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Gamow-Teller transitions from the 14N ground state to the 14C ground and excited states
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Gamow-Teller transitions from the 14N ground state to the 14C ground and excited states were investigated,
based on the model of antisymmetrized molecular dynamics. The calculated strengths for the allowed transitions
to the 0+, 1+, and 2+ states of 14C were compared with the experimental data measured by high-resolution
charge-exchange reactions. The calculated GT transition to the 2+

1 state is strong while those to the 0+
2,3 and 2+

2,3

states having dominant 2�ω excited configurations are relatively weak. The present calculation cannot describe
the anonymously long lifetime of 14C, though the strength of the 14C ground state is somewhat suppressed because
of the cluster (many-body) correlation in the ground states of 14C and 14N.
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I. INTRODUCTION

In light-mass nuclei, cluster structures often appear in
ground and excited states. Spatially developed cluster struc-
tures are found in excited states of stable and unstable nuclei,
while cluster components are also contained in the ground
states. The cluster component usually contains many-body
correlation, and in terms of the spherical shell model, it is
expressed by mixing of higher shell configurations beyond
the simple 0�ω configuration. We call the correlation in the
ground state caused by the cluster component “ground-state
cluster correlation.”

One of the typical examples of the ground-state cluster
correlation is the 3α cluster structure in 12C; such cluster
structures develop remarkably in excited states of 12C. Also
in the ground state, the 3α cluster component is significantly
mixed into the p3/2-shell closed configuration, which is the
lowest state in the uncorrelated j -j coupling state. As a result
of the mixing of the cluster component, the ground band of 12C
exhibits oblate deformation. This deformation can be easily
understood by 3α cluster models, while it is difficult to describe
such a deformation with many mean-field calculations such as
the Hartree-Fock calculation, showing the spherical ground
state of 12C [1].

Also in 14C, various cluster structures such as 10Be + α
and 3α + 2n have been suggested in excited states [2–6].
In our previous work [6], which employed a method of
antisymmetrized molecular dynamics (AMD), we discussed
not only the cluster structures in excited states but also the
cluster component in low-lying states and showed that the
ground and low-lying states contain the cluster component
(the cluster correlation) even though 14C is a neutron p-shell
closed nucleus.

Recently, the Gamow-Teller (GT) transition strengths for
excited states of light nuclei have been extensively studied
by use of experiments on high-resolution charge-exchange
reactions [7]. The observed B(GT) values can be useful
information to clarify the structure of excited states. For A =
14 nuclei, the GT strength distributions for excited states of 14C

and the mirror 14O were studied in charge-exchange reactions
on 14N [8]. The measured B(GT) distributions to 0+, 1+, and
2+ states up to the excitation energy Ex = 15 MeV suggest
the predominant strengths of 2+ states. In comparison with
the large-scale no-core shell-model (NCSM) calculation [9],
it was shown that the NCSM calculation does not reproduce
the detailed GT strengths of excited 0+ and 2+ states, and the
possible need to include cluster structure in these light nuclei
was suggested [8].

As known from the anomalous long lifetime of 14C, the
strong suppression of the GT transition to the ground 14C is
another issue to be solved. The GT strength for the ground-
ground transition from 14N to 14C is several orders smaller
than the simple shell-model calculation without fine-tuning of
interaction [9–13]. It was suggested that the GT matrix element
can vanish because of the accidental cancellation of the matrix
element in the p-shell configurations [11]; the vanishing was
demonstrated by tuning the spin-orbit and tensor forces and
also shown recently by adjusting the three-body terms in chiral
effective field theory in both the conventional shell model and
large-scale shell model calculations [9,11–16].

In spite of sophisticated works with NCSM focusing
on the GT strength for the ground-ground transition, the
GT transitions to excited states of 14C have not been well
investigated. The large-scale NCSM calculation including
6�ω model space for excited states was performed by Aroua
et al. [9], and it suggests that the inclusion of higher shell
configuration has significant effects on the GT strength for
excited states as well as the ground state of 14C. However,
the calculation neither reproduces the experimental spectra of
excited 0+ and 2+ states in the Ex = 6–10 MeV region nor
describes the GT strength distributions.

In this paper, we study the GT transitions from the 1+
ground state of 14N to the ground and excited 0+, 1+,
and 2+ states of 14C based on a method of AMD [17,18].
The AMD method has proven useful for describing cluster
states as well as shell-model states, and it is suitable for
investigating cluster structures in excited states as well as
the ground-state cluster correlation. For the study of the
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ground and excited states of 14C, we perform the variation
after total-angular-momentum (spin) and parity projections
in the AMD framework (AMD+VAP) [19]. We obtain the
0+

1 , 1+
1 , and 2+

1 states with dominant 0�ω components and
significant mixing of higher shell components coming from
the cluster components. We also obtain the 0+

2,3 and 2+
2,3 states

with developed cluster structures containing dominant 2�ω
components. The calculated energy spectra and GT strengths
are compared with the experimental data and also with the
large-scale NCSM calculation including 6�ω configurations.
We also apply the generator coordinate method (GCM)
[20] to the AMD model with the constraint (constraint
AMD+GCM) of the deformation parameters β and γ as done
in the previous work [6,21]. The contributions of the cluster
correlation to the GT transitions to the 0+

1 and 2+
1 states are

discussed.
In the present work, we use a phenomenological effective

nuclear interaction consisting of central and spin-orbit forces.
The adopted central interaction is the modified Volkov force
[22] supplemented by the finite-range spin-orbit force, which
successfully reproduces the energy spectra of 12C in the
AMD+VAP calculation [19,23]. With such a simple effective
interaction used in the present work, it is difficult to describe
the vanishing of the GT transition to the 14C ground state. For
the ground state, we show only that the GT strength can be
somewhat reduced by the ground-state cluster correlation but
do not discuss the origin of the vanishing (the several-order
reduction) of the GT strength, which may be caused by the
accidental cancellation of GT matrix elements.

This paper is organized as follows. In the subsequent
section, the formulation and Hamiltonian of the present
calculation are explained. The results are shown in Sec. III.
In Sec. IV, structures of the ground and excited states are
discussed while focusing on the cluster correlation. The effect
of the cluster correlation on the GT strengths is also discussed
on the basis of the β-γ constraint AMD calculation. Finally, a
summary is given in Sec. V.

II. FORMULATION

To describe 14C and 14N, we apply the AMD+VAP method.
We also apply the β-γ constraint AMD+GCM method and
obtain results similar to those for AMD+VAP result.

The AMD+VAP method is the same one used for the study
of 12C in Refs. [19,23], and the β-γ constraint AMD+GCM
is basically the same as the method used in the previous work
for 14C [6]. For the details of these frameworks, the readers
are referred to Refs. [6,18,19,21,23].

A. AMD wave functions

In the AMD method, a basis wave function of an A-nucleon
system is described by a Slater determinant of single-particle
Gaussian wave packets,

�AMD(Z) = 1√
A!

A{ϕ1,ϕ2, . . . ,ϕA}. (1)

The ith single-particle wave function ϕi is written as a product
of spatial, intrinsic spin, and isospin wave functions:

ϕi = φXi
χiτi, (2)

φXi
(rj ) =

(
2ν

π

)4/3

exp

{
−ν

(
rj − Xi√

ν

)2
}

, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

φXi
and χi are the spatial and spin functions, and τi is the

isospin function fixed either up (proton) or down (neutron).
The width parameter ν is fixed at the same value ν = 0.19 fm−2

as that used in the study of 12C [23]. Accordingly, an AMD
wave function is expressed by a set of variational parameters
Z ≡ {X1,X2, . . . ,XA,ξ1,ξ2, . . . ,ξA} which express Gaussian
center positions and spin orientations of A nucleons.

B. AMD+VAP method

In the AMD+VAP method, the energy variation is per-
formed after the spin and parity projections in the AMD
model as done in previous work on 12C [19,23]. For the
lowest Jπ state, the parameters Xi and ξi(i = 1–A) are
varied to minimize the energy expectation value of the
Hamiltonian, 〈�|H |�〉/〈�|�〉, with respect to the spin-parity
eigenwave function projected from an AMD wave function;
� = P Jπ

MK�AMD(Z). Here, P Jπ
MK is the spin-parity projection

operator. After the energy variation by a frictional cooling
method [18], the optimum AMD wave function �AMD(ZJπ

)
is obtained. The obtained wave function �AMD(ZJπ

) approxi-
mately describes the intrinsic wave function for the lowest Jπ

state. For higher Jπ
k (k � 2) states, the energy variation after

the spin and parity projections is performed for the component
orthogonal to the lower Jπ states. Then, for each Jπ

k , the
optimum parameter solution ZJπ

k is obtained. In the case of 14C,
we perform the VAP calculations for the 0+

1,2,3, 1+
1 , and 2+

1,2,3
states and obtain seven sets of parameters Z. After the VAP
procedure, final wave functions are calculated by superposing
the spin-parity eigenwave functions projected from these seven
AMD wave functions �AMD(Zα) obtained by the VAP. Here
α is the label for seven VAP states, α = 0+

1,2,3, 1+
1 , and 2+

1,2,3
states. Namely, the final wave functions for the Jπ

n states are
expressed as∣∣�14C

VAP

(
Jπ

n

)〉 =
∑
K,α

cJπ

n (K,α)
∣∣P Jπ

MK�AMD(Zα)
〉
, (5)

where the coefficients cJπ

n (K,α) are determined by diagonal-
ization of norm and Hamiltonian matrices. For the ground
state of 14N, the VAP is performed for Jπ = 1+. Then, the
14N ground-state wave function is described by the spin-parity
eigenstate projected from the �AMD(Z1+

1 ) with K mixing.

C. β-γ constraint AMD+GCM

In the β-γ constraint AMD+GCM method, the energy
variation is performed after the parity projection but before the
spin projection under certain constraints. Namely, we perform
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the energy variation for the parity projected wave function,
� = P π�AMD(Z) with the constraint on the quadrupole
deformation parameters β and γ . Here, P π is the parity
projection operator. The deformation parameters β and γ are
defined as

β cos γ ≡
√

5π

3

2〈z2〉 − 〈x2〉 − 〈y2〉
R2

, (6)

β sin γ ≡
√

5π

3

〈x2〉 − 〈y2〉
R2

, (7)

R2 ≡ 5

3
(〈x2〉 + 〈y2〉 + 〈z2〉). (8)

For a given set of constraint parameters (βi ,γi), we impose the
constraints: β cos γ = βi cos γi , β sin γ = βi sin γi , and

〈xy〉
R2

= 〈yz〉
R2

= 〈zx〉
R2

= 0. (9)

After the energy variation with the constraints, we obtain the
optimized wave function � = P π�AMD(Z(βi ,γi )) for the ith set
of deformation parameters (βi,γi). For the constraint parame-
ters (βi,γi), we take the triangular lattice points with mesh size
0.05 on the β-γ plane as done in Refs. [6,21]. We truncate the
(β cos γ,β sin γ ) region as βi sin γi � −(βi cos γi − 1)/2 and
βi sin γi � −(βi cos γi − 0.75)/2 and use a total of 121 and 72
mesh points for 14C and 14N, respectively, to save numerical
cost. These truncations do not affect the results of low-lying
states.

To obtain the wave functions for Jπ
k states, we su-

perpose the spin-parity projected AMD wave functions
P Jπ

MK�AMD(Z(βi ,γi )) using GCM [20]. Then the final wave
functions for the Jπ

n states are described as∣∣�14C
βγ−MC

(
Jπ

n

)〉 =
∑
i,K

cJπ

n (K,βi,γi)
∣∣P Jπ

MK�AMD(Z(βi ,γi ))
〉
,

(10)

where the coefficients cJπ

n (K,βi,γi) are determined by solving
the Hill-Wheeler equation, i.e., the diagonalization of the
norm and Hamiltonian matrices. The final wave function
�

14C
βγ−MC(Jπ

n ) is the multiconfiguration (MC) state, which is
expressed by the linear combination of various configurations
P Jπ

MK�AMD(Z(βi ,γi )) obtained by the β-γ constraint AMD.

D. Effective interactions

We use the same effective nuclear interaction as that used
in the previous calculation of 12C [23]. It is the MV1 force [22]
for the central force supplemented by the two-body spin-orbit
force given by the two-range Gaussian form with the range
parameters being the same as those of the G3RS force [24].
The Coulomb force is approximated by using a seven-range
Gaussian form. The spin-orbit strengths are taken to be uI =
−uII = 3000 MeV. The Majorana, Bartlett, and Heisenberg
parameters in the MV1 force are taken to be (A) m = 0.62
and b = h = 0.125 as well as the parameters (B) m = 0.62
and b = h = 0 used in Ref. [23]. We also present the results
with different Majorana parameters, (C) m = 0.58 and b =

h = 0.125 and (D) m = 0.58 and b = h = 0 to show that the
interaction parameter dependence is minor.

In the present work, the MV1 force is adopted as the effec-
tive central interaction instead of the Volkov force [25] used in
the previous work on 14C [6]. In Ref. [6], the excitation energies
calculated with the β-γ constraint AMD using the Volkov no. 2
force largely overestimate the experimental excitation energies
of 14C. This may come from the overbinding problem of the
Volkov force for heavier mass nuclei. The MV1 force is the
interaction modified from the Volkov force, and it consists of
the finite-range two-body force and the zero-range three-body
term. The force reasonably reproduces the energy spectra of
p-shell and sd-shell nuclei.

III. RESULTS

With the AMD+VAP method we calculate the 1+ ground
state of 14N. The magnetic moment and electric quadrupole
moment calculated with AMD+VAP using the set A inter-
action are μ = +0.34 (μN ) and Q = +0.92 (e fm2). The
calculated value of the μ moment reasonably agrees with the
experimental value, μexp = +0.40376100(6) (μN ), while that
of the Q moment somewhat underestimates the experimental
one, Qexp = +1.93(8) (e fm2). The ground-state wave function
for 14N is dominated by D-wave component. A possible reason
for the underestimation of the Q moment is that tail parts of
radial wave functions of the last proton and neutron might be
insufficient in the present result. We also apply the AMD+VAP
method to the 0+

1,2,3, 1+
1 , and 2+

1,2,3 states of 14C and calculate
the GT transition strengths from the 14N ground state to 14C
states as well as the B(E2; 2+

1 → 0+
1 ) and B(M1; 1+

1 → 0+
1 ).

The GT transition strength B(GT) is given as

B(GT) =
(

gA

gV

)2 1

2Ji + 1
|〈Jf ||στ±||Ji〉|2. (11)

Here gA/gV = 1.251 is the ratio of the GT to Fermi coupling
constant. In principle, the GT transition from the Jπ = 1+,
T = 0 state is allowed for Jπ = 0+, 1+, and 2+, T = 1 states.

The results of B(GT) for the transitions from 14N(1+
1 ) to

14C(0+
1,2,3, 1+

1 , and 2+
1,2,3), B(E2), B(M1), and the excitation

energies of 14C are shown in Table I, compared with the
experimental data. The theoretical values obtained by the
AMD+VAP calculation using four sets of interaction parame-
ters are listed. Properties of the ground and excited states of 14C
are not strongly dependent on the interaction parameters within
the present calculation. The calculated results obtained the β-γ
constraint AMD+GCM using the set A interaction are also
shown in the table. They are qualitatively consistent with those
obtained with the AMD+VAP calculations. Quantitatively, the
AMD+VAP calculation gives about 1 MeV lower energy for
the ground states than the AMD+GCM one with the same
interaction. For such excited states as 14C(0+

3 ) and 14C(2+
3 ),

the AMD+GCM calculation gives 1–2 MeV lower energies
than the AMD+VAP. From the standpoint of variational
principle, the AMD+VAP is better for low-lying states
while the AMD+GCM is better for highly excited states. In
general, the AMD+VAP gives better solutions for low-lying
states than the AMD+GCM because the basis AMD wave
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TABLE I. Excitation energies Ex (MeV) of 14C, B(GT) from 14N(1+
1 ) to 14C, B(E2; 2+

1 → 0+
1 ) (e2fm4) and B(M1; 1+

1 → 0+
1 ) (μ2

N ) of 14C.
The theoretical values calculated with AMD+VAP using the interactions from sets A, B, C, and D are shown as well as those calculated with
the β-γ constraint AMD+GCM using the set A interaction. The experimental data are taken from Refs. [8,26].

β-γ -AMD
AMD+VAP(A) AMD+VAP(B) AMD+VAP(C) AMD+VAP(D) +GCM(A) exp.

Ex B(GT) Ex B(GT) Ex B(GT) Ex B(GT) Ex B(GT) Ex B(GT)

14C(0+
1 ) 0 0.07 0 0.09 0 0.12 0 0.13 0 0.16 0 1.90 × 10−6

14C(0+
2 ) 10.3 0.001 10.5 0.003 10.9 0.001 10.8 0.002 9.0 0.0002 6.589 0.056

14C(0+
3 ) 16.0 0.00002 16.8 0.00003 16.5 0.0001 17.7 0.0001 14.2 0.00005

14C(2+
1 ) 7.9 2.4 7.5 2.5 10.1 2.1 9.6 2.4 7.2 2.3 7.012 0.45

14C(2+
2 ) 11.2 0.24 11.5 0.17 11.7 0.75 11.9 0.42 9.7 0.33 8.318 0.37

14C(2+
3 ) 14.9 0.03 15.3 0.03 15.2 0.002 16.4 0.003 12.2 0.10 10.425 0.098

14C(2+
4 ) 14.4 0.04

14C(1+
1 ) 12.2 0.21 12.8 0.22 14.5 0.31 15.1 0.32 12.9 0.25 11.306 0.072

B(E2) B(E2) B(E2) B(E2) B(E2) B(E2)
14C;2+

1 → 0+
1 6.6 7.3 4.1 4.9 7.4 3.74

B(M1) B(M1) B(M1) B(M1) B(M1) B(M1)
14C;1+

1 → 0+
1 1.6 1.5 1.8 1.7 1.4 0.39(9)

functions are optimized for the spin-parity eigenstates in the
AMD+VAP (energy variation after the projection) but, in
the AMD+GCM, they are obtained by the energy variation
without the spin projection. Instead, the GCM has an advantage
of the superposition of many AMD wave functions, which
is efficient in particular for highly excited states. Because
of the difference in the variation and the superposition, the
excitation energies of 14C are somewhat different between
AMD+VAP and AMD+GCM. However, other properties are
similar to each other and it may indicate that the wave functions
obtained by the AMD+VAP and AMD+GCM are similar.
We discuss the AMD+VAP result mainly and also show the
AMD+GCM one to demonstrate that the difference is minor
except for excitation energies. The main purpose of showing
the AMD+GCM result is to discuss the effect of cluster
correlation on GT strengths because, in the AMD+GCM
framework, it is easy to compare the transition strengths
calculated with and without the cluster correlation.

The B(E2; 2+
1 → 0+

1 ) of 14C is reasonably reproduced by
calculations using sets (C) and (D) of interaction parameters
while it is slightly overestimated by those with sets (A) and
(B). The B(M1; 1+

1 → 0+
1 ) of 14C is overestimated with four

sets of interaction parameters. It indicates that the present
wave functions may not be precise enough for quantitative
description of the ground-state properties.

The calculated B(GT) for 14C(0+
1 ) is relatively small

compared with those for Jπ = 1+
1 and 2+

1 states. However,
the present calculations fail to describe the vanishing of the
GT strength known from the anomalously long lifetime of
14C. For 14C(2+

1 ), the GT strength is B(GT) = 2–3 in the
present calculation and is larger than the experimental value
B(GT) = 0.45 measured by charge-exchange reactions. We
obtain the 0+

2 and 2+
2 states with dominant 2�ω neutron

excited configurations around Ex = 10 MeV. The features of
these two states, such as the 0+-2+ level spacing and the GT
transition, reasonably agree with those of the experimental 0+

2
and 2+

2 states; therefore, we assign them to the experimental
14C(0+,6.6 MeV) and 14C(2+,8.3 MeV). We also obtain the 0+

3

and 2+
3 states dominated by 2�ω neutron excited configurations

around Ex = 15 MeV.
The calculated B(GT) distributions for 14N(1+

1 ) →14

C(0+,1+,2+) obtained with the AMD+VAP and β-γ con-
straint AMD+GCM using the set A interaction are compared
with the experimental data and the large-scale 6�ω NCSM
calculation with AV8’ interaction [9] in Fig. 1. Qualitative fea-
tures of the B(GT) distributions obtained in the present calcula-
tions are in reasonable agreement with the experimentalB(GT)
distributions except for B(GT) for 14C(2+

1 ). The calculated
B(GT) for the 2+

1 state is largest and is as much as that of the
NCSM calculation. In the experimental B(GT) distribution
for 2+ states, relatively larger populations were observed
compared with 0+ and 1+ states. However, the calculations
overestimate the absolute value of the experimental B(GT) for
the 2+

1 state. This might indicate that the descriptions of the
final state [14C(2+

1 )] and/or the initial state [14N(1+
1 )] is not

sufficient in the present calculations.
Compared with the NCSM calculation, the present B(GT)

for 14C(0+
1 ) is the same order as that of the large-scale 6�ω

NCSM calculation using the effective interaction derived from
the AV8’ interaction. It should be noted that the vanishing
of the GT matrix element for 14C(0+

1 ) has been discussed
in several NCSM studies by fine tuning of the interactions
[9,13–16]. For 0+

2 and 2+
2 states, the correspondence to the

experimental B(GT) distributions seems better in the present
result than in the NCSM calculation. In the NCSM calculation,
the corresponding states might be missing or their excitation
energies might be overestimated. In the present results, 0+

2
and 2+

2 states contain cluster correlations resulting in the
mixing of higher shell components of proton and neutron
excitations. Usually, shell-model calculations are not suitable
for describing such cluster states.

IV. DISCUSSION

In the present result, even the ground states of 14C and
14N have significant mixing of proton and neutron excitations

044313-4



GAMOW-TELLER TRANSITIONS FROM THE 14N . . . PHYSICAL REVIEW C 89, 044313 (2014)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

B
(G

T
)

Excitation energy (MeV)

(a)AMD+VAP

0+ 0+

2+

2+

2+

1+

x 1/3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

B
(G

T
)

Excitation energy (MeV)

(b)β-γ AMD
        +GCM

0+
0+ 0+

2+

2+

2+

2+

1+

x 1/3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

B
(G

T
)

Excitation energy (MeV)

(c)exp

0+ 0+

2+

2+

2+
1+

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

B
(G

T
)

Excitation energy (MeV)

(d)NCSM

0+ 0+

2+

2+1+

x 1/3

FIG. 1. The B(GT) distributions for transitions from the 1+

ground state of 14N to J π = 0+,1+, and 2+ states of 14C. (a) The
theoretical values calculated with the AMD+VAP using the set A
interaction, (b) those calculated with the β-γ constraint AMD+GCM,
(c) the experimental data taken from Refs. [8,26], and (d) the
theoretical results from Ref. [9] of the NCSM calculation with the 6�ω

model space using the effective interactions derived from Argonne
V8’ interaction.

from the lowest 0�ω configuration because of the cluster
correlations. In this section, we discuss intrinsic structures
and cluster correlations in 14C and 14N. To show the mixing
of excited configurations, we analyze the probability of higher
shell components. The effect of the cluster correlations on the
GT strengths for 14C(0+

1 ) and 14C(2+
1 ) is also discussed.

A. Intrinsic structure and cluster correlation

In the AMD+VAP calculation, the AMD wave function
�AMD(Zα) obtained by the VAP calculation for α = Jπ

k is
regarded as the intrinsic state of the Jπ

k state. As seen in the
density distributions of the intrinsic wave functions �AMD(Zα)
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FIG. 2. (Color online) Density distribution for the intrinsic wave
functions �AMD(ZJπ

k ) of 14C and 14N obtained with the AMD+VAP
using the set A interaction. x, y, and z axes are chosen as 〈x2〉 �
〈y2〉 � 〈z2〉 and the matter density integrated along the x axis is
plotted on the z-y plane.

for 14C and 14N in Fig. 2, α-like or t-like cluster correlations are
found even in the ground states of 14C and 14N. In the excited
states of 14C, further development of cluster structures is seen.

On the basis of the spherical harmonic oscillator (HO)
shell model, those states contain significant components of
excited configurations because of the cluster correlations.
To discuss the higher-shell components beyond the lowest
0�ω configurations in each state, we calculate the occupation
probability of HO quanta in the final wave function �

14C
VAP(Jπ

n )
for the Jπ

n state of 14C. The calculations of the occupation
probability are done following the method proposed by Suzuki
et al. [27]. The occupation probability of a definite number of
total HO quanta Q is given by the expectation value 〈PQ〉 of
the following projection operator PQ to the eigenstate of the
total HO quanta operator

∑
i a

†
i ai ,

PQ = 1
2π

∫ 2π

0 dθ exp
[
iθ

( ∑A
i=1 a

†
i ai − Q

)]
, (12)

a
†
i =

√
mω/2� (xi − ipi/m�), (13)

ai =
√

mω/2� (xi + ipi/m�), (14)

where ω ≡ 2�ν/m (ν is the width parameter used in AMD
wave functions). The occupation probability of total proton

044313-5



YOSHIKO KANADA-EN’YO AND TADAHIRO SUHARA PHYSICAL REVIEW C 89, 044313 (2014)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 P

Q

ΔQ

(h)14N(1+
1)

total
proton

neutron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8
O

cc
up

at
io

n 
pr

ob
ab

ili
ty

 P
Q

ΔQ

(b)14C(0+
2)

total
proton

neutron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 P

Q

ΔQ

(e)14C(2+
2)

total
proton

neutron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 P

Q

ΔQ

(d)14C(2+
1)

total
proton

neutron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 P

Q

ΔQ

(c)14C(0+
3)

total
proton

neutron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 P

Q

ΔQ

(f)14C(2+
3)

total
proton

neutron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 P

Q

ΔQ

(g)14C(1+
1)

total
proton

neutron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 P

Q

ΔQ

(a)14C(0+
1)

total
proton

neutron

FIG. 3. Occupation probability 〈PQ〉 for protons, neutrons, and
total nucleons calculated with the AMD+VAP using the set A
interaction. The calculated 〈PQ〉 values are plotted as functions of
�Q ≡ Q − Qmin measured from the lowest allowed HO quanta Qmin.

(neutron) HO quanta is calculated similarly by using the
isospin projection operator.

We calculate 〈PQ〉 for protons, neutrons, and total nucleons
and plot the values as functions of �Q ≡ Q − Qmin measured
from the lowest allowed HO quanta Qmin. 〈PQ〉 for total
nucleons stands for the component of �Q-�ω configurations,
and that for protons (neutrons) indicates the probability
of proton (neutron) �Q-�ω excitation. The results of the
AMD+VAP states �

14C
VAP(Jπ

n ) and �
14N
VAP(1+

1 ) obtained using
the set A interaction are shown in Fig. 3.

It is found that the ground state 14C(0+
1 ) is not only

dominated by the 0�ω component but also contains significant
components, i.e., 25% and 5% of 2�ω and 4�ω excited

configurations, respectively. In the higher shell components,
the neutron excitation is dominant and the proton excitation is
minor. The mixing of proton excitation is caused by the cluster
correlation. Also the ground state of 14N contains 20% of 2�ω
excited configurations, a significant component.

In the excited states 14C(2+
1 ) and 14C(1+

1 ), the 0�ω compo-
nent is dominant but is reduced to 50% because of the larger
probability of excited configurations than the ground state.
14C(0+

2,3) and 14C(2+
2,3) have the dominant 2�ω configuration

with the significant mixing of 4�ω and 6�ω configurations. In
addition to the major neutron excitations, they also contain a
20% component of proton excitations because of the cluster
correlation

Similar features for 〈PQ〉 are found in the result of the
β-γ constraint AMD+GCM calculation. Namely, significant
higher shell components are contained even in the ground
states of 14C and 14N. As described in Sec. II C, the final wave
function �

14C
βγ−MC(Jπ

n ) in the β-γ constraint AMD+GCM
calculation is given by the superposition of various AMD
configurations on the β-γ plane. In the framework of β-γ
constraint AMD, the spherical β = 0 state corresponds to
a 0�ω configuration state, while deformed states with finite
β and/or γ values contain higher shell components in terms
of the spherical HO shell model. For 14C and 14N systems,
the finite β and/or finite γ states have cluster structure
containing more components of higher shell configurations
because of the cluster correlations. This means that in the β-γ
constraint AMD+GCM, higher shell components beyond the
0�ω configuration are mixed in the ground-state wave function
through the finite β and/or finite γ states in the superposition
of basis AMD wave functions. Therefore, in this framework,
the origin of the mixing of excited configurations can be
understood by the deformation modes accompanied by cluster
correlations.

In Fig. 4, we show the energy expectation values for the
parity projected wave functions P π�AMD(Z(βi ,γi )) obtained
by the β-γ constraint AMD, and those for the spin-parity
projected wave functions P Jπ

MK�AMD(Z(βi ,γi )). As seen in the
density distributions in Figs. 5 and 6, we obtain various
structures having cluster correlations in the β-γ constraint
AMD wave functions of 14C and 14N. In the energy surface
before the spin projection [Figs. 4(a) and 4(d)], the spherical
β = 0 state [Figs. 5(b) and 6(b)] is the energy minimum.
On the other hand, in the Jπ = 0+ projected states of
14C [Fig. 4(b)] and the Jπ = 1+ projected states of 14N
[Fig. 4(e)], the energy minima shift to the finite β and
γ states at (βmin cos γmin,βmin sin γmin) = (0.225,0.130) for
14C(0+) and (βmin cos γmin,βmin sin γmin) = (0.250,0.087) for
14N(1+), which show α-like or t-like cluster correlations
[Figs. 5(a) and 6(a)]. This indicates that the deformed states
with the cluster correlations are favored in the calculation
with the spin projection, though the spherical 0�ω states
are favored in the model space without the spin projection.
Moreover, on the β-γ plane, the Jπ -projected energy surface
is very soft over a wide area that covers various β-γ states
having further developed cluster structures. For example, in
the case of the Jπ = 0+ energy surface of 14C, the energy
soft area within a few MeV energy difference from the energy
minimum covers (β cos γ,β sin γ ) = (0.4,0.0), (0.325,0.130),
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FIG. 4. (Color online) Energy expectation values calculated with
the β-γ constraint AMD. (a) Energy for the positive-parity state
projected from �AMD(Z(β,γ )) of 14C without the spin projection.
(b) and (c) Energy for the 0+ and 2+ states of 14C projected from
�AMD(Z(β,γ )). (d) Energy for the positive-parity state projected from
�AMD(Z(β,γ )) of 14N without the spin projection. (e) Energy for the
1+ state of 14N projected from �AMD(Z(β,γ )).

and (0.125,0.216) states [Figs. 5(c)–5(e)] as well as the β = 0
state. These states have α-like cluster structures and contribute
to the significant mixing of the excited components such
as the 2�ω and higher shell configurations in the final-state
wave functions �

14C
βγ−MC(Jπ

n ) as well as the initial-state wave

function �
14N
βγ−MC(Jπ

n ). It should be noted that although the
14C wave functions with finite β and γ show α-like cluster
structures, they do not have neutron and proton excitations of
equal weight but do have dominant neutron and minor proton
excitations. The reason is that neutrons in the α-like cluster are
more largely affected by the antisymmetrization with neutrons
inside the 10Be core and, therefore, are more likely excited to
higher configurations than protons.
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FIG. 5. (Color online) Density distribution for the intrinsic wave
functions �AMD(Z(β,γ )) of 14C obtained with the β-γ constraint
AMD using the set A interaction. The densities for the J π = 0+

energy minimum (βmin cos γmin,βmin sin γmin) = (0.225,0.130) state
and the spherical β = 0, prolate (β cos γ,β sin γ ) = (0.4,0.0), tri-
axial (0.325,0.130), and oblate (0.125,0.216) states are shown. x, y,
and z axes are chosen as 〈x2〉 � 〈y2〉 � 〈z2〉 and the matter density
integrated along the x axis is plotted on the z-y plane.
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FIG. 6. (Color online) Density distribution for the intrinsic wave
functions �AMD(Z(β,γ )) of 14N obtained with the β-γ constraint
AMD using the set A interaction. The densities for the J π = 1+

energy minimum (βmin cos γmin,βmin sin γmin) = (0.250,0.087) state,
and the spherical β = 0, prolate (β cos γ,β sin γ ) = (0.4,0.0), triax-
ial (0.325,0.130), and oblate (0.125,0.216) states are shown. x, y,
and z axes are chosen as 〈x2〉 � 〈y2〉 � 〈z2〉, and the matter density
integrated along the x axis is plotted on the z-y plane.
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As shown in the occupation probability of total HO quanta
(Fig. 3), higher shell components than 6�ω are very small
even in the excited states, 14C(0+

2,3) and 14C(2+
2,3). It means

that the cluster correlation in these states can be described
within the 6�ω model space. On the other hand, the large-
scale 6�ω NCSM calculation the NCSM predicts the 14C(0+

2 )
and 14C(2+

2 ) states at much higher excitation energies [9].
The inconsistency in the energy spectra might come from the
difference in effective interactions. In the NCSM calculation,
the effective interaction in the 6�ω model space is derived
from the AV8’ force by taking into account the effect of the
higher shell truncation. Although the NCSM calculation is
based on the realistic nuclear force and it reproduces low-lying
spectra, it has not been confirmed yet that the derived effective
interaction can quantitatively describe excitation energies of
many-particle–many-hole states having cluster correlations. In
the present calculation, we use the phenomenological effective
interaction with which excitation energies of cluster states in
such nuclei as 12C, 16O, 20Ne, and 10Be are reproduced well.
More sophisticated study of the cluster correlation based on a
realistic force should be done to understand the inconsistency.

B. Effect of cluster correlation on GT strength

As discussed above, the ground-state wave functions of 14C
and 14N have cluster correlations that result in significant 2�ω
and 4�ω components in terms of spherical HO shell-model
expansion. In this section, we discuss the effect of the cluster
correlations on the GT strengths for 14C(0+

1 ) and 14C(2+
1 ).

In the NCSM calculation in Ref. [9], the GT matrix
elements are sensitive to the model space of shell-model
configurations. For example, the B(GT) for the GT transition
to 14C(0+

1 ) is B(GT) = 2.518 in the 0�ω model space NCSM
calculations using two-body effective interactions derived
from the AV8’ force but it is reduced to B(GT) = 0.164 in the
6�ω model space calculation. The B(GT) values of the 6�ω
NCSM calculation for 14C(0+

1 ) and 14C(2+
1 ) are eventually

comparable with the present β-γ constraint AMD+GCM
results in spite of differences in the effective interactions and
the model space. Herein, we discuss the mixing effect of higher
shell components on B(GT) from the standpoint of cluster
correlations.

In the β-γ constraint AMD and the AMD+VAP calcu-
lations, it is found that the deformed states with the cluster
correlations are favored in the calculation with the spin
projection though the spherical 0�ω states are favored in
the model space without the spin projection. To see the
effect of the cluster correlations in finite β and γ states
on B(GT), we show in Fig. 7 the B(GT) values evaluated
by the GT matrix element obtained using the single β-γ
constraint AMD wave function for 14N and that for 14C,
that is, the GT matrix element for the initial 1+ state of 14N
projected from the β-γ constraint AMD wave function at the
1+-projected energy minimum (βmin cos γmin,βmin sin γmin) =
(0.250,0.087) and the final Jπ = 0+ and 2+ states of 14C
projected from the β-γ constraint AMD wave function
�AMD(Z(β,γ )). We also show the B(GT) given by the GT
matrix element for the case in which the initial 14N state is the
spherical β = 0 state. Here the K mixing is taken into account.

si
n

γ
β

si
n

γ
β

si
n

γ

(a)N(           )−>C(0    ) min β,γ
+

min
β    ,γ

(b)N(           )−>C(2    ) β    ,γmin β,γ
+

min

0.2 0.4 0.6 0.8

0.2

0.4

0
0

0.2 0.4 0.6 0.8

0.2

0.4

0
0

0.2 0.4 0.6 0.8

0.2

0.4

0
0

0.2 0.4 0.6 0.8

0.2

0.4

0
0

β cos γ

0.0

0.0

0.4

0.0

3.0

0.0

0.4

3.0

(c)N(  =0)−>C(0    )β,γ
+

β,γ
+β(d)N(  =0)−>C(2    )

β

β

si
n

γ
β

FIG. 7. (Color online) B(GT) values evaluated by the GT matrix
element obtained using the single β-γ constraint AMD wave function
�AMD(Z(β,γ )) for 14N and that for 14C. (a) and (b) B(GT) values
for the J π = 0+ and 2+ states of 14C projected from �AMD(Z(β,γ )).
The initial state is the 1+ energy minimum state of 14N at
(βmin cos γmin,βmin sin γmin) = (0.250,0.087). Panels (c) and (d) are
the same as panels (a) and (b) but the initial 14N state is the 1+ state
projected from the spherical β = 0 wave function.

In both cases of initial 14N states, the βmin-γmin and β = 0
states, the B(GT) for 14C(0+) decreases as the deformation β
of 14C increases. Comparing the B(GT) value for the final 14C
state at the spherical limit β = 0 with that for the 14C state at
the Jπ = 0+ energy minimum (βmin cos γmin,βmin sin γmin) =
(0.225,0.130), the B(GT) to 14C(0+) is reduced by 30%
because of the cluster correlation in the final 14C state. Note
that the cluster correlation also changes components within
0� configurations. Namely, in the case of 14C(0+), the (p3/2)4

proton configuration (the j -j coupling state) is favored without
cluster correlation, while the SU(3) limit p-shell configuration,
the so-called L-S coupling p-shell state, is favored with the
cluster correlation. The latter is the (L = 0,S = 0) state in
terms of the total orbital-angular momentum(L) and the total
intrinsic spin (S). Since the GT transition from the dominant
D-wave component of 14N to the L-S coupling component
(S-wave component) in 14C(0+) is forbidden, the GT transition
is suppressed by the cluster correlation because of mixing of
the L-S coupling component in the p shell as well as the mixing
of the higher shell components. In the comparison of the
B(GT) for the initial 14N state with β = 0 and βmin-γmin, a 50%
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reduction of B(GT) occurs because of the cluster correlation
in the initial 14N state.

In contrast to the B(GT) for 14C(0+), almost no reduction
caused by cluster correlation is seen in the B(GT) for 14C(2+).
In case of 2+ state, possible four proton configurations in
the p shell are (L = 2,S = 0) and (L = 1,S = 1) states. The
former configuration is favored with the cluster correlation and
it enhances the GT strength. Therefore, the cluster correlation
enhances the (L = 2,S = 0) component, resulting in the
increase of the GT strength in 0�ω configurations, which
compensates for the decrease of the GT strength due to the
mixing of the higher shell component.

As mentioned before, the present results overestimate the
experimental B(GT) for 14C(0+

1 ) and 14C(2+
1 ). Although the

B(GT) for 14C(0+
1 ) can be somewhat reduced by the cluster

correlation, the possible reduction is only a factor of 2−3 at
most, and it is difficult to describe the anomalous suppression
of the GT matrix element known from the long lifetime of 14C.
For the transition to 14C(2+

1 ), the B(GT) seems insensitive to
the cluster correlation, and it is also difficult to quantitatively
reproduce the experimental data in the present calculation.

V. SUMMARY

GT transitions from the 14N ground state to the 14C ground
and excited states were investigated on the basis of the model
of AMD. The AMD+VAP method and the β-γ constraint
AMD+GCM were applied to 0+, 1+, and 2+ states of 14C as
well as the ground state of 14N. Both calculations show similar
results.

The calculated strengths for the allowed transitions to 0+,
1+, and 2+ states of 14C were compared with experimental
data measured by high-resolution charge-exchange reactions.
The calculated GT transition to the 2+

1 state is strong, whereas
those to the 0+

2,3 and 2+
2,3 states having dominant 2�ω excited

configurations are relatively weak. The B(GT) distributions
to excited states of 14C in the present calculations are in rea-
sonable agreement with the experimental B(GT) distributions
except for B(GT) for 14C(2+

1 ). The present calculation cannot
describe the anonymously long lifetime of 14C, though the GT
strength of the 14C ground state is relatively small compared
with the 2+

1,2 and 1+
1 states.

Compared with the large-scale NCSM calculations [9],
the B(GT) values for 14C(0+

1 ) and 14C(2+
1 ) in the present

calculation are almost the same as those in the 6�ω NCSM
calculations. For higher 0+ and 2+ states, the present calcu-
lation shows a better description of the experimental B(GT)
distributions in the Ex ∼ 10–15 MeV region.

It was found that the ground-state wave functions of 14C
and 14N have cluster correlations that result in significant 2�ω
and 4�ω components in terms of spherical HO shell-model
expansion. In the excited states of 14C, further development of
cluster structures is seen.

The effect of the cluster correlations on the GT strengths for
14C(0+

1 ) and 14C(2+
1 ) was discussed. Although the B(GT) for

14C(0+
1 ) can be somewhat reduced by the cluster correlation,

the possible reduction is only a factor of 2−3 at most, and it
is difficult to describe the anomalous suppression of the GT
matrix element known from the long lifetime of 14C.

In the present calculation, we adopted the effective inter-
actions composed of the central and spin-orbit forces but no
tensor force. Since the tensor force may affect ground-state
properties, in particular, spin properties, careful examination
of its effect on GT strengths is a remaining problem. In the 14N
ground state, p-n correlation should be sensitive to the tensor
force. If the spacial development of a dueteron-like cluster is
enhanced by the tensor force, the GT transitions to 14C(0+

1 )
and 14C(2+

1 ) may be suppressed because their spatial overlap
becomes small. It may also improve the description of the
experimental Q moment of 14N, which is underestimated in
the present calculation. For more quantitative description of
ground-state properties and GT transition strengths, explicit
treatment of tensor force should be considered.
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