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Ground-state properties of neutron-rich Mg isotopes
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We analyze recently measured total reaction cross sections for 24–38Mg isotopes incident on 12C targets at
240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics (AMD). The folding
model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the
deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24–38Mg are then deduced from
the measured reaction cross sections by fine tuning the parameters of the def-WS model. The deduced matter radii
are largely enhanced by nuclear deformation. Fully microscopic AMD calculations with no free parameter well
reproduce the deduced matter radii for 24–36Mg, but still considerably underestimate them for 37,38Mg. The large
matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing
measured ground-state properties (spin parity, total binding energy, and one-neutron separation energy) of Mg
isotopes. Neutron-number (N ) dependence of deformation parameter is predicted by AMD. Large deformation
is seen from 31Mg with N = 19 to a drip-line nucleus 40Mg with N = 28, indicating that both the N = 20 and
28 magicities disappear. N dependence of neutron skin thickness is also predicted by AMD.
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I. INTRODUCTION

Elucidation of properties of unstable nuclei is an important
subject in nuclear physics. Some exotic properties were found
so far in unstable nuclei particularly near the drip line. One
is the change of well-known magicity. The standard shell
ordering can evolve as a function of neutron number N or
proton number Z due to residual nucleon-nucleon interactions.
This leads to a quenching of some shell gaps and consequently
the change of magic numbers. When the abrupt onset of the
change of magic numbers appears in a region, the region
is called the island of inversion. In the region, nuclei have
larger binding energies than expected due to collectivity such
as rotation.

As a pioneering work, Klapisch and Thibault first revealed
anomalies in the binding energies of neutron-rich Na isotopes
[1,2], and Warburton et al. predicted that (sd)−2(fp)2 intruder
configurations form the ground states in the N = 20 ∼ 22
region of Ne, Na, and Mg isotopes [3]. This prediction
was supported by mass measurements [4]. In the region,
strong deformation of nuclei was suggested by measured low
excitation energies and large B(E2) values of the first excited
states [5–9]. As a mechanism behind the shell-gap quenching,
more recently, the importance of the nucleon-nucleon tensor
interaction was pointed out by Otsuka et al. [10,11]. The
N = 20 magicity is thus considered to disappear in Ne, Na,
and Mg isotopes.

*s-watanabe@phys.kyushu-u.ac.jp

Another important progress in the physics of unstable
nuclei is the discovery of halo nuclei by measurements of
interaction cross sections σI or one- and two-neutron removal
cross sections [12–14]. Here σI is used as a substitute of
reaction cross sections σR, since the two cross sections
are nearly identical for the scattering of unstable nuclei at
intermediate and high incident energies [15]. Now, 6He, 11Li,
11Be and others are considered to be halo nuclei. Recently,
Nakamura et al. [16] suggested through measurements of the
one-neutron removal cross section of 31Ne on C and Pb targets
at 240 MeV/nucleon that 31Ne is a halo nucleus that resides
in the island of inversion. Takechi et al. [17] measured σI for
Ne isotopes incident on 12C targets at 240 MeV/nucleon and
came to the same conclusion as Nakamura et al. Very recently,
Takechi et al. measured σR for 24–38Mg isotopes on C targets
at 240 MeV/nucleon [18] and suggested that 37Mg is a halo
nucleus.

A powerful tool of analyzing measured σR or σI micro-
scopically is the folding model with the g-matrix effective
nucleon-nucleon interaction [19–29]. For nucleon scattering
from stable target nuclei, the folding potential with the
Melbourne g-matrix interaction reproduces measured elastic
and reaction cross sections systematically with no adjustable
parameter [26,29]. The folding model is reliable also for
the scattering of unstable nuclei from stable target nuclei at
intermediate incident energies, say 200 MeV/nucleon, since
the projectile breakup is small there. In fact, for 31Ne scattering
from 12C targets at 240 MeV/nucleon, the breakup cross
section is about 1% of σR [30]. This indicates that the folding
model is reliable also for other nucleus-nucleus scattering at

0556-2813/2014/89(4)/044610(13) 044610-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.89.044610


S. WATANABE et al. PHYSICAL REVIEW C 89, 044610 (2014)

intermediate energies, since 31Ne is one of the most weakly
bound systems.

The optical potential of nucleus-nucleus scattering is
obtained by folding the g matrix with the projectile and target
densities. When the projectile is deformed, the density profile
is elongated by the deformation. The elongation enlarges the
root-mean-square (rms) radius of the projectile and eventually
σR. Recently, antisymmetrized molecular dynamics (AMD)
with the Gogny-D1S interaction [31] was applied to nuclei
in the island of inversion [32,33]. The calculations with the
angular momentum projection (AMP) show that the nuclei
are largely deformed. The result is consistent with that of the
Hartree-Fock-Bogoliubov calculations with the AMP [34,35].
Here n-particle m-hole excitations in the Nilsson orbitals are
essential to determine the deformed configurations.

Very recently, the folding model with AMD projectile
density succeeded in reproducing measured σI for 28–30,32Ne
by virtue of large deformation of the projectiles [36]. For
31Ne, the theoretical calculation underestimated measured σI

by about 3%. The AMD density has an inaccurate asymptotic
form, since each nucleon is described by a Gaussian wave
packet in AMD. The error coming from the inaccuracy is not
negligible when the one-neutron separation energy Sn is small,
say Sn � 1 MeV, and thereby the nucleus has halo structure
[15]. The tail correction to the AMD density was then made
by the 30Ne + n resonating group method (RGM) with core
excitations in which the deformed ground and excited states of
30Ne are calculated with AMD [36]. The folding model with
the tail-corrected AMD-RGM density reproduces measured
σI for 31Ne. The fact leads to the conclusion that 31Ne is the
deformed halo nucleus, which resides in the island of inversion.

The deformed Woods-Saxon (def-WS) model with AMD
deformation provides the matter density with the proper
asymptotic form [37]. The def-WS model well reproduces
measured σR for 20–32Ne, and the results of the def-WS density
with AMD deformation are consistent with those of the AMD
density for 20–30,32Ne and with that of the AMD-RGM density
for 31Ne. The def-WS model with AMD deformation is thus
a handy way of simulating AMD or AMD-RGM densities.
The def-WS model with AMD deformation also reproduces
measured σR for 24–36Mg [18]. As another advantage of the
def-WS model, one can fine tune the theoretical result to
the experimental data precisely by changing the potential
parameters or the deformation parameter slightly. Making this
analysis for 37Mg, we suggested in our previous work [18] that
37Mg is a deformed halo nucleus.

In this paper, we first determine matter radii of 24–38Mg
systematically from measured σR by fine tuning the parameters
of the def-WS model. This flexibility is an advantage of the
def-WS model. We next confirm that matter radii are largely
enhanced by nuclear deformation for Mg isotopes.

Fully microscopic AMD calculations, meanwhile, have
no adjustable parameter and hence high predictability, if
the results of AMD calculations are consistent with existing
experimental data. We then compare the deduced matter radii
with the results of AMD calculations. The calculations are
successful in reproducing the deduced matter radii particularly
for 24–36Mg. For 37,38Mg, meanwhile, AMD calculations
considerably underestimate the deduced matter radii. This sug-

gests that 37,38Mg are candidates for deformed halo nucleus.
AMD calculations are also successful in reproducing existing
experimental data on other ground-state properties (spin parity,
total binding energy, and one-neutron separation energy) of
Mg isotopes. N dependence of deformation parameter and
neutron-skin thickness is therefore predicted with AMD.

The theoretical framework is presented in Sec. II. Numer-
ical results are shown in Sec. III. Comparison of the def-WS
results with the AMD results is made and structure of 37Mg is
discussed in Sec. IV. Section V is devoted to a summary.

II. THEORETICAL FRAMEWORK

In this section, we recapitulate the folding model, AMD,
and the def-WS model. Further explanation is presented in
Ref. [15] for the folding and def-WS models and Refs. [15,33]
for AMD.

A. Folding model

The nucleus-nucleus scattering is governed by the many-
body Schrödinger equation,

⎛
⎝TR + hP + hT +

∑
i∈P,j∈T

vij − E

⎞
⎠ �(+) = 0, (1)

with the realistic nucleon-nucleon interaction vij , where E is
the total energy, TR is the kinetic energy between the projectile
(P) and the target (T), and hP (hT) is the internal Hamiltonian
of P (T). Equation (1) is reduced to

⎛
⎝TR + hP + hT +

∑
i∈P,j∈T

τij − E

⎞
⎠ �̂(+) = 0 (2)

by using the multiple-scattering theory [38,39] for nucleus-
nucleus scattering [40]. Here τij is the effective nucleon-
nucleon interaction in the nuclear medium, and the g matrix
is often used as such τij [19–28]. At intermediate and high
incident energies of our interest, breakup and collective
excitations of P and T are small [15], and Eq. (2) is further
reduced to the single-channel equation

[TR + U − Ein]ψ = 0, (3)

with the folding potential

U = 〈�0|
∑

i∈P,j∈T

τij |�0〉, (4)

where Ein is the incident energy, �0 is the product of the
ground states of P and T, and ψ is the relative wave function
between P and T. This is nothing but the folding model
based on the g-matrix interaction. In particular, the folding
model with the Melbourne g matrix [26] well reproduces
σR for Ne isotopes incident on a 12C target at 240 MeV/A
[15,36,37].
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The potential is composed of the direct and exchange parts,
UDR and UEX [41,42]:

UDR(R) =
∑
μ,ν

∫
ρ

μ
P (rP)ρν

T(rT)gDR
μν (s; ρμν)d rPd rT, (5)

UEX(R) =
∑
μ,ν

∫
ρ

μ
P (rP,rP − s)ρν

T(rT,rT + s)

× gEX
μν (s; ρμν) exp [−i K (R) · s/M]d rPd rT, (6)

where R is the relative coordinate between P and T, s =
rP − rT + R, and rP (rT) is the coordinate of the interacting
nucleon from P (T). Each of μ and ν denotes the z component
of isospin; 1/2 means neutron and −1/2 does proton. The
nonlocal UEX has been localized in Eq. (6) with the local
semiclassical approximation [21], where K (R) is the local
momentum between P and T, and M = AAT/(A + AT) for
the mass number A (AT) of P (T); see Refs. [43,44] for the
validity of the localization. The direct and exchange parts, gDR

μν

and gEX
μν , of the g matrix depend on the local density

ρμν = ρ
μ
P (rP − s/2) + ρν

T(rT + s/2) (7)

at the midpoint of the interacting nucleon pair; see Ref. [15]
for the explicit forms of gDR

μν and gEX
μν .

The relative wave function ψ is decomposed into partial
waves χL, each with different orbital angular momentum L.
The elastic S-matrix elements SL are obtained from the
asymptotic form of the χL. The total reaction cross section
σR is calculable from the SL as

σR = π

K2

∑
L

(2L + 1)(1 − |SL|2). (8)

The potential U has the nonspherical part when the projectile
spin is nonzero. In the present calculation, we neglect the
nonspherical part since the approximation is confirmed to be
quite good for the reaction cross section [15,29].

B. AMD

AMD starts with the many-body Schrödinger equation

H = T +
∑
i<j

v̄ij − Tcm (9)

with the effective nucleon-nucleon interaction v̄ij , where the
center-of-mass kinetic energy Tcm is subtracted from the ki-
netic energy T of nucleons. In this paper, we use the Gogny-
D1S effective nucleon-nucleon interaction [31] plus Coulomb
interaction as v̄ij .

The variational wave function �π is parity projected from
the Slater determinant of nucleon wave packets:

�π = P πA {ϕ1,ϕ2, . . . ,ϕA} , (10)

where P π (A) is the parity-projection (antisymmetrization)
operator. The ith single-particle wave packet ϕi is defined by
ϕi = φi(r)χiξi with

φi(r) =
∏

σ=x,y,z

(
2νσ

π

)1/4

exp

{
−νσ

(
rσ − Ziσ√

νσ

)2}
, (11)

χi = αi,↑χ↑ + αi,↓χ↓, |αi,↑|2 + |αi,↓|2 = 1, (12)

ξi = p or n. (13)

The centroids Zi , the width νσ , and the spin directions αi,↑ and
αi,↓ of Gaussian wave packets are variational parameters. The
center-of-mass wave function can be analytically separated
from the variational wave function. Hence all quantities
calculated with AMD are free from the spurious center-of-
mass motion.

The parameters in Eq. (10) are determined with the
frictional cooling method by minimizing the total energy under
the constraint on the matter quadrupole deformation parameter
β̄ defined by

〈x2〉1/2

[〈x2〉〈y2〉〈z2〉]1/6
= exp

[√
5

4π
β̄ cos

(
γ̄ + 2π

3

)]
, (14)

〈y2〉1/2

[〈x2〉〈y2〉〈z2〉]1/6
= exp

[√
5

4π
β̄ cos

(
γ̄ − 2π

3

)]
, (15)

〈z2〉1/2

[〈x2〉〈y2〉〈z2〉]1/6
= exp

[√
5

4π
β̄ cos γ̄

]
. (16)

Here, 〈x2〉, 〈y2〉, and 〈z2〉 defined in the intrinsic frame are
so chosen to satisfy the ordering 〈x2〉 � 〈y2〉 � 〈z2〉. Since no
constraint is imposed on γ̄ , it has an optimal value for each
value of β̄.

After the variation, we perform the AMP for each value of
β̄,

�Iπ
mK (β̄) = P I

mK�π
int(β̄), (17)

P I
mK = 2I + 1

8π2

∫
d�DI∗

mK (�)R(�), (18)

where DI
mK (�) and R(�) are the Wigner’s D function and the

rotation operator, respectively. The wave functions that have
the same parity and angular momentum (I,m) are superposed
as

�Imπ
n =

I∑
K=−I

∑
β̄

cnK (β̄)�Iπ
mK (β̄), (19)

where β̄ is varied from 0 to 1 with an interval of 0.025 in
actual calculations. The coefficients cnK (β̄) are determined by
solving the Hill-Wheeler equation.

The ground-state wave function �Imπ
g.s. thus obtained is

transformed into the nucleon density as

ρImIm′(r) = 〈
�Imπ

g.s.

∣∣ ∑
i

δ(r i − X − r)
∣∣�Im′π

g.s.

〉
, (20)

=
2I∑

λ=0

ρ
(λ)
II (r)(Im′λμ|Im)Y ∗

λμ(r̂), (21)

where X denotes the center-of-mass coordinate. When I >
0, the multipolarity λ can take nonzero values. The nonzero
components make the folding potential U nonspherical. But
the effects are small on σR [15,29]. We then take only the
spherical (λ = 0) component in this paper.

044610-3



S. WATANABE et al. PHYSICAL REVIEW C 89, 044610 (2014)

C. def-WS model

The def-WS potential consists of the central and spin-orbit
parts:

Vc(r) = V0

1 + exp[dist�(r)/a]
, (22)

Vso(r) = λso

(
�

2mredc

)2

∇Vc(r) ·
(

σ × 1

i
∇

)
, (23)

where mred = m(A − 1)/A for nucleon mass m and the
function dist�(r) represents the distance of a point r from
the deformed surface � that is specified by the radius

R(θ,φ; α) = R0cv(α)

⎡
⎣1 +

∑
λμ

α∗
λμYλμ(θ,φ)

⎤
⎦ , (24)

with the deformation parameters α ≡ {αλμ}. The constant
cv(α) is introduced to guarantee the volume conservation of
nucleus. Since the effect of the hexadecapole deformation on
the reaction cross section is rather small [15], we only include
the quadrupole deformation in this study. The parameter set
(α2μ) is related to the standard set (β2,γ ) as

α20 = β2 cos γ,

α22 = α2−2 = − 1√
2
β2 sin γ.

(25)

As the parameter set (V0,R0,a,λso) of the Woods-Saxon (WS)
potential, we take a recent parametrization given by Wyss [45];
see Appendix A for actual values of the parameter set.

The deformation parameters (β2, γ ) in the def-WS model
are determined from the corresponding deformation parame-
ters (β̄, γ̄ ) in AMD. Here, the parameters (β̄, γ̄ ) of AMD wave
function �Imπ

n [Eq. (19)] are defined as those of the basis
wave function �Iπ

mK (β̄) [Eq. (17)], which has the maximum
overlap with �Imπ

n . The relation between (β̄,γ̄ ) in AMD and
(β2,γ ) in the def-WS model is obtained so that both the models
can yield the same ratio 〈x2〉 : 〈y2〉 : 〈z2〉; see Appendix B for
further explanation and actual values of β̄ and β2 for Mg
isotopes.

The nucleon density calculated by the def-WS model is
the intrinsic density in the body-fixed frame and unisotropic,
while the density used in the folding model is that in the
laboratory frame. In order to obtain the latter from the former
one has to perform the AMP. Instead, we use the angle average
of the deformed intrinsic density, which has been confirmed
to be a good approximation of the projected density; see
Ref. [15] for details.

D. Spherical HF and HFB

As a reference, the spherical Hartree-Fock (HF) and spher-
ical Hartree-Fock-Bogoliubov (HFB) methods are employed
to calculate the nucleon density for the spherical systems. In
the HF and HFB calculations it is important to properly choose
the effective interaction in order to obtain accurate description
of the ground state. We use consistently the same Gogny-D1S
interaction [31] as in the AMD calculation for this purpose. We
refer to the spherical Gogny HF and HFB methods as sph-GHF
and sph-GHFB in this paper. The spherical shape is imposed
with the filling approximation as a standard manner, whenever
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FIG. 1. (Color online) Reaction cross sections for the 12C scat-
tering on stable nuclei from A = 12 to 40. The data for 12C and 27Al
at 250.8 MeV/nucleon are taken from Ref. [48]. The data for 20Ne
and 23Na at 250 MeV/nucleon are deduced from the measured σI

at around 1 GeV/nucleon [49,50] with the Glauber model [17]. The
data for 40Ca at 240 MeV/nucleon is obtained from the measured
σR at 83 MeV/nucleon [51] with the Glauber model [18]. The solid
(dotted) line stands for the results of the folding-model calculations
after (before) the normalization with a factor F = 0.982.

sph-GHF and sph-GHFB calculations are done. In actual
sph-GHF and sph-GHFB calculations, we adopt the Gaussian
expansion method [46], which reduces numerical tasks.

III. RESULTS

A. Reaction cross sections for stable nuclei

First, the accuracy of the Melbourne g-matrix folding model
(i.e., the folding model with the Melbourne g-matrix interac-
tion) is tested for the scattering of 12C from several stable
nuclei at intermediate energies around 250 MeV/nucleon.
The g-matrix folding model was successful in reproducing
measured reaction cross sections for 12C, 20Ne, 23Na, and 27Al
[15,36,37]. In this paper, we newly consider 24Mg and 40Ca
targets in addition to the stable targets mentioned above. We
employ the phenomenological densities [47] as the projectile
and target densities, where the proton density is deduced from
the electron scattering and the neutron distribution is assumed
to have the same geometry as the proton one. This assumption
is good for the stable nuclei, since the neutron rms radii are
almost the same as the proton ones in sph-GHF calculations.

Figure 1 shows reaction cross sections for the 12C scattering
from 12C, 20Ne, 23Na, 24Mg, 27Al, and 40Ca targets at around
250 MeV/nucleon. The experimental data are taken from
Refs. [18,48–51]. The results of the folding-model (dotted
line) well reproduce the experimental data. More precisely,
they slightly overestimate the data. We then introduce the
normalization factor of F = 0.982 to reproduce the mean
value of the experimental data for 12C. The result (solid line)
is consistent with experimental data for other targets. This fine
tuning is taken also for the scattering of Mg isotopes from 12C
targets around 240 MeV/nucleon.
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FIG. 2. (Color online) Reaction cross sections for the scattering
of Mg isotopes at 240 MeV/nucleon. The experimental data are taken
from Ref. [18]. The solid line stands for the results of the def-WS
model with AMD deformation, whereas the dotted line corresponds
to the results of spherical Woods-Saxon (sph-WS) calculations.

B. Matter radii of Mg isotopes

Figure 2 shows a comparison of calculated and mea-
sured σR for the scattering of 24–38Mg on a 12C target at
240 MeV/nucleon. The σR are evaluated by the folding model
with different types of projectile densities; one is the densities
calculated by the def-WS model with AMD deformation and
the other is the densities of spherical Woods-Saxon (sph-WS)
calculations. The solid line denotes the results of the def-WS
model, whereas the dotted line corresponds to the results of
sph-WS calculations. The large difference between the two
lines shows that nuclear deformation effects are important
in σR. The def-WS model yields good agreement with the
experimental data [18]. For 37Mg, however, the def-WS model
slightly underestimates the measured σR, indicating that 37Mg
is a deformed halo nucleus; see Ref. [18] and Sec. IV B for
details.

Since the def-WS results are consistent with the measured
σR, we deduce the rms radii of Mg isotopes from the measured
σR by fitting it with the calculation, where either the depth
parameter V0 or the deformation parameter β2 are adjusted
slightly in the def-WS potential. This flexibility is a merit of
the def-WS model.

The relation between σR and the corresponding rms matter
radius is plotted in Fig. 3 for two nuclei; Fig. 3(a) 24Mg and
Fig. 3(b) 37Mg. The closed circles denote the results of the def-
WS model in which β2 is varied from 0 to 0.6 with the interval
of 0.1 with keeping all other parameters. Note that the AMD
deformation used in Fig. 3 is β2 = 0.433 for 24Mg and is
β2 = 0.362 for 37Mg, respectively (see Table IV). Larger β2

yields larger rms radius and hence larger σR. The open squares
correspond to the results of the def-WS model in which |V0|
is reduced by a factor 1 ∼ 0.72 with interval 0.04 for 24Mg in
Fig. 3(a) and by a factor 1 ∼ 0.92 with interval 0.01 for 37Mg
in Fig. 3(b). The results of sph-GHF, spherical Woods-Saxon
(sph-WS), and AMD densities are also shown by open triangles
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FIG. 3. (Color online) Relation between the rms matter radius
and the reaction cross section for (a) 24Mg and (b) 37Mg. The closed
circles stands for the results of the def-WS model in which β2 is varied
from 0 to 0.6 with interval 0.1, and the open squares correspond
to the results of the def-WS model in which |V0| is reduced by a
factor 1 ∼ 0.72 with interval 0.04 for 24Mg in (a) and by a factor
1 ∼ 0.92 with interval 0.01 for 37Mg in (b). Smaller β2 corresponds
to smaller rms matter radius and hence smaller reaction cross section,
while smaller |V0| does to larger rms matter radius and hence larger
reaction cross section. The open triangles denote the results of sph-
GHF, sph-WS, AMD densities from bottom. For 24Mg, the result
of the phenomenological density [47] is also presented by a closed
triangle. The hatching region shows the lower and upper bounds of
measured σR.

from bottom (i.e., they are in increasing order). For 24Mg,
the result of the phenomenological density deduced from the
electron scattering [47] is also presented by a closed triangle.
As an important result, all the results are on a straight line for
each case of Fig. 3(a) 24Mg and of Fig. 3(b) 37Mg. We can then
precisely determine matter radii of Mg isotopes corresponding
to the measured σR by using the straight line.

The resultant matter radii of Mg isotopes are tabulated
in Table I and are plotted as a function of mass number
A in Fig. 4. The dotted and dashed lines represent the
results of sph-GHF calculations for Mg isotopes and stable
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TABLE I. Matter radii of Mg isotopes deduced from measured σR.
Mean values of deduced matter radii are evaluated from those of the
corresponding σR, while errors of deduced matter radii are estimated
from those of measured σR by the straight solid lines shown in Fig. 3.
All the values are shown in units of fm.

nuclide rms radius error

24Mg 3.03 0.08
25Mg 2.99 0.05
26Mg 2.99 0.04
27Mg 2.99 0.03
28Mg 3.12 0.04
29Mg 3.14 0.02
30Mg 3.11 0.03
31Mg 3.25 0.03
32Mg 3.30 0.02
33Mg 3.38 0.03
34Mg 3.44 0.04
35Mg 3.44 0.03
36Mg 3.49 0.01
37Mg 3.62 0.03
38Mg 3.60 0.04

A = 24–40 nuclei, respectively. The two lines correspond
to matter radii of the nuclei in the spherical limit. For the
spherical nucleus 40Ca, the matter radius determined from the
electron scattering [47] are plotted by an open triangle, which
lies on the dashed line, indicating the reliability of sph-GHF
calculations. The difference between the dotted and dashed
lines shows the neutron-skin effects; the increase of neutron
excess makes the Fermi energy of neutrons much larger than
that of protons, and consequently the neutron radius bulges out
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FIG. 4. (Color online) Matter radii of Mg isotopes deduced from
measured σR. The dotted line denotes the results of sph-GHF
calculations. The calculated radii by the sph-GHF model for stable
A = 24–40 nuclei are also included as the dashed line, where the
nuclei included are 24Mg, 27Al, 28Si, 31P, 32S, 35Cl, 39K, and 40Ca. For
spherical nucleus 40Ca, matter radius determined from the electron
scattering [47] is shown by an open triangle.

compared to those of stable N ≈ Z nuclei. Large enhancement
of the deduced radii from the dotted line mainly comes from
nuclear deformation. Further discussion is made in the next
Sec. III C.

For 37Mg, the matter radius should be carefully deduced
from the measured σR, since the def-WS model with AMD
deformation considerably underestimates the measured σR. In
the previous analysis [18], we assumed that 37Mg is a deformed
halo nucleus and reduced the potential depth only for the last
neutron without changing the potential for the core nucleons.
At β2 = 0.362 calculated with AMD, the [312 5/2] orbital
coming from the spherical 0f7/2 orbital has slightly lower
energy than the [321 1/2] orbital coming from the spherical
1p3/2 orbital. In the case that the last neutron is in the [312
5/2] orbital, the calculated σR cannot reproduce the measured
σR even if the potential depth is reduced. This problem can
be solved if the last neutron is in the [321 1/2] orbital. In the
previous analysis, therefore, the last neutron is assumed to be
in the [321 1/2] orbital and the potential depth is reduced only
for the last neutron. In the present analysis, meanwhile, we
simply consider that the last neutron is in the [312 5/2] orbital
and reduce the potential depth uniformly for all the nucleons,
i.e., the core (36Mg) is also slightly expanded by the reduction.
The deduced matter radius is 3.62 ± 0.03 fm in the present
analysis and 3.65+0.09

−0.05 fm in the previous analysis, although
in the previous analysis the solid line shown in Fig. 3(b) was
slightly bent for both are consistent with each other within the
error bars. The matter radius is thus almost independent of the
deduction procedure taken.

In Fig. 3(b), the matter radius of 37Mg calculated by
the sph-WS model is considerably larger than that by the
sph-GHF model. This indicates that the depth of the present
parametrization of the WS potential is a bit too shallow for
such an unstable nucleus with large neutron excess. This point
will be discussed later in Sec. IV A.

TABLE II. Ground-state properties of Mg isotopes predicted by
AMD. For 40Mg, the two-neutron separation energy S−2n is shown,
since 39Mg is unbound in AMD calculations.

nuclide Iπ (exp) Iπ (AMD) S−1n [MeV] β̄ γ̄

24Mg 0+ 0+ 0.42 0
◦

25Mg 5/2+ 5/2+ 7.125 0.40 0
◦

26Mg 0+ 0+ 10.211 0.375 0
◦

27Mg 1/2+ 1/2+ 6.444 0.35 0
◦

28Mg 0+ 0+ 8.881 0.35 0
◦

29Mg 3/2+ 3/2+ 4.123 0.295 0
◦

30Mg 0+ 0+ 5.781 0.285 25
◦

31Mg 1/2+ 1/2+ 2.624 0.44 0
◦

32Mg 0+ 0+ 5.598 0.395 0
◦

33Mg 3/2− 3/2− 2.640 0.44 0
◦

34Mg 0+ 0+ 3.622 0.35 0
◦

35Mg (7/2−) 3/2+ 1.011 0.40 0
◦

36Mg 0+ 0+ 2.993 0.39 0
◦

37Mg (7/2−) 5/2− 0.489 0.355 0
◦

38Mg 0+ 0+ 2.112 0.38 0
◦

39Mg unbound
40Mg 0+ 0+ 1.119 (S−2n) 0.41 0

◦
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C. AMD analyses for Mg isotopes

First, the ground-state properties, i.e., spin parity Iπ , one-
neutron separation energy S−1n, and deformation parameters β̄
and γ̄ , of Mg isotopes are predicted by AMD and tabulated
in Table II. AMD calculations yield the same Iπ as the data
[52] for 24–34Mg. For 35,37,39Mg, meanwhile, we cannot make
definite discussion on Iπ , since it is not established experimen-
tally. For 37Mg, AMD calculations yield a small S−1n value
consistent with the empirical values 0.16 ± 0.68 MeV [52],
though the error is large. For 39Mg, S−1n is negative in both
the AMD calculation and the empirical value [52]. In fact,
39Mg is experimentally shown to be unbound in Ref. [53].

In Fig. 5, total binding energy per nucleon and S−1n are
shown as a function of A for Mg isotopes. The experimental
data [52] are compared with the results of sph-GHF, sph-
GHFB, and AMD calculations, where the Gogny-D1S force is

FIG. 5. (Color online) (a) Total binding energy per nucleon and
(b) one-neutron separation energy as a function of mass number for
Mg isotopes. The solid, dashed, and dotted lines represent the results
of AMD, sph-GHFB, and sph-GHF calculations, respectively. 39Mg
is unbound in AMD calculations. The experimental data are taken
from Ref. [52].

used consistently in all models. The sph-GHF results (dotted
line) underestimate measured binding energies systematically
and do not explain the measured odd-even staggering of
S−1n. These are improved by sph-GHFB calculations with
pairing correlations (dashed line), though S−1n is negative for
35,37,39Mg in the calculations. Meanwhile, AMD calculations
(solid line) well reproduce the trend of the experimental data
for both total binding energy and S−1n. The drip line of Mg is
located at 40Mg and 39Mg is unbound in AMD calculations.
Since the basis wave functions with different configurations
around the Fermi surface are superposed in Eq. (19), the
dominant effect of the pairing correlation is included in AMD
calculations, as confirmed from the reasonable reproduction
of the even-odd staggering in S−1n. Mg isotopes thus greatly
gain the total energies by deformation.

In Fig. 6, matter radius and σR are plotted as a function
of A for Mg isotopes. The same discussion can be made
between the two quantities. The AMD results (solid line) yield
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FIG. 6. (Color online) (a) Matter radii and (b) reaction cross
sections σR as a function of mass number for Mg isotopes. The
solid and dotted lines represent the results of AMD and sph-GHF
calculations, respectively. The experimental data of σR are taken from
Ref. [18].
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FIG. 7. (Color online) Theoretical prediction on |β2| for Mg and
Ne isotopes. The solid line with closed circles (squares) are the AMD
results with the AMP for Mg (Ne) isotopes, whereas the dashed
line with open circles (squares) are the deformed Gogny-HFB (def-
GHFB) results of Ref. [55,56] with no AMP for Mg (Ne) isotopes.

much better agreement with the data than the sph-GHF results
(dotted line); note that the effect of pairing correlations is not
large for the matter radius and σR, and the sph-GHFB results
agree with the sph-GHF results within the thickness of line.
Deformation enhances matter radius and σR from the dotted
to the solid line, indicating the importance of deformation
on matter radius. The AMD results reproduce the data for
24–36Mg, although it considerably underestimates the data for
37,38Mg. Thus AMD predicts ground-state properties of Mg
isotopes properly. However, an exception is the underestima-
tion of matter radius for 37,38Mg. This will be discussed in
Sec. IV B.

In Fig. 7, the absolute value of β2 is plotted as a function
of neutron number N for Mg and Ne isotopes. The solid line
with closed circles (squares) stands for the AMD results for
Mg (Ne) isotopes; the values for Ne isotopes are taken from
Ref. [15]. For both Mg and Ne isotopes, the AMD results
show an abrupt increase of |β2| when N varies from 18 to
19, where the Nilsson orbitals originating from the spherical
0f7/2 shell start to be occupied [33]. This indicates that the
island of inversion starts at N = 19 and the N = 20 magicity
disappears. At N = 19 ∼ 28, the |β2| keep large values of
around 0.4. Thus we cannot identify the endpoint of the island
of inversion. This statement is consistent with the result of
in-beam γ -ray spectroscopy of 34,36,38Mg [54] that the deduced
E(4+)/E(2+) ratios are about 3.1 independently of N . The
N = 28 magicity, moreover, disappears, since β2 is large for
40Mg. The fact that |β2| is large from 31Mg with N = 19 to
a drip-line nucleus 40Mg with N = 28 indicates that the so-
called island of inversion may not be an island but a peninsula
reaching the drip line.

Now the AMD results are compared with the deformed
Gogny-HFB (def-GHFB) results of Refs. [55,56] in Fig. 7,
where the dashed line with open circles (squares) denote the
def-GHFB results for Mg (Ne) isotopes. Note that the AMP
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FIG. 8. (Color online) AMD prediction on neutron and proton
rms radii for Mg isotopes. The solid (dashed) line denotes the neutron
(proton) radius.

is performed in AMD but not in the def-GHFB calculations
of Refs. [55,56]. The deformation parameter |β2| is enhanced
from the def-GHFB results to the AMD results for both Mg and
Ne isotopes. Particularly near and in the island of inversion,
i.e., at N = 16,18,20, the |β2| values are zero in the def-GHFB
results, but they are largely enhanced in the AMD results.
This enhancement is originated from the correlations induced
by the collective rotational motion through the AMP. These
collective-motion effects are particularly important near and
in the island of inversion.

In Ref. [57], deformed Skyrme Hartree-Fock (def-SHF)
calculations were done for Mg isotopes with two types
of interactions SkM∗ and SLy4, where the AMP was not
employed. Around N = 20, the densities are well deformed
with SkM∗, but not with SLy4. The resultant |β2| are then close
to the AMD results when SkM∗ interaction is taken, in spite
of the fact that the AMP is not performed in these def-SHF
calculations.

Next we compare the neutron rms radius 〈r2
n〉1/2 with the

proton one 〈r2
p〉1/2

in order to see the isovector component of

matter density. Figure 8 shows the A dependence of 〈r2
n〉1/2

and 〈r2
p〉1/2

for Mg isotopes. As expected, the neutron skin
thickness

�R = 〈
r2
n

〉1/2 − 〈
r2

p

〉1/2
(26)

grows as A increases with Z fixed. In Fig. 9, the �R is plotted
as a function of the asymmetric parameter (N − Z)/A for Mg
and Ne isotopes, where the AMD results for Ne isotopes are
taken from Ref. [15]. The present results are consistent with the
results of deformed Skyrme-HF (def-SHF) calculations with
SLy4 interaction (dashed line) [64] rather than the relativistic
mean-field calculations with NL3 interaction (dotted line)
[65].
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FIG. 9. (Color online) Neutron skin thickness �R in Eq. (26) as
a function of asymmetric parameter (N − Z)/A. The double circles
and double squares denote the AMD results for the Mg and Ne
isotope, respectively. The case of 31Ne is not plotted here, since
the nucleus has a halo structure. Neutron skin thickness is also
deduced from other measurements such as antiprotonic atoms (open
circles) [58], giant dipole resonance (GDR) (open triangles) [59],
spin dipole resonance (SDR) (open and closed diamonds) [60,61],
and proton elastic scattering (ES) (closed squares) [62,63]. The
AMD results are compared with the results of relativistic mean-field
(RMF) calculations with NL3 interaction (small filled dots, whose
average trend is represented by the dotted line) [65], and of deformed
Skyrme-HF (def-SHF) calculations with SLy4 force (small open dots,
whose average trend is represented by the dashed line) [64].

IV. DISCUSSIONS

A. Comparison between the AMD and def-WS models

The results of the def-WS model are now compared with
the results of fully microscopic AMD calculations in order to
see the reliability of the phenomenological model. The def-WS
model yields the same Iπ as AMD for 24–40Mg except 29Mg.
For 29Mg, the Iπ is 3/2+ in AMD, which is consistent with the
experimental data [52], but 1/2+ in the def-WS model. This is
because of the difference of the Coriolis coupling in the two
models; its effect is larger in AMD than in def-WS. In 29Mg the
last odd-neutron occupies the [200 1/2] orbital, see Table IV,
which has � = 1/2 (� is the projection of the angular
momentum on the symmetry axis). It is well known that the
first-order Coriolis coupling changes the energy spectrum of
the � = 1/2 rotational band [66]; if the effect is strong enough,
the energies of the I = 3/2,7/2,11/2, . . . sequence becomes
lower than those of the I = 1/2,5/2,9/2, . . . sequence. In the
def-WS model the Coriolis coupling can be estimated by the
so-called decoupling parameter; its calculated value is slightly
larger than −1.0 in the present case, so that the inversion
between the Iπ = 3/2+ and Iπ = 1/2+ energies does not
occur. If the value is a bit smaller, the Iπ = 3/2+ state becomes
the ground state also in the def-WS model.

The results of the AMD and def-WS models are compared
for σR in Fig. 10. For 24–36Mg, the def-WS model (dashed line)
well simulates the AMD results (solid line), but the former
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FIG. 10. (Color online) Comparison between AMD and def-WS
calculations in reaction cross sections for Mg isotopes. The solid
(dashed) line denotes the results of AMD (def-WS) calculations,
whereas the thin dotted (dot-dashed) line stands for the results of
sph-GHF (sph-WS) calculations. The experimental data are taken
from Ref. [18].

overestimates the latter for 37,38Mg. To clarify the nature, we
also plot the results of sph-WS and sph-GHF calculations
that correspond to the spherical limit of def-WS and AMD
calculations, respectively. The sph-WS results (thin dot-dashed
line) are consistent with the sph-GHF results (thin dotted line)
for 24–36Mg, but the former overshoots the latter for 37,38Mg.
The parametrization of the sph-WS model is thus inappropriate
for 37,38Mg near the neutron drip line in comparison with the
spherical HF result with Gogny-D1S force. Some correction
should be made in the future; in particular, the depth of
potential is assumed to be linear in the asymmetric parameter
(N − Z)/A, see Eq. (A1), which may result in too shallow
potentials compared to the sph-GHF for drip-line nuclei. It may
be accidental that the def-WS model reproduces the measured
σR for 38Mg. The fact that AMD calculations underestimate
the measured σR for 37,38Mg indicates that these are candidates
for deformed halo nucleus.

B. Results of AMD-RGM calculation for 37Mg

As shown in Sec. III, the deduced matter radius of 37Mg is
quite large, and at the same time, the AMD calculation predicts
large deformation (β2 ∼ 0.362) and very small separation
energy (S−1n = 0.49 MeV). These results suggest that 37Mg
is a candidate for deformed halo nucleus. On the other hand,
the matter radius of 37Mg calculated by AMD is much smaller
than the one deduced from the measured σR. This might be
because of the inaccuracy of the AMD density in its tail
region. In this sense, we should solve the relative motion
between the last neutron and the core (36Mg) more precisely
by using the following AMD-RGM framework [36], although
the calculations are quite time consuming. This procedure is
nothing but making a tail correction to AMD density.

In principle, the ground state �(37Mg; Iπ ) of 37Mg can
be expanded in terms of the ground and excited states
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FIG. 11. (Color online) Energy spectrum of 37Mg. The dashed
(solid) lines denote the results of AMD (AMD-RGM) calculations.
All the excitation energies are plotted with reference to the energy of
the 5/2− state calculated with AMD.

�(36Mg; Ĩ π̃
i ) of 36Mg, where Ĩ π̃

i denotes the spin parity of
36Mg in its ith state. This means that the ground state of 37Mg is
described by the 36Mg + n cluster model with core excitations.
The cluster-model calculation can be done with the RGM in
which the ground and excited states of 36Mg are constructed
by AMD:

�(37Mg; Iπ ) =
∑
ilj Ĩ π̃

A{
Rilj (r)

[
[Yl(r̂)χn]j�

(36
Mg; Ĩ π̃

i

)]
Iπ

}
,

(27)

where χn is the spin wave function of last neutron and
Rilj (r)Ylm(r̂) is the relative wave function between the last
neutron and the core (36Mg). All the excited states of 36Mg
below 8 MeV obtained by the AMD calculation are included
as �(36Mg; Ĩ π̃

i ).
Figure 11 shows energy spectra of 37Mg calculated with the

AMD and AMD-RGM models. The deviation of the AMD-
RGM result (solid line) from the corresponding AMD result
(dashed line) shows an energy gain due to the tail correction.
Eventually, three bound states appear in the order of Iπ =
5/2−, 1/2+, and 3/2− from the bottom. In AMD calculations,
the main configuration of the Iπ = 1/2+ state for five valence
neutrons corresponds to (sdg)1(fp)6(sd)−2 in the spherical
shell model, whereas the main configuration of the Iπ = 5/2−
and 3/2− states is (fp)5. The Iπ = 1/2+ state is quite exotic
in the sense that one neutron is in the 0g1d2s shells as a
consequence of large deformation. These states are quite close
in energy, and hence there is a possibility that the order is
reversed in reality. We then assume that any one of the three
states is the ground state.

In Fig. 12, the σR before and after the tail correction
are shown for the three states. When the 5/2− state is the
ground state, the calculated value of σR is little enhanced by
the tail correction and still underestimates the measured σR.
This underestimation may not be resolved even if the 5/2−
state has smaller binding energy, since the last neutron is in
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FIG. 12. (Color online) Reaction cross sections for 37Mg calcu-
lated with the AMD and AMD-RGM methods. Open squares and
closed circles stand for AMD and AMD-RGM results, respectively.
It is assumed that any one of the 5/2−, 1/2+, and 3/2− states is the
ground state.

the [312 5/2] (0f7/2-origin) orbital; see the single-particle
energy for negative parity in Fig. 13(b). This was numerically
confirmed in our previous work [18] by using the def-WS
model, i.e., by changing the parameters of the def-WS potential
slightly for the last neutron.

When the 1/2+ state is the ground state, the last neutron
occupies [440 1/2] (0g9/2 origin) as shown in Fig. 13(a), where
the s-wave halo can be formed. The calculated value of σR

is largely enhanced by the tail correction and consequently
overestimates the measured σR. However the overestimation
can be resolved if the 1/2+ state has a larger binding energy
by some effect. When the 3/2− state is the ground state, the
calculated value of σR is little enhanced by the tail correction
and still undershoots the measured σR. In AMD calculations,
the 3/2− state has the main component in which the last
neutron is mainly coupled with not the ground state of 36Mg
but the excited 2+ state, so that the last neutron is not weakly
bound because of the core excitation. Consequently, the σR is
hardly enhanced in AMD-RGM calculations. The σR may be
enhanced, if the core excitation is suppressed by some effect.

The present AMD-RGM calculations thus cannot reproduce
the measured σR perfectly. In nuclei near the drip line, in
general, the kinetic energy is nearly canceled with the potential
energy coming from the two-nucleon (2N) central and spin-
orbit forces. This suggests that higher-order effects such as the
2N tensor force and the three-nucleon (3N) force become im-
portant. In our previous work [18] based on the def-WS model,
the ground-state spin-parity is Iπ = 5/2−, since the [312 5/2]
(0f7/2-origin) orbital is slightly lower in energy than the others.
To explain the measured large σR for 37Mg, we assumed that
the last neutron is in the [321 1/2] (1p3/2-origin) orbital. As an
underlying mechanism of the inversion, we can consider the
2N tensor force and the 3N force, since it is reported that the
2N tensor force reduces the energy difference between 0f7/2

and 1p3/2 levels in the spherical shell model [11] and the three-
body force weakens the strength of the spin-orbit interaction
in neutron-rich nuclei [67]. Further analyses along this line are
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FIG. 13. (Color online) Neutron single-particle energies of 37Mg for (a) positive parity and (b) negative parity. Filled (open) symbols mean
the orbitals occupied by two (one) neutrons. Circles (squares) show the orbital where the amount of the positive-parity component is larger
(smaller) than 50%.

quite interesting. The analysis of 38Mg is also an important
future work after understanding the structure of 37Mg.

V. SUMMARY

We have determined matter radii of 24–38Mg systematically
from measured σR, fine tuning the parameters of the def-WS
model. This flexibility is an advantage of the def-WS model.
The deduced matter radii are largely enhanced from the stable
and spherical limit estimated by sph-GHF calculations with the
Gogny-D1S interaction for stable spherical nuclei. Two-thirds
of the enhancement come from nuclear deformation, whereas
one-third is from neutron-skin and/or weak-binding effects.

Fully microscopic AMD calculations with the Gogny-D1S
interaction, meanwhile, have no free parameter and hence
high predictability, if the calculations are successful in repro-
ducing existing experimental data systematically. The AMD
calculations well reproduce measured ground-state properties
(spin parity, total binding energy, and one-neutron separation
energy) of Mg isotopes. The deduced matter radii can be also
well reproduced for 24–36Mg. AMD is thus reliable and hence
have high predictability. As for 37,38Mg, theoretical matter
radii calculated with AMD are enhanced by deformation, but
still considerably underestimate the deduced matter radii. This
problem is not cured even with the more sophisticated AMD-
RGM framework. Further theoretical investigation should be
done; e.g., the effective interaction Gogny-D1S force may not
be best suited for the description of drip-line nuclei. This
large enhancement of the measured matter radius suggests
that 37,38Mg are candidates for deformed halo nucleus.

Neutron-number (N ) dependence of deformation parameter
β2 is predicted by AMD. For both Mg and Ne isotopes, AMD
calculations show an abrupt increase of β2 at N = 19, where
the Nilsson orbitals originating from the spherical 0f7/2 shell
begin to be occupied. The starting point of the island of inver-
sion is thus N = 19. At N = 19 ∼ 28, the β2 keep large values
of around 0.4. Hence there seems to be no endpoint of the

island of inversion. Moreover, the N = 20 and 28 magicities
disappear. Since 40Mg with N = 28 may be a drip-line nucleus,
the island of inversion may not be an island, but a peninsula
that reaches the neutron drip line. At N = 16,18, and 20,
deformation parameter β2 vanishes in def-GHFB calculations
with no AMP, but becomes large in AMD calculations with
the AMP. The correlations induced by the collective rotational
motion through the AMP are thus important.

Neutron-number dependence of neutron-skin thickness
(�R) is also predicted by AMD. The AMD results for Mg
and Ne isotopes are consistent with the results of Skyrme-
HF calculations with SLy4 force rather than the relativistic
mean-field calculations with NL3 interaction.
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APPENDIX A: WOODS-SAXON POTENTIAL
PARAMETER SET

In this paper, the strength V0 of the WS potential in Eq. (22)
is parameterized as

V0 = −V ×
(

1 ± κ
N − Z

A

)
,

{+ proton
− neutron (A1)

with proton, neutron, and mass numbers, Z, N , and A. The WS
potential is then characterized by the parameters, V,κ,R0,a,
and λ. We use the parameter set provided by Ramon Wyss [45].
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TABLE III. The parameter set of the Woods-Saxon potential
adopted in this work [45]. As other physical constants, e2/(�c) =
137.03602, �c = 197.32891 MeV fm, and mc2 = 938.9059 MeV are
taken.

V (MeV) κc κso R0c (fm) R0so (fm) a (fm) λso

53.7 0.63 0.25461 1.193A1/3 + 0.25 0.969×R0c 0.68 26.847

The set is fitted to the moment of inertia and the quadrupole
moment systematically for medium and heavy nuclei. The set
has already used in some works with success [15,37]. The
parameter set is shown in Table III; see Ref. [68] for the
Coulomb part.

APPENDIX B: RELATION OF DEFORMATION
PARAMETERS BETWEEN AMD AND DEF-WS MODELS

We show the relation between β̄ in AMD and β2 in the
def-WS model. For simplicity, we only consider the axially
symmetric deformation (γ = 0). Equation (24) in Sec. II is
reduced to

R(θ ) = R0cv(β2)[1 + β2Y20(θ )], (B1)

where cv is the factor assuring the volume conservation of
nucleus. The relation between β̄ and β2 can be extracted
analytically by considering the sharp-cut density

ρ(r) = ρ0θ (R(θ ) − r) (B2)

with ρ0 = 3A/(4πR3
0). For this density, we analytically obtain

〈x2〉 =
∫

x2ρ(r)d r (B3)

= 4ρ0R
5
0c

5
v

15

(
π−

√
5π

2
β2+25

14
β2

2− 5

28

√
5

π
β3

2 + · · ·
)

,

(B4)

〈y2〉 = 〈x2〉, (B5)

〈z2〉 =
∫

z2ρ(r)d r (B6)

= 4ρ0R
5
0c

5
v

15

(
π+

√
5πβ2+55

14
β2

2+10

7

√
5

π
β3

2 + · · ·
)

.

(B7)

TABLE IV. The deformation parameter set (β̄,γ̄ ) in AMD and
the corresponding standard set (β2,γ ) in the def-WS model for Mg
isotopes. The Nilsson asymptotic quantum numbers of last neutron
are listed in the last column.

nuclide β̄ γ̄ β2 γ [N ,n3,�,�] for last-n

24Mg 0.42 0
◦

0.434 0
◦

[211 3/2]
25Mg 0.40 0

◦
0.411 0

◦
[202 5/2]

26Mg 0.375 0
◦

0.384 0
◦

[202 5/2]
27Mg 0.35 0

◦
0.357 0

◦
[211 1/2]

28Mg 0.35 0
◦

0.357 0
◦

[211 1/2]
29Mg 0.295 0

◦
0.298 0

◦
[200 1/2]

30Mg 0.285 25
◦

0.291a 25.8
◦

[200 1/2]
31Mg 0.44 0

◦
0.456 0

◦
[200 1/2]

32Mg 0.395 0
◦

0.406 0
◦

[200 1/2]
33Mg 0.44 0

◦
0.456 0

◦
[321 3/2]

34Mg 0.35 0
◦

0.357 0
◦

[321 3/2]
35Mg 0.40 0

◦
0.411 0

◦
[202 3/2]

36Mg 0.39 0
◦

0.400 0
◦

[202 3/2]
37Mg 0.355 0

◦
0.362 0

◦
[312 5/2]

38Mg 0.38 0
◦

0.389 0
◦

[312 5/2]

aThis value is obtained by assuming γ̄ is finite. The value will become
0.288 if γ̄ = 0; see Ref. [15] for details.

Combining these equations with Eq. (16) leads to the relation
between β̄ and β2 as

β̄ = 1

3

√
4π

5
ln

( 〈z2〉
〈x2〉

)
(B8)

= β2 + 1

28

√
5

π
β2

2 − 25

28π
β3

2 + · · · . (B9)

The polynomial expression up to third order works well
for −0.6 � β2 � 0.6. Obviously, we get β̄ = β2 for small
deformation.

Table IV lists the AMD deformation parameter set (β̄,γ̄ )
and the corresponding standard set (β2,γ ) in the def-WS model
for Mg isotopes. For 24–38Mg, only 30Mg has nonzero γ̄ , but
we simply set γ to zero. This procedure is justified, since γ
deformation little affects σR [15].
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