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The incompressibility (compression modulus) K0 of infinite symmetric nuclear matter at saturation density has
become one of the major constraints on mean-field models of nuclear many-body systems as well as of models
of high density matter in astrophysical objects and heavy-ion collisions. It is usually extracted from data on the
giant monopole resonance (GMR) or calculated using theoretical models. We present a comprehensive reanalysis
of recent data on GMR energies in even-even 112–124Sn and 106,100–116Cd and earlier data on 58 � A � 208 nuclei.
The incompressibility of finite nuclei KA is calculated from experimental GMR energies and expressed in terms of
A−1/3 and the asymmetry parameter β = (N − Z)/A as a leptodermous expansion with volume, surface, isospin,
and Coulomb coefficients Kvol, Ksurf , Kτ , and KCoul. Only data consistent with the scaling approximation, leading
to a fast converging leptodermous expansion, with negligible higher-order-term contributions to KA, were used
in the present analysis. Assuming that the volume coefficient Kvol is identified with K0, the KCoul = −(5.2 ± 0.7)
MeV and the contribution from the curvature term KcurvA

−2/3 in the expansion is neglected, compelling evidence
is found for K0 to be in the range 250 < K0 < 315 MeV, the ratio of the surface and volume coefficients
c = Ksurf/Kvol to be between −2.4 and −1.6 and Kτ between −840 and −350 MeV. In addition, estimation
of the volume and surface parts of the isospin coefficient Kτ , Kτ,v , and Kτ,s , is presented. We show that the
generally accepted value of K0 = (240 ± 20) MeV can be obtained from the fits provided c ∼ −1, as predicted
by the majority of mean-field models. However, the fits are significantly improved if c is allowed to vary, leading
to a range of K0, extended to higher values. The results demonstrate the importance of nuclear surface properties
in determination of K0 from fits to the leptodermous expansion of KA. A self-consistent simple (toy) model has
been developed, which shows that the density dependence of the surface diffuseness of a vibrating nucleus plays
a major role in determination of the ratio Ksurf/Kvol and yields predictions consistent with our findings.
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I. INTRODUCTION

The incompressibility (compression modulus) K0 of infi-
nite symmetric nuclear matter (SNM) at saturation density has
become one of the major constraints on mean-field models
of nuclear many-body systems. Although infinite SNM does
not exist in nature, its empirical properties, such as saturation
density and saturation energy, are rather well established (see,
e.g., [1] and references therein). Other quantities of interest,
such as the symmetry energy and its slope at saturation density
[2] and the compressibility modulus are much less constrained
and are the subject of continued study. Traditionally, the
experimental source of information on K0 has been the giant
monopole resonance (GMR). A relatively large amount of
data on GMR energies have been collected over the years
with development in experimental technique followed by more
complicated and accurate data analysis.

Alongside analysis and interpretation of GMR data which,
admittedly, have some limitations, considerable effort has
been put into theoretical calculation of K0. The main model
frameworks employed have been nonrelativistic Hartree-Fock
(HF) and relativistic mean-field (RMF) models with vari-
ous effective interactions, extended beyond mean field by
(quasiparticle) random-phase approximation [(Q)RPA], and
different variants of the liquid drop model. We summarize

in Table I a representative selection of results of such
calculations. Since the early 1960s, theoretical predictions of
the compression modulus have fallen into three classes. The
first comprises models based on so-called ‘realistic’ poten-
tials with parameters fitted to data on free nucleon-nucleon
scattering (phase-shifts, effective ranges) and properties of
the deuteron [3,4], and the second models using effective
density dependent nucleon-nucleon interactions, fitted to data
on (doubly) closed shell nuclei and saturation properties of
nuclear matter [5–9]. The third class of models utilize the
semiempirical mass formula and its development to the liquid
drop model and later the droplet model and its variants [10–13].
‘Realistic’ models predicted systematically lower value of
incompressibility (100–215 MeV) whereas models with ef-
fective interactions, mainly of the Skyrme type, predicted a
wide range of higher values, up to 380 MeV. The empirical
droplet-type models showed limited sensitivity to the value of
K0, which has been used as a chosen input parameter rather
then a variable obtainable from the fit to atomic masses [14,15].
The preference of the early years was clearly for results of the
‘realistic’ models which were seen as more fundamental.

The first (to our knowledge) use of experimental data
on GMR energies, in 40Ca, 90Zr, and 208Pb, taken from an
unpublished report by Marty et al. [16], was performed by
Blaizot et al. [17] who determined K0 = (210 ± 30) MeV.
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They used theoretical values of K0 calculated with B1 [5],
D1 [8], Ska [9], and SIII and SIV [7] effective forces in a
Hartree-Fock + RPA model. This was welcomed as a step in
the right direction, bringing a mean-field result in line with the
‘realistic’ predictions. We will return to that analysis later in
this paper (see Sec. V) and show that modern calculation and
current data move the limits on K0 towards higher values.

In later years theoretical calculations of K0 developed
in two basic directions. These were, first, microscopic
calculations based on self-consistent methods with density
dependent effective nucleon interactions, both nonrelativistic
and relativistic, and second, macroscopic models in which the
incompressibility of a finite nucleus KA is parametrized in
the form of a leptodermous expansion in powers of A−1/3.
The fundamental difference between the two approaches is
that microscopic models yield variables describing vibrating
nuclei, such as K0, dependent on the parameters of the
effective nucleon interaction. Description of the nuclear
surface is not well developed in these models and volume
and surface effects cannot be clearly separated. Macroscopic
expansion contains individual contributions from the volume,
surface, curvature, isospin, and Coulomb terms which, in
principle, can be obtained directly from a fit to values of
KA, extracted from experimental GMR energies. K0 is then
set equal to the leading term in the expansion, the volume
term Kvol.

The usual criticism of macroscopic models is that they
do not describe vibrating nuclei adequately because they do
not include effects such as anharmonic vibrations, and that
the values of the coefficients of the leptodermous expansion
are dependent on the accuracy and methods of extraction
of GMR energies, and thus KA, from raw experimental
data [18]. The main objection is that the coefficients of
the leptodermous expansion are correlated [19] and that all
the terms in the expansion cannot be determined uniquely.
More generally, Satpathy et al. [20] pointed out that the
semiempirical mass formula, the basis for expansion of the
incompressibility of a finite nucleus, has its problems and
the form of leptodermous expansion of KA is not uniquely
determined.

Since the late 1970s, two ways of modeling nuclear
matter density under compression have been singled out and
extensively studied, the so-called scaling and constrained
approximations [18,21,22]. The difference between the two
concepts has a profound consequence on the behavior of the
leptodermous expansion. In the constrained approximation
the leptodermous expansion is converging slowly and higher
order terms in A1/3, in particular the curvature term depending
on A2/3 cannot be neglected. Unique determination of the
coefficients in the expansion is indeed difficult and the
extracted values may contain unwanted contributions from
unresolved correlations. However, as was shown by Treiner
et al. [22], in the scaling approximation the transition density
clearly separates the volume from the surface region in a
vibrating nucleus. The leptodermous expansion converges fast,
higher order terms are negligible and the coefficients reflect
properties of real nuclei. Thus the scaling model has been
recommended for use in analysis of experimental GMR data
as is done in the first part of this paper.
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A � 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/�
2)

〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτβ

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) = ∑
n |〈n|Ô|0〉|2δ(E − En).

|0〉 is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/�
2)

〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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cubic-energy-weighted sum rule (k = 3), and the constrained
model based on the linear-inverted-energy-weighted sum rule
(k = −1). They showed that only in the scaling model does the
series (2) converge rapidly and Kvol = K0. It follows that the
contribution of the curvature term (which depends on A−2/3)
can be neglected in the scaling model which simplifies the
application of the model in analysis of experimental data. We
will adopt the scaling model throughout our analysis using
EGMR = Ẽ3 and interpret Kvol = K0 although we are aware of
possible ambiguities in this approach [25].

There is another method of determination of EGMR,
compatible with the scaling model. The GMR resonance
in the strength function can be fitted, assuming Gaussian
distribution, to obtain the peak energy Epeak and the full
width at half-maximum (FWHM) �. The GMR energy is then
calculated as

Ẽ3 = (Epeak)2 + 3

(
�

2.35

)2

. (8)

It can be shown that Eq. (8) is exact only for Gaussian
distribution of the strength function, otherwise the relation
between the energies obtained from Eqs. (8) and (5) for k = 3
must be treated as an approximation. Ẽ3 values obtained
from Eq. (8) have larger uncertainties than values extracted
from moments, as both Epeak and � have errors. However
the expression (8) was regularly used in earlier, less accurate
experiments, in which moment analysis was not possible, and
results based on it are still often quoted for comparison with
moment results (see, e.g., [46]).

Systematics of GMR energies for A > 56, obtained from
experiment using different methods of analysis are shown in
Tables I–III:

(i) Ẽ3 =
√

m3
m1

, energy in the scaling approximation

(Fig. 1);

(ii) Ẽ1 =
√

m1
m−1

, energy in the constrained approximation

(Fig. 2);
(iii) Ẽ0 = m1

m0
, mean centroid energy (Fig. 3).

In addition, the values of Epeak and � in Eq. (8), as extracted
from different analyses, using Gaussian/Lorentzian/Breit-
Wigner fit to the GMR strength distributions, are given in
Fig. 4. We note that Lorentzian and Breit-Wigner fit functions
are quoted here in line with the original papers. Both are in the
same form of a general Cauchy distribution

f (E,Epeak,�) = 1

π

�/2

(E − Epeak)2 + (�/2)2
. (9)

This distribution differs from the Gaussian in a slower decrease
in both tails away from the center [47]. We note that moment
m3 cannot be calculated for a strength function in a Cauchy
form Eq. (9) because the integral in Eq. (4) diverges. Thus Ẽ3

cannot be evaluated accurately in this case using Eq. (5).
Examination of Figs. 1–4 yields several interesting features.

In general, the Ẽ3, Ẽ1, and Ẽ0 show a non-negligible system-
atic difference for the same isotope. A possible explanation
of these differences may be that higher moments are more
sensitive to a spread of the GMR strength to higher excited
states [48]. It follows that in evaluation of the incompressibility

TABLE II. List of all data groups selected for analysis in this
work. The groups RCNP-M, TAMU0-M and GF-M, discussed in
the text, contain the same data as RCNP-E, TAMU0-E and GF-E,
respectively, but the entries for 56Fe and 58,60Ni are not included.
Ẽ0(average) labels a weighted average of GMR energies obtained
from data given in Refs. [62,63]. (GF) indicates that the Ẽ3 energy
was evaluated using expression (8). The number in the column ‘Data’
indicates the total number of entries in each group. For more details
see text.

Group Method Data Isotope Reference

RCNP Ẽ3 11 112−124Sn [43,44]
Ẽ3

106,110−116Cd [49]
RCNP-E Ẽ3 16 56Fe [46]

Ẽ3
58,60Ni [46]

Ẽ3
112−124Sn [43,44]

Ẽ3
106,110−116Cd [49]

Ẽ0(average) 208Pb [62,85]
TAMU3 Ẽ3 4 112,124Sn [61]

Ẽ3
110,116Cd [60]

TAMU0 Ẽ0 5 112,124Sn [61]
Ẽ0

116Sn [83]
Ẽ0

110,116Cd [60]
TAMU0-E Ẽ0 20 56Fe [46]

Ẽ0
58,60Ni [46]

Ẽ0
106,110−116Cd [49]

Ẽ0
110,116Cd [60]

Ẽ0
112−124Sn [43,44]

Ẽ0
112,124Sn [61]

Ẽ0
116Sn [83]

Ẽ0
116Sn [62]

Ẽ0
144Sm [62]

Ẽ0(average) 208Pb [62,85]
GF Ẽ3(GF) 9 110,116Cd [60]

Ẽ3(GF) 112,124Sn [61]
Ẽ3(GF) 112−116,120,124Sn [29]

GF-E Ẽ3(GF) 15 56Fe [46]
Ẽ3(GF) 58,60Ni [46]
Ẽ3(GF) 110,116Cd [60]
Ẽ3(GF) 112,124Sn [61]
Ẽ3(GF) 112−116,120,124Sn [29]
Ẽ3(GF) 144Sm [29]
Ẽ3(GF) 148Sm [29]

Ẽ0(average) 208Pb [62,85]

KA of a finite nucleus, experimental GMR energies must be
used consistently with the model adopted, e.g., Ẽ3 in the
scaling and Ẽ1 in the constrained model.

Furthermore, in particular for Sn and Cd isotopes, there
is a systematic difference between results obtained by the
Texas A&M (TAMU) group (lower energies) and the Notre
Dame/Japan/Groningen (RCNP) group (higher energies). Ẽ3

energies obtained from a Gaussian fit to the GMR strength
distribution using Eq. (8) are between the two sets of results.
However, the GMR peak energies obtained by the TAMU
(RCNP) group from Gaussian (Lorentzian) fit to the strength
distribution are remarkably close to each other and agree also
with older data obtained by Sharma et al. [29]. Differences
occur in the strength distribution widths, shown in the
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TABLE III. Values of K0 and Kτ obtained from the best fit to Sn, Cd and combined Sn+Cd data in RCNP, TAMU3, TAMU0 and GF
data sets. Two entries for Kτ are given for each data set in rows (i) and (ii), with (i) and without (ii) a correlation with K0. The value of σ is
very similar for these two entries and is given only for the first line. The range of K0, corresponding to 3σ on both sides from the minimum
(l = left, r = right) is shown in the last two columns of line one. In the third line are results from the MINUIT fit to KA calculated with
charge radii. For more explanation, see text.

Element K0 Kτ σ K0(3σ )l K0(3σ )r

[MeV] [MeV] [MeV] [MeV]

Sn(RCNP) (i) 209(6) −595(177) 0.64 202 215
(ii) 209 −591(58)
(iii) 216(6) −537(177) 0.40

Cd(RCNP) (i) 211(11) −463(405) 0.04 207 215
(ii) 212 −460(120)
(iii) 220(10) −403(382) 0.04

Sn+Cd(RCNP) (i) 211(5) −633(157) 3.07 199 222
(ii) 211 −598(52)
(iii) 220(5) −595(154) 3.82

Sn+Cd(TAMU3) (i) 193(7) −652(193) 2.12 179 207
(ii) 193 −653(73)
(iii) 200(7) −594(194) 1.88

Sn+Cd(TAMU0) (i) 187(6) −695(179) 8.03 164 210
(ii) 187 −690(72)
(iii) 194 (6) −641(177) 8.33

Sn+Cd(GF) (i) 195(6) −430(208) 0.76 178 187
(ii) 195 −431(81)
(iii) 202(6) −355(213) 0.47

right panel of Fig. 4, pointing to a different philosophy in
analysis of experimental data by different groups. Extraction
of GMR energies with smaller errors from moments show
these differences in, for example, background subtraction,
more obviously.
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FIG. 1. (Color online) EGRM = Ẽ3 =
√

m3
m1

as a function of (N-

Z)/A as reported in 58,60Ni, 56Fe [46] (TAMU), 90Zr [62] (TAMU),
106,110−116Cd [49] (RCNP), 110,116Cd [60] (TAMU), 112−124Sn [43,44]
(RCNP) and 112,124Sn [61] (TAMU). We also display EGMR(GF)
obtained from (8) for 92Mo [82] (Duhamel), 110,116Cd [60] (TAMU),
112,124Sn [61] (TAMU), 112−116,120,124Sn, 144Sm and 148Sm [29]
(Sharma). For more details see text.

III. ANALYSIS OF EXPERIMENTAL DATA

In this section we review the method of analysis used by
the RCNP group [43,44,49] to obtain Kτ from their 112–124Sn
and 106,110–116Cd data. Next we describe the novel method of
analysis of GMR data, introduced in this work, and apply it to
selected data sets, as detailed in Table II, to extract both K0

and Kτ . In the two last sections we attempt to estimate limits

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
(N-Z)/A

13

14

15

16

17

18

19

20

21

22

E
G

M
R
 =

 (
m

1/m
-1

)1/
2  [

M
eV

]

TAMU
RCNP

92
Mo

106
Cd

90
Zr

112
Sn

114
Sn

144
Sm

112
Cd

118
Sn 120

Sn

116
Cd

122
Sn

124
Sn

208
Pb

114
Cd

116
Sn

110
Cd

58
Ni

60
Ni 56

Fe

FIG. 2. (Color online) The same as Fig. 1 but for EGRM = Ẽ1 =√
m1
m−1

as reported in 58,60Ni, 56Fe [46] (TAMU), 90Zr [62,83] (TAMU),
106,110−116Cd [49] (RCNP), 110,116Cd [60] (TAMU), 112−124Sn [43,44]
(RCNP), 112,124Sn [61] (TAMU), 116Sn, 144Sm and 208Pb [83]
(TAMU). Note the y-scale is the same as in Figs. 1 and 3.
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FIG. 3. (Color online) The same as Fig. 1 but for EGRM = Ẽ0 =
m1
m0

as reported in 58,60Ni, 56Fe [46] (TAMU), 90Zr [83,84] (TAMU),
106,110−116Cd [49] (RCNP), 110,116Cd [60] (TAMU), 112−124Sn [43,44]
(RCNP), 112,124Sn [61] (TAMU), 116Sn, 144Sm [62,83] (TAMU) and
208Pb [62,83] (TAMU) and [85] (Uchida 2003). Note the y-scale is
the same as in Figs. 1 and 2.

on Kτ,v and Kτ,s and comment on the curvature term in the
expansion (2).

A. Method

The previous analyses of the GMR data on 112–124Sn and
106,110–116Cd isotopes by Li et al. and Garg et al. [43,44,49]

0.05 0.1 0.15 0.2
(N-Z)/A

13

14

15

16

17

18

19

20

21

22

E
pe

ak
 [

M
eV

]

TAMU (Gaussian)
RCNP (Lorentz)
Sharma (Gaussian)
Itoh (Breit-Wigner)

Duhamel (Gaussian)
Uchida2004 (Breit-Wigner)

0.05 0.1 0.15 0.2
(N-Z)/A

2

3

4

5

6

7

8

Γ 
[M

eV
]

(a) (b)

FIG. 4. (Color online) (a) Peak energy Epeak and (b) correspond-
ing width � obtained from various fits to the experimental GMR
strength function. Data are taken from 58,60Ni, 56Fe [46] (TAMU
Gaussian), 92Mo [82] (Duhamel Gaussian), 90Zr [63] (Uchida 2004
Breit-Wigner), 106,110−116Cd [49] (RCNP Lorentzian), 110,116Cd [60]
(TAMU Gaussian), 112−124Sn [43,44] (RCNP Lorentzian), 112,124Sn
[61] (TAMU Gaussian), 112−116,120,124Sn [29] (Sharma Gaussian),
116Sn [63] (Uchida 2004 Breit-Wigner), 144Sm [29] (Sharma Gaus-
sian), 144Sm [86] (Itoh Breit-Wigner), 148Sm [29] (Sharma Gaussian),
208Pb (Breit-Wigner fit) [63] (Uchida 2004 Breit-Wigner). The y-scale
in the left panel is the same as in Figs. 1–3.

were based on a simplified formula

KA − KCoulZ
2A−4/3 = Kvol(1 + cA−1/3) + Kτβ

2 (10)

with c, the ratio of Ksurf and Kvol is set equal to −1 and
KCoul taken from theory to be −(5.2 ± 0.7) MeV [42]. This
equation was approximated by a quadratic function of x, y =
a + bx2 with b = Kτ and a = Kvol(1 + cA−1/3). The (weak)
mass dependence of a was neglected based on the argument
that A−1/3 is changing only by ∼3.3% over the range of Sn
isotopes and just under 3% for Cd nuclei [49]. Higher order
terms, namely the curvature term and the surface contribution
to Kτ were not included in the analysis. The experimental
values of KA were evaluated from Eq. (1) using rms charge
radii taken from [50]. Sensitivity of the data to the value of
K0 was not examined. K0 was fixed to (240 ±10) MeV and
only the value of the isospin incompressibility Kτ = −(550 ±
100) MeV was extracted from the data. Although the scaling
approximation was used, experimental GMR energies were
taken from m1/m−1 ratios, which, as pointed out above, is
internally inconsistent.

The approach of Li et al. was criticized by Pearson et al.
[51] who questioned the claims that the mass dependence of
the first two terms in the leptodermous expansion for KA (the
volume and surface terms) is not significant and that the seven
pieces of experimental data in 112–124Sn are enough to yield a
unique value of Kτ . Pearson et al. did not make any distinction
between the scaling and constrained approximations. In this
case it is generally correct that if the higher order terms in
the leptodermous expansion make a significant contribution
to KA, and are not included in the fit, then the extracted
value of Kτ is only an ‘effective’ value, including implicitly
the effects of the higher order terms. Although there is a
possibility of a small contribution of higher order terms
even in the scaling approximation [22], the coefficients of
the leptodermous expansion are much less affected and are
significantly closer to reality.

In the present work, the GMR data analysis, presented by
Li et al., has been modified in several important ways.

First, Eq. (10) has been rewritten as

KA

1 + cA−1/3
− KCoulZ

2A−4/3

1 + cA−1/3
= Kvol + Kτ

β2

1 + cA−1/3
.

(11)

The equation can be symbolically written as a function y =
p + qx with p = Kvol and q = Kτ . The transformation has
the advantage that both p and q are independent of A and
y is a linear function of x with a slope determining Kτ and
intercept equal to Kvol. As the scaling model is adopted in this
work, we will assume that Kvol can be taken equal to K0 from
now on and use Kvol and K0 interchangeably according to the
context.

The second significant difference is that we use Ẽ3 GMR
energies in the calculation of KA (1), consistent with the
scaling model, instead of Ẽ1, used in Refs. [43,44,49]. As
shown in Figs. 1 and 2, this makes a non-negligible difference
in GMR energies and thus in KA.

In calculation of KA the matter radius is required by theory.
However, Li et al. and Garg both used charge radii. As a
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third improvement (in principle) we examined two ways of
estimation of matter radii (methods A and B), as detailed
below.

In method A the rms radius of the matter distribution 〈r2
m〉1/2

was evaluated using the expression in terms of the proton and
neutron distribution radii〈

r2
m

〉1/2 = (
Z

〈
r2
p

〉1/2 + N
〈
r2
n

〉1/2)
/(Z + N ), (12)

where the rms neutron distribution radius 〈r2
n〉1/2 = 〈r2

p〉1/2 +
S is calculated from the proton distribution radius and the
neutron skin S. The rms charge distribution radius 〈r2

ch〉
is obtained from a two-parameter Fermi distribution with
half-density radius fitted to the experimental 2p-1s transition
energy in muonic atoms and a width 2.30 fm [50]. It can be
converted into a rms proton distribution radius 〈r2

p〉1/2 using a
simple Gaussian folding recipe [52]〈

r2
p

〉 = 〈
r2

ch

〉 − 〈
r2

ch,p

〉 + N

Z

〈
r2

ch,n

〉
, (13)

where the intrinsic charge proton and neutron radii are
(0.8768 ± 0.0069) fm2 [53] and −(0.1161 ± 0.0022) fm2

[54], respectively.
The neutron skin S = 〈r2

n〉1/2 − 〈r2
p〉1/2 is determined from

an empirical relation between S and β: S = (0.9 ± 0.15)β −
(0.03 ± 0.02) fm, obtained by interpolation of data from
experiments with antiprotons [55]. We adopted this empirical
relation for isotopes for which the experimental value of
the neutron skin is either not known or known with a large
error. For 90Zr, 116Cd, 112,116,120,124Sn, and 208Pb we took
experimental values of the neutron skin [56].

In method B, radii of neutron matter distributions have been
extracted from the angular distribution of 166 MeV α-particle
elastic scattering [57] and charge radii from an independent
electron scattering experiment. Empirical dependence of the
matter radii rmb on A1/3 has been approximated by〈

r2
mb

〉1/2 = (0.86 ± 0.01)A1/3 + (0.47 ± 0.05) fm. (14)

obtained from a fit over a wide range of spherical nuclei.
Treiner et al. [22] used this relationship in their calculation
of incompressibilities of finite nuclei but did not include the
errors in the coefficients.

The effect of the different way of evaluating 〈r2〉 on the
calculated incompressibility of a finite nucleus is illustrated in
Fig. 5 for Sn isotopes. It can be seen that values of KA differ
when charge radii and matter radii are used and the difference
increases with A. The uncertainties on KA calculated with
〈r2〉 obtained in method B [57] reflect all the constraints
in the model used is their extraction and are considerably
larger that the ones with matter radii from the neutron skin.
Considering that formula (14) arises from a global fit and
is not recommended for use within isotopic sequences of a
single element [57], we choose 〈r2〉 obtained by method A in
this work. The difference between 〈r2〉 from the two methods
illustrates the known difficulty in determining matter radii.
Therefore both matter and charge radii have been used in this
work and consequences for the calculated values of KA taken
into account in the discussion.

A fourth area of difference between this and previous work
involves the adopted value of KCoul. Because of the possible
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FIG. 5. (Color online) KA calculated for Sn isotopes using Ẽ3 =√
m3
m1

and the mean charge (circle), matter (triangle up), determined

from nuclear skin, and matter (triangle down) radius obtained from
elastic alpha-particle scattering. See text for more detail.

correlation between the volume and the Coulomb contribution
to the expansion (11), the value of KCoul is usually fixed in the
fits. Sagawa et al. [42] obtained the value of KCoul = −(5.2 ±
0.7) MeV, in microscopic Skyrme-Hartree-Fock (SHF) and
RMF calculations. They examined the correlation between K0

and KCoul using 14 (seven) parameter sets in the SHF (RMF)
models and found the variation of KCoul rather small, which
is reflected in the quoted error. The caveat to this choice is
that, although in principle the Coulomb contribution to the
incompressibility of a finite nucleus is model independent, the
value used here depends on the choice of the effective nuclear
interaction through the expression [42]

KCoul = 3

5

e2

r0

(
1 − 27ρ2

nm

K0

d3h

dρ3

∣∣∣∣
ρ=ρnm

)
, (15)

where h is the Hamiltonian density of symmetric nuclear
matter and ρnm is the saturation density. The second term in the
expression arises from expansion of the incompressibility of
finite nuclei in terms of the difference between the equilibrium
density ρ0 and the saturation density of infinite nuclear
matter. For the system to be stable, this difference must
be positive [18]. The expansion introduces the dependence
of the Coulomb incompressibility on the incompressibility
of nuclear matter and thus the model dependence of KCoul.
However, this dependence is somewhat diluted by taking a
wide spread of mean field models in Ref. [42]. This conclusion
is corroborated by a recent result by Vesely et al. [58], who
used calculated values of KA for ∼200 semimagic nuclei
across the nuclear chart in QRPA+ Hartree-Fock-Bogoliubov
method with SLy4 and UNEDF0 forces and separable and
zero-range pairing to determine Kvol, Ksurf , Kτ,v, and Kτ,s

and KCoul coefficients of the leptodermous expansion of KA.
They obtained KCoul = (−5.1 ± 0.4) MeV in a very good
agreement with Sagawa et al. Shlomo and Youngblood [19]
studied the correlation KCoul–K0 correlation, attempting to fit
the leptodermous expansion (2) to experimental data available
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in 1993. They found the KCoul–K0 correlation rather strong
and were not able to constrain it in their fits. In order to
investigate the effect of a possible stronger correlation than
that found by Sagawa et al., our analysis was first carried
out adopting the value KCoul = −(5.2 ± 0.7) MeV. Next the
analysis was repeated, increasing the error of KCoul to cover
the range −7.3 < KCoul < −3.1 MeV, wide enough to account
for possible effects of the KCoul–K0 correlation.

As a fifth extension of the procedure, the ratio of Ksurf/Kvol,
that was kept equal to −1 in the analysis by Li et al., was
allowed to vary. Increasing the magnitude of c above one had
a significant effect (as described in Sec. III C).

Finally, all fits to experimental data in this work were done
in two stages: first, a ‘MESH’ fit was performed when variable
parameters (e.g., K0, Kτ , etc.) were changed in small steps in
order to find the minimum of the function

σ =
N∑

i=1

(
y

exp
i − (p + qxi)

)2(

y

exp
i

)2 , (16)

where N is the number of experimental points. The error

y

exp
i comes from two independent sources, the error in

KA, determined by the uncertainty in GMR energy and the
rms matter or charge radius, and the error in the Coulomb
term. It is calculated as (
y

exp
i )2 = 
(KA)2

i + 
K2
Coul. σ is

not normalized to the number of experimental points and the
number of variable parameters.

This procedure involves creating a multidimensional matrix
with several million elements for each case. If the spacing
between points is 
x, one of the points is sure to be within

x/2 of the true minimum, although in general it will not
correspond to the lowest value. Each point in the matrix is
then evaluated searching for a minimum taking small steps
for each parameter. It is essential that the range of each
parameter is wide enough that the descent to the minimum
and ascent out it defines the minimum without doubt and
the same minimum is found for all parameters. The lowest
minimum common to all parameters is taken as the minimum
minimorum of the set. The MESH procedure ensures that other
local minima are not mistaken for the absolute minimum. If
such a minimum cannot be found for a particular parameter
(or a group of parameters) in a physically sensible parameter
space, it might be an indication of a correlation between these
parameters which is strong enough to prevent existence of a
stationary point. The MESH method has been criticized for its
inefficiency, especially for functions of many variables and a
large demand on computer memory. On the other hand, this
method is extremely simple and has absolute stability. It always
converges within the desired tolerance in a known number of
steps and is quite insensitive to the detailed behavior of the
function.

The MESH method and the standard minimization methods
using different algebraic procedures (single-parameter varia-
tions, simplex, gradient methods) should lead to exactly the
same results. However, the MESH method maps all minima in
the chosen parameter space and leads unambiguously to the
absolute one. In contrast, the algebraic methods introduce the
necessity to testing various various starting points to ensure
that the minimum found is the minimum minimorum.

When the minimum σ is found in the MESH fit, the
corresponding parameters are used as input to the CERN
MINUIT package [59] to obtain the final values of the fitted
parameters (MINUIT fit), their errors and correlation coeffi-
cients, not available from the MESH fit. The main reason
for breaking the minimization into two steps is that in some
cases the parameter surface may have local minima or could
be rather flat. An automatic routine, such as MINUIT, needs
to be guided to the deepest minimum otherwise it may give
misleading results. On the other hand, the MESH fit locates
the minimum minimorum rather accurately and the subsequent
local improvement of the minimum using the MINUIT fit is
reliable. Furthermore, in MINUIT the errors in fitted parameters
are calculated from the error matrix [59]. If there is more that
one fitted parameter, the error includes nondiagonal elements
of the error matrix which represent correlation between the
parameters.

We note that it has been reported in the past that attempts to
fit all the parameters/coefficients in the expression for KA to
experimental data, taking them as independent variables, has
not been productive. The parameters were said to correlated
and the experimental data not accurate enough to constrain
the correlations efficiently. However, our strategy of multi-
dimensional MESH fitting with all the parameters constrained
within limits, expected from microscopic estimates, avoids
most of the problem. Further examination of the minimum,
already found in the MESH fit, using the MINUIT routine,
produces precise values and errors of the parameters.

B. Sn and Cd data

There is a considerable amount of data on GMR energies
available on Sn and Cd isotopes. However, the data from
different groups differ by several times their quoted errors and
cannot be meaningfully averaged and treated simultaneously.
We have divided them to three groups (see Table II), each
analyzed using our new analysis method. The objective of this
section is to explore the degree to which the new method of
analysis reproduces the results of [43,44,49] when the same
constraints on c and KCoul are retained. Relaxation of these
constraints is studied in the next section.

1. Data from the RCNP group

Sn (112–124Sn) and Cd (106,110–116Cd) data obtained by
the RCNP group were analyzed separately [RCNP(Sn)
and RCNP(Cd) sets] and as a combined Sn+Cd data set
RCNP(Sn+Cd), not considered in Refs. [44,49]). KA was
fitted as a function of K0 and Kτ using Eq. (11). The MESH
fit was performed for fixed values of K0 in the region of 180–
260 MeV with a step of 0.1 MeV. For each value of K0, Kτ

was varied in the range −900 � Kτ � 0 MeV with a step of
2 MeV. In all cases values c = −1 and Kc = −(5.2 ± 0.7)
MeV have been adopted. We found that σ in Eq. (16) showed
a well-defined minimum in K0 for each data set. This result is
illustrated in Fig. 6 for the combined Sn and Cd data set but
the same behavior was observed for individual Sn and Cd sets
as well as for all other data sets considered in this work for a
fixed value of c = −1. In the subsequent MINUIT fit, the values
of K0, Kτ , obtained in the MESH fit were taken as input.
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side of (11), as a function of β2

1+cA−1/3 for the K0, corresponding to
minimum σ .

Two ways of MINUIT fitting were adopted: (i) both K0 and
Kτ were allowed to vary and (ii) K0 was kept constant at the
value corresponding to the minimal σ in the MESH fit and
only Kτ varied. In case (i) the error in both K0, Kτ included a
correlation between them. In case (ii) there is only one variable
parameter in the fit and therefore only diagonal elements of
the error matrix enter the calculation of the error. In both cases
the values of KA were evaluated using matter radii obtained
in method A. The results are summarized in Table III. Note
that we also included results of the fit (i) to KA obtained with
charge radii (7) as line (iii). In the last two columns the range
of K0 corresponding to 3σ above and below the minimum is
given to indicate the quality of the fit to K0

To examine how well results using the new method
reproduce those of [43,44,49] we consider first Kτ . The
tabulated values are broadly in line with their −550 MeV
for all data sets. However, the errors we find are, by a factor of
two or more, larger than their ±100 MeV when the correlation
between K0, Kτ is taken into account.

Neither previous study examined the sensitivity of the data
to the value of K0. The new procedure showed clear sensitivity
to K0 returning best fit values in general consistent with the
value assumed by Li et al. and Garg [43,44,49]. The best value

from this analysis, including K0 and Kτ correlations and using
matter radii [(i) in Table III] is K0 = (210 ± 5) MeV. We stress
that this result is based on the assumption that the ratio of
volume to surface incompressibility, c, is equal to −1. We
note that in these and all subsequent fits the use of charge radii
systematically lowers the value of Kτ .

2. Sn and Cd data by the TAMU group

There are four pieces of data obtained by the TAMU group
on 112,124Sn and 110,116Cd (set TAMU3) providing Ẽ3 from the
ratio of m3/m1 moments (5) which can be used to calculate
KA compatible with the scaling model. Five pieces of data on
112,116,124Sn and 110,116Cd (set TAMU0) exist and can be used
to calculate Ẽ0 from the ratio of m1/m0 moments.

We analyzed the data in the same three ways as the RCNP
data and present the results in Table III. For both sets, taking
c = −1, best fit values for Kτ consistent with the RCNP value
but with larger errors and somewhat lower values of K0 were
returned by our preferred fit (i).

3. Sn and Cd data from the Gaussian fit

As stated in the Introduction, GMR energies obtained
from a Gaussian fit to the strength functions using Eq. (8)
also yield KA compatible with the scaling model. KA values
for 112,114,116,120,124Sn and 110,116Cd isotopes [29,60,61] (see
Fig. 4) form a set of nine pieces of data, labeled GF. We report
analysis of this set for completeness in Table III. Again, the
same behavior is observed as for all the previous data sets. The
value of K0 is well determined. Kτ has a rather large error, as
is expected because of a larger error in Ẽ3, calculated using
Eq. (8).

C. Extended data sets

In this section we present results of investigation of two
effects, outlined at the beginning of Sec. III, the variation of c
and the correlation between K0 and KCoul. The former required
detailed fitting of the data, the latter could be estimated
by comparison of the fits to KA calculated with 
KCoul =
0.7 MeV or 2.1 MeV, as outlined above. In addition, all fits
were performed using values of KA obtained with both matter
and charge radii.

To explore sensitivity to these effects, we constructed six
representative data sets (see Table II), each of which contained
all available values of KA calculated in the same way. The
first three sets, RCNP-E [from Ẽ3 Eq. (5)], TAMU0-E (from
Ẽ0), and GF-E [from Ẽ3 Eq. (8)], included combined data for
Sn and Cd isotopes and, in addition, data on 58,60Ni and 56Fe
[46]. The TAMU0-E set was further extended by data on 144Sm
[62]. Furthermore, KA values extracted from Ẽ0 reported by
the RCNP group on 106,110–116Cd [49] and 112–124Sn [43,44]
were added to the TAMU0-E group. The combination of the
RCNP and TAMU data in this case was possible because they
differed significantly less than the data obtained on Sn and Cd
isotopes by the two groups from Ẽ3 energies. The GF-E set also
included KA values obtained for 112–116,120,124Sn and 144,148Sm
by Sharma et al. [29] which were in very good agreement with
the values from data by the RCNP and TAMU groups. Finally,
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all three data sets included the same KA value for 208Pb. It was
obtained by taking a weighted average of of values obtained
from Ẽ0 energies [62,63], as neither Ẽ3 energies nor data from
a Gaussian fit are available.

The next three data sets, RCNP-M, TAMU0-M, and GF-M
were exactly the same as the first three, but the KA values
for the light 58,60Ni and 56Fe isotopes were excluded. The
motivation for this modification has been that it is not yet
quite clear whether the collective modes in light and heavy
nuclei can be described by the same physics. It is often argued
that data on lighter nuclei, with A less then about 100, do
not provide reliable GMR energy as the GMR strength is
fragmented (see, e.g., [64,65]). Also, the validity of Eq. (2)
may be questionable for lighter nuclei as they are less likely
to behave as a liquid drop; shell and surface effects become
increasingly important with decreasing A. Thus both options,
taking all the data together, and considering only the heavier
isotopes, were explored.

Starting with the ratio c, we recall that the expansion (2)
is, strictly speaking, valid only in the scaling approximation
[22,23], based on a simple scaling of the ground state density
ρ(r) → λ3ρ(λr) following the transformation of coordinates
r → r/λ. In this approximation the curvature term is small
and Ksurf and Kvol are proportional. Their ratio c of has
been estimated in different macroscopic and microscopic
models. For example, Blaizot et al. [17,18,23] found c to
be between −1.4 and −1.6 and Treiner et al. [22] estimated
−1.4 � c � −0.65. Myers and Swiatecki [13,66] predicted
c ∼ −1.35 on the basis of a simple formula without adjustable
parameters. Patra et al. [41] calculated c in RMF Hartree and
RETF (relativistic extended Thomas-Fermi) models and found
∼−1.5 < c < −0.5. Sagawa et al. [42] obtained c ∼ −1 for
nonrelativistic HF models within a few percent and c ∼ −1.16
for the NL3 RMF model. Sharma et al. [30] performed a
theoretical calculation of GMR energies and KA using the
Skyrme and hydrodynamic models and carried out various fits
to these quantities to obtain coefficients in the leptodermous
expansion in the scaling approximation. They obtained c
close to −1 in all cases. However, application of the fitting
procedures to experimental data, available in 1989, yielded a
very different result, c = −(2.5 ± 0.3). RMF study by Sharma
[35] of GMR energies and coefficients of the leptodermous
expansion showed a distinct dependence of the ratio c on the
choice of Lagrangian and yielded values −1.98 (NL3), −1.67
(SVI-2), and −1.00 (SiGO-c). Vesely et al. [58] obtained the
ratio the c ∼ −1.6 in their QRPA+HFB calculations with
SLy4 and UNEDF0 forces.

We sought the best MESH fit to RCNP-E, TAMU0-E, and
GF-E data sets for −2.4 � c � −0.6 with a step −0.2. For
each c value, K0 was varied in the range 150 � K0 � 450 MeV
with a step of 0.1 MeV and Kτ was varied within −1000 �
Kτ � 200 MeV with a step of 0.5 MeV. A stable minimum for
each c as a function of K0 was found, for both KCoul = −(5.2 ±
0.7) MeV and KCoul = −(5.2 ± 2.1) MeV, as documented in
detail in Tables IV–VI. Examination of the tables shows that
the fit quality (σ ) considerably improves for c differing from
−1. As a consequence, the best-fit value of K0 is found at
the higher limit of the current estimates and beyond it. We
illustrate the effect, similar in all three data sets, in Figs. 7 and

TABLE IV. RCNP-E data set: Variation of K0 and Kτ with fixed
values of c. Typical errors can be found in Table III and, for the value
of c corresponding to the minimum σ , in Table VII. Results have
been obtained in the MESH fit with matter radii for both values of
the error in Kcoul.

c 
Kcoul = 0.7 MeV 
Kcoul = 2.1 MeV

K0 Kτ σ K0 Kτ σ

[MeV] [MeV] [MeV] [MeV]

−0.6 182.6 −297 15.33 180.9 −240 5.39
−0.8 193.1 −352 13.28 191.9 −310 4.75
−1.0 205.0 −414 11.37 204.4 −390 4.16
−1.2 218.4 −483 9.71 218.6 −480 3.66
−1.4 233.7 −562 8.46 234.8 −580 3.30
−1.6 251.1 −648 7.87 253.7 −699 3.19
−1.8 271.3 −748 8.32 275.9 −840 3.64
−2.0 294.8 −860 10.40 301.6 −993 4.37
−2.2 322.6 −991 15.08 332.5 −1170 6.29
−2.4 355.7 −1140 23.90 370.3 −1390 9.90
−2.6 395.6 −1310 39.52 416.5 −1390 16.39
−2.8 444.6 −1510 66.56 474.3 −1640 27.95
−3.0 505.0 −1730 113.5 540.0 −2180 49.00

8 calculated with matter radii and KCoul = −(5.2 ± 0.7) MeV.
Very similar behavior is observed for KCoul = −(5.2 ± 2.1)
MeV, although the uncertainties increase as expected.

The above procedure was repeated using data sets RCNP-
M, TAMU0-M, and GF-M and full results are presented in
Table VII. All sets yielded the same results as for RCNP-E,
TAMU0-E, and GF-E sets in that the fits significantly improved
with c lower than −1. The values K0 are higher that those
returned from the fits to RCNP-E, TAMU0-E, and GF-E sets
(see, e.g., Fig. 9), and are less sensitive to the difference
between the matter and charge radius then values of Kτ . We
stress that the scatter of entries in Table VII is caused solely
by differences in experimental data sets which are mutually

TABLE V. The same as Table IV but for TAMU0-E data set.

c 
Kcoul = 0.7 MeV 
Kcoul = 2.1 MeV

K0 Kτ σ K0 Kτ σ

[MeV] [MeV] [MeV] [MeV]

−0.6 168.0 −220 101.3 164.1 −116 22.28
−0.8 177.7 −268 94.44 174.1 −180 20.57
−1.0 188.5 −320 87.47 185.3 −248 18.82
−1.2 200.6 −376 80.53 198.1 −328 17.08
−1.4 214.5 −444 73.84 212.7 −416 15.39
−1.6 230.1 −512 67.75 229.6 −520 13.86
−1.8 248.3 −596 62.78 249.1 −632 12.64
−2.0 269.4 −688 59.83 272.1 −764 11.99
−2.2 294.2 −792 60.31 299.6 −920 12.36
−2.4 323.7 −912 66.60 332.8 −1100 14.51
−2.6 359.2 −1048 82.76 373.2 −1304 19.82
−2.8 402.3 −1200 115.9 423.2 −1544 30.86
−3.0 450.0 −1292 179.8 485.8 −1812 52.56
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TABLE VI. The same as Table IV but for GF-M data set.

c 
Kcoul = 0.7 MeV 
Kcoul = 2.1 MeV

K0 Kτ σ K0 Kτ σ

[MeV] [MeV] [MeV] [MeV]

−0.6 170.4 −53 10.67 172.1 −132 2.45
−0.8 179.6 −91 9.35 181.2 −160 2.15
−1.0 189.8 −133 8.00 191.5 −200 1.84
−1.2 201.2 −179 6.61 202.7 −236 1.52
−1.4 214.1 −231 5.22 215.5 −280 1.20
−1.6 228.7 −289 3.85 229.9 −328 0.89
−1.8 245.4 −355 2.57 246.2 −380 0.60
−2.0 264.6 −429 1.48 265.0 −440 0.35
−2.2 286.9 −792 0.70 286.9 −508 0.18
−2.4 313.3 −610 0.51 312.4 −584 0.14
−2.6 344.6 −721 1.31 342.8 −672 0.32
−2.8 382.5 −850 3.81 379.0 −768 0.87
−3.0 428.9 −1000 9.28 423.3 −880 2.07

incompatible within quoted errors. All correlations between
fitted parameters are reflected in their errors.

D. Estimation of Kτ,v and Kτ,s

We also explored the volume and surface contributions to
Kτ from the combined Sn and Cd data. Kτ calculated in most
microscopic models to date, such as SHF and RMF, contains
essentially only the volume part Kτ,v as it is unclear how to
calculate Kτ,s microscopically. In other words, the range of Kτ ,
extracted from experiments [42,43,45,55,67,68] contains both
the volume and surface contributions and, strictly speaking,
should not be compared with Kτ calculated in microscopically.

There have been several attempts to extract values of Kτ,v

and Kτ,s from various combinations of theory and experiment.
Blaizot and Grammaticos [23] estimated Kτ,v and Kτ,s in a
rather complicated way using Eq. (2). Treiner et al. [22] used
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FIG. 7. (Color online) Fit to experimental data in set RCNP-E
with Kcoul = −(5.2 ± 0.7) MeV for (a) c = −1.0 and (b) c = −1.6.
Note that both x and y coordinates are A and c dependent. For more
explanation see text.
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FIG. 8. (Color online) The same as Fig. 7, but for set TAMU-E
and (b) c = −2.0.

SIII and SkM Skyrme forces in self-consistent Thomas-Fermi
calculation of KA considering both the constrained and scaling
models (for details see [22]). Nayak et al. [40] used the
leptodermous expansion of KA. The expansion coefficients
were expressed in the framework of the scaling model in terms
of quantities that are defined in infinite and semi-infinite matter.
The coefficients were calculated in extended Thomas-Fermi
(ETF) approximation using SkM*, RATP, Ska, and S3 Skyrme
forces. However, as pointed out later by Pearson [69] the
models used for calculation of Kτ,v and Kτ,s in Ref. [40]
did not predict correct values of GMR energies. Patra et al.
[41] calculated Kτ,v and Kτ,s using a semiclassical RMF
method with interaction NL1, NL3, and NL-SH. Vesely et al.
[58] calculated the coefficients using QRPA + HFB method
with two different pairing models and SLy4 and UNEDF0
Skyrme interactions. We summarize all the results in Table
VIII. Note that other suggested limits on Kτ,v = −(370 ± 120)
MeV (in notation of the original paper [45] Ksat

τ,2) exist in the
literature but they are calculated, not directly extracted from
experimental data.

It is clear that the sensitivity of current GMR data to separate
volume and surface contributions to the isospin incompress-
ibility in Eq. (3) is limited and thus, in order to enhance this
sensitivity, some additional constraints will be needed on the
fit of KA to obtain limits on Kτ,v and Kτ,s. First, we assumed
that Eq. (3) holds and looked for all combinations of Kτ,v

and Kτ,s, compatible with values of Kτ , within its errors,
already obtained for each data set (see Table VII). A MESH
fit was performed in the region of −1200 < Kτ,v < 0 MeV
and −1600 < Kτ,s < 1600 MeV, taking into account that
Kτ,v is expected to be negative in line with microscopic
calculations.

The second constraint was constructed assuming that
Eq. (3) applies and the expansion in terms of A−1/3 converges
at a reasonable rate, i.e., no higher order terms are significant.
The question of what is reasonable can be only answered in
a somewhat arbitrary way as there is a large spread in values
of Kτ,v and Kτ,s calculated microscopically (see Table VIII).
We looked at two scenarios: (i) the magnitude of the two
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TABLE VII. Summary of the values of K0, Kτ and ratio of the volume and surface incompressibility c, as obtained from the MINUIT fit
to data sets RCNP-E, GF-E, TAMU0-E and the M variant of these data sets. Results for each case are given for both matter and charge radii
and both values of the error in Kcoul.


Kcoul = 0.7

Matter radii Charge radii

K0 Kτ c K0 Kτ c

RCNP-E 254(5) −664(121) −1.63 261(5) −632(116) −1.59
RCNP-M 276(6) −700(138) −1.88 274(6) −644(135) −1.74
GF-E 251(5) −476(123) −1.80 252(4) −392(107) −1.71
GF-M 306(9) −584(169) −2.35 303(8) −500(173) −2.24
TAMU0-E 278(4) −728(90) −2.08 288(4) −716(84) −2.05
TAMU0-M 347(5) −835(101) −2.60 344(6) −800(104) −2.49


Kcoul = 2.1

Matter radii Charge radii

K0 Kτ c K0 Kτ c
RCNP-E 252(8) −688(235) −1.58 260(8) −648(228) −1.56
RCNP-M 264(13) −664(305) −1.75 260(12) −604(310) −1.58
GF-E 249(9) −504(240) −1.77 253(8) −414(227) −1.72
GF-M 306(18) −563(365) −2.35 304(18) −488(365) −2.25
TAMU0-E 279(8) −802(198) −2.05 287(9) −760(223) −2.03
TAMU0-M 360(14) −903(252) −2.67 360(15) −856(272) −2.59

coefficients is almost the same [22,40] and (ii) Kτ,s is roughly
three times larger than Kτ,v [41]. Taking the average mass
number A = 100, we obtain for the ratio (17) 0.2 for the former
and 0.5 for the latter. Taking the higher value of the ratio, we
choose to allow for a slower convergence of the expansion (3)

Kτ,sA
−1/3

Kτ,v
� 0.5. (17)

Simultaneous application of Eqs. (3) and (17) yielded results
presented in Table IX. We conclude that the most likely limits
on Kτ,s are −810 < Kτ,v < −370 MeV. Limits on the surface
contribution to isospin incompressibility are −1020 � Kτ,s �
160 MeV.

We note that another possibility to determine Kτ,v and
Kτ,s would be to fix Kτ,v to a theoretical value, for example
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FIG. 9. (Color online) The same as Fig. 7, but for set GF-M and
(b) c = −2.4.

Kτ,v = −(370 ± 120) MeV [45]. However, these values are
naturally model dependent—the heavy ion collision data
are no exception. The main objective of our paper is to
explore what can be learned from the experimental data
(GMR energies) alone using only the assumption that the
leptodermous expansion is valid and converges fast.

E. The curvature term

We recall that Eq. (2) is an expansion in terms of powers of
A−1/3. The second-order term, which depends on (A−1/3)2 is
called the curvature term. The limited range of A−1/3 consid-
ered in this work meant that no contribution of order higher
than linear could be identified outside experimental error. As an
example, linear and quadratic fits to the experimental KA as a
function of A−1/3 are illustrated in Fig. 10 for the RCNP-E set.

A frequently raised objection to analysis of GMR data
using the leptodermous formula (2) is that the omission of
a very poorly known curvature term may lead to a substantial
change in the surface term. Earlier work allows us to estimate
this effect. Treiner et al. [22] calculated the Kcurv coefficient
microscopically in the scaling model using the SIII and SkM
Skyrme interactions. They found it to be positive and of the
order of 300 MeV. Sharma et al. [30] also examined the
consequence of including a curvature term and varied the
coefficient between 350 and 400 MeV and found only a 1(4)%
change in Kvol (Ksurf) and Kτ almost unaffected. They adopted
a value Kcurv = 375 MeV which was kept constant during
their final fits. If we accept as the best estimate of the Kcurv

the value +350 MeV the size of the curvature term is 24 MeV
at A = 56 and 10 MeV at A = 208. At the same A values,
with Ksurf = 500 MeV, fits neglecting the curvature term give
surface term values 130 MeV and 85 MeV, respectively. The
ratio of the curvature to the surface term is thus ≈(15 ± 3)%

044316-14



INCOMPRESSIBILITY IN FINITE NUCLEI AND . . . PHYSICAL REVIEW C 89, 044316 (2014)

TABLE VIII. Kτ,v and Kτ,s as determined in different model approaches. All entries are in MeV. For more detail see text and the references
therein.

Kτ,v Kτ,s Method Force Ref.

−420 850 fit to KA(RPA) SIII [23]
−508 1390 SIV
−444 630 Ska
−420 230 fit to KA (scaling) SIII
−508 670 SIV
−444 640 Ska
−319 −3540 fit to KA (constrained) SIII [22]
−251 −1340 SkM
−456 420 fit to KA (scaling) SIII
−359 435 SkM
−349 497 Extended Thomas-Fermi SkM* [40]
−338 313 RATP
−441 875 Ska
−456 383 S3
−676 1951 RMF NL1 [41]
−690 1754 RMF NL3
−794 1716 RMF NL-SH
−460(30) 410(110) fit to KA from QRPA+HFB+sep. pair. SLy4 [58]
−510(30) 570(120) UNEDF0
−500(30) 560(100) fit to KA from QRPA+HFB+z.r. pair. SLy4
−550(30) 740(100) UNEDF0

and inclusion of the curvature term would indeed increase the
surface term but not to any great extent. The ratio c would
decrease also by a factor (1.15 ± 3)%, shifting the range from
−2.4 < c < −1.6to − 2.8 < c < −1.8 which is not a major
change.

To further explore the consequence of a range of Kcurv

values, and to illustrate our fitting procedure in detail, we
examined the extended equation

KA

1 + cA−1/3
− KCoulZ

2A−4/3

1 + cA−1/3
− KcurvA

−2/3

1 + cA−1/3

= Kvol + Kτ

β2

1 + cA−1/3
(18)

and its fit to the RCNP-E data set. Keeping KCoul = −(5.2 ±
0.7) MeV, we first performed the MESH fit in the four-
parameter space, stepping K0 in the range 150 to 450 MeV
(step 0.1 MeV), Kτ in the range of −900 to −300 MeV

TABLE IX. Kτ,v and Kτ,s values (in MeV). Matter radii and

Kcoul = 0.7 MeV were used in the calculation. A−1/3 was taken to
be 0.2 in the mass region considered. For more detail see text and the
references therein.

Kτ,v Kτ,s A−1/3 Kτ,s Kτ Ratio σ

RCNP-E −500.0 −950.0 −190.0 −690.0 0.38 7.47
RCNP-M −620.0 −410.0 −82.0 −702.0 0.13 4.02
GF-E −370.0 −700.0 −140.0 −510.0 0.38 5.17
GF-M −610.0 160.0 32.0 −578.0 −0.053 0.49
TAMU0-E −550 −1020.0 −204.0 −754.0 0.37 58
TAMU0-M −810.0 −170 −34.0 −844.0 0.042 52.0

(step 0.5 MeV), c in the range of −4 to −0.1 (step 0.01) and
Kcurv in the range of −1600 to 2000 MeV (step 100 MeV).
Next we examined the stability of the minimum by making
‘slices’ across the four-parameter MESH along each parameter
axis. The results are shown in Fig. 11 demonstrating that
exactly the same minimum is reached in each slice, i.e., the
minimum is stable. The errors and the correlation coefficients
were obtained in subsequent MINUIT fits in which one of
the parameters was set at its minimum value in order to
examine effects of various correlations. Numerical results are
given in Table X (lines A–D). Lastly we performed a full
four-parameter fit, varying K0, c, Kτ , and Kcurv simultaneously
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FIG. 10. (Color online) Linear (solid) and quadratic (dashed) fits
to experimental KA as a function of A−1/3 for data set RCNP-E.
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FIG. 11. (Color online) MESH fit to RCNP-E data including the
curvature term. Values of K0, c, Kτ and Kcurv as a function σ are
displayed, showing a well-defined unique minimum, indicated by the
vertical dashed line. For more detail see text.

in the MINUIT code (line E in Table X). The correlation
coefficients obtained in all fits are shown in Table XI.

The analysis has been repeated without the curvature term,
performing parameter fits, with results in lines F–J in Tables X
and XI. We observe that the least correlated parameter in both
cases is Kτ and this level of correlation is somewhat smaller
when the curvature term is included in the fit. This feature may

TABLE X. Results of fits to RCNP-E data: Results of fits A-E
(including the curvature term) and F-G (without the curvature term).
Entries without an error in bracket indicate which parameter was kept
constant at their minimum value during the fits. For more explanation
see text.

σ K0 c Kτ Kcurv

A 7.110586 339 − 3.45(35) −712(160) 1689(504)
B 7.110592 339(23) − 3.45 −712(175) 1682(85)
C 7.110587 339(93) − 3.45(1.6) −712 1685(1958)
D 7.110586 339(26) − 3.46(67) −712(176) 1686
E 7.110588 339(106) − 3.45(1.66) −712(187) 1685(2042)
F 7.875914 253.8 − 1.628(0.050) −662(98) −
G 7.855915 253(5) − 1.628 −662 (121) −
H 7.855915 254(15) − 1.628(19) −661.9 −
J 7.855916 253(26) − 1.629(27) −662(177) −

TABLE XI. Correlation coefficients of parameters in fits shown
in Table X. K0 (I), c (II), Kτ (III), Kcurv (IV).

I-II I-III I - IV II-III II-IV III-IV

A − − − 0.842 0.995 0.790
B − 0.870 0.783 − − 0.424
C 0.993 − 0.988 − 0.999 −
D 0.837 0.833 − 0.426 − −
E 0.977 0.516 0.969 0.350 0.999 0.334
F − − − 0.878 − −
G − 0.922 − − − −
H 0.992 − − − − −
J 0.983 0.831 − 0.728 − −

be associated with the fact that Kτ is not dependent on the mass
number A in the first order. More generally, the inclusion of
the curvature term in the fits does not dramatically influence
the correlation between the rest of the parameters varied in a
particular fit.

Several conclusions can be drawn from Tables X and XI.
First, the minima obtained in the both fits, with and without
the curvature term, are each stable. The central values of K0, c,
Kτ , and Kcurv remain almost constant and the extent to which
they are correlated is only reflected in the errors. Second,
the errors in the full fit including the curvature term, due to
the insensitivity of the data to this term, are too large to allow
practical determination of the four parameters in the expansion
(18). The fits with one parameter kept constant at its minimum
value may indicates that the curvature term is likely to be
positive but does not allow deduction of any useful value.
For what it is worth, the effect including the curvature term
on Kτ is small (of order 8%), but the considerable changes
of K0 (33%) and c (a factor of 2) take them ever further
from the currently adopted values. In other words, according
to this analysis, K0 ∼ 220–240 MeV and c ∼ −1 cannot be
recovered by including the curvature term in the fit.

Finally, we note that our adopted method of fitting allows
determination of only two-parameter correlation coefficients.
It may be interesting to look for many-parameter correlations
based on the two-parameter data. However, it is not clear
whether any practically useful information would be obtained.

We present this analysis as an example of the fitting routines
and the trend of outcome of the fits when the curvature term is
included. We maintain as our main results Table VII, obtained
using Eq. (11), keeping in mind that the values of K0 and the
magnitude of c may be even higher.

IV. INCOMPRESSIBILITY, SURFACE ENERGY AND
DIFFUSENESS WITH A “TOY” MODEL

In this section we explore a possible theoretical foundation
for our empirical results suggesting that the magnitude of the
ratio of the surface to volume incompressibility is different
from one. The surface incompressibility has been investigated
in the past by several authors (see, e.g., [22,23,30,40,41,66]).
The main purpose was to find the most realistic relation
between the effective incompressibility of a finite nucleus
and the GMR energy. It turns out that the changes of
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surface diffuseness of the nucleus under compression play
an important role. Satchler [70] and Blaizot and Grammaticos
[23] discussed two modes of vibration, in which either the
surface diffuseness remains constant and only the central
density and radius are allowed to change or both central density
and surface diffuseness vary. Here we explore the role of the
surface diffuseness more generally in a simple model in a static
(adiabatic) approximation. Clearly dynamical effects and a
more comprehensive study of vibration modes in a compressed
nucleus are important (see, e.g., [71]) and will be a subject of
future work.

A. One-dimensional model

Let us assume the energy per particle in symmetric nuclear
matter of density ρ to have a simple form

W (ρ) = W0(−2ρ̂ + ρ̂2), (19)

where ρ̂ = ρ/ρNM and W0 and ρNM are the binding energy and
density of symmetric nuclear matter at saturation

W (ρ̂ = 1) = −W0. (20)

Note that ρNM here is the one-dimensional (1D) equivalent of
the realistic value of saturation density in three dimensions.
For finite nuclei we have a constraint∫

ρ(r)dr = A. (21)

The energy density ε is written as

ε = ρW (ρ) + cs

(
dρ

dr

)2 /
ρ, (22)

where the last term is the inhomogeneity term designed to
account for surface effects in finite nuclei [72,73]. For a system
of noninteracting particles and neglecting any Fermi motion,
cs = �

2/(8m), where m is the nucleon mass. Berg and Wilets
found, in order to obtain a good fit to nuclear properties, that cs

should be reduced by a factor between 1/2 and 1/8, dependent
on the shape of the nuclear potential used [74]. The total energy
is then given as

E(ρ) =
∫

εdr

= −2
W0

ρNM

∫
ρ2dr + W0

ρ2
NM

∫
ρ3dr

+ cs

∫
ρ−1

(
dρ

dr

)2

dr. (23)

We take the particle number density to have the Fermi
distribution

ρ(r) = ρ0

exp
(

r−R
a

) + 1
, (24)

where ρ0 is the central density of the nucleus, a is the
diffuseness parameter, and R = A/(kρ0) with k = 2 as the
integral (21) goes only over positive values of r but the range
of r in the 1D model includes both positive and negative
values (−∞,+∞). Note that in 1D model the densities ρ0

and ρNM do not have their physical values but are defined

as a number of particles per unit length. The diffuseness
parameter a is proportional to the surface thickness of the
nucleus. For a Fermi distribution, the 90% to 10% thickness
is 2 log(0.9/0.1)a = 4.4a, much larger than a itself. Thus we
use the term diffuseness rather than thickness to discuss the
surface properties.

It is easy to evaluate the integrals in Eq. (23):∫
ρ2dr = ρ2

0 (R − a) = ρ0A

(
1 − a

R

)
,

(25)∫
ρ3dr = 2ρ3

0

(
R − 3

2
a

)
= ρ0A

(
1 − 3a

2R

)
up to first order in a. For the inhomogeneity term we have∫

ρ−1

(
dρ

dr

)2

dr = ρ0

2a
= A

2aR
. (26)

The total energy (23) for the Fermi density distribution takes
the form

E(ρ0) = −Evol(ρ0) + Esurf(ρ0)

= ( − 2ρ̂0 + ρ̂2
0

)
W0A + (

4ρ̂0 − 3ρ̂2
0

)
W0

aA

2R
+ cs

A

2aR
,

(27)

where ρ̂0 is in units of nuclear matter density at saturation,
ρ̂0 = ρ0/ρNM. If ρ0 = ρNM, the nucleus saturates in the interior,
but we lose some binding at the surface. In this case, the total
energy E(ρ0) simplifies to

E(ρNM) = −W0A + W0aA

2R
+ cs

A

2aR
. (28)

The first term in Eq. (28) is the volume energy

E0
vol(ρNM) = W0A (29)

and the second and third terms constitute the surface energy.
The second term accounts for deficiency of binding due to
the subsaturation density at the surface, and the last is the
inhomogeneity term. The energy is minimized for a diffuseness
parameter a

a = a0 =
√

cs/W0. (30)

Inserting Eq. (30) into Eq. (28) we see that in equilibrium the
last two terms in Eq. (28) contribute equally to the surface
energy

E0
surf(ρNM) =

√
cSW0A

R0
= W0a0A

R0
= W0a0kρNM, (31)

where R = R0 = A/(kρNM). For future use, it is convenient to
introduce volume and surface energies as

W 0
vol = E0

vol/A and W 0
surf = E0

surf . (32)

Let us now consider the volume and surface energy at
arbitrary central density ρ0 	= ρNM. We rewrite Eq. (27) using
Eq. (31) and R=R0/ρ̂0 as

E(ρ0) = ( − 2ρ̂0 + ρ̂2
0

)
W0A

+E0
surf

[(
4ρ̂2

0 − 3ρ̂3
0

) a

2a0
+ ρ̂0

a0

2a

]
. (33)
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The energy is minimized for a diffuseness parameter a, which
is now density dependent,

a = aρ = a0/

√
4ρ̂0 − 3ρ̂2

0 . (34)

a can expanded about the saturation density ρ̂0 = 1 (ρ̂0 = 1 +
δρ) as

aρ = a0(1 + δρ + 3δρ2 + 7δρ3 + · · · ). (35)

We see that, to the first order, the toy model predicts the surface
diffuseness directly proportional to density, i.e., it increases
with decreasing radius.

We first impose a slight deviation from the equilibrium
condition (33) and calculate the surface energy at arbitrary
central density ρ0 in Eq. (33) taking a = a0. We get

Esurf(ρ0) = E0
surf

(
4ρ̂2

0 − 3ρ̂3
0

2
+ ρ̂0

2

)
. (36)

Expansion in powers of δρ yields

Esurf(ρ0) = E0
surf

(
1 − 5

2
δρ2 − 3

2
δρ3 + · · ·

)
, (37)

Ksurf = ρ̂2
0
d2Esurf(ρ0)

dρ̂2
0

∣∣∣∣
ρ0=ρNM,a=a0

= −5E0
surf = −5W 0

surf .

(38)

Blaizot and Grammaticos [23] (for notation see Sec. 5,
Eqs. 5.1 and 5.13) use a simple, analytically soluble model
based on a density dependent interaction, which for the
parameter d = 1 is equivalent to the interaction employed
here. For fixed surface diffuseness, Kσ (equivalent to our
Ksurf/W 0

surf , when KNM is chosen to be close to 18B), is the
same as our result Eq. (38).

When the density dependence of the diffuseness a is
included and a = aρ used, expansion of the surface energy
in powers δρ becomes

Esurf(ρ0) = E0
surf

√
4ρ̂3

0 − 3ρ̂4
0

= (1 − 3δρ2 − 4δρ3 − · · · )E0
surf . (39)

Note that the surface energy vanishes for ρ̂0 = 4/3. The
surface incompressibility then becomes

Ksurf = ρ̂2
0
d2Esurf(ρ0)

dρ̂2
0

∣∣∣∣
ρ0=ρNM,a=aρ

= −6E0
surf = −6W 0

surf .

(40)

This result, obtained in our self-consistent approach, is
about 30% higher then Kσ ∼ −4.2, calculated in the scaling
approximation (see Eq. 5.18 for d = 1 in Ref. [23]).

To determine the ratio of the surface and volume incom-
pressibility, we can also expand the volume energy about the
saturation value

Evol(ρ0) = ( − 2ρ̂0 + ρ̂2
0

)
W0A

= −(1 − δρ2)W0A = −(1 − δρ2)E0
vol (41)

and calculate the volume incompressibility

Kvol = ρ̂2
0
d2(Evol(ρ0)/A)

dρ̂2
0

∣∣∣∣
ρ0=ρNM

= 2W0 = 2W 0
vol. (42)

Combining Eqs. (38) and (42) we obtain the ratio c of the
surface to volume incompressibility at the saturation density
in the case of diffuseness independent from density

c = Ksurf

Kvol
= −5

2

W 0
surf

W 0
vol

. (43)

If the density dependence of a is included and the equilibrium
condition satisfied, the ratio increases to

c = Ksurf

Kvol
= −3

W 0
surf

W 0
vol

. (44)

B. D-dimensional model

Having demonstrated the method of calculation of the
surface to volume incompressibility ratio in the 1D model,
it is straightforward to extend the model to any number of
dimensions. In particular, the D = 3 model is of interest
because it can be compared with actual data for finite nuclei. In
the D 	= 1 case special attention must be paid to the question of
self-consistency of the model, requiring that the surface energy
as a function of the bulk density ρ0 is stationary at saturation
[11,23]. In other words, the term linear in δρ in the expansion
of surface energy in terms of δρ must vanish. Fulfillment of
this condition depends on the choice of the density dependence
of the inhomogeneity term in Eq. (22). If the term is inversely
proportional to density (22) the condition is automatically
satisfied for the case D = 1 Eq. (39) but violated for D 	= 1.
We will examine this point in more detail.

For D 	= 1 the total energy is given by a generalization of
Eq. (23). As for the inhomogeneity term, we are anticipating
that self-consistency requires a different power of the density
depending on the number of dimensions and that its strength cs

will be different than in the 1D case. Also, the condition (21)
has to be modified. We have

∫
F (r)dDr = ∫ ∞

0 kDrD−1dr .
For F (r) = ρ0 up to r = R Eq. (21) it becomes

∫
ρdDr =

kρ0R
D = A. It follows that in the D 	= 1 case R = R0/ρ̂

1/D
0

and R0 = (A/(kρNM))1/D . We note that k = 4π/3 for D = 3.
A straightforward calculation shows that for D 	= 1 and the
inhomogeneity term inversely proportional to density in the
form (22), the integrals (26) become∫

ρ2dDr = kρ2
0 (R − a) = ρ0A

(
1 − Da

R

)
, (45)

∫
ρ3dDr = kρ3

0

(
R − 3

2
a

)
= ρ0A

(
1 − 3Da

2R

)
, (46)

and∫
ρ−1

(
dρ

dr

)2

dDr = ρ0kDRD−1

2a
= Dρ

1/D
0 A1−1/Dk1/D

2a
.

(47)
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The expression for the surface energy at arbitrary central
density reads

ED
surf(ρ0)

= E
0,D
surf (ρNM)

[(
4ρ̂

1+1/D
0 − 3ρ̂

2+1/D
0

) a

2aD
0

+ ρ̂
1/D
0

aD
0

2a

]
.

(48)

E
0,D
surf (ρNM) is the surface energy for the case ρ0 = ρNM in

equilibrium with a = aD
0 =

√
cD

S /W0.

E
0,D
surf (ρNM) = DW0a

D
0 A

R0
= DW0a0A

1−1/Dk1/Dρ
1/D
NM . (49)

Minimization of Eq. (48) with respect to a yields the
equilibrium value of the diffuseness with the same density
dependence as in the D = 1 case

a = aD
ρ = aD

0

/√
4ρ̂0 − 3ρ̂2

0 (50)

and the surface energy at equilibrium becomes

ED
surf(ρ0) = E

0,D
surf

√
4ρ̂

1+2/D
0 − 3ρ̂

2+2/D
0 . (51)

Expansion in powers of δρ leads, to the first order,

ED
surf(ρ0) = E

0,D
surf (1 + (−1 + 1/D)δρ + · · · ), (52)

which violates the condition of self-consistency.
Considering a general form of the density dependence of

the inhomogeneity term ρx( dρ
dr

)2 and repeating the derivation
above, it can be shown that the condition of self-consistency
is satisfied for x = 1 − 2/D. In this case the integral over the
inhomogeneity term takes the form∫

ρ1−2/D

(
dρ

dr

)2

dDr = D3ρ
(3−2/D)
0 kRD−1

(3D − 2)(4D − 2)a
, (53)

and the expression for the surface energy in D dimensions
becomes [compare with Eq. (27)]

Esurf(ρ0) = (
4ρ̂0 − 3ρ̂2

0

)
W0D

Aa

2R

+ cD
S

D3ρ
2−2/D
0

(3D − 2)(2D − 1)

A

2aR
. (54)

If ρ0 = ρNM, the surface energy is minimized for diffuseness
parameter a

aD
0 =

√
cD

S /W0
Dρ

1−1/D
NM√

(3D − 2)(2D − 1)
(55)

and the surface energy in equilibrium is given as

E
0,D
surf (ρNM) = DW0a

D
0 A

R0
= DW0a

D
0 A1−1/Dk1/Dρ

1/D
NM . (56)

Minimization of the surface energy at arbitrary density yields
the diffuseness parameter a, which is now density dependent,
equal to

a = aD
ρ = aD

0 ρ̂
1−1/D
0 /

√
4ρ̂0 − 3ρ̂2

0 (57)

and the surface energy in equilibrium takes the form

ED
surf = E

0,D
surf

[(
4ρ̂

1+1/D
0 − 3ρ̂

2+1/D
0

) aD
ρ

2aD
0

+ ρ̂
2−1/D
0

aD
0

2aD
ρ

]
.

(58)

If we neglect the density dependence of the diffuseness and
calculate the surface energy (58) at aD

ρ = aD
0 the surface energy

becomes

ED
surf = E

0,D
surf

[
2ρ̂

1+1/D
0 − 3

2
ρ̂

2+1/D
0 + 1

2
ρ̂

2−1/D
0

]
. (59)

When the density dependence of the diffuseness is included
aD = aD

ρ , we obtain for the surface energy

ED
surf = E

0,D
surf

√
4ρ̂3

0 − 3ρ̂4
0 . (60)

The expressions for the volume and surface incompressibility
depend on the number of dimensions as

Kvol = D2ρ̂2
0
d2(Evol/A)

dρ̂2
0

and

(61)

Ksurf = D2ρ̂2
0

d2
(
ED

surf(ρ0)/A1−1/D
)

dρ̂2
0

.

Taking into account that Evol Eq. (27) is the same in all
dimensions we obtain from Eq. (42)

Kvol = 2D2W 0
vol. (62)

The surface incompressibility for constant and density depen-
dent diffuseness can be written as

Ksurf = −5D2E
0,D
surf and Ksurf = −6D2E

0,D
surf . (63)

Using Eqs. (62) and (63), and

W
0,D
surf = E

0,D
surf /A

1−1/D, (64)

we finally obtain ratio c for a constant and density dependent
diffuseness

c = −5

2

W
0,D
surf

W 0
vol

and c = −3
W

0,D
surf

W 0
vol

. (65)

We can now evaluate the expressions for D = 3. The surface
energy at saturation density can be estimated, taking W0 =
16 MeV, aD

0 = 0.5 fm, and ρNM = 0.16 fm−3, to be
∼21A2/3 MeV, which is in agreement to the surface energy
coefficient in the FRDM obtained from fit to nuclear masses
[14]. The volume energy does not depend on whether the
diffuseness is constant or density dependent. It follows that
the ratio of W

0,D
surf and W 0

vol is about 21/16 ∼ 1.3. This leads to
values of c for diffuseness constant c ∼ −3 and for density
dependent c ∼ −4. The latter value are somewhat more
negative than the range of c obtained from the analysis of
experimental data in this work −2.4 < c < −1.6. However,
as shown in the next section, incorporating a second-order
correction to the finite radius of the nucleus brings the value
of c in line with the result of this work.
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C. Finite radius correction

In Secs. IV A and IV B, [Eqs. (33), (39), and (60)] we
derived the following result for the toy model total energy
including both volume and surface contributions:

E = W0A
( − 2ρ̂0 + ρ̂2

0

) + E
0,D
surf

√
4ρ̂3

0 − 3ρ̂4
0 . (66)

In this derivation, we considered only the effect of the density
dependence of the surface diffuseness a on the value of the
surface incompressibility Ksurf . This did not affect the value
of the volume incompressibility which depended only on the
strength of the nucleon interaction W0 at saturation. We will
now consider a more general case in which, in addition, the
total energy and, consequently, both the volume and surface
incompressibilities, are dependent on the changing radius
under compression in a complementary way to the derivation
by Blaizot et al. [23].

Equation (66) can be written in terms of the following
dimensionless quantities:

ρ̂0 = (R/R0)−D = r−D, (67)

r = 1 + δr, (68)

ε = E/(W0A), (69)

α = E
0,D
surf /(W0A), (70)

κA = KA/(W0A), (71)

where KA is the total incompressibility of the finite nucleus.
The energy ε and its expansion around r = 1 now reads

ε = (−2r−D + r−2D) + α
√

4r−3D − 3r−4D

= −1 + α + D2(1 − 3α)δr2. (72)

The finite nucleus incompressibility is then given by

κA = r2 d2ε

dr2
(r = 1) = 2D2 − 6D2α + · · · = 2D2(1 − 3α).

(73)

We see that the ratio of the surface and volume contributions
to the incompressibility κA is again equal to −3, independent
of dimensions, as already shown in Secs. IV A and IV B.

However, when the finite radius correction is included, we
get instead of Eq. (72) the expression

ε = (−2r−D + r−2D) + α
√

4r−3D − 3r−4DrD−1

= −1 + α + (D − 1)αδr

+ (
D2 − (

5
2D2 + 3

2D − 1
)
αδr2 + · · · ). (74)

For D > 1, the radius correction reduces the equilibrium
radius where the energy has a minimum to

req = 1 − (D − 1)α

2D2
+ O(α2) (75)

which leads to the expression of the finite nucleus incompress-
ibility

κA = r2 d2ε

dr2
(r = req) = 2D2 − (2D2 + 5D − 1)α + · · · ,

(76)

κA = 2 − 6α (D = 1), (77)

κA = 18 − 32α (D = 3). (78)

In comparison with Eq. (65) we see that for D = 1 the
coefficient in the ratio of surface to volume incompressibility
is again −3, but for the realistic D = 3 case it is reduced to
−16/9 = −1.78. Multiplication by the ratio of the surface and
volume energy at saturation 21/16 finally yields c = −2.34
which is compatible with the empirical results obtained from
the analysis of GMR energies presented in this work.

V. MICROSCOPIC MODELS

As mentioned in the Introduction and demonstrated in
Table I, there has been considerable effort spent on developing
microscopic models of the breathing mode of finite nuclei and
its dependence on K0. However, all microscopic calculations
to date produce results dependent upon details of the model
and the adopted effective nucleon-nucleon interaction. Recent
investigation of 241 parametrizations of the Skyrme interaction
by Dutra et al. [1] and of 147 Lagrangians used in RMF
models [75] showed conclusively that there is a large variation
in performance of these models in nuclear matter which has
consequences for the breathing mode of finite nuclei since
it depends on the incompressibility of symmetric nuclear
matter.

Based on the version of microscopic models and experimen-
tal GMR energies for 40Ca, 90Zr, and 208Pb nuclei available in
the 1970s, Blaizot et al. [17] obtained a value of K0 which has
been accepted as standard for many years. Their approach was
to use each of the five effective interactions B1, D1, Ska, SIV,
and SIII to calculate K0 in nuclear matter and also, with the
HF+RPA model, the GMR energies of these nuclei. The results
plotted against each other gave a relatively smooth empirical
relationship which bore out the expectation that lower K0

was associated with lower EGMR. Intersection of the (single)
experimental EGMR with these empirical curves yielded the
result K0 = (210 ± 30) MeV. We reproduce this analysis in
the upper left panel of Fig. 12. Subsequent theoretical work
has focused on attempts to obtain consistency with both this
range for K0 and the experimental EGMR values. We note
that the approximately linear relation between K0 and EGMR

was also obtained using RMF + GCM (generator coordinate
method) [32,33].

Using modern experimental data and microscopic theory
(see Table XII for details) we have repeated the analysis of
Blaizot et al. [17]. We discarded 40Ca since it has become
apparent that GMR strength is fragmented in lighter nuclei and
the nature of collectivity may be different in light and heavy
nuclei [46] and have added 116Sn. Of the five interactions used
by Blaizot et al., we retained four SIII, SIV, Ska, and D1 but
have discarded B1, since is not density dependent and seriously
underbinds 16O, 40Ca, 90Zr, and 208Pb (by 27, 78, 186, and
445 MeV, respectively). To these we have added SGII, SkP,
and SKT5 which all have low incompressibility and also we
used the KDE0v1 force [76], one of the five Skyrme forces
that passed all the constraints currently available on nuclear
matter [1]. Finally, to represent RMF models, FSUGold, NL3,
and Hybrid [77] and BSP, IUFSU, and IUFSU* Lagrangians
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FIG. 12. (Color online) (a) Comparison of experimental and cal-
culated GMR energies as a function of K0 as presented in (Ref. [17])
and using current experimental and calculated values for (b) 208Pb, (c)
116Sn and (d) 90Zr. Experimental data are taken from [83,84] (90Zr),
[44,62,83] (116Sn) and [62,83,85] (208Pb). Horizontal lines (black)
depict ranges of currently available GMR energies in 90Zr, 116Sn
and 208Pb, the dashed lines (blue) illustrate the range of theoretical
predictions. Details of the calculation with references are given in
Table XII. For more information see text.

[38] were added. For each nucleus and interaction the value of
K0 and up to three values of EGMR (calculation the different
centroid, constrained, and scaling models) are plotted in three
panels of Fig. 12. In this sense, the spread of EGMR values is
a measure of a “theoretical error” in the best current model
calculations. Also, at the left hand edge of each panel we show
experimental values of EGMR for the nucleus. All available
experimental data evaluated with modern analysis methods are
included. Several groups have obtained multiple experimental
results and we find no reason to exclude any.

In each panel full horizontal lines show the spread
of current experiment. As found by [17] the values of
EGMR and K0 show a consistent variation for each isotope
with the single line drawn by Blaizot et al. replaced by
bands limited by dashed lines. The intersection line of
these bands with the range of experiment now replaces

TABLE XII. EGMR of 90Zr and 208Pb, calculated in a HF+RPA
model for Skyrme parametrizations SIII, SIV, Ska, and D1 Gogny
force, used by Blaizot et al. [17], in comparison with modern
calculation using KDE0v1 [87,88] and SGII, SkT5, SkP [94] forces.
HF results for 90Zr, 116Sn and 208Pb for SIII, SIV and Ska [37,38] are
added for completeness. Results for 208Pb from HFB+QRPA with
SLy4, SkM* and SkP Skyrme forces [39] are also given, as well as
RMF+RPA values for GMR energies obtained with FSUGold, NL3
and Hybrid Lagrangians [77] and constrained RMF+GCM with NL2,
NL-SH, NL-S1, NL3 and NL1 Lagrangians. In addition, calculations
for 116Sn [39,77,87,88], are also shown. All entries are in MeV. For
more explanation see text.

Skyrme K0 EGMR EGMR EGMR Method
force (208Pb) (116Sn) (90Zr)

NL2 399 16.6 21.9 centroid [33]
SIII 356 17.2 22.1 centroid [17]

17.90 21.47 23.30 (m3/m1)1/2 [88]
16.80 19.93 22.00 (m1/m−1)1/2 [88]
17.40 22.4 centroid [94]

NL-SH 355 15.0 19.5 centroid [33]
15.8 20.16 centroid [32]

SIV 325 16.5 21.2 centroid [17]
17.04 20.42 22.32 (m3/m1)1/2 [88]
16.28 19.18 21.23 (m1/m−1)1/2 [88]
16.72 19.64 centroid [94]

NL-S1 296 13.4 17.6 centroid [32]
NL3 271 14.32 17.10 18.62 centroid [77]

13.0 16.9 centroid [33]
Ska 263 14.7 19.1 centroid [17]

15.21 18.34 19.87 (m3/m1)1/2 [88]
14.56 17.49 19.24 (m1/m−1)1/2 [88]
15.32 18.36 centroid [94]

IUFSU* 236 13.73 16.42 17.95 (m1/m−1)1/2 [38]
IUFSU 231 13.79 16.48 18.02 (m1/m−1)1/2 [38]
BSP 230 13.64 16.32 17.90 (m1/m−1)1/2 [38]
SLy5 230 13.77 15.36 centroid [39]
SLy5 13.93 16.54 (m3/m1)1/2 [39]
SLy5 13.71 16.29 (m1/m−1)1/2 [39]
FSUGold 230 14.04 16.58 17.98 centroid [77]
Hybrid 230 13.27 16.02 17.47 centroid [77]
D1 228 14.4 18.5 centroid [17]
KDE0v1 228 13.73 17.02 18.01 centroid [87]
KDE0v1 14.18 16.50 18.18 (m3/m1)1/2 [87]
KDE0v1 13.61 16.34 17.88 (m1/m−1)1/2 [87]
KDE0v1 14.26 17.23 18.71 (m3/m1)1/2 [88]
KDE0v1 13.62 16.45 17.98 (m1/m−1)1/2 [88]
SkM* 217 13.34 16.00 centroid [39]
SkM* 13.49 16.16 (m3/m1)1/2 [39]
SkM* 13.29 15.94 (m1/m−1)1/2 [39]
SGII 214 13.40 16.80 centroid [94]
NL1 212 11.00 14.1 centroid [33]

11.7 14.7 centroid [32]
SkT5 202 12.60 16.20 centroid [94]
SkP 201 12.80 16.10 centroid [94]
SkP 12.74 15.36 centroid [39]
SkP 12.88 15.53 (m3/m1)1/2 [39]
SkP 12.70 15.31 (m1/m−1)1/2 [39]

044316-21



J. R. STONE, N. J. STONE, AND S. A. MOSZKOWSKI PHYSICAL REVIEW C 89, 044316 (2014)

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

15

16

17

18

E
G

M
R
 [

M
eV

]

C
O

N
 -

 E
X

P

C
E

N
 -

 E
X

P

S
C

A
 -

 E
X

P

K
D

E
0v

1 
(H

F
+

R
P

A
)

K
D

E
0v

1 
(H

F
)

S
K

P

S
K

M
*

S
L

y4

F
S

U

N
L

3

H
Y

B

IU
F

S
U

IU
F

S
U

*

B
S

P

TAMU 1999
TAMU 2004
RCNP  2010
CON - CAL
CEN - CAL
SCA - CAL

FIG. 13. (Color online) Comparison of experimental and theoret-
ical GMR energies in 116Sn for constrained (CON), centroid (CEN)
and scaling (SCA) approximations. Experimental data are taken
from [83] (TAMU1999), [62] (TAMU2004) and [44] (RCNP2010).
Hartree-Fock (HF)+RPA with KDE0v1 [87], HF with KDE0v1,
SIII, SIV, SkA Skyrme interactions [88,89] and the Hartree-Fock-
Bogolyubov + QRPA [39] with SkP, SkM* and SLy4 Skyrme
interactions and RMF with FSU, NL3 and Hybrid [77] and BSP,
IUFSU and IUFSU* Lagrangians. Tick labels on x-axis indicate
experimental data (−3, −2, −1) and various calculations (1–11).

the simple crossings shown in the Blaizot et al. figure.
Whereas the Blaizot et al. figure gave rise to K0 all
close to 200 MeV, up-to-date figures show K0 ranges 180–
270 MeV for 90Zr and 200–280 MeV for 208Pb.

116Sn was added to our analysis because there has been
some concern that microscopic models have difficulty in
calculating EGMR in agreement with experiment ([39,58,78],
and references therein). The 116Sn panel yields K0 in the range
180–260 MeV in good agreement with 90Zr and 208Pb. In
Fig. 13 the theoretical calculations of the GMR energies of
116Sn with a variety of models in detail. The selected models
are those which give best agreement in EGMR in 90Zr and 208Pb.
The model spread about 2 MeV spans the experimental range
which does not suggest a peculiar character of Sn nuclei.

VI. DISCUSSION AND CONCLUSIONS

The main finding of this work is that the macroscopic
model, using expansion of KA in terms of A−1/3 and β, is
sensitive to K0 and the Ksurf/Kvol ratio, provided the expansion
is written in such a way that K0 is independent of A. This
sensitivity is revealed by employing a MESH fit combined
with the MINUIT fit. The fitting technique, used for the first
time to extract coefficients of the leptodermous expansion of
KA, has proven more efficient than the fitting procedures used
before, especially in dealing with correlations between fitted
parameters and including the effect of these correlations into
calculation of errors.

As we did not find a convincing reason for eliminating data
differing by more than several standard deviations, available
GMR energies were divided into groups, which were analyzed
separately. The results within each group showed general

consistency, however this procedure revealed some variations
in extracted parameters. Other contributions to uncertainty
were the question of adopting matter or charge radius in the
calculation of KA and the error in the theoretical value of
KCoul. Examining Table VII, it is satisfying to see that neither
of these uncertainties appreciably affects the values of K0 and
the ratio c, extracted from a fit to a particular data set. On
the other hand, there is a systematic trend to higher values of
(negative) Kτ when charge radii are used. The increased error
in KCoul reflects in the increased error of Kτ but does not affect
the range of best fit Kτ values.

The accuracy claimed for experimental GMR energies,
extracted from moments of the strength function, improved
considerably as compared to earlier results based on deter-
mination of the GMR peak position and width from fitting
using a Gaussian or Lorentzian function. Ironically, the
consistency between results obtained by different researchers,
did not improve. On the contrary, the differences in the rather
complex analysis of individual experiments, became more
apparent.

Each entry in Table VII represents an independent data
set. However, the sets are not statistically distributed and thus
the results cannot be averaged. Although a priori all options
for all groups should be taken into consideration, we choose,
as representative, the results obtained for matter radii and

KCoul = 0.7 MeV for five groups of data, not including
the TAMU0-M which yields extreme values of K0 and Kτ .

We deduce as our final results that K0 lies in the range
250–315 MeV and the ratio of the surface and volume
coefficients c = Ksurf/Kvol is between −1.6 and −2.4. Limits
on the isospin coefficient Kτ have been determined as −840 <
Kτ < −350 MeV. We wish to stress that the scatter of results
in Table VII is totally due to differences in experimental data
used in the fits and is not because of correlations between the
parameters in the fitting procedure. Correlations are reflected
only in the quoted errors.

It is interesting to note that the values of K0 extracted from
the M variant of the data sets, which do not include A ∼ 60
nuclei, are systematically higher that those found using both
light (Fe, Ni) and heavier (Cd, Sn, Sm, and Pb) isotopes ranging
from 270 to 315 MeV with ratio c between −1.88 and −2.35. A
similar trend has been observed, for example, by Paar et al. [65]
who used a relativistic Hartree-Bogoliubov + QRPA model
to calculate strength distribution and centroid and mean GMR
energies and were unable to obtain agreement with experiment
simultaneously for nuclei with A � 60 and A � 90. The latter
required an interaction with a higher value of K0 than the
former. Repeat of the analysis [17], which produced the often
used range of K0 between 180–240 MeV, with modern input
yields range 180–280 MeV.

The parametrized leptodermous expansion does not rely
on any microscopic nuclear theory and offers in principle
a direct connection with experimental data. In this work
it was used under several assumptions: (i) the liquid drop
approach to description of the vibrating nucleus is valid
and the relation between KA and EGMR [Eq. (1)] holds,
(ii) the volume coefficient Kvol can be identified with K0,
(iii) the KCoul = −(5.2 ± 0.7) MeV, and (iv) the leptodermous
expansion for KA converges fast enough that contributions
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from the curvature KcurvA
−2/3 and higher order terms in the

expansion can neglected.
Our results depend strongly on a concept that under

compression and decompression the surface and the bulk ho-
mogenous core of a nucleus can be treated separately and have,
in principle, different properties. The scaling approximation
allows such separation, but the assumption that Kvol

∼= −Ksurf ,
i.e., c ∼ −1 is not specified in this approximation which only
predicts a linear dependence between the two coefficients.
We show that the generally accepted value of K0 = (240 ±
20) MeV can be obtained from the fits provided the ratio of
Ksurf/Kvol ∼ −1, as predicted by a majority of mean-field
models. However, the fits are significantly improved if c
is allowed to vary, leading to a range of K0, extended
to significantly higher values. The results demonstrate the
importance of nuclear surface properties in determination of
K0 from fits to the leptodermous expansion of KA.

It may strike the reader as strange that the we find that
the surface incompressibility to be higher than the volume
incompressibility. Intuitively one expects the surface of a
nucleus, being less dense, to be more compressible. However,
it is important to realize that in nuclear matter K0, is inversely
proportional not only to the compressibility of a uniform
system χ [17], χ = − 1

�
∂�
∂P

, where � and P are volume and
pressure in the system, but also to the density, K0 ∼ 1/(ρχ ).
This means that for two systems with the same density, K0

increases with decreasing χ . However, for two systems with
both χ and ρ varying, the one with lower product ρχ will have
higher K0. In finite nuclei, where the surface has lower density
than the interior, the surface incompressibility will therefore be
higher than the volume incompressibility provided χ increases
more slowly than ρ falls.

Results very similar to those obtained in this work, were
reported in the early 1980s by Treiner et al. [22]. In their
three-parameter fit they extracted Kvol = (300 ± 29) [(357 ±
35)] MeV, Ksurf = −(608 ± 120) [(−833 ± 148)] MeV and
Kτ = −(475 ± 176) [(−833 ± 148)] MeV using Grenoble
[Texas] data (see Table 10 of Ref. [22]). However, they also
performed a one-parameter fit in which the ratio Ksurf/Kvol

ranged only from −1 to −1.2, and Kτ from −250 to
−350 MeV. They then found Kvol = (220 ± 20) MeV, Ksurf =
−(240 ± 70) MeV, and Kτ = −(300 ± 100) MeV. The limits
in the one-parameter fit were motivated by the aim to reproduce
predictions by the early Skyrme forces and the concern that the
limited range of variation of A−1/3 and asymmetry (N − Z)/A
for available data did not allow extraction of values of the
different coefficients of the leptodermous expansion for KA

with adequate accuracy [79]. As can be seen in our Table III,
results obtained for c = −1, compatible with the restrictions
used in the one-parameter fit by Treiner et al. [22], are very
similar to theirs.

Our results are also close to those obtained by Sharma
et al. [30] Ksurf = −(750 ± 80) MeV, about 2.5 times larger
than Kvol = (300 ± 25) MeV. It seems that experimental data
favor the ratio c different from −1 and Kvol above 250 MeV,
only weakly dependent on the data sets used and the groups
who performed the analyses, in variance with theoretical
predictions many mean-field models. The values obtained

by Sharma et al. are slightly higher than ours. This may
be because Sharma et al. included a fixed curvature term
in their calculations. Our exploration of the effect of the
curvature term showed that, although we were not able to
determine Kcurv term in sufficient accuracy, its inclusion
takes c and Kvol ever further from the currently adopted
values.

To search further for a physical origin of our results,
we developed a simple self-consistent (toy) model, which
revealed a connection between the density dependence of the
surface diffuseness and the surface to volume incompress-
ibility ratio. The model points to the important connection
between the surface properties of a vibrating nucleus and its
incompressibility as described by the leptodermous expansion,
predicts surface diffuseness directly proportional to density,
and yields the surface to volume incompressibility ratio
compatible with our results. Further development of the
model, including dynamical (collective) degrees of freedom,
goes beyond the scope of this work and will be published
separately.

A question may arise whether or not our results should be
used as constraints on mean-field models. The leptodermous
expansion is a parametrized description, which serves as
a direct connection with experimental data. Microscopic
models attempt to calculate the same parameters on the
bases of a modeled nucleonic interaction. The success of any
microscopic model will be judged by the extent to which
the calculated parameters agree with experiment in this and
other areas. However different mean-field models offer a
wide range of results for each parameter (see, e.g., Table I).
A comparison of their predictions for GMR energies with
experimental data (see Figs. 12 and 13) indicates a certain
spread of values. It is not obvious that any single model should
be given preference in providing constraints on Kvol and Kτ .
Rather, we believe results obtained by an experiment-based
analysis, such as ours, are more logically useful to provide
constraints.

In conclusion our work suggests that, based on the most
precise and up-to-date data on GMR energies of Sn and Cd
isotopes, together with a selected set of data from 56Ni to
208Pb, the value of K0 is higher than generally accepted by a
considerable margin. This result, 250 < K0 < 315 MeV has
been obtained without any microscopic model assumptions,
except (marginally) the Coulomb effect, and revealed the
essential role of surface properties in vibrating nuclei. It is
close to values calculated in most of the classical RMF models
(before their modification to force a low value of K0). It
differs from the values given by conventional nonrelativistic
HF models with effective interactions such as the Skyrme or
Gogny, although we should bear in mind that many of them
have been constructed with the constraint of yielding a low
value of K0. The higher value of K0 is also consistent with
predictions of the quark-meson-coupling model [80,81].

It would be highly desirable to revisit different microscopic
models. It seems likely that their differences originate from the
variety of ways in which surface properties are treated. Finally,
a firmly established data set of GMR energies, confirmed in
independent experiments and analyses by different groups,
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would be an invaluable contribution to understanding nuclear
monopole vibration.

ACKNOWLEDGMENTS

We are indebted to Bijay Agrawal, Mark Anders, Shalom
Shlomo, and P.-G. Reinhard for providing theoretical calcula-

tions of GMR energies used in this work prior to publication.
Helpful discussions with Hiroyaki Sagawa, Shalom Shlomo,
Jacques Treiner, Dario Vretenar, Peter Moller, Bill Myers, P.-
G. Reinhard, Anthony Thomas, Dave Youngblood, Y.-W.Lui,
and Umesh Garg are acknowledged with pleasure. Last but
not least we wish to thank the anonymous referee for his/her
very careful reading of the manuscript and helpful comments,
leading to its improvement.

[1] M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino,
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