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It is suggested that the full nucleus-nucleus potential consists of the macroscopic and shell-correction parts. The
deep sub-barrier fusion hindrance takes place in a nucleus-nucleus system with a strong negative shell-correction
contribution to the full heavy-ion potential, while a strong positive shell-correction contribution to the full
potential leads to weak enhancement of the deep sub-barrier fusion cross section.
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I. INTRODUCTION

The nucleus-nucleus potential is a key ingredient in the
description of nuclear reactions [1–4]. Microscopic evaluation
of the potential between nuclei is based on both the effective
nucleon-nucleon interaction and the nucleon density distri-
butions of interacting nuclei, see Refs. [2–11] and papers
cited therein. There are also simple parametrizations of the
nucleus-nucleus potential [1,3,4,12–20], which are often used
to describe various heavy-ion reactions.

Various nucleus-nucleus potentials have been applied to
the description of heavy-ion fusion around barrier. The one-
dimensional barrier penetration model with potentials, which
fit to the fusion cross sections at energies exceeding the barrier
height, leads to strong underestimation of sub-barrier fusion
cross sections [3,4,21–24]. It is found that the couplings to
both the low-energy surface vibrational states and the nucleon
transfer between nuclei greatly enhance the sub-barrier fusion
cross sections [3,4,21–25]. The heavy-ion fusion cross sections
around the barrier are well described in the framework of such
coupled-channel models.

Further detailed experimental studies show that there is
fusion hindrance at deep sub-barrier energies [26–30]. In this
case the values of measured fusion cross sections at deep sub-
barrier energies are smaller than the ones evaluated in the
coupled-channel models, which well describe the fusion data
at around barrier energies. Researchers have tried to explain
this phenomenon in the framework of various approaches, see,
for details, Refs. [31–35] and papers cited therein.

The goal of the present study is to discuss a new mechanism
of fusion hindrance at deep sub-barrier energies that is related
to the microscopic shell-correction contribution to the full
nucleus-nucleus potential. According to the Strutinsky shell-
correction prescription [36], the microscopic shell-correction
energies should be added to the macroscopic contribution for
the correct evaluation of the full energy of a nuclear system.
Therefore the full nucleus-nucleus potential consists of the
macroscopic and shell-correction parts.

When nuclei are approaching each other, the shell structures
of both nuclei are changed due to the interaction of nucleons
belonging to different nuclei. The energies of nucleon single-
particle levels of each nucleus are shifted and the single-
particle levels are split due to the interaction between nucleons

in different nuclei. Therefore the microscopic shell-correction
energies [36] of both nuclei are changed at small distances
between nuclei. The variations of shell-correction energies
induced by the interaction of nucleons belonging to different
nuclei lead to modification of the full interaction potential
between nuclei. I propose a simple approach for evaluation
of the shell-correction contribution to the full nucleus-nucleus
potential.

I describe the fusion cross section data for reactions
16O + 208Pb [28], 48Ca + 48Ca [29], and 58Ni + 54Fe [30] using
the full nucleus-nucleus potential consisting of macroscopic
and microscopic parts. I select these reactions because the
experimental fusion cross sections for them are known in very
wide energy ranges. The couplings to the low-energy surface
vibrational states are taken into account when evaluating the
fusion cross sections. I analyze the influence of the microscopic
shell-correction contribution to the full potential on the heavy-
ion fusion cross sections and show that this contribution has a
strong effect on the cross sections deeply below the barrier. A
detailed description of this approach for the nucleus-nucleus
potential is presented in Sec. II. Section III is a discussion of
the results and gives the conclusions.

II. NUCLEUS-NUCLEUS POTENTIAL
WITH SHELL-CORRECTION CONTRIBUTION

Applying the Strutinsky shell-correction prescription [36]
to the system of interacting nuclei, one gets the full interaction
potential in the form (see also [37–39])

Vtot(R) = Vmacro(R) + Vsh(R)

= [E12(R) − E1 − E2]

+ [δE12(R) − δE1 − δE2]. (1)

Here E1, E2, δE1, and δE2 are the macroscopic and shell-
correction energies of the non-interacting spherical nuclei 1
and 2, respectively, E12(R) and δE12(R) are the macroscopic
and shell-correction energies of interacting nuclei at distance R
between the mass centers of separated nuclei, correspondingly.
Shell-correction energies δE12(R), δE1, and δE2 include the
proton and neutron shell-correction energies related to both
the non-uniformity of single-particle spectra around the Fermi
energies and the pairing corrections [36].
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According to the Strutinsky shell-correction prescription
the macroscopic energy of a nuclear system is parametrized
by a simple expression of the liquid-drop model. Similarly,
I propose that the macroscopic part of the nucleus-nucleus
potential at large distances can be described by the sum of the
Woods-Saxon nuclear potential and the Coulomb potential.
The Woods-Saxon potential is introduced to describe the
interaction between the nucleon and the nucleus with diffused
distribution on nucleon density. The interaction of two nuclei
in the framework of a single-folding potential is related to
the nucleon-nucleus interaction, therefore presentation of the
macroscopic interaction in the sum of the Woods-Saxon and
the Coulomb parts is reasonable. Moreover, the Woods-Saxon
potential is very widely and very successfully used to describe
various nucleus-nucleus reactions. It is also often used for the
description of sub-barrier heavy-ion fusion [21–24,28–32,40].
Detailed description of the macroscopic Woods-Saxon part of
the full potential will be given later.

A. Microscopic part of the full potential

It is obvious that the mutual influence of nuclei on their
single-particle spectra is negligible at distances R much greater
than Rt = R1 + R2, where Ri = r0A

1/3
i is the radius of a

nucleus with Ai nucleons (i = 1,2). Therefore, we can write
in this limit

δE12(R)|R�Rt
= δE1 + δE2. (2)

The value of δE12(R) at R = 0 equals the shell-correction
energy of the ground-state nucleus formed at complete fusion
of nuclei 1 and 2. The full potential should be equal to the
fusion reaction Q value at R = 0, i.e., Vtot(0) = Q.

The nuclei strongly interact at small distances between
them. This interaction leads to the shift and splitting of the
single-particle levels in both nuclei. Due to this the proton
and neutron single-particle spectra around the Fermi levels
become more homogenous around distance Rt . Such behavior
of single-particle levels of two nuclei is clearly demonstrated
in the framework of the two-center shell model [41,42] and
the time-dependent Hartree-Fock calculations [11].

The absolute value of shell-correction energy is reduced in
the case of more homogenous single-particle spectra around
the Fermi levels [36]. A sharp reduction of the shell-correction
contribution to the full potential energy around the touching
point of the nuclei is obtained in Ref. [42]. So, the energy
level splitting and shifts, which are proportional to the strength
of mutual nucleus-nucleus perturbation, reduce the values of
shell-correction energies of nuclei at small distances between
them.

The perturbation of single-particle levels is enlarged when
the distance decreases between the surfaces of the nuclei and
when the interaction increases between nucleons belonging
to different nuclei. The perturbation strength is related to the
density distribution in the nucleus induced by the disturbance
as well as the radius of the nucleon-nucleon force. The density
distribution is often parametrized by the Fermi distribution,
therefore we approximate the shell-correction contribution to
the full nucleus-nucleus potential at small and large distances

between nuclei as [39]

V 0
sh(R) = δE12(R) − δE1 − δE2

= [δE1 + δE2]fsh(R) − δE1 − δE2

= [δE1 + δE2](fsh(R) − 1), (3)

where

fsh(R) = 1/{1 + exp [(Rsh − R)/dsh]}, (4)

and Rsh = rsh
0 (A1/3

1 + A
1/3
2 ) and dsh are the radius and dif-

fuseness related to the attenuation of the shell-correction
with reduction of distance R. My approximation for the
shell-correction energy contribution to the full potential is
rough, but it can greatly simplify the calculation of shell-
correction energies for various nucleus-nucleus systems at
different distances R. Note that exponential reduction of
shell-correction energy values related to washing out the shell
non-homogeneity of single-particle spectra is often considered
in nuclear physics [4,43–45].

The shell-correction energy of interacting nuclei δE12(R)
is smoothly approached to the limit of non-interacting nuclei
(2) at large distances R between nuclei, i.e., V 0

sh(R) → 0 at
R � Rsh ∼ Rt .

It is possible to evaluate the shell-correction energy values
δE1 and δE2 according to the Strutinsky prescription [36] for
a specific nucleon mean-field approximation. However, the
easiest way to estimate the value of shell-correction energy
δE in a spherical nucleus is to find the difference between the
experimental Bexpt and macroscopic Bm binding energies of
the nucleus

δE = Bexpt − Bm. (5)

This expression corresponds to the physical sense of the shell-
correction energy. The values of Bexpt can be found in the
recent evaluation of the atomic masses [46], while the value
of Bm in a nucleus with Z protons and N neutrons is

Bm = −15.868 64A + 21.181 64A2/3 − 6.499 23A1/3

+
[

N − Z

A

]2

[26.372 69A − 23.801 18A2/3

− 8.623 22A1/3] + Z2

A1/3
[0.780 68 − 0.636 78A−1/3]

+Pp + Pn. (6)

Here Bm is the binding energy in MeV, A = Z + N are the
number nucleons in the nucleus, Pp(n) are the proton (neutron)
pairing terms, which equal Pp(n) = 5.62922(4.99342)A−1/3 in
the case of odd Z (N) and Pp(n) = 0 in the case of even Z (N).
Equation (6) is a simple extension of the Weizsäcker formula
for the binding energy of nuclei. I obtained the values of the
coefficients in Eq. (6) by fitting the recent values of the atomic
masses [46]. The experimental binding energies of 3353 nuclei
are described by Eq. (6) with a root mean error of 2.49 MeV.
This error is very small compared to the experimental values
of atomic binding energies in medium and heavy nuclei. Note
that the shell-correction energy evaluation technique used here
is similar to the one applied to evaluate the energy level density
in nuclei; see, for example [47].
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I have ignored any influence of the relative motion of nuclei
on the nucleus-nucleus interaction and single-particle levels
up to now. However, the nucleons move in the approaching
nuclei during reaction and interaction of nucleons belonging to
different nuclei disturbs the nucleons in both nuclei. This leads
to the disturbance of the shell structure of each nucleus. It is
obvious that the strength of this disturbance should depend on
the ratio between the nucleon velocity (energy) and the relative
velocity (kinetic energy) of the nuclei. When the approaching
nuclei slow down, the static (adiabatic) consideration is close
to realistic, because the shell structure of nuclei can adjust
to the static one for the corresponding distance between
nuclei. In contrast to this, the shell structure and nucleon
density distributions cannot be disturbed at fast collisions;
therefore nuclei can touch each other without modification
of the shell structure of colliding nuclei at high collision
energies. Therefore, the nuclei overcome the barrier essentially
in their ground-state density at high collision energies, see also
[48,49]. In order to take into account this effect, I introduce
the dependence of the shell-correction energy contribution to
the full potential on the collision energy E

Vsh(R,E) =
{
V 0

sh(R) exp [−a(E − B)], at E � B,

V 0
sh(R), at E � B,

(7)

where B is the barrier height of the macroscopic potential
Vmacro(R) and a is the reduction parameter of the shell-
correction energy contribution to the full potential. So, the
shell-correction energy contribution to the full potential
decreases with increasing collision energy. Equation (7) does
not depend on the velocity of the nucleons, because nucleon
velocity at the Fermi level has a small variation from one
nucleus to another and the value of the shell-correction energy
depends on the inhomogeneity of the single-particle spectra
around the Fermi energy [36].

B. Full nucleus-nucleus potential

The full nucleus-nucleus potential is the sum of Coulomb
and nuclear parts

Vtot(R,E) = VC(R) + Vnucl(R,E), (8)

where

VC(R) =
{

Z1Z2e
2

R
, R � RC,

Z1Z2e
2

RC

[
3
2 − 1

2
R2

R2
C

]
, 0 � R � RC,

(9)

Vnucl(R,E) =
{

V out
macro(R) + Vsh(R,E), R � Rm,

V in
nucl(R), 0 � R � Rm.

(10)

Equation (9) for Coulomb potential is standard for heavy-ion
reactions, see for example [1–4]. Let’s put RC = Rt for the
sake of the reduction of the parameter number.

The macroscopic nuclear part V out
macro(R) of the potential at

large distances is taken in the Woods-Saxon form

V out
macro(R) = −R1R2

Rt

V0

1 + exp[(R − Rt )/d]
, (11)

where V0 and d are the parameters of strength and diffuseness,
respectively.

The nuclear part of the potential at small distances is taken
in the Woods-Saxon form, too,

V in
nucl(R) = Qeff

1 + exp[(R − Rin)/din]
, (12)

where

Qeff = Q − 3Z1Z2e
2

2RC
, (13)

din = − V 2
nucl(Rm)

QeffV
′

nucl(Rm)

(
Qeff

Vnucl(Rm)
− 1

)
, (14)

Rin = Rm − din log

(
Qeff

Vnucl(Rm)
− 1

)
. (15)

Here Q is the Q value of the fusion reaction evaluated by using
the recent values of the atomic masses presented in Ref. [46].
If the binding energy of the nucleus is not given in Ref. [46],
then it can be obtained with the help of Eq. (6). The radius Rin

and diffuseness din of the inner nuclear potential are obtained
by using the continuity conditions of the potential and its
derivative at the matching point Rm = Rt , i.e.,

Vnucl(Rm) = V out
macro(Rm) + Vsh(Rm,E) = V in

nucl(Rm), (16)

V ′
nucl(Rm) = d

dR

[
V out

macro(Rm) + Vsh(Rm,E)
]

= d

dR

[
V in

nucl(Rm)
]
. (17)

In general, the position of the matching point may not coincide
with Rt . Such a position of the matching point is chosen here
for the sake of reduction of the parameter number.

The nucleus-nucleus interaction at large distances R �
Rt contains the macroscopic nuclear, Coulomb, and shell-
correction energy terms, see Eqs. (8)–(11). The macroscopic
nuclear part of the interaction has the shape of a Woods-Saxon
potential, see Eq. (10). The shell-correction contribution is
related to the attenuation of shell-correction energies in both
nuclei due to interaction between them and can be found with
the help of Eqs. (3)–(7) and recent data for the atomic masses
[46].

According to Eq. (1) the full potential Vtot(0) = V in
nucl(0) +

3Z1Z2e
2

2Rt
is approximately equal to Q due to Eqs. (8)–(10) and

(12)–(15). I have chosen the Woods-Saxon form of the nuclear
part of the potential, see Eqs. (11) and (12), because the Woods-
Saxon potential is very common in nuclear reaction theory.
Therefore the proposed potential can be easily integrated into
various existing codes for description of different properties
of nuclear reactions.

III. FUSION CROSS SECTIONS

I evaluate the fusion cross sections of nuclei by using
code CCFULL [40]. The coupling to the low-energy surface
2+, 3−, 2+ ⊗ 3− vibrational states as well as all possible
mutual couplings are taken into account in both nuclei at
my coupled-channel calculation of fusion cross sections. The
energies and deformation parameters of 2+ and 3− states,
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FIG. 1. (Color online) Fusion cross sections evaluated by using
both the macroscopic and shell-correction parts of the nucleus-
nucleus potential (solid line) compared with the experimental data
(dots) for the reaction 16O + 208Pb [28]. The fusion cross sections
obtained with the help of the macroscopic part on the nucleus-nucleus
potential is shown by the dashed line.

which are necessary for evaluation of the fusion cross sections,
are taken from Refs. [50,51].

My coupled-channel calculations are simple and may be
extended by taking into account additional channels and
couplings. The goal of this study is to show the influence of
the shell-correction energy contribution to the full heavy-ion
potential on the fusion cross sections. Therefore I take into
account only pointed coupled channels and couplings, which
give the most important contribution into sub-barrier fusion
cross sections for reactions considered below.

The fusion cross sections evaluated by using the full
(the sum of macroscopic and shell-correction energy parts)
nucleus-nucleus potential are compared with the experimental
data for reaction 16O + 208Pb [28] in Fig. 1. The values of
potential parameters are presented in Table I. The results of
calculation with the full potential agree well with the data.
In contrast to this, the results obtained with the macroscopic
part of the nucleus-nucleus potential overestimate the cross
section at very low collision energies, see Fig. 1. So, the shell-
correction contribution to the nucleus-nucleus interaction is
very important and can explain the fusion hindrance at deep
sub-barrier energies.

The values of shell-correction energies of 16O and 208Pb
are −5.249 and −10.620 MeV, respectively. The fusion
cross sections for this reaction are measured in a very wide
energy range [28]. Taking into account the large amplitudes
of shell-correction energies in 16O and 208Pb and the wide

TABLE I. Values of potential parameters.

Reaction V0 (MeV/fm) r0 (fm) d (fm) r sh
0 (fm) dsh (fm)

16O + 208Pb 18.462 1.2270 0.545 92 1.1826 0.219 70
48Ca + 48Ca 15.719 1.2307 0.608 68 1.2041 0.276 87
58Ni + 54Fe 19.607 1.2288 0.587 94 1.2016 0.202 69

collision energy range for this reaction, one can fix the value
of parameter a = 0.35 MeV−1 related to the reduction of the
shell-correction contribution into the total heavy-ion potential,
see Eqs. (7), (8), and (10).

The full (the sum of Coulomb, nuclear, and shell-correction
parts) and macroscopic (the sum of Coulomb and nuclear
parts) potentials for the 16O + 208Pb system at E = B are
presented in Fig. 2. The shell-correction energy contribution
slightly changes the potential at distances a little smaller than
the barrier radius. However, this contribution is noticeable
at distances around the touching point (Rt = 10.36 fm) and
the capture well. The full potential is more shallow than the
macroscopic potential.

The contribution of the shell-correction energy to the
full potential depends on collision energy E, therefore the
couplings related to low-energy vibrational states vary with
E. The full potential at E > B smoothly tends toward the
macroscopic potential with increasing E.

FIG. 2. (Color online) Full and macroscopic potentials for sys-
tem 16O + 208Pb evaluated in my approach. The sudden-density
(sudden) [18], Krappe-Nix-Sirk (KNS) [14], Bass (Bass80) [1], Bass
(Bass74) [12], proximity (Prox77) [13], proximity (Prox2000) [17],
and Winther [16] potentials are presented too. Upper panel show the
potentials in a wide range, while the bottom panel show the potentials
around barriers. The vertical dashed line on the bottom panel shows
the touching distance Rt .
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FIG. 3. (Color online) Fusion cross sections for reactions
48Ca + 48Ca. The experimental data are taken from Ref. [29] and
the notation is the same as in Fig. 1.

The thicknesses of the barrier at deep sub-barrier collision
energies become larger due to the positive shell-correction
contribution to the full potential, see Fig. 2. This directly leads
to a reduction of barrier penetrability and, as the result, to the
hindrance of deep sub-barrier fusion.

I compare these full and macroscopic potentials with
other potentials, which are often used for analyzing various
heavy-ion reactions around the barrier, in Fig. 2. The shapes
of Krappe-Nix-Sirk [14], Bass80 [1], proximity [13], Winther
[16], sudden [18], and macroscopic potentials are similar
around barriers. In contrast to this, the full potential at
below barrier collision energies, when the shell-correction
contribution acts fully, is strongly deviated from the other
ones. The shape of the full potential presented on the
bottom panel of Fig. 2 is similar to the ones obtained in
Refs. [49,52].

Comparisons of my calculations of fusion cross sections
for reactions 48Ca + 48Ca and 58Ni + 54Fe with experimental
data [29,30] are presented in Figs. 3 and 4, respectively.
These data are well described in my approach, when the full
nucleus-nucleus potential is taken into account. The values
of shell-correction energy in 48Ca, 58Ni, and 54Fe are −2.648,
−4.453, and −3.840 MeV, respectively. The values of potential
parameters for these reactions are given in Table I. The values
of potential parameters evaluated for different reactions vary
in the narrow ranges, see Table I. Here I use the same
value of parameter a as the one for reaction 16O + 208Pb,
see Eq. (7).

Comparing the values of fusion cross sections near 1–10
μb obtained in various approaches in Figs. 1, 3, and 4 and
the values of the shell-correction energies, I conclude that
colliding systems consisting of nuclei with larger absolute
values of shell-correction energies have more prominent fusion
hindrance at deep sub-barrier energies.

Note that some nuclei with numbers of proton and neutrons
between the magic numbers or far from the β-stability line have
positive values of the shell-correction energies. According

FIG. 4. (Color online) Fusion cross sections for the reaction
58Ni + 54Fe. The experimental data are from Ref. [30]. The fusion
cross sections obtained by using the macroscopic and shell-correction
parts of the nucleus-nucleus potential are shown by the solid line;
the fusion cross sections evaluated without the shell-correction
contribution to the potential, by the dashed line; and the fusion cross
sections calculated with the opposite shell-correction contribution,
by the dash-dotted line.

to Eqs. (3) and (4) the shell-correction contribution to the
potential at δE1 + δE2 > 0 reduces the thickness of the full
potential compared to the thickness of the macroscopic po-
tential. This enhances the barrier penetrability at low collision
energies. Therefore the deep sub-barrier fusion cross section
should be enhanced by the shell-correction contribution at
δE1 + δE2 > 0 ito the full potential.

To show this effect I changed the sign of the shell-correction
energies in nuclei 58Ni and 54Fe to the opposite sign and again
evaluated the fusion cross sections with the parameter values
obtained earlier. The results of such calculation of the fusion
cross sections for the system 58N + 54Fe are also presented
in Fig. 4. Comparing the results of the different calculations
in Fig. 4, we see weak enhancement of the deep sub-barrier
fusion cross section induced by the positive shell-correction
energies in colliding nuclei. The experimental investigation of
this effect would be very interesting.

In conclusion, I have introduced the shell-correction con-
tribution to the nucleus-nucleus potential and show that this
contribution strongly influences the fusion cross section at
deep sub-barrier energies. The macroscopic and full nucleus-
nucleus potentials are different at distance R � Rt due to the
shell-correction contribution to the full potential.
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