 + exp r−R
a

, (3)

where R is the radius and a is the diffuseness; ri,r are the
reduced radii, defined as Ri,r = ri,r (A1/3

p + A
1/3
t ). The second

term of the right side of Eq. (2) is the real part of the potential,
where V0 is its depth. The following term is the volume
imaginary potential of the optical potential, where W0 is its
depth.

Several families of optical potential parameters can describe
the angular distributions equally well. This is a very well
known characteristic of fits with Woods-Saxon potentials. To
reduce the ambiguities, we determined the radii of sensitivity
RV and RW , corresponding to the real and imaginary radii
where different potentials have the same value. We let the
diffuseness values of the real and imaginary potentials vary
from 0.6 to 0.8 fm in steps of 0.05 fm to derive the radii of
sensitivity for each energy. Figures 4(a) and 4(b) show families

FIG. 4. Derivation of the real (a) and imaginary (b) radius of
sensitivity for Elab = 13.8 MeV.

TABLE III. Mean radii of sensitivity (in the studied energy
interval) for three weakly bound systems with the 27Al target, and the
average sensitivity radii RS (between the mean real and imaginary
radii) for the same systems.

System RV (fm) RW (fm) RS (fm)

6Li + 27Al 8.70 ± 0.30 9.61 ± 0.30 9.20 ± 0.42
7Li + 27Al 8.50 ± 0.13 8.50 ± 0.13 8.50 ± 0.18
7Be + 27Al 9.10 ± 0.18 9.22 ± 0.61 9.16 ± 0.63

of potentials, which give similar fits, and the derivation of the
real and imaginary sensitivity radii, respectively for 13.8 MeV.
The derived mean sensitivity radii for the energies investigated
are RV = 9.10 ± 0.18 fm and RW = 9.22 ± 0.61 fm. Those
results are shown in Table III, together with the values found
for the 6Li + 27Al [21] and 7Li +27Al [22] systems.

With an average sensitive radius RS = 9.16 fm (average
between RV and RW ), we performed the usual procedure of
starting the fit by keeping fixed all reduced radii and diffuse-
ness parameters, and changing only the real and imaginary
depths of the potential. The real and imaginary reduced radii
and diffuseness were fixed as rr = 1.25 fm, ar = 0.57 fm,
ri = 1.20 fm and ai = 0.70 fm, respectively. The initial values
of the real and imaginary depths were V0 = 35 MeV and
W0 = 18 MeV, respectively. Good fits of the elastic scattering
angular distribution data were obtained, similar to the ones
shown in Fig. 3 for the SPP, and will not be shown here. For
this reason we did not perform extra fits for the reduced radii
and diffuseness. In a procedure similar to the one used with
the SPP analysis, different calculations varying the Rs value
within its uncertainty were used to estimate the uncertainties
on the real and imaginary depths. The values of these depths
as a function of energy, the real and imaginary potentials at the
average sensitive radius and the total reaction cross sections
are shown in Table IV. The energy dependence of the real
and imaginary potentials at Rs is shown in Fig. 5. One can
observe that the real and imaginary parts of the potential have
a roughly energy independent behavior, similar to the results
obtained previously with the SPP. However, given the error
bars, it is difficult to draw any definite conclusion concerning
the behavior of the optical model energy dependence in the
present case.

A different behavior was verified for the elastic scattering
of the 7Be + 58Ni system [23], where it is found that the

TABLE IV. Values of the depths of the real and imaginary parts of
the Woods-Saxon potential (in MeV) which fit the elastic scattering
data, fixing the reduced radii and diffuseness for each energy (in
MeV). The real and imaginary potentials (in MeV) at the average
sensitive radius and the reaction cross sections (in mb) are also shown.

Elab Vo Wo VRS
WRS

σreac

10.0 16 ± 15 33 ± 16 0.09 +0.17
−0.09 0.30 ± 0.22 141 ± 56

13.8 62 ± 13 25 ± 10 0.34 ± 0.18 0.23 ± 0.10 741 ± 48
15.2 68 ± 17 21 ± 9 0.37 ± 0.18 0.22 ± 0.09 896 ± 71
15.4 73 ± 14 19 ± 11 0.41 ± 0.18 0.19 ± 0.10 921 ± 98
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FIG. 5. Energy dependence of the optical potential using the
volume Woods-Saxon potential at the average sensitivity radius (see
text for details).

imaginary potential increases as the energy decreases towards
the barrier energy, with a behavior more compatible with the
scattering of 6Li rather than 7Li. However from Table III we
can also observe that the average sensitivity radius for 7Be is
closer to 6Li than to its mirror 7Li projectiles. These results
are in agreement with the studies of Ref. [24] where it was
shown, by means of continuum discretized coupled channel
calculations for the 6,7Li + 208Pb and 7Be + 208Pb systems,
that 7Be with its low breakup threshold behaves like 6Li rather
than 7Li.

IV. TOTAL REACTION CROSS SECTIONS

To investigate the effect of the breakup and transfer
channels of weakly bound nuclei on the total reaction cross
section, the most used approach is to measure elastic scattering
angular distributions to derive the total reaction cross sections
from the optical model fit of the experimental data. Then,
comparison of the total reaction cross sections for those
systems with some other weakly and tightly bound systems
is done. In Tables II and IV is shown the total reaction
cross sections obtained for the 7Be + 27Al system, derived
from the optical model fitting of the experimental elastic
scattering angular distributions. One can notice that the values
of cross sections obtained from the Woods-Saxon potential
and from the São Paulo potential are similar, within the error
bars.

To compare excitation functions for different reactions in
the same plot, a proper normalization method must be used,
taking into account trivial factors to correct the cross sections
and center-of-mass energies, like different sizes and Coulomb
barriers of the systems. A widely used reduction method is the
one proposed by Gomes et al. [25], which consists in dividing
the cross section by (A1/3

P + A
1/3
T )2 and the center-of-mass

energy by ZP ZT /(A1/3
P + A

1/3
T ), where AP (ZP ) and AT (ZP )

are the mass (charge) of projectile and target, respectively.
More recently, Shorto et al. [26] proposed an alternative
method, also widely used nowadays, based on an extension
of the reduction method proposed by Canto et al. [27], where

0.5 1.0 1.5 2.0 2.5
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σ r
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FIG. 6. (Color online) Reduced total reaction cross sections for
several projectiles and the same 27Al target, using the reduction
procedure proposed in Ref. [25].

fusion functions are analyzed, instead of fusion cross sections.
Shorto et al. proposed to analyze total reaction functions
instead of total reaction cross sections. In the following we
use both methods to compare total reaction cross sections
(or functions), for several weakly bound systems, obtained
from the optical model fit of the experimental elastic scattering
angular distributions.

In Fig. 6 we show the reduced total reaction cross sections
for the 7Be + 27Al system and also for the stable weakly bound
projectiles 6,7Li, 9Be, and the tightly bound 16O with the same
27Al target. Data are from [10,21,22,28,29]. We also show data
for the 7Be + 27Al system obtained at higher energies than ours
(Elab = 17, 19, and 21 MeV) [30]. The reduction method used
was the one proposed in Ref. [25]. This figure is similar to
Fig. 3 in Ref. [10]. The error bars for all the systems, except
for the 7Be + 27Al, were taken from Ref. [10]. For 7Be +
27Al from Ref. [30] we assumed error bars of the order of 8%,
similar to the ones reported by Benjamim for 6He [10].

One can observe that the cross sections for the weakly
bound projectiles are similar and larger than those for the
tightly bound nucleus 16O. The 7Be projectile produces total
reaction cross sections similar to the stable weakly bound
nuclei, which have breakup threshold energies of the same
order. So, from this figure we conclude that the total reaction
cross section increases for weakly bound systems, when the
breakup process becomes important and transfer channels also
are expected to be more important than for tightly bound
systems. However, the reaction cross sections are similar for
the halo 6He, the radioactive nonhalo 7Be, and the stable
weakly bound 6Li, 7Li, and 9Be, contrary to what is observed
for heavier targets, when it is found that the reaction cross
section values for halo projectiles are larger than those for
stable weakly bound ones [14,17,25,31–37]. This different
behavior may be attributed to the small Coulomb field for the
light projectiles on the light 27Al target, leading to smaller
breakup probability than when heavy targets are involved. The
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FIG. 7. (Color online) Reduced total reaction cross sections for
several projectiles and the same 27Al target, using the reduction
procedure proposed in Ref. [26].

same conclusion was reached for the total reaction of 7Be on
the light 12C target [18,38].

Figure 7 shows the total reaction functions for the same
systems, adopting the reduction prescription proposed by
Shorto et al. [26]. With this reduction procedure, all systems
show the same reaction functions, including the tightly
bound 16O. The same behavior was observed in Fig. 1 of
Ref. [39], where several systems with the same 27Al target
were plotted. Similar behaviors concerning the total reaction
functions for heavier targets were obtained; that is, the tightly
bound projectiles, heavier than the weakly bound ones, do
not show reaction functions smaller than weakly bound
ones [14,17,18,26,31,38,39]. Only in Fig. 1 of Ref. [26] is the
total reaction cross section of 6He + 27Al higher than those of
weakly bound, stable, or tightly bound systems. In the present
work we recalculated all total reaction functions and we have
found the results shown in Fig. 7, which are in agreement with
those of Ref. [39].

The conclusions from both reduction methods concerning
the halo and nonhalo weakly bound projectiles are similar,
but when one compares with the heavier and tightly bound
projectiles, the conclusions are different. Which is the correct
way to compare the total reaction cross sections for different
systems is still an open question. In the following we will make
some comments about this subject.

When one deals with the fusion process, the proper way
to reduce cross sections of different systems in the same
plot is the method proposed by Canto et al. [27], as clearly
shown in that reference. In an idealized situation, where
channel couplings are not relevant, the fusion cross section
near the barrier can be approximated by Wong’s formula. In
this situation, the reduction method of Ref. [27] produces a
system independent function, called UFF. The UFF is then
used as a benchmark, so that the deviation of the reduced data
with respect to it measures the importance of the couplings.
If one aims at understanding the role of breakup couplings, as
one usually does when dealing with weakly bound systems,

the fusion function is renormalized so that the influence of
couplings with bound channels is washed out. The deviation
of the renormalized fusion function with respect to its universal
form then measures the influence of the breakup channel. In
the study of reaction cross sections, the situation is different,
mainly when this cross section gets a large contribution from
peripheral processes, like inelastic scattering and transfer. The
cross section for these processes is associated with surface
absorption, which does not correspond to tunneling through
the barrier of the bare potential. Thus, the method of Ref. [26]
is not expected to work so well. At the present we believe
that neither of the two reduction methods discussed in the
present paper might be able to fully eliminate all trivial
differences among the systems when a broad mass range is
considered. However, this is a complex issue that requires
further investigation, which is beyond the scope of the present
work.

V. CONCLUSIONS

We investigated the elastic scattering of the radioactive
no-halo weakly bound 7Be projectile by the light 27Al target,
at near-barrier energies. The experiments were performed in
two laboratories. The analysis of the energy dependence of the
interacting optical potential was performed by two different
approaches, the first one using the double-folding Sao Paulo
potential and the second one using the phenomenological vol-
ume Woods-Saxon potential. From both analyses the potentials
that fit the data might be considered as energy independent,
although there are large error bars. The conclusions from
this energy dependence analysis are susceptible to large
uncertainties due to the very thick targets used and to the
fact that the data do not cover a sufficiently large angular
range.

Furthermore, we compare the behavior of the optical po-
tential for this system with others for weakly bound projectiles
(6Li, 7Li, 9Be) and the same target. We did not reach a
conclusion about that, since from the energy dependence of the
optical potential, the behavior of the scattering of the mirror 7Li
seems to be similar to the one of 7Be, whereas the average radii
of sensitivity derived for the 7Be and 6Li projectiles are similar.
The comparison of the total reaction cross sections for several
projectiles on the same 27Al target was investigated by two
different widely used methods. Although they were found to
be similar for halo and nonhalo weakly bound projectiles from
both reduction methods used, the comparison of those systems
with the ones with heavier and tightly bound projectiles leads
to different conclusions. Which is the proper method to be
used is still an open question, and therefore at the present one
has to be careful before drawing strong conclusions using one
of either methods.
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