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Analytical and numerical calculations for the asymptotic behavior of unitary 9 j coefficients
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Previously it was noted in numerical calculations that a certain unitary 9j coefficient

U (I,j ) = 〈(jj )2j (jj )2j |(jj )2j (jj )(2j−2)〉I

decreases with increasing j and for fixed small I . The decrease is of the form Ajme−αj . The exponential decay
factor dominates. Analytically we also show, using the Stirling approximation, that α = 4 ln(2) and m = 3

2 .
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I. INTRODUCTION

In previous works [1,2] Zamick and Escuderos addressed
the problem of maximum j -pairing. In the course of these
studies they found that results were simplified by the fact that
a certain coupling matrix element was very small. This was
the unitary 9j coefficient

U (I,j ) = 〈(jj )2j (jj )2j |(jj )2j (jj )(2j−2)〉I (1)

for small I , e.g., I = 2. The work started in the g9/2 shell, but
as one went to higher shells this U9j became rapidly smaller.
Indeed the behavior was parametrized as Ajme−αj [2,3]. The
consequence of a very weak coupling is that for small total
angular momentum I the lowest two states for a maximum
J pairing interaction are 〈(jj )2j (jj )2j |(jj )Jp (jj )Jn〉I and
〈(jj )2j (jj )(2j−2)|(jj )Jp (jj )Jn〉I with Jp and Jn both even
[1,2]. In this work we will first conduct numerical studies to
much higher angular momenta and with greater precision for
the unitary 9j coefficients using Mathematica. We will then
approach the problem analytically and derive the parameters
α and m. We also consider cases where I is large.

II. CALCULATION

A. Asymptotes of small I

As was noted in [1] at first glance U (2,j ) seems to fall of
exponentially with j . This suggests a form

Ae−αj . (2)

For this form ln(|U (2,j )|) = ln(A) − αj . If this were true there
would be a linear relationship between ln(|U (2,j )|) and j .
Here we will also consider other values of I as indicated
above.

We first plot, in Fig. 1, ln(|U (I,j )|) vs j for all even I
values between I = 2 and I = 32. The curves indeed approach
straight lines indicating that the U (I,j )’s drop exponentially
with j . This is certainly the dominant trend but there are small
deviations indicated by the error analysis.

We try a more elaborate form

UA(I,j ) = Ajme−αj . (3)

We consider the ratio

RR = U (I,j + 1)2

U (I,j ) U (I,j + 2)
. (4)

If we assume that U9j = Ajme−αj , then we have

RR = (A(j + 1)me−α(j+1))2

Ajme−αj × A(j + 2)me−α(j+2).
(5)

With some algebra this becomes

RR = e−2αj e−2α(j + 1)2m

e−2αj e−2αjm(j + 2)m
. (6)

It is obvious to see the factors which cancel out, then we take
the ln of both sides and obtain

ln(RR) = m ln

(
(j + 1)2

j (j + 2)

)
. (7)

We therefore have the extracted m:

m = ln(RR)

ln
( (j+1)2

j (j+2)

)
.

(8)

It should be noted that in the large j limit (j+1)2m

(j (j+2))m approaches
1 + m

j 2 . We plot some cases of m vs. j in Figs. 2 to 4. We find
that for all even I from I = 2 to I = 12, m converges to 1.5
in the large j limit.

It is important to note that in order to obtain the asymptotic
value of m in Eq. (3) one must go to a sufficiently large value
of j . Furthermore the bigger the value of I the higher the one
has to go in j . To show the perils of choosing a too small
maximum j suppose we choose it to be 500.5, which a priori
most would consider to be a very large number. The values of
m for I = 2,4,10,20,30 are, respectively, 1.495, 1.481, 1.391,
1.085, and 0.577. We now see a steady decrease in m as I
increases, which could lead to the false conclusion that there
is a different asymptotic value of m for each I . However when
we choose j large enough, e.g., up to 7000.5 for I = 32 we see
that the asymptotic value of m is the same for all even I up to
I = 32, namely m = 1.5. It should be noted that convergence
is slower as I increases.
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FIG. 1. (Color online) ln(|U9j |) vs j I = 2,4,6, . . . ,32.

B. Asymptotes of large I

We next consider U (I,j ) for the largest values of I . We
start with I = Imax = 4j − 2 and then also consider Imax − 2,
Imax − 4, etc. We find that U (Imax,j ) approaches a constant
for large j shown in Fig. 5. We assume that the form of the
asymptote is

U (Imax − 2n,j ) = A

jn
. (9)

Then we plot U (Imax − 2n,j ) × jn versus j to determine if
this value approaches a constant. The results are shown in
Fig. 6. We can conclude then that the asymptote for large I
adheres to Eq. (9).

A formula involving many factorials for the case I = Imax

is also given by Varshalovich et al. in Sec. 10:8:4 Eq. (14) in

FIG. 2. (Color online) Suspected m vs j I = 2,4,6,8.

FIG. 3. (Color online) Suspected m vs j I = 26,28,30,32.

[4]. We finally remind the reader that our motivation for this
work comes from our desire to understand the wave function
arising from a “maximum J -pairing” Hamiltonian [1,2].

III. ANALYTICAL RESULTS

A. Asymptotes of small I

The numerical results in the previous section for the small
I cases lead to the result m = 1.5 and the figures show a
dominantly exponential decrease with j [3]. We can show
some analytical results. We note that there is an explicit
formula for the 9j symbol associated with the unitary 9j
coefficient above in the work of Varshalovich et al. [4]

FIG. 4. (Color online) Suspected m vs j I = 2,4,6, . . . ,32.
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Sec. 10:8:3 Eq. (9) shown here:

9j =
⎧⎨
⎩

a b c
d e f

a + d b + e j

⎫⎬
⎭ = 〈cf (a − b)(d − e)|j (a − b + d − e)〉

×
[

(2a)!(2b)!(2d)!(2e)!(a + b + d + e + j + 1)!(a + d + e + b − j )!

(2a + 2d + 1)!(2b + 2e + 1)!(a + b + c + 1)!(a + b − c)!(d + e + f + 1)!(d + e − f )!(2j + 1)

] 1
2

. (10)

We associate a,b,d,e → j ; c,(a + d),(b + e) → 2j ; f → (2j − 2); and j → I . For some simplification we define a new
variable J = 2j . We apply that expression to this problem and consider U9j rather than 9j ,

U (I,j ) = (J !)2

(2J )!

[
(2J + I + 1)!(2J − I )!(2J + 1)(2J − 3)

(2J + 1)!(2J − 1)!

] 1
2

×
√

1

2(2I + 1)
× 〈J (J − 2)00|I0〉. (11)

Thus we have related the U9j to a Clebsch-Gordan (CG) coefficient.
For the particular U9j above and for I = 2 we obtain the following expression:

U (2,j ) = (J !)2

(2J )!

[
(2J + 1)(2J + 3)(2J + 2)(2J − 3)

(2J − 1)

] 1
2

×
√

1

10
× 〈J (J − 2)00|20〉. (12)

This special U9j is proportional to a CG coefficient. There is a useful formula in Talmi’s book [5] for the associated 3j symbol
shown here:(

j1 j2 j3

0 0 0

)
= 1

2
(1 + (−1)j1+j2+j3 )(−1)g ×

√
(2g − 2j1)!(2g − 2j2)!(2g − 2j3)!

(2g + 1)!
× g!

(g − j1)!(g − j2)!(g − j3)!
, (13)

where 2g = j1 + j2 + j3 and

CG =
√

(2j3 + 1)(−1)j1−j2

(
j1 j2 j3

0 0 0

)
. (14)

There is a simpler formula in Talmi’s book [5] for this
coefficient when I = 2:

〈J (J −2)00|20〉=−
√

15J (J − 1)2

((2J − 3)(2J − 2)(2J − 1)(2J + 1))
.

(15)

FIG. 5. U9j vs j , I = Imax(n = 0).

It is easy to see that the CG coefficient falls off at 1√
J

. We now
get the combined expression

U (2,j ) = (J !)2

(2J )!

√
3J (J − 1)2(2J + 3)(2J + 2)

2(2J − 2)(2J − 1)2
. (16)

FIG. 6. (Color online) (jnU9j ) vs j , I = Imax − 2n, n = 1,2,

. . . ,10.
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The exponential behavior comes from the factorials via the
Stirling approximation

ln(n!) ≈ n ln(n) − n. (17)

If we stop there we get

ln

(
(J !)2

(2J )!

)
≈ 2J ln(J ) − 2J ln(2J ) = −2J ln 2. (18)

However to get the correct asymptotic behavior we must go
beyond this and include one more term to obtain the more
accurate Stirling approximation

ln(n!) = n ln(n) − n + ln(
√

2πn). (19)

Using the extended Stirling approximation this becomes

ln

(
(J !)2

(2J !)

)
≈ −2J ln(2) + ln(

√
πJ ). (20)

Recall that we had assigned J = 2j and then taking an inverse
logarithm of this yields a contribution

(J !)2

(2J !)
≈ e−4 ln(2)j

√
2πj. (21)

When we go from j to j + 1 we get a decrease of about 16
from the exponential factor. This decrease dominates over the
increase from the second factor. The second factor and the
other terms must contribute to get the jm part which serves to
reduce this ratio a bit.

If the “small” term in the Stirling approximation is
neglected a problem arises. The factors under the square root
sign clearly go at j 3/2 in the large j limit. However the
CG coefficient decreases with j . This leads to an effective
m less than 3

2 . However numerical calculations [3] clearly
indicate that m = 3

2 . Hence, although the simplest version of
the Stirling approximation gives the right exponential behavior
it gives the wrong jm dependence. By including the “small
correction” we take care of this problem.

Analytic expressions of specific 9j coefficients have been
previously considered for special cases, e.g., for the case of
partial dynamical symmetries by Robinson and Zamick [6].
Many relations for 9j symbols were found by Zhao and
Arima [7] in the context of maximum j -pairing Hamiltonians.
Explicit studies of the asymptotic behaviors of 9j coefficients
have been performed by Anderson et al. [8] and by Yu and
Littlejohn [9]. What distinguishes the present work from
the ones just mentioned is that only here do we consider
9js which display an exponential decrease with increasing
j . This is called nonclassical behavior by the experts. The
large difference in behavior comes from the fact that we are
considering coupling matrix elements involving two different
J values 2j and 2j − 2 whereas in Zhao and Arima [7]
for the problem they are addressing they have the same J
values. Ironically we have to be in the nonclassical region
mathematically to reach the classical limit for the physical
problem in question.

B. Asymptotes of large I

We now consider the region near I = Imax = 4j − 2. It
should be pointed out that whereas in the small I case we kept I
fixed as we increased j , here as we change j we change I . Thus
we are making different comparisons. The figures confirm that
for this analysis there is a power-law behavior rather than an
exponential one. The U9j goes as 1

jn does, where n = (Imax−I )
2 .

It should be noted that for I = Imax = 4j − 2 the value of U9j
was shown by Talmi [10] to be

U9j =
√

(2j − 1)(8j − 1)

(8j − 2)
. (22)

Note that this 9j approaches 1/2 when j becomes very large.
Subsequently an alternate proof was provided by Bayman [11].

For large I we write I = 4j − 2 − 2n and assume n is
much smaller than j . We use a more general formula from
Talmi’s book [5] (top of p. 960) for 〈2j (2j − 2)00|I0〉.

We can get an expression for all n by using the Stirling
approximation for factorials involving large parameters but
not for those involving only n. We obtain the following result:

U9j = (−1)n

2
√

2(16)n

√
((2n + 2)!(2n)!)

(n!)jn
(23)

as j becomes very large. One can verify that for n = 0 this is
indeed 1

2 and note that for n = 1 we get
√

3/2
8j

. One notes that

in this limit (n smaller than j ) the CG coefficient goes as 1
j 1/4

(alternatively the 3j goes as 1
j 3/4 ) in the large j limit. In more

detail we have

CG =
√

(2n)!

n!(2n)

(
1

πj

)1/4

(−1)n. (24)

The 1
j 1/4 behavior in the large I limit is in contrast to the

behavior in the previous section where I was fixed at a small
value while j was increased. In that case the CG coefficient
from Eq. (14) was proportional to 1

j 1/2 . In this work our
motivation for studying the specific U9j coefficients above
was to better understand the wave functions of a maximum
J -pairing Hamiltonian. What we had previously shown numer-
ically we now have attempted to show analytically. We found
the numerical results crucial in guiding us to the analytical
ones. We have succeeded in getting analytic expressions for
the asymptotic behaviors for small I by using the extended
Stirling approximation. We are also able to make statements
about the large I problem.
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