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Refined treatment of angular momentum in the event-by-event fission model FREYA
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The treatment of angular momentum in the event-by-event fission model Fission Reaction Event Yield
Algorithm (FREYA) has been refined to ensure conservation of angular momentum both at scission and during
neutron evaporation. While the effect on previously calculated quantities is relatively minor, as expected, the
refined model gives a more consistent description of directional correlations.
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I. INTRODUCTION

In our earlier FREYA studies of neutron observables in
fission [1–4] angular momentum effects were ignored because
they are generally expected to be unimportant. However, that
is not the case for photon observables and we therefore
included fragment angular momentum in our recent studies
of photon observables [5]. Because we found that the photon
multiplicities are sensitive to the angular momentum, we have
refined the angular momentum treatment in several respects
and reexamined both neutron and photon observables with the
resulting extended FREYA model.

The present refinements concern two aspects of angular-
momentum conservation, one during the scission process when
the rotating fragments are formed and the other during the
evaporation process when the recoil from an emitted neutron
may change the angular momentum of the nucleus. This latter
effect is relevant not only for post-scission evaporation from
excited fission fragments but also for pre-scission evaporation
from compound nuclei that are sufficiently hot to allow higher-
chance fission.

Because we expect that the effects of these refinements
are small, at least for the neutron and photon observables
addressed previously, we treat the angular momentum by
classical means. Although the results are then not expected
to be fully accurate, they should nevertheless provide an
indication of the importance of the refinements and help
us judge whether more elaborate (and, hence, more time
consuming) treatments are called for.

Section II describes the refined scission treatment that
conserves angular momentum, while evaporation from rotating
nuclei is described in Sec. III. The enhanced capabilities of the
extended model are illustrated in Sec. IV for both spontaneous
and induced fission and we compare the refined results to our
previous work [3,5] in order to understand the importance
of the more advanced treatment. Our concluding remarks are
made in Sec. V.

II. FRAGMENT ANGULAR MOMENTA

Following our previous treatment [5], we assume that the
fragments acquire their angular momenta at scission, but the
present treatment is more comprehensive. In particular, it
conserves angular momentum in each individual fission event.

It is assumed that the shape evolution has led the system into
a rigidly rotating dinuclear configuration just prior to scission.
Let S0 denote the associated total angular momentum. It is
rather small for thermal-neutron induced fission and vanishes
entirely for spontaneous fission. For the present purposes, we
treat the fragments as spheres, for simplicity, and we denote
their moments of inertia by Ii for i = L,H . The moment of
inertia of the relative fragment motion is given by IR = μR2,
where R = RL − RH is the position of the light fragment
relative to the heavy one and μ ≈ mNALAH /(AL + AH ) is
the reduced mass of the fragments with mN being the nucleon
mass.

It is convenient to introduce a pre-scission coordinate
system by choosing the z axis along the dinuclear axis,
ẑ = R/R, and the y axis along the overall angular momentum,
ŷ = S0/S0. It then follows that x̂ = ŷ × ẑ.

Upon scission each of the two fragments will inherit its
share of S0. The fragment spins will then be Si = (Ii/I)S0,
where I = IL + IH + IR is the total moment of inertia. The
remainder of S0 will become the angular momentum of the
relative fragment motion, L = μR × U = (IR/I)S0, where
U = ṘL − ṘR is the relative fragment velocity.

In addition to the above average fragment spins arising from
the overall dinuclear rotation, the two fragments also acquire
fluctuating amounts, δSL and δSH . Generally, a dinuclear
system has six normal modes of rotation [6], namely tilting
and twisting, in which the fragments rotate in the same or in
the opposite sense around the dinuclear axis z, and wriggling
and bending, in which the fragments rotate in the same or in the
opposite sense around an axis perpendicular to the dinuclear
axis. (The two latter types of modes are then each doubly
degenerate, corresponding to rotations around x and y, for
example.) As in Ref. [5], we consider only the latter four
modes because the agitation of the former two tends to be
suppressed due to the constricted neck [6].

The contribution to the rotational energy from these four
dinuclear rotational modes is given by

δErot = s2
+/2I+ + s2

−/2I−, (1)

where the normal modes have the form s± = (sx
±,s

y
±,0), with

the plus referring to the wriggling modes (in which the
rotations of the two fragments are parallel) and the minus to
the bending modes (in which the rotations of the two fragments
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are opposite). The associated moments of inertia are

I+ = (IL + IH )I/IR, I− = ILIH/(IL + IH ). (2)

It is assumed that these normal dinuclear rotational modes
are being agitated statistically during the scission process.
Thus, in each event, the values of s± are being sampled from
distributions of the form

P±(s± = (sx
±,s

y
±,0))dsx

±ds
y
± ∼ e−s2

±/2I±TS dsx
±ds

y
±, (3)

where the “spin temperature” TS is regarded as a global but
somewhat adjustable parameter.

Other recent Monte Carlo calculations of prompt photon
emission from fission fragments [7–9] do not keep track of the
fragment spin directions but consider only their magnitudes.
Integer values of these, Ji , are sampled independently for
each fragment from distributions of the form P (Ji) ∼ (2Ji +
1) exp(Ji(Ji + 1)/2σ 2) [9] or P (Ji) ∼ (2Ji + 1) exp ((Ji +
1
2 )2/2σ 2) [7,8] where the spin cut-off parameter σ is either
[7] specified,

√
2σ = 6� for light fragments and

√
2σ = 7.2�

for heavy fragments, or [8,9] taken from the RIPL3.0 data
library [10].

The corresponding fluctuating angular momentum com-
ponents of the individual fragments in our approach are
then

δSk
L = (IL/I+)sk

+ + sk
−, δSk

H = (IH/I+)sk
+ − sk

−, (4)

for k = x,y, whereas δSz
i = 0. Consequently, the total angular

momenta of the fragments are S′
i = Si + δSi .

The resulting orbital angular momentum is then L′ =
L − δSL − δSH . Because the geometrical configuration has
not been affected by the angular momentum fluctuations, the
“exit” z axis remains the same, z′ = z = R/R. However, the
exit y axis, being directed along the resulting orbital angular
momentum, has changed, y′ ∝ L′, and therefore x′ = y′ × z′
also differs from x.

Because the further relative fragment motion is subject
to the dinuclear Coulomb force, the asymptotic fragment
motion is not along the direction of the dinuclear scission
axis. We estimate the resulting final direction by assuming
that the separating fragments follow a Coulomb trajectory
with the scission configuration being the closest approach,
an approximation that ignores the relatively small initial radial
kinetic energy (compared to the nearly 200 MeV gained from
the Coulomb push). The resulting effect is very small, of the
order of just a few degrees.

III. EVAPORATION FROM ROTATING FRAGMENTS

The FREYA procedure for neutron evaporation has been
refined to take account of angular momentum in two regards:
The emitting nucleus may generally be rotating and the emitted
neutron carries away some angular momentum. The general
approach is as follows: First the emission point is selected
randomly on the nuclear surface and a neutron is then emitted
from the local surface element as usual, but it is subsequently
boosted by the local rotational velocity of the emission point
and the linear and angular-momentum recoils are taken into
account.

Our primary goal is to assess the importance of including
these angular-momentum refinements and for this purpose we
assume that the evaporating nuclei are spherical. Then the
orientation of the shape is unaffected by the nuclear rotation
which simplifies the formulas. The treatment below holds in
the center of mass system of the evaporating nucleus. The
nuclear center of mass reference system xyz is aligned with
the adopted external XYZ reference system. Its origin is at the
center of mass of the emitting nucleus and it is moving along
with its velocity. In this coordinate system, the points (x,y,z)
located on the spherical surface of the emitting nucleus are
characterized by x2 + y2 + z2 = R2

A, where RA = r0A
1/3 is

the nuclear radius. It is therefore straightforward to sample the
emission point r ,

r = (x,y,z) = RA(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). (5)

The nuclear rotation vector is ω = S/I. The rotational velocity
w at the emission point r is then

w(r) = (wx.wy,wz) = ω × r. (6)

In order to sample the local velocity of the emitted neutron,
we need to introduce a local reference system abc, where c
points outwards along the local surface normal (thus the ab
plane is tangential to the surface at the emission point r).
Because the shape is a sphere the local normal is directed
along r , so c = r/r . Choosing b to lie in the XY plane, we
then use

a = b × c = (cos ϑ cos ϕ, cos ϑ sin ϕ, − sin ϑ), (7)

b = c × a = (− sin ϕ, cos ϕ,0), (8)

c = a × b = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). (9)

To sample the emission velocity u in the local comoving
abc frame, we first sample the emission energy ε as before
using P (ε) ∼ ε exp(−ε/Tmax) and then sample its (outwards)
direction (θn,φn) (where the polar angle θn is measured relative
to the local surface normal c) from a distribution biased by
the normal component cos θn: cos2 θn = η and φn = 2πη′
(where η and η′ are random numbers uniform on (0,1]),
therefore

u = u sin θn cos φna + u sin θn sin φnb + u cos θnc. (10)

Because the sampled energy ε is the kinetic energy of the
relative motion of the emitted neutron and the residual daughter
nucleus, we have (nonrelativistically) ε = 1

2μu2, where μ is
the reduced mass, 1/μ = 1/mn + 1/M ′.

The local velocity of the emitted neutron is therefore un =
u/(1 + mn/M

′) and its total velocity in the center of mass
of the emitting nucleus is v = un + w, where w is the local
boost from the rotation (6). Its momentum is then p = mnv.
Momentum conservation dictates that the momentum of the
daughter nucleus be P ′ = − p, in the center of mass of the
mother nucleus.

Furthermore, by angular momentum conservation, we may
obtain the angular momentum of the daughter nucleus, S′ =
S − �, where � = r × p is the angular momentum carried
away by the emitted neutron. The corresponding rotational
energy of the residue is E′

rot = (S ′)2/2I ′. The energy balance
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then determines Q′, the statistical excitation energy of the
daughter,

Q′ = Q − Sn − ε + Erot − E′
rot, (11)

where Q is the statistical excitation of the mother nucleus
and Erot = S2/2I is its rotational energy and the neutron
separation energy is Sn = M ′ + mn − M .

The Q value for neutron evaporation, Q∗
n, is equal to

the maximum possible statistical excitation in the daughter
nucleus, Q′

max. Without angular momentum taken into account,
the softest emission has ε = 0 and leads to the maximal
excitation energy in the daughter. However, when angular
momentum is incorporated, even such an ultrasoft emission
generally produces both linear and angular recoils due to
the rotational motion of the emission point. Only when the
emission point r is at one of the poles (i.e., r is along or
opposite the angular momentum S) is there no rotational
motion w and an ultrasoft emission produces no recoil (i.e.,
the linear and angular momenta of the daughter nucleus then
remain the same as those of the mother). Because the daughter
nucleus has a smaller moment of inertia, it will have a larger
rotational energy. As a consequence, Q∗

n is correspondingly
reduced, as was already taken into account in Ref. [5],

Q∗
n = M + S2/2I + Q − mn − M ′ − S2/2I ′. (12)

Furthermore, as before, it is necessary to verify that a given
sampled emission energy ε does not violate the bound set
by energy conservation (i.e., the resulting statistical excitation
Q′ must be positive). The inclusion of the rotational motion
introduces stricter bounds that depend on the location of the
emission point r . Therefore a given sampling of ε must be
repeated more frequently, though still relatively rarely.

IV. ILLUSTRATIVE APPLICATIONS

The above angular momentum refinements have been
incorporated into FREYA. In this section, we examine possible
observable effects on neutron and photon emission from
spontaneous fission of 252Cf and neutron-induced fission of
239Pu.

A. Preparation

Previously, the initial compound nucleus was assumed
to have no angular momentum. Consequently, it was char-
acterized by its charge number Z0, mass number A0, and
total excitation E∗

0 . The latter was either specified explicitly
or obtained from the kinematics of neutron absorption. In
the present refinement, the initial compound nucleus may
be rotating, having a total angular momentum S0 which is
either specified explicitly or is calculated from the neutron-
absorption kinematics.

When S0 is specified, it is assumed that the initial compound
nucleus is at rest, P0 = 0. The magnitude of the angular
momentum, S0, may be specified to be any value between
zero and the maximum allowed by the excitation energy,
Smax

0 = [2I0E
∗
0 ]1/2, where the nuclear moment of inertia is

taken as I0 = c 1
5M0r

2
0 A

2/3
0 with M0 being the mass of the

compound nucleus. For the reduction factor, we use c = 0.5

as previously [5]. (The simplifying assumption that the com-
pound nucleus is spherical could readily be improved, should
it be required.) The orientation of S0 may be either specified
or sampled randomly. While it should have no effect on the
physical observables, having this control is useful for testing
purposes.

To prepare the initial compound nucleus via neutron
absorption, we proceed as follows. The kinetic energy En of
the incoming neutron is specified, as before, and its direction
of motion is selected randomly; its momentum is then pn

with En = p2
n/2mn. Subsequently, its impact parameter b is

selected randomly, subject to the constraints that it must be
perpendicular to pn and its magnitude cannot exceed the
nuclear radius R0 = r0A

1/3
0 . It is assumed that the neutron

is then fully absorbed (so the possibility of pre-equilibrium
emission is ignored for now). Consequently, the total linear
momentum of the resulting compound nucleus is P0 = pn

and its total angular momentum is S0 = b × pn. Following
Ref. [5], we assume that the associated rotational energy is
given by Erot

0 = S2
0/2I0. The total excitation energy in the

compound nucleus now follows from energy conservation,
E∗

0 = Sn + (1 − mn/M0)En, and the statistical part of the
excitation energy (the “heat”) is given by Q0 = E∗

0 − Erot
0 .

After its preparation, the resulting compound nucleus
may evaporate one or more neutrons before it fissions. The
treatment of pre-fission neutron evaporation in the presence of
angular momentum is carried out as described in Sec. III.

B. Spontaneous fission of 252Cf

The most important rotational effects in fission at low
energy arise from the angular momenta of the fragments,
primarily acquired at scission. To bring these effects out as
clearly as possible, we consider here spontaneous fission where
there is no rotation prior to scission nor any pre-fission neutrons
emitted.

Specifically, for 252Cf(sf), we compare various scenarios
that differ with regard to the fluctuations in the angular
momenta of the fission fragments. The degree of angular
momentum fluctuation is governed by the parameter cS ,
defined as the ratio between the employed spin temperature
TS and the scission temperature Tsc. We consider cS = 0.0,
cS = 0.1, and cS = 1.0. The value cS = 0 is equivalent to
the absence of spin fluctuations at scission. The other two
values are chosen to match the results for the Detector for
Advanced Neutron Capture Experiments (DANCE) photon
multiplicity [11] (cS = 0.1) and the approximate average total
emitted photon energy found in earlier measurements [12,13]
(cS = 1.0). In the different scenarios, the FREYA parameters e0

and x are left fixed to simple values close to those determined
earlier [4], while the shift dTKE has been adjusted to ensure
that the average neutron multiplicity ν is approximately the
same in all scenarios. These parameter values are listed in
Table I together with the resulting mean magnitudes of the
angular momenta of the initial (i.e., pre-evaporation) light and
heavy fission fragments.

In scenario 0 the primary fission fragments are not endowed
with any angular momentum fluctuations and, because we
are considering spontaneous fission, the average fragment
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TABLE I. The three scenarios considered for spontaneous fission
of 252Cf which are distinguished by the value of the factor cS = TS/Tsc

that governs the magnitude of the fragment spin fluctuations. The
values of the usual FREYA parameters e0, x and dTKE (in MeV)
as shown for each scenario, the latter having been adjusted so the
resulting average neutron multiplicity ν is approximately the same
for all scenarios. Also shown are the resulting mean magnitudes of
the angular momenta of the initial light and heavy fission fragments,
SL and SH .

252Cf(sf) e0 x dTKE ν SL (�) SH (�)

0: cS = 0.0 10 1.3 2.6 3.76 0.02 0.02
1: cS = 0.1 10 1.3 2.4 3.76 1.82 2.25
2: cS = 1.0 10 1.3 0.5 3.75 6.16 7.63

angular momenta also vanish initially. In the course of the
evaporation chain, the recoil from each evaporated neutron
adds a fluctuating amount of angular momentum to the
fragments. This effect is relatively modest: On average, an
evaporated neutron carries off about one unit of �, the average
amount being � = 1.09, 1.10, 1.12 for scenarios 0, 1, and 2,
respectively. The slight increase in � is due to the increase in
the typical nuclear rotational frequency with cS .

1. Neutron observables

Because dTKE is adjusted to ensure that the overall mean
neutron multiplicity is the same in the different scenarios, the
various other neutron observables are not very sensitive to the
degree of fragment rotation. For example, the dependence of
the neutron multiplicity on the fragment mass, ν(A), comes out
practically the same in all scenarios, as does the total neutron
multiplicity distribution, P (ν).

The effect on the angular correlation between the evapo-
rated neutrons is relatively small, as illustrated quantitatively
in Fig. 1. There is a tendency for the correlation pattern to
be slightly eroded by the presence of larger angular momenta
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FIG. 1. (Color online) The angular correlation between evapo-
rated neutrons with kinetic energies greater than 0.5 MeV, as obtained
from the three scenarios for 252Cf(sf).

(scenario 2). The scenario without fluctuations, cS = 0, yields
a correlation function that is indistinguishable from that of
scenario 1. However, because FREYA provides complete events,
it is possible to extract quantities that exhibit larger effects of
the degree of fragment rotation, although those “observables”
may not be so readily measured experimentally.

For example, one would expect that the angular distribution
of neutrons evaporated from a rotating nucleus will acquire
an oblate shape, due to the rotational boost that enhances
emission in the plane perpendicular to the angular momentum
S of the emitting nucleus. Generally, the angular distribution,
being symmetric around the direction of S, can be analyzed by
means of a Legendre expansion. A quantitative measure of the
centrifugal effect flattening the neutron angular distribution is
then provided by the second Legendre moment,

〈P2(cos θ )〉 =
〈
P2

(
p · S

| p||S|
)〉

, (13)

where P2(cos θ ) is the Legendre polynomial of second order.
This moment vanishes for isotropic emission patterns; it is
positive for prolate distributions (which favor polar emissions),
and it is negative for oblate distributions (which favor equa-
torial emissions). We find 〈P2〉 to be −0.002 for scenario 1
and −0.012 for scenario 2, with the corresponding in-plane to
out-of-plane ratios of 1.01 and 1.08.

A more detailed impression of this centrifugal effect can
be gained from Fig. 2, which shows the various angular
distributions of the evaporated neutrons relative to the spin
direction of the emitting nucleus, dν/d cos θn, with p · S =
| p||S| cos θn. It is seen that although the bias towards equatorial
emission increases steadily with cS the flattening never exceeds
a rather modest level. It is perhaps surprising that there
is an effect even for scenario 0 in which the fragments
are formed without any rotation. This is due to sequential
neutron emission: After the first neutron emission a fragment
will generally rotate somewhat as a result of the recoil, so
subsequent neutron emissions generally occur from nuclei
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FIG. 2. (Color online) The angular distribution of evaporated
neutrons relative to the direction of the angular momentum of the
emitting nucleus, as obtained for 252Cf(sf) in the three scenarios.
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TABLE II. The average multiplicities of the statistical photons,
the subsequent collective photon emission, and the total number of
photons for the three scenarios considered. The total multiplicities
are compared to recent measured values [11,14].

252Cf(sf)
〈
N stat

γ

〉
+

〈
N coll

γ

〉 = 〈
N total

γ

〉
0: cS = 0.0 6.88 0.70 7.58
1: cS = 0.1 6.89 1.31 8.18
2: cS = 1.0 6.89 4.75 11.64
Ref. [11] — — 8.14 ± 0.40
Ref. [14] LaBr3:Ce — — 8.30 ± 0.08
Ref. [14] CeBr3 — — 8.31 ± 0.10

that rotate and they will therefore be subject to the associated
centrifugal force.

While the above results are in accordance with general
expectations, it is clear that the degree of oblateness remains
relatively small even in the presence of large spin fluctuations
(scenario 2). This helps explain why the neutron-neutron an-
gular correlations are so relatively insensitive to the fragment
rotations (see Fig. 1).

It would be interesting to compare the above FREYA results
with results obtained with more refined treatments, such as
the Hauser-Feshbach model. However, such comparisons are
not straightforward to make because the commonly employed
implementations of the Hauser-Feshbach model do not keep
track of the angular momentum orientations.

2. Photon observables

Photon emission displays a more significant sensitivity to
the fragment rotation. For each of the scenarios, Table II shows
the average multiplicity of statistical and collective photons,
as well as the total photon multiplicity. The latter increases
noticeably with cS . This increase comes nearly exclusively
from the increase in collective photons, whereas the statistical
photon emission is largely insensitive to the rotation. This
feature is reasonable because the statistical photons depend on
the amount of heat present in the nucleus, which is essentially
determined by the neutron separation energy, whereas the
number of collective photons is directly proportional to the
magnitude of the nuclear angular momentum at the end of
the statistical emission.

Because the enhanced angular-momentum fluctuations
lead to more photons, the photon multiplicity distributions
noticeably differ for the three scenarios, as is brought out
in Fig. 3. As discussed in Ref. [5], the DANCE multiplicity
[11] can be reproduced assuming a rather low contribution
from collective photon emission, cS ≈ 0.1. The more recent
measurement by Billnert et al. is similar to this result;
see Table II. However, earlier measurements of the total
emitted photon energy [12,13] suggest higher values than
obtained in scenario 1. Instead, the scenario with cS = 1.0
gives an average radiated energy of 〈Eγ 〉 ∼ 7 MeV, which is
closer to the older measured values, 〈Eγ 〉 ∼ 6.7 ± 0.4 MeV
[13]. This energy measurement is consistent with the newer
results, 〈Eγ 〉 ∼ 7.65 ± 0.55 MeV [11] and 〈Eγ 〉 ∼ 6.65 ±
0.12 MeV (with CeBr3) [14]. More work is still needed to
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FIG. 3. (Color online) The photon multiplicity distribution ob-
tained for the three scenarios considered compared to the DANCE
data [11].

understand the differences between these scenarios and the
data.

C. Thermal neutron-induced fission of 239Pu

In order to illustrate the angular momentum effects for
fission of initially rotating nuclei, we also consider thermal-
neutron induced fission, namely 239Pu(nth,f). The absorption of
the incoming neutron endows the resulting compound nucleus,
240Pu∗, with a (small) angular momentum S0. Thus the scission
configuration is (slowly) rotating and, as a consequence, the
nascent fission fragments have a nonvanishing (though small)
average angular momentum component directed along S0, in
addition to the fluctuating amounts acquired during scission.
Subsequently, the fragment angular momenta are modified
slightly by each neutron evaporation.
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FIG. 4. (Color online) The distribution of the angle between the
postevaporation fragment angular momentum and that of the initial
compound nucleus, �θ , for cS = 0,0.1,1.0, with dTKE having been
adjusted in each scenario to yield ν̄ = 2.75.
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The refined version of FREYA keeps explicit track of these
features in each event and it is thus possible to extract the
directional correlation between the resulting postevaporation
fragment angular momentum S′

i and the initial compound
angular momentum S0. Figure 4 shows the distribution of the
associated dealignment angle �θ , determined by S′

i · S0 =
S ′

iS0 cos �θ , for the three cS values in the spin-fluctuation
scenarios considered for 252Cf(sf).

In the absence of angular momentum fluctuations, cS = 0,
the fragment angular momenta are originally oriented along
the overall angular momentum S0. Because the angular
momenta are only modified slightly by the evaporation recoils,
the resulting dealignement is very small. Consequently, the
distribution Pdealign(cos �θ ) is strongly peaked at cos(�θ ) ≈
1. As the angular momentum fluctuations are added, this
relatively narrow alignment is gradually being eroded and
Pdealign(cos �θ ) develops a second peak near cos(�θ ) ≈ −1.
This feature appears because the fluctuating components
arise from the dinuclear rotational modes which conserve
overall angular momentum. Furthermore, it is elementary to
show that Pdealign(cos �θ )� 1/ cos(�θ ) in the limit where
the fluctuations overwhelm the average, corresponding to
Pdealign(cos �θ ) approaching a constant.

V. CONCLUDING REMARKS

In this article we described how the treatment of angular
momenta in FREYA has been significantly refined to take
account of angular momentum conservation, both during
scission when the rotating fragments are formed and in the
course of the subsequent neutron evaporation chain. The more
complete treatment makes it possible to extract observables
that are not accessible by other current approaches. With
respect to the various distributions calculated previously [3,5],
we find only minor differences, as long as dTKE is adjusted
to reproduce ν̄.
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