
PHYSICAL REVIEW C 89, 044320 (2014)

Thermal properties of the nuclear surface
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The thermal evolution of a few thermodynamic properties of the nuclear surface like its thermodynamic
potential energy, entropy, and the symmetry free energy are examined for both semi-infinite nuclear matter
and finite nuclei. The Thomas-Fermi model is employed. Three Skyrme interactions, namely, SkM∗, SLy4, and
SK255, are used for the calculations to gauge the dependence of the nuclear surface properties on the energy
density functionals. For finite nuclei, the surface observables are computed from a global liquid-drop-inspired fit
of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nuclear system is
modeled in a subtracted Thomas-Fermi framework. Compared to semi-infinite nuclear matter, substantial changes
in the surface symmetry energy of finite nuclei are indicated; surface thermodynamic potential energies for the two
systems are, however, not too different. Analytic expressions to fit the temperature and asymmetry dependence
of the surface thermodynamic potential of semi-infinite nuclear matter and the temperature dependence of the
surface free energy of finite nuclei are given.
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I. INTRODUCTION

The liquid-drop model provides a sound framework [1–3]
for having a good estimate of the nuclear surface energy from
experimental binding energy systematics. This is the case for
cold nuclei; this has helped, for instance, in understanding
barrier heights or saddle point configurations in nuclear fission.
This estimate has also its place in the framing of effective
nucleon-nucleon interactions [2,4] by providing an important
empirical input. There is a strong motivation too to examine
the thermal properties of the nuclear surface. Hot nuclei,
produced in multifragmentation in nuclear collisions, are
surrounded by nucleonic vapor; knowledge of the energy of
the interface between the nuclear liquid and the vapor is a
crucial determinant in their mass distributions [5,6] or in our
understanding of their thermodynamic limit of existence [7,8].
This model has also important astrophysical applications. It
puts significant constraints on determining the equilibrium
nuclear masses, electron capture rates, and level densities that
play a seminal role in the dynamical evolution of neutron stars
and supernovae [9,10].

Semi-infinite nuclear matter (SINM) offers a good starting
ground for exploring the nuclear surface properties. It has
a simplicity coming from the absence of many undesirable
complications arising from shell, Coulomb, and finite-size
effects. Considerable effort has been directed in the past
to understanding its surface properties at zero temperature,
mostly in the semiclassical Thomas-Fermi (TF) framework
[11–13]; studies have also been done using the quantal
Hartree-Fock approach [14,15]. In a need for applications in
an astrophysical scenario, Ravenhall, Pethick, and Lattimer
in their pioneering work [16] explored the thermodynamic
evolution of the surface properties of symmetric as well as
asymmetric nuclear matter in the semiclassical approach using
a plausible Skyrme interaction. With increasing temperature
or asymmetry, the density of vapor consisting of hot or drip
nucleons surrounding the liquid phase of the nuclear matter
increases. The evolution of the interface energy with this
change was quantitatively evaluated by them; they showed

how the surface thermodynamic potential energy or the surface
entropy eventually dissolves at a critical temperature when
the distinction between the nuclear liquid and vapor is lost.
A temperature dependence of the surface thermodynamic
potential energy of the form {g[T ,Tc(X)]}α1 with α1 =1.25
was suggested by them. The function g[T ,Tc(X)] has the
form

g[T ,Tc(X)] = {[
T 2

c (X) − T 2
]/[

T 2
c (X) + T 2

]}
, (1)

where Tc(X) is the critical temperature for infinite nuclear mat-
ter of isospin asymmetry X, defined as X = (ρn − ρp)/(ρn +
ρp), where ρn and ρp are the neutron and proton densities (for
SINM, the definition of asymmetry is somewhat more subtle
and given later). Since then, numerous calculations have been
done to understand properties of hot nuclear matter [5,6,17]
with this form of temperature-dependent interface energy.

The scenario for finite nuclei is, however, different. The
Coulomb interaction, coupled with the microscopic nuclear
size, may influence the thermal evolution of their surface
differently from that of the semi-infinite matter. It has already
been noticed, in the course of the evaluation of the thermal
dependence of volume and surface symmetry energy coeffi-
cients [18] of nuclei with a Skyrme-type KDE0 interaction and
the finite-range modified Seyler-Blanchard interaction, that
the surface thermodynamic potential of finite nuclear systems
evolves in a slightly different way. The form of the evolution
function h(T ) = g[T ,Tc(X = 0)] is the same, but the exponent
α1 is seen to have a different value, slightly different for the two
interactions. The hot nuclei undergo Coulomb instability at a
limiting temperature [7], which is much lower compared to the
critical temperature Tc. Consequently, the whole temperature
range up to Tc is not accessible for the finite nuclei. The limiting
temperature is generally a decreasing function of the atomic
number [4,8].

On theoretical grounds, it is known that for infinite systems
the surface thermodynamic energy behaves with temperature
as (Tc − T )α1 , with α1 = 1.26 [19], but that is near the critical
point. We note that for finite nuclei only a lower temperature
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range can be mapped. In this case, the value of the calculated
exponent is found different [18] from that found earlier in
the case of SINM. We therefore intend to examine further
in this article the evolution of the nuclear interface energy
with temperature for semi-infinite nuclear matter, with a
focus on the temperature range accessible to microscopic
nuclei. Calculations are done in the TF approximation.
To assess any possible dependence of the thermodynamic
surface energy on effective nucleon-nucleon interaction, three
Skyrme-class interactions, namely, SkM∗ [20], SLy4 [21],
and SK255 [22], are employed in the calculations. These
interactions obtained by accurately calibrating the bulk prop-
erties of finite nuclei over the whole periodic table are quite
successful.

Because the setting for finite nuclear systems as stated
earlier is somewhat different, calculations for their surface
energies are also done with these interactions. Hot nuclei,
because of evaporation are inherently unstable. To give stabil-
ity, the subtraction procedure was first suggested by Bonche,
Levit, and Vautherin [23,24] in the Hartree-Fock framework.
In the present work, we adopt its semiclassical variant, the
finite-temperature Thomas-Fermi (FTTF) scheme [25]. This
ensures complete thermodynamic equilibrium between the
high-density central liquid and the low-density surrounding
nucleon gas. For a set of doubly closed shell and singly
closed shell nuclei covering almost the entire periodic table,
the energies and free energies are calculated in the FTTF
scheme as a function of temperature. When subjected to
analysis in the framework of the Bethe-Weizsäcker liquid-
drop mass formula, they yield temperature-dependent surface
thermodynamic entities.

The paper is organized as follows. Section II is devoted to
the theoretical formulation of the study of the thermodynamic
properties of the surface of asymmetric semi-infinite nuclear
matter and of finite nuclei. Results and discussions are
presented in Sec. III. Conclusions are drawn in Sec. IV.

II. THE NUCLEAR SURFACE PROPERTIES: THE MODEL

Determination of the equilibrium density distribution of
the hot nuclear systems is the starting point for calculations
of the thermodynamic properties of the nuclear surface. To
describe a hot system as a stable one, it is assumed to be in
thermal equilibrium with a surrounding gas representing the
evaporated nucleons. Even a very asymmetric cold nuclear
system may be stable beyond the nucleon drip point, the
required stability being given by the drip nucleons [13,26].
The description of such a nuclear liquid embedded in a gaseous

environment can be given in the FTTF framework. Section II A
describes the procedure for obtaining the equilibrium density
profiles for semi-infinite nuclear matter as well as for finite
nuclei. Sections II B and II C give a brief glimpse of how the
different surface properties are established from these density
profiles.

A. Equilibrium density profiles

The method to obtain the equilibrium density profiles
of semi-infinite matter and of finite systems is based on
the existence of two solutions to the TF equations, one
corresponding to the liquid phase with the surrounding gas
(lg) and the other corresponding to the gas (g) alone. The two
solutions are obtained from the variational equations

δ�lg

δρlg
= 0 (2)

and

δ�g

δρg

= 0, (3)

where �lg and �g are the thermodynamic potentials of the said
systems. These two systems have the same chemical potentials
μ because of thermodynamic coexistence between the liquid
plus gas system and the embedding gas (i.e., μ

q
lg = μ

q
g = μq ,

q refers to the isospin index for neutrons or protons). The base
density profile of the nuclear liquid (l) of interest is obtained by
subtracting the gas density (g) from that of the liquid plus gas
system (lg), i.e., ρq

l = ρ
q
lg − ρ

q
g . The thermodynamic potential

is given by

� = F −
∑

q

μqNq, (4)

where F = E − T S; F,E, and S are the total free energy,
energy, and entropy, respectively; T is the temperature; Nq is
the number of neutrons or protons; and μq is the corresponding
chemical potential.

We have calculated the total energy with Skyrme interaction
energy density functionals. The energy density is

E(r) = �
2

2mn

τn(r) + �
2

2mp

τp(r) + Esky[ρ(r)] + Ec(r), (5)

where τ ’s are the kinetic energy densities, Esky is the interaction
energy density, and Ec is the Coulomb energy density. The
Skyrme interaction energy density is given by

Esky[ρ(r)] = 1

2
t0

[(
1 + 1

2
x0

)
ρ2 −

(
x0 + 1

2

)(
ρ2

n + ρ2
p

)] + 1

12
t3ρ

γ

[(
1 + x3

2

)
ρ2 −

(
x3 + 1

2

)(
ρ2

n + ρ2
p

)]

+1

4

[
t1

(
1 + 1

2
x1

)
+ t2

(
1 + 1

2
x2

)]
τρ + 1

4

[
t2

(
x2 + 1

2

)
− t1

(
x1 + 1

2

)]
(τnρn + τpρp)

+ 1

16

[
3t1

(
1 + 1

2
x1

)
− t2

(
1 + 1

2
x2

)]
(∇ρ)2 − 1

16

[
3t1

(
x1 + 1

2

)
+ t2

(
x2 + 1

2

)]
[(∇ρn)2 + (∇ρp)2], (6)
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TABLE I. The values of the Skyrme parameters for SkM*, SLy4,
and SK255 interactions.

Parameters SkM* SLy4 SK255

t0(MeV fm3) −2645.0 −2488.91 −1689.35
t1(MeV fm5) 410.0 486.82 389.30
t2(MeV fm5) −135.0 −546.39 −126.07
t3(MeV fm3(γ+1)) 15 595.0 13 777.0 10 989.59
x0 0.09 0.834 −0.1461
x1 0.0 −0.344 0.116
x2 0.0 −1.0 0.0012
x3 0.0 1.354 −0.7449
γ 0.1666 0.1666 0.3563

with τ = τn + τp and ρ = ρn + ρp. Here the ti’s, xi’s, and
γ are the Skyrme parameters listed in Table I, for the three
chosen interactions. The Coulomb contribution is present in
Eq. (5) only for finite nuclei; they cannot be treated for both
homogeneous nuclear matter and semi-infinite nuclear matter.

In Eq. (6), we have not included the spin-gradient terms
[27] because they were ignored while fitting the parameters
for the Skyrme forces we have chosen.

At finite temperature, the effective kinetic energy density is
[27]

τ ∗
q = 2m∗

q

�2
A∗

T ,qT J3/2(ηq), (7)

with

A∗
T ,q = 1

2π2

(
2m∗

qT

�2

)3/2

. (8)

In Eqs. (7) and (8), m∗
q is the nucleon effective mass,

m∗
q = m

(
1 + m

2�2

{[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
ρ

+
[
t2

(
x2 + 1

2

)
− t1

(
x1 + 1

2

)]
ρq

})−1

, (9)

and ηq the fugacity,

ηq = (μq − Uq)/T . (10)

In Eq. (10), Uq is the nucleon single-particle potential,

Uq = δ{Esky[ρ(r)] + Ec}
δρq

, (11)

with the symbol δ referring to the functional derivative here.
For neutrons, Ec = 0. The density ρq is obtained as

ρq = A∗
T ,qJ1/2(ηq). (12)

The Jk’s are the Fermi integrals. The T = 0 case is a special
case which can be addressed easily from Eqs. (7)–(12). The
Coulomb energy density Ec(r) is the sum of the direct and
exchange contributions:

Ec(r) = ED
c (r) + EEx

c (r). (13)

The direct term is

ED
c (r) =πe2 ρp(r)

r

∫ ∞

0
ρp(r ′)[(r + r ′) − |r − r ′|]r ′dr ′, (14)

and the exchange term is calculated from the Slater approxi-
mation as

EEx
c (r) = −3e2

4π
(3π2)1/3ρ4/3

p (r). (15)

The entropy density S is the sum of contributions from
neutrons and protons:

S =
∑

q

Sq =
∑

q

(
5

3

�
2

2m∗
q

τ ∗
q

T
− ηqρq

)
. (16)

From Eqs. (2) and (3), the coupled equations follow:

T η
q
lg + U

q
lg = μq, (17)

T ηq
g + Uq

g = μq. (18)

Solutions of the above two equations yield the required density
profiles ρ

q
lg(r) and ρ

q
g (r). The calculations proceed as follows:

from guess densities ρ
q
lg(r) and ρ

q
g (r), one calculates Uq and

ηq from Eqs. (9)–(12) and then obtains μq as

μq = 1

Aq

{ ∫ [
T η

q
lg + U

q
lg

]
ρ

q
lgd

3r −
∫ [

T ηq
g + Uq

g

]
ρq

g d3r

}
,

(19)

where Aq is the neutron or proton number of the subtracted
liquid part,

Aq =
∫ [

ρ
q
lg(r) − ρq

g (r)
]
d3r. (20)

With this μq , one can calculate ηq with the previous Uq ,
obtaining the next stage densities ρq through Eq. (12), and
proceed iteratively until convergence is achieved.

For a finite system, Aq refers to the actual number of
neutrons (N ) or protons (Z) in the nucleus one is dealing
with. For semi-infinite system, one chooses for calculation a
sufficiently large box size and suitable number of nucleons so
that both ρg and ρlg attain constant values at large and short
distances, respectively (the two extreme ends of the box as
shown in Fig. 1). The asymptotic constancy of ρlg and ρg at
z → −∞ and z → +∞, respectively, is assured this way.

B. Calculation of surface energy coefficients:
Semi-infinite matter

In the context of the subtraction method for the isospin
asymmetric semi-infinite nuclear system, there could be two
definitions [11,13] of the nuclear interface energy. The defini-
tions differ depending on whether one calculates the change
in the total free energy or that in the total thermodynamic
potential of the semi-infinite matter from the corresponding
quantities of the bulk matter. The subtraction of the constant
gas density from that of the liquid plus gas does not change
the surface profile of the semi-infinite matter (see Fig. 1).
Delineating the liquid density (l) one can define the surface
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FIG. 1. (Color online) The density profiles for liquid plus gas
(ρlg) and gas (ρg) for symmetric semi-infinite nuclear matter at T =
10 MeV with the SLy4 interaction. The green-shaded region and
the orange-shaded region represent the gas and the liquid density
distributions, respectively.

free energy per unit area σe [11,13] from

FA = Af l
B + σeA, (21)

where FA is the total free energy of the semi-infinite liquid (l)
containing A nucleons in a cylinder of area of cross section
A normal to the liquid surface and f l

B is the free energy per
particle of the homogeneous bulk liquid. It may be pointed out
that the actual calculations are performed over a finite range
of z, o � z � zmax (see Fig. 1), so that the total number of
nucleons A in the said cylinder in the liquid is finite.

From Eq. (21), one gets the following for σe,

σe =
∫ zmax

0
dz[Flg(z) − Fg(z)] − Af l

B/A. (22)

Using the expression for f l
B , one finds

σe =
∫ zmax

0
dz

{
[Flg(z) − Fg(z)] − [ρlg(z) − ρg(z)]

F0
lg −F0

g

ρ0
lg − ρ0

g

}
,

(23)

where we have used Eq. (20) for the evaluation of A.
In Eq. (23), Flg, Fg , etc. are the free energy densities, the

superscript 0 referring to the corresponding bulk quantities.
It may be noted that Fg(z) = F0

g because the gas density is
constant throughout.

The surface thermodynamic potential per unit area σμ can
likewise be defined from

�A = �l
B + σμA, (24)

whence

σμ =
∫ zmax

0
dz

{Flg(z) − F0
g − μn

[
ρn

lg(z) − ρn
g

]
−μp

[
ρ

p
lg(z) − ρp

g

]}
. (25)

In Eq. (24), �l
B = −(P 0

lg − P 0
g )Azmax, where P 0 refers

to the bulk pressure. For thermodynamic equilibrium, the

pressure P 0
lg = P 0

g ; hence the bulk thermodynamic poten-
tial of the liquid (l) �l

B = 0. Further, μn
lg = μn

g = μn and
μ

p
lg = μ

p
g = μp.

For isospin asymmetric systems, these two definitions given
by Eqs. (23) and (25) yield different surface interface energies.
The difference is given by [13]

σe − σμ = (μn − μp)(Rn − Rp)
ρ0

lnρ
0
lp

ρ0
, (26)

where Rn and Rp are the equivalent sharp surface locations
(in the spirit of the liquid-drop model) of the neutron and
proton fluid; ρ0

ln,ρ
0
lp are the bulk neutron and proton densities

in the liquid and ρ0 = ρ0
ln + ρ0

lp. For symmetric matter, the two
definitions yield identical results.

C. Calculation of surface energy coefficients: Finite nuclei

Unlike SINM, isospin asymmetry does not fully define the
surface characteristics of atomic nuclei. With the same isospin
asymmetry, there may be nuclei with different neutron and
proton numbers; the surface properties of nuclei may thus be
somewhat different. In that sense, one can talk meaningfully
only about average surface properties of nuclei. To calculate
the surface interface energy of hot finite systems, we limit
ourselves to the liquid-drop framework. In that model, the
total free energy of a nucleus is given by

F (A,Z,T )=fv(T )A+ fs(T )A2/3 + Ec(A,Z,T ) + (
f sym

v (T )

− f sym
s (T )A−1/3

)
AX2 + . . . , (27)

where fv and fs are the volume and the surface free energy
coefficients for the symmetric matter, Ec is the total Coulomb
energy of the nucleus, and f

sym
v and f

sym
s are the volume and

surface free symmetry energy coefficients. Here X = (N −
Z)/A is the isospin asymmetry of the nucleus. Referring to our
discussion in the previous subsection, one wonders whether
(fs − f

sym
s X2) should be connected with σe or σμ. It has been

argued in Ref. [11] that in the context of the liquid-drop model,
it should be connected with σμ, the surface thermodynamic
potential. We follow the prescription. To calculate the thermal
dependence of this surface interface energy of finite nuclear
systems, we evaluate, in the subtraction scheme, the free
energies of a host of spherical or near-spherical nuclei, 69
in number (the list of nuclei is taken from Ref. [28]), covering
almost the entire periodic table (34 � A � 218; 14 � Z �
92) at a finite temperature and make a least-squares fit of the
calculated free energies with fv , fs , etc. as free parameters. In
actual calculations, we fitted F (A,Z,T ) − Ec(A,Z,T ), i.e.,
the nuclear part of the free energy. The four parameters,
namely, fv,fs,f

sym
v , and f

sym
s , so fitted, reflect their desired

temperature dependence.

III. RESULTS AND DISCUSSIONS

The calculations for SINM and for finite nuclei are done
with three Skyrme interactions, SkM∗, SLy4, and SK255. The
actual calculations for SINM are done in a reasonably large
box size. In Fig. 1, we display a typical density profile for
symmetric SINM at the temperature T = 10 MeV with the
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FIG. 2. (Color online) Thermal evolution of the surface thermo-
dynamic potential σμ of SINM with the SLy4, SkM∗, and SK255
interactions. Panels (a)–(c) display results for X = 0.0, 0.3, and 0.6,
respectively.

SLy4 interaction. As seen in the figure, with a box size of 35
fm, the gas density on the right side of the box and the liquid
plus gas density on the left side attain constant asymptotic
values. The liquid density ρl shown by the orange-shaded
region is obtained after subtracting the constant gas density ρg

(shown by the green-shaded region) from the liquid plus gas
density ρlg. The quantities ρ0

lg and ρ0
g represent the bulk values

for the liquid plus gas and gas densities, respectively. As seen
in the figure, the choice of 35 fm for the maximum value of
z (zmax) suffices, provided a suitable value for the number of
nucleons per unit area is chosen (in the present calculation, it
is 2.5 per fm2). For asymmetric SINM, the neutron and proton
fractions in the liquid part and those in the gas part may be
different. For the system in phase equilibrium, definition of
global asymmetry of the whole system is then not practical;
it depends on the size of the box. For numerical convenience,
as in Refs. [13,16], we therefore define asymmetry as that
of the denser side of SINM, i.e., X = (ρ0

lg,n − ρ0
lg,p)/(ρ0

lg,n +
ρ0

lg,p).
The thermal evolution of the surface thermodynamic

potential per unit area σμ of SINM is shown in Fig. 2 for
the three chosen interactions. Figures 2(a)–2(c) display calcu-
lated results for different asymmetries. The general feature
seen is that σμ monotonically decreases with temperature,
reaching zero at the critical temperature. The value of the
critical temperature depends on the choice of interactions and
asymmetries. That σμ depends on the choice of interactions is
evident. This dependence is quite weak for symmetric matter,
becoming pronounced with increasing asymmetry.

As shown in Ref. [19], near critical temperature, the surface
thermodynamic potential σμ(T ,X) goes as (Tc(X) − T )α1

with α1 � 1.26. Keeping this in mind, the commonly used
temperature dependence of σμ(T ,X) for SINM over the whole
temperature range for all asymmetries is taken as [16]

σμ(T ,X) = σμ(0,X){g[T ,Tc(X)]}α1 , (28)

TABLE II. The values of the parameters determining the surface
interface energy as a function of temperature and asymmetry for the
SkM∗, SLy4, and SK255 interactions.

Parameters SkM* SLy4 SK255

σμ(0,0) (MeV fm−2) 1.055 1.135 1.060
C0 6.445 12.079 −4.558
α1 0.916 0.898 0.914
β −0.184 −0.576 −0.344

where g[T ,Tc(X)] is given by Eq. (1) and α1 = 5/4. The
asymmetry dependence of σμ(0,X) is taken as

σμ(0,X) = σμ(0,0)(16 + C0)/[y−3 + C0 + (1 − y)−3], (29)

where y = (1 − X)/2 and C0 a parameter. The plausibility
of the dependence of σμ(0,X) on y3 has its origin in the
phase equilibrium conditions [16]. The critical temperature
is asymmetry dependent.

From our calculation, we find that an algebraic expression
of σμ(T ,X) of the form

σμ(T ,X) = σμ(0,0){g[T ,Tc(X)]}α1

× 16 + C0{g[T ,Tc(X)]}β
y−3 + C0{g[T ,Tc(X)]}β + (1 − y)−3

(30)

gives an extremely good fit to the calculated values for X � 0.7
and T � Tc(X = 0.7) � 7.5 MeV. Up to a value of X = 0.7,
the asymmetry dependence of Tc can be well described by a
polynomial of the form Tc(X) = Tc(X = 0)[1 + aX2 + bX4].
The values of a are −0.9238, −0.8126, and −1.2654, the
values of b are −0.3529, −0.4193, and 0.1158 for SkM∗,
SLy4, and SK255 interactions, respectively. The values of
σμ(0,0), α1, C0, and β are given in Table II for the three
chosen interactions. The value of α1 is seen to be ∼0.9 in this
temperature range. It has been checked that this value gradually
rises to the canonical value of �1.26 in a narrow temperature

0.5
1

1.5
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SK255

0.3
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 f
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)
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(a)

(b)

(c)

FIG. 3. (Color online) The surface thermodynamic potential σμ

of SINM with the three interactions plotted as a function of isospin
asymmetry. Panels (a)–(c) show results at temperatures T = 0.0, 5.0,
and 10.0 MeV, respectively.
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window near the critical temperature. The critical temperatures
Tc(X = 0) are 14.61, 14.53, and 15.98 MeV for SkM∗, SLy4,
and SK255 interactions, respectively. In Fig. 3, the asymmetry
dependence of σμ is displayed for the same interactions at three
temperatures, namely, at T = 0, 5, and 10 MeV in the panels
(a)–(c), respectively. The surface potential σμ(T ,X) decreases
with both temperature and asymmetry, reaching zero at Tc(X).
One can see that the temperature- and asymmetry-dependent
σμ(T ,X) has a non-negligible dependence on the interactions
one chooses to describe the SINM with.

The external gas surrounding nuclear drops in clusterized
nuclear matter in an astrophysical environment has its origin
in both temperature and asymmetry. Even at T = 0, nuclei
may exist embedded in a nucleon gas in an astrophysical
environment [26,29] leading to the modification of the nuclear
properties. In Ref. [29], Papakonstantinou et al. find an
increase in surface energy with an increase in asymmetry
for cold nuclei in contradiction to what we find for SINM
from Eq. (30) with T = 0. It may possibly be attributed to
different definitions of the surface energy (σe is known to
increase initially with asymmetry [13]). Part of the reason
may also lie in the definition of the asymmetry parameter; X
in our case is the asymmetry of the denser part of the liquid-gas
system, while in Ref. [29] the asymmetry defined is that of the
subtracted liquid part.

The temperature dependence of the surface symmetry
energy coefficient f sym

s for SINM is shown in Fig. 4. In keeping
with the convention used for finite systems [as is employed in
Eq. (27)], we define f

sym
s as

f sym
s (T ) =

[
− 4πr2

0 (T )
1

2

d2σμ(T ,X)

dX2

]
X=0

, (31)

where the radius parameter r0(T ) = 1/[ 4
3πρ0

l (T )]1/3, ρ0
l (T )

being the bulk liquid density of symmetric matter at the
temperature concerned. From Eqs. (30) and (31), one then

0 3 6 9 12 15
T (MeV)

25
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100
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150

f ssy
m

 (
M

eV
)

Sly4
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SK255

FIG. 4. (Color online) Thermal evolution of the surface symme-
try free energy coefficient f

sym
s of SINM for the interactions SLy4,

SkM∗, and SK255.

gets

f sym
s (T ) = 4πr2

0 (T )σμ(0,0)gα−1[T ,Tc(X = 0)]

×
[

96g[T ,Tc(X = 0)]

16 + C0gβ[T ,Tc(X = 0)]

− 4aαT 2T 2
c (X = 0)[

T 2
c (X = 0) + T 2

]2

]
. (32)

For all the interactions, the surface symmetry energy decreases
with temperature. It is evident from the figure that the calcu-
lated value of f

sym
s (T = 0) for the SK255 interaction is around

twice the value obtained from the other two interactions.
The comparatively faster fall of σμ with asymmetry as seen
in Fig. 2 for the SK255 interaction is a reflection of the
larger value for the surface symmetry coefficient for this
interaction. The properties of symmetric and asymmetric
nuclear matter at the saturation density are quite different
for the SK255 force compared to the other two interactions
used. For example, the nuclear incompressibility coefficient,
the volume symmetry energy coefficient, and the density slope
parameter L (= 3ρ ∂f

sym
v

∂ρ
at the saturation density of symmetric

nuclear matter at T = 0) are larger in comparison to those of
the SkM∗ and SLy4 forces. The large value of f

sym
s (T = 0)

for SINM with the SK255 interaction can be qualitatively
understood as being directly related to the corresponding large
value of L (�95 MeV for SK255 as compared to �45 MeV
for SLy4 or SkM∗). For a heavy nucleus of mass number
A, f

sym
s (T = 0) is ∼A1/3[LεA − Ksym

2 ε2
A] [30], where Ksym

is the symmetry incompressibility and εA = (ρ0
l − ρA)/(3ρ0

l ),
ρA being the equivalent density for the nucleus. The quantity
ρ0

l − ρA can be parametrized as ρ0
l − ρA � ρ0

l /(1 + cA1/3)
[31] (c is around 0.28 for terrestrial nuclei) so that, for a
hypothetical chargeless large nuclear drop of mass A, εA is
∼A−1/3/(3c). For SINM, f

sym
s (T = 0) is then ∼L/(3c).

Entropy per unit area of the surface of semi-infinite matter
is discussed in association with the following two figures. The
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FIG. 5. (Color online) The surface entropy per unit area of SINM
shown as a function of temperature for the three interactions at
asymmetries X = 0.0, 0.3, and 0.6.
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surface entropy per unit area is defined as [16]

ssurf = −∂σμ(T ,X)

∂T

∣∣∣∣
μn

= −∂σμ(T ,X)

∂T

∣∣∣∣
X

+ ∂σμ

∂X

∣∣∣∣
T

∂μn

∂T

∣∣
X

∂μn

∂X

∣∣
T
.

(33)

In Fig. 5, the temperature dependence of ssurf is shown
for three asymmetries (X = 0.0, 0.3, and 0.6). The thermal
evolution of ssurf for all three interactions shows nearly the
same behavior for all asymmetries; temperature raises the
surface entropy as is expected, but after a maximum is reached,
the entropy falls sharply as the interface and the energy
associated with it dissolve near the critical point. In Fig. 6,
the asymmetry dependence of the surface entropy is displayed
at two temperatures, T = 4.0 and 8.0 MeV. No appreciable
sensitivity either to the interaction or to X except at large
values of asymmetry is noticed.

As discussed in Sec. II C, we have calculated the total
free energies of the nuclei as a function of temperature in
the subtracted FTTF procedure and then found the values of
the parameters fv(T ), fs(T ), f

sym
v (T ), and f

sym
s (T ) from a

least-squares fit. To be in concordance with the liquid-drop
model of finite nuclei, a connection of fs(T ) with σμ(T ) [≡
σμ(T ,X = 0)] for symmetric SINM is looked for, which can
be established as

fs(T ) = 4πr2
0 (T )σμ(T ). (34)

For finite nuclei, r0(T ) can be defined from r0(T ) =
R0(T )/A1/3, where R0(T ) is its sharp surface radius. For
semi-infinite matter, r0(T ) is already defined in connection
with Eq. (31). One can see that fs(T = 0) ∼ 18 MeV, with
r0(T = 0) ∼ 1.2 fm [32].

The radius parameter r0(T ) for both finite nuclei and
symmetric SINM is seen to be fitted extremely well in the
temperature range T = 0 to Tlim(∼7.5) MeV as defined for
finite nuclei with the function h(T ) = g[T ,Tc(X = 0)] as

r0(T ) = r0(0)[h(T )]α2 , (35)
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0.1

0.15

0.2
Sly4
SkM*
SK255
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S
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 (
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-2
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FIG. 6. (Color online) The surface entropy per unit area of SINM
shown as a function of asymmetry for the three interactions at T = 4.0
and 8.0 MeV.

TABLE III. Values of exponents α1 and α2 for symmetric SINM
and for finite nuclei in the temperature range T = 0 to 7.5 (∼Tlim)
MeV.

Interaction Symmetric SINM Finite nuclei

α1 α2 α α1 α2 α

SkM* 0.966 −0.076 0.814 1.486 −0.222 1.042
SLy4 0.919 −0.069 0.781 1.404 −0.226 0.952
Sk255 1.019 −0.077 0.855 1.427 −0.208 1.011

so that fs(T ) can be defined as

fs(T ) = 4πr2
0 (0)σμ(0)[h(T )]α, (36)

where α = α1 + 2α2. The values for α1, α2, and α are listed in
Table III for symmetric SINM as well as for finite nuclei for
the three energy density functionals. From the table, one sees
that the exponent α1 governing the temperature dependence
of the interface energy per unit area σμ(T ) is significantly
large for finite systems as compared to that for SINM. One
further sees that the radius parameter r0(T ) increases faster
for finite systems. Overall, one finds that fs(T ) values for
symmetric SINM and for finite nuclei are not qualitatively
very different though fs(T ) seems to fall somewhat faster
for finite nuclei. In Fig. 7, this general thermal behavior of
fs(T ) is displayed. The values of α1, α2, and α are seen
to be nearly independent of energy density functionals. One
may note that there are some differences in the values of
α1 for SINM in Tables II and III. This is because α1 for
SINM in Table III pertains to a small subset of data used
for fitting (symmetric SINM). The thermal evolution of the
surface symmetry free energy coefficient f

sym
s for finite nuclei

is displayed for the three interactions in Figs. 8(a)–8(c) and
compared with that of SINM. Comparatively the sensitivity
of f

sym
s to temperature for finite nuclei is seen to be weaker.

Strikingly, f
sym
s for semi-infinite matter is found to be much

larger for all three interactions. This appears to be a finite-size
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FIG. 7. (Color online) Comparison of the thermal evolution of
the surface free energy fs for finite nuclei (solid lines) and symmetric
SINM (dashed lines) with the interactions SLy4, SkM∗, and SK255.
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FIG. 8. (Color online) Comparison of the thermal evolution of
the surface symmetry free energy coefficients for finite nuclei (solid
lines) and symmetric SINM (dashed lines) for the three interactions.

effect. The Coulomb effect on f
sym
s is found to be nominal.

Switching off the Coulomb interaction, we have tested that,
as the nuclear size increases, f

sym
s approaches the asymptotic

value for semi-infinite matter. We take a set of nuclei at a
fixed temperature (say A ∼ 500, T = 0) with different isospin
asymmetries, calculate their free energies with Coulomb
switched off, and, from a least-squares fit, find the parameters
fv , fs , f

sym
v , and f

sym
s [cf. Eq. (27)]. We then repeat the

calculations at the same temperature for several other different
sets of larger masses. It is found that there is only a marginal
change in fv , fs , and f

sym
v , but f

sym
s increases with the

mass of the nuclear set, tending asymptotically towards the
SINM value. The same conclusion emerges again even if
fv , fs , and f

sym
v are kept constant to the values specific

for the interaction. It may be noted that from the double
difference of the experimental symmetry energies of the finite
nuclei, the value of f

sym
s (T = 0) was empirically found to

be 58.91 ± 1.08 MeV [33]. As is seen from Fig. 8, the value
obtained from the SK255 interaction is in consonance with this
empirical value. The values from the other two interactions
are somewhat lower. The latter values, however, agree closely
with the value of f

sym
s obtained from the fitting of the nuclear

masses [34].

IV. CONCLUSIONS

The thermal evolution of the surface properties of two-
component SINM and of finite nuclei has been investigated in
the present article. Calculations were performed in the FTTF
framework; stability of the seemingly unstable hot nuclear
systems was achieved through the subtraction procedure.
Three Skyrme-class interactions, namely, SkM∗, SLy4, and
SK255, designed to reproduce the bulk properties of cold
nuclei were employed. The dependence of the hot nuclear
surface properties on the energy density functionals was
thereby explored.

The combined effect of temperature and asymmetry on
the nuclear surface has important bearing in astrophysics and
heavy-ion collisions; in that context, for ready use, analytic
expressions that fit the calculated data for SINM well over a
wide range of temperatures and asymmetries are given. For
hot atomic nuclei, the liquid-drop model acted as a framework
for obtaining the desired thermal evolution of their surface.
For applications in asymmetric systems, the need to properly
match the definition of the surface energy to the volume energy
has been stressed earlier [11]. Due care has been taken in this
work for its implementation in both finite nuclei and in SINM;
to be clear, propriety demands the evaluation of the surface
thermodynamic potential, which we have done.

The dependence of the surface thermodynamic potential
on temperature is seen to be of the form [g(T ,Tc(X))]α1 ; for
SINM, α1 has somewhat different values in different temper-
ature ranges, rising slowly from ∼1.0 at low temperature to
∼1.26 near the critical temperature. For different interactions,
α1 is seen to have nearly the same value. For finite nuclei,
the functional form of g[T ,Tc(X = 0)] remains the same, but
α1 is much larger, in the neighborhood of ∼1.45 for the three
interactions that we have chosen. These are finite size effects;
they leave their imprints on the surface symmetry free energy
coefficient too. For finite systems, the surface symmetry energy
is comparatively much smaller, rising slowly to the asymptotic
value for SINM with increasing size.
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