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This article generalizes the notion of the local density of a many-body system to introduce collective coordinates
as explicit degrees of freedom. It is shown that the energy of the system can be expressed as a functional of this
object. The latter can in turn be factorized as the product of the square modulus of a collective wave function
and a normalized collective-coordinate-dependent density. Energy minimization translates into a set of coupled
equations, i.e., a local Schrödinger equation for the collective wave function and a set of Kohn-Sham equations
for optimizing the normalized density at each point in the collective space. These equations reformulate the
many-body problem exactly provided one is able to determine density- and collective-wave-function-dependent
terms of the collective mass and potential which play a similar role to the exchange-correlation term in electronic
Kohn-Sham density functional theory.
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I. INTRODUCTION

Density-functional-based models, being the only micro-
scopic, fully quantum-mechanical tool currently available to
provide insight on the structure of nuclei up to the heaviest
ones, are the focus of intense investigation to improve their
accuracy and precision. For example, recent developments in
effective field theory methods and the theoretical foundations
of nuclear density functional theory (DFT) have triggered
attempts to bridge ab initio many-body methods, based on
chiral effective field theory and high-precision two- and
three-nucleon interactions, and DFT, using the former to build
parts of the latter [1–8]. Another current line of work consists
in enriching the form of empirical energy functionals in a
systematic way [9–11].

One puzzling fact about nuclear DFT is that it owes
much of its power to the use of symmetry-breaking density
configurations. The method thus deviates from the symmetry-
conserving Hohenberg-Kohn (HK) [12] and Kohn-Sham (KS)
[13] framework. The most basic example of a broken symmetry
is the translational invariance of the Hamiltonian, which is
troublesome for self-bound finite systems best described by a
localized density. KS frameworks have recently been built for a
trapped system [14] and for a functional of the internal density,
i.e., expressed in the reference frame of the nuclear center
of mass [15,16]. A density-functional framework allowing
to break arbitrary symmetries was put forward in Ref. [17],
relying however on an unspecified restriction of the variational
space for a trial wave function. Another example of a
broken symmetry is the nonconservation of particle number
in the BCS treatment of pairing. As an alternative, exact
solutions of the pairing Hamiltonian and symmetry-restored
Hartree-Fock-Bogolyubov equations have been formulated as
a functional (function, in fact) of occupation numbers in a given
single-particle basis [18–20], and functions of occupation
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numbers have been studied as an alternate route to building
mass tables [21]. These works keep the HK/KS formalism
unchanged except for a variation in its basic degree of freedom:
the system’s single-particle density.

However, formally integrating into DFT the breaking of
rotational invariance, as well as the violation of particle-
number conservation, remains to be done. Although effort is
currently being put into building functionals of the scalar,
symmetry-conserving density [22], it is likely that breaking
these symmetries is essential to describe what is understood as
nuclear deformation, and treat pairing in finite systems, while
keeping computational complexity to a minimum.

The cost-efficiency of KS-like schemes comes from the idea
of using a Slater determinant to reproduce the local density ρ of
a given correlated wave function, thereby capturing essential
quantum effects, and encode the missing correlations into a
functional Exc[ρ] [23,24]. Thus, no explicit mention is made
of a many-body wave function. Nonetheless, current expec-
tations about nuclear DFT were mostly raised by the success
encountered during its first life as mean-field theory performed
with effective density-dependent interactions, together with
beyond-mean-field extensions such as the generator coordinate
method (GCM) performed on top of symmetry-restored
mean-field states [25–28]. This was commonly understood
as an approximate wave function method, which requires
the restoration of broken symmetries for consistency with
the underlying Hamiltonian, and allows multiple symmetry-
restored configurations to be mixed to describe zero-point
collective motion, or shape coexistence, and make extensive
spectroscopic predictions in nuclei where these degrees of
freedom are important. The somewhat ad hoc extension from a
Hamiltonian picture to a density-functional-based one leads to
pathologies in the theory [29], which can be formally addressed
[30,31] at the expense of additional complexity and constraints
on the form of the functional, such as forbidding terms other
than polynomials of the density [32–34]. This is referred to
as the multireference energy density functional (MR-EDF)
model.
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An alternate formalism uses a collective “Bohr” Hamilto-
nian [35–42], initially developed as a model for a quantum
vibrating liquid droplet, as an alternative or approximation
to the Hill-Wheeler equations of the GCM. The mean-field
energy landscape in the space of deformation parameters is
then used as a potential (with or without zero-point energy
corrections) and mass parameters determined from the Slater
determinants enter a corresponding kinetic operator.

MR-EDF and collective Hamiltonians are powerful tools,
well adapted to the idiosyncrasies of the nuclear many-body
problem, yet they do not have a clear connection to the first-
principles formulation thereof, which may limit their future
development. Here, I attempt to improve on this situation.

The present article aims to formulate a density functional
theory allowing to break spatial symmetries (e.g., translation,
rotation) and treat collective motion in a spirit similar to the
GCM, MR-EDF, or collective Hamiltonian-based methods,
while keeping the theory exact in the DFT sense, i.e.,
provided we can determine the exact functional. First, the
relevant mathematical objects are defined, then the existence
of a functional is summarily proven in Sec. II. A useful
form of the latter is given in Sec. III. The example of
translational motion is used as an illustration in Sec. IV.
Finally, a minimal Kohn-Sham-like scheme for introducing
auxiliary Slater determinants is presented in Sec. V. Results
are discussed throughout and summarized in Sec. VI.

II. DEFINITIONS AND EXISTENCE OF A FUNCTIONAL

Consider a system of N fermions with Hamiltonian Ĥ =
T̂ + Û + V̂ , where T̂ , Û , and V̂ are respectively kinetic,
interaction, and external potential terms. Trial N -body anti-
symmetric wave functions � depend on N coordinate three-
vectors �ri , i = 1 . . . N (omitting, in this first presentation,
internal degrees of freedom of the particles for the sake of
clarity). Let us write

R ≡ (�r1, . . . ,�rN ), (1)

d3N R ≡ d3�r1 · · · d3�rN . (2)

The kinetic and external-potential terms of Ĥ can be written
as (in units where � = m = 1)

T̂ = −1

2
�̂ = −1

2

∑
i

�i, (3)

V̂ (R) =
∑

i

vext(�ri), (4)

while, for now, we shall keep Û as an arbitrary interaction
term. It is assumed that Ĥ has a nondegenerate ground state.

Now consider a set of differentiable real functions Qμ(�r)
indexed by μ = 1 . . . n. We will use these to define local
operators,

Q̂μ(R) ≡
∑

i

Qμ(�ri), (5)

their expectation values qμ in a many-body wave function
defining a set of collective coordinates. Now, for any given set
of values q = (q1, . . . ,qn), each qμ being taken in the interval

of possible values of Qμ(R), we can define the operator

P̂ (q,R) ≡
∏
μ

δ(Q̂μ(R) − qμ). (6)

This operator selects configurations of the N particles for
which the collective coordinates defined by the functions
Q̂μ correspond exactly to the given values (q). It effectively
projects � onto an eigenspace of the Q̂μ. Using the definition
above, it is trivial to prove the projectorlike property

P̂ (q,R) P̂ (q ′,R) = δ(n)(q − q ′) P̂ (q,R) (7)

as well as the closure relation∫
dnq P̂ (q,R) = 1, (8)

where the qμ integral runs over the interval of possible values
of Q̂μ(R). Note that, due to possible algebraic inequalities
between the values of these functions, we may have P̂ (q,R) =
0 in some domain of q space. Such a domain is understood to

be excluded in the following. We can now use P̂ to define the
generalized density,

D(q,�r) ≡ N

∫
d3N R δ(3)(�r − �r1) P̂ (q,R)�∗(R) �(R).

(9)

Comparing with the usual density,

ρ(�r) = N

∫
d3NR δ(3)(�r − �r1) �∗(R) �(R), (10)

we see that D(q,�r) is, up to a factor N , the probability density
of finding one particle at �r and the collective configuration of
the N particles at q. As P̂ is an N -body operator, D contains
information from up to N -body components of the density
matrix associated with �.

It is possible to split this information by defining, first, a
collective wave function (cwf)

f (q) ≡ eiθ(q)

[
1

N

∫
d3�r D(q,�r)

]1/2

, (11)

= eiθ(q)

[∫
d3N R �∗(R)P̂ (q,R)�(R)

]1/2

, (12)

where θ (q) is a chosen phase depending on the problem at
hand. We shall assume there exists a natural and unambiguous
choice. For ground states, θ (q) = 0 seems appropriate; other-

wise, an irreducible representation of a symmetry group of Ĥ
in q space may provide the dependence of θ (q) on some or all
coordinates (this will be further discussed Secs. III and IV).

Second, we can define the q-dependent density (defined
first almost everywhere, then elsewhere by continuity)

d(q,�r) ≡ |f (q)|−2D(q,�r), (13)

which captures the conditional probability density of finding
a particle at �r if the collective configuration is q. The meaning
of d(q,�r) can be made more explicit by introducing the “slice”
wave function

�(q,R) ≡ f −1(q) P̂ (q,R) �(R), (14)
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which satisfies, using Eqs. (7) and (12)∫
d3NR �∗(q,R) �(q ′,R) = δ(n)(q − q ′), (15)∫

dnq f (q) �(q,R) = �(R). (16)

This wave function is nonzero on a manifold of dimension
3N − n determined by the values of the collective coordinates.
Then, d(q,�r) is the density of this state [using Eq. (7) again],

δ(n)(q − q ′) d(q,�r)

= N

∫
d3N R δ(3)(�r − �r1)�∗(q,R) �(q ′,R). (17)

Moreover, the quantities defined above satisfy the normal-
ization relations, obtained from their respective definitions and
the closure relation, Eq. (8),∫

dnq

∫
d3�r D(q,�r) = N, (18)∫

dnq f ∗(q) f (q) = 1, (19)

∀q,

∫
d3�r d(q,�r) = N, (20)

and the following relations:∫
dnq D(q,�r) = ρ(�r), (21)∫
d3�r D(q,�r) = N |f (q)|2, (22)

which exhibit the role of D as a joint probability distribution
and those of ρ and |f |2 as the corresponding marginal
distributions. Finally, we can see that the value of q is encoded
in d(q,�r) through∫

d3�r Qμ(�r) d(q,�r) (23)

= |f (q)|−2
∫

d3N R Q̂μ(R) P̂ (q,R)�∗(R) �(R) = qμ,

(24)

thus reducing the variational domain for d. We could have used
a two-body or higher operator for Q̂, but this would prevent
us from obtaining a simple expression like Eq. (24) for this
purpose.

Now, let us see how the energy of the system can be
expressed as a functional of D. Let w(q,�r) be a real function
uniformly bounded from below and

ŵ(q,R) =
∑

i

w(q,�ri), (25)

Ŵ (R) =
∫

dnq ŵ(q,R) P̂ (q,R). (26)

This N-body operator applies on each slice of a wave function a
different, q-dependent, local, single-particle potential w(q,�r):

Ŵ (R) �(R) =
∫

dnq f (q) ŵ(q,R) �(q,R). (27)

Its expectation value is, using Eqs. (13), (17), and (27),

〈�|Ŵ |�〉 =
∫

dnq dnq ′ f ∗(q) f (q ′)

×
∫

d3N R �∗(q,R′) ŵ(q ′,R) �(q ′,R), (28)

=
∫

dnq

∫
d3�r w(q,�r) D(q,�r), (29)

i.e., this potential is purely multiplicative with respect to the
generalized density D, just as a local one-body potential v(�r)
is with respect to ρ(�r). In fact, such a one-body potential is a
special case of Ŵ with no dependence on q [w(q,�r) = v(�r) in
Eq. (25)].

Let us add such a potential to the Hamiltonian and define
the following functional, which implies solving for the ground
state of Ĥ + Ŵ :

F [w] = min
�

〈�|Ĥ + Ŵ |�〉. (30)

To obtain a physically useful theory, we first need to ensure
that w and �, hence all physical observables, are functionals
of D. The proof is identical to the usual case [12,43,44] and
shall not be repeated here.

Using the Hellmann-Feynman theorem and Eq. (29), we
have

δF [w]

δw(q,�r)
= D(q,�r). (31)

We can thus use a Legendre transform to write a functional of
D,

E[D] = min
w

[
F [w] −

∫
dnq

∫
d3�r w(q,�r)D(q,�r)

]
(32)

= min
�→D

〈�|Ĥ |�〉, (33)

where � → D means that the variational domain for � is
restricted to wave functions having the generalized density D.
It thus appears that the energy of the system can be written
as a functional of D, in a similar fashion to the HK result.
The ground-state energy of the system can then be found by
minimizing the functional E[D].

Since D depends on more variables than just the coordinates
of one particle, it introduces additional degrees of freedom
compared to standard DFT. Moreover, as seen in Sec. II, given
a phase choice, D can be unambiguously decomposed into a
cwf f and a q-dependent normalized density d. We can thus
also write

E[D] = E[f,d]. (34)

This alternate formulation will become useful when deriving
the formal basis for a practical many-body method in the next
few sections. For now, let me give a few examples of collective
coordinates that can be usefully incorporated.

For instance, assuming a vanishing external potential
(V̂ = 0), using x/N , y/N and z/N for Qμ(�r) (x,y,z being the
Cartesian components of �r), the collective coordinates qμ are
the components of the center-of-mass (CoM) coordinate vector
�R. The generalized density is then D( �R,�r) = |f ( �R)|2 d( �R,�r),
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where, provided Û is translation invariant, f = �−1/2 with
� a normalization volume, d( �R,�r) = ρint(�r − �R), and ρint is
the internal density of the system, nonvanishing if the system
is self-bound. In this case, ρint is the only physically relevant
degree of freedom present in D; the energy is a functional of
the internal density, which is the result of Ref. [16] that we
recover here as a limit case.

More generally, when the cwf f (q) is known from sym-
metry arguments and the coordinate-dependent density for
one value of the coordinates, d(q,�r), can be deduced from
its value at some natural reference point d(0,�r) by a symmetry
transformation, the latter is obviously a sufficient degree of
freedom.

Suppose we now add the functions (y2 + z2, x2 + z2, x2 +
y2, −xy, −yz, −zx) to the set of Qμ(�r). We can now use as
coordinates the components of the inertia tensor of the nucleus
in the laboratory frame,

J ≡
∫

d3�r
⎛
⎝y2 + z2 −xy −xz

−yx x2 + z2 −yz

−zx −zy x2 + y2

⎞
⎠ d( �R,J,�r).

(35)

From this and the CoM position, using the Huygens-Steiner
theorem from solid mechanics, we can recover the inertia
tensor in the CoM frame J0,

J0 ≡ J − N (R2I − �R ⊗ �R), (36)

where I is the identity matrix and ⊗ is the tensor (outer)
product of vectors. In turn, J0 can be translated into a
root-mean-square matter radius (rrms ≡ [Tr(J0)/2N ]1/2) and
a quintuplet of quadrupole deformation parameters and Euler
angles (β,γ,ϕ,ϑ,ψ) [36,41]. We can thus treat deformation
and rotation degrees of freedom dynamically.

At this point we might find that the number of collective
coordinates in our theory, i.e., eight independent components
of ( �R,J0) is actually too large for practical applications. For
example, fluctuations of the radius are not usually considered
an essential dynamical degree of freedom. We can define a
functional with coordinates removed as follows. Consider a
reduced set q̌ of ň < n coordinates, and the generalized density

Ď(q̌,�r) depending on this reduced set. The energy can be
written as

E[Ď] = min
D→Ď

E[D], (37)

where D → Ď means that for all �r ,∫
dqň+1 · · · dqn D(q,�r) = Ď(q̌,�r). (38)

This operation can be performed after a nonlinear transfor-
mation among the coordinates q, such as the one mentioned
above to obtain the canonical Bohr coordinates from the inertia
tensor. Using this, we can remove in succession rrms, then, if
desired, γ and ψ (to obtain a functional describing only axially
symmetric deformation). Alternatively, we may remove β and
γ and keep only Euler angles as coordinates. In this case,
again, the cwf as well as the transformations of the density

d( �R,ϕ,ϑ,ψ ; �r) are known analytically, and we can express the
energy as a function of a single, deformed intrinsic density.

Note that Eq. (38) has a similar form to Eq. (21). We could,
in principle, use this procedure starting with the full N -body
local density �∗(R)�(R) and, integrating out collective coor-
dinates, yield a succession of generalized-density functionals,
all the way down to the Hohenberg-Kohn functional of ρ(�r)
if we remove all of them. This formalism thus appears very
general and flexible. In particular, it gives us a choice between a
“single-reference” description of many-body systems in terms
of a single density (if symmetries define the dependence on
q of the relevant quantities), of a “multireference” description
explicitly coupling single-particle and collective motion.

Another important point to stress is that this theory is sym-
metry conserving. Let �S(�r) be an orthogonal transformation
of the coordinates. Then, define

S(R) = ( �S(�r1), �S(�r2), . . . , �S(�rN )), (39)

and suppose the set of collective coordinates is chosen so that
we can define

S(Q(R)) ≡ Q(S(R)). (40)

Then, the projector P̂ (q,R) is invariant under the simultaneous
transformation of single-particle and collective coordinates,

P̂ (S(q),S(R)) = δ(n)(Q̂(S(R)) − S(q)), (41)

= δ(n)(Q̂(R) − q). (42)

If, furthermore, the transformation leaves the many-body wave
function invariant up to a phase η,

�(S(R)) = η�(R), (43)

we have, from the definition of D,

D(S(q), �S(�r)) = D(q,�r). (44)

This simultaneous transformation thus leaves D invariant
as well, the same property being obtained for d if f is
invariant under S. Of course, for a given, fixed value of q,
D(q,�r) and d(q,�r), understood as functions of �r alone, do not
have to be symmetry invariant. This brings a solution to the
usual conundrum around using the symmetry-conserving HK
framework to justify nuclear DFT.

For completeness, the case of a wave function transforming
as a nontrivial representation of a symmetry group should be
mentioned. In general, D is not invariant in this case. Ideally,
the collective coordinates should be chosen so as to replicate
the group structure in the transformations of f and d. This
deserves a more detailed discussion, which involves the phase
choice entering the definition of f and needs to be done on a
case-by-case basis.

One remaining hurdle is pairing: treating superfluid systems
by breaking the conservation of particle number to yield a
nonzero pair density would require an operator P̂ (q) projecting
on the associated U(1) gauge angle [yielding a particle-number
breaking slice |�(q)〉]. This, in turn, requires the definition of
a gauge-angle operator; technicalities of such phase operators
have been worked out in the field of quantum optics [45]
starting from a particle-number representation. In our case,
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this would entail a switch to a Fock-space representation,
which is envisionable yet cumbersome (the present derivation
is pervaded with N -body operators), and, moreover, the
definition of a particle-number basis corresponding to each
point (or state) in the N -body Hilbert space, i.e., choosing one
definite particle-addition operator. Such a procedure relies on
an arbitrary choice (what is the N + 2-body component of
the N -particle system’s correlated wave function?) that has to
be studied in detail, and is beyond the scope of the present
work, the remainder of which shall be concerned with normal
systems. Let me simply suggest that pairing should probably
be treated with a different, simpler scheme, which shall be
described in a future paper.

III. COLLECTIVE SCHRÖDINGER EQUATION

The rest of this article shall be devoted to deriving the formal
basis for a practical many-body method based on the result
from the previous section. Here I focus on the dependence of
the energy on the cwf f and derive a form of the functional
that allows us to optimize the latter. Let us define a trial wave
function

� ′ =
∫

dnq g(q)|�(q)〉, (45)

where g is a trial cwf, whereas in the following f , d, and
�(q,R) are defined through Eqs. (12)–(14) from a starting
wave function �(R). This will allow us to examine the
dependence of the energy on the cwf and put E[g,d] in a
convenient form, then set g = f at the end. The trial energy is

E = 〈� ′|T̂ + Û + V̂ |� ′〉, (46)

=
∫

dnq dnq ′ g∗(q) g(q ′)〈�(q)|T̂ + Û + V̂ |�(q ′)〉,
(47)

Let us first give the interaction matrix element. Here we
assume a local interaction (which can nevertheless contain
three-body or higher operators),

〈�(q)|Û |�(q ′)〉 = δ(q − q ′)

〈P̂ (q)〉
∫

d3N R

× P̂ (q,R) Û (R) �∗(R) �(R), (48)

with a similar expression for V̂ , where we define

〈P̂ (q)〉 =
∫

d3N R P̂ (q,R) �∗(R)�(R) (49)

= |f (q)|2. (50)

The kinetic matrix element, in turn, is (after integrating
by parts; here and below we assume Dirichlet boundary
conditions or an infinite integration domain, allowing us to
drop boundary terms)

〈�(q)|T̂ |�(q ′)〉

= 1

2

∫
d3NR∇̂�∗(q,R) · ∇̂�(q ′,R), (51)

= 1

2 f ∗(q) f (q ′)

∫
d3N R{∇̂P̂ (q,R) · ∇̂P̂ (q ′,R)

×�∗(R) �(R) + P̂ (q,R) ∇̂P̂ (q ′,R) · [∇̂�∗(R) �(R)

−�∗(R) ∇̂�(R)] − δ(n)(q − q ′) P̂ (q,R) �∗(R) �̂ �(R)}.
(52)

The gradient of P̂ can be derived using Eq. (6) and the chain
rule,

∇̂P̂ (q,R) = −
∑

μ

∇̂Qμ(R) ∂μP̂ (q,R), (53)

where ∂μ indicates differentiation with respect to qμ. Applying
the result of Eq. (52) in Eq. (47), using integration by parts to
transfer ∂μ on the cwf, and reducing the double integral with
Eq. (7), we can write the kinetic energy as

〈� ′|T̂ |� ′〉

= 1

2

∫
dnq

{∑
μν

Fμν ∂μ(f ∗−1(q) g∗(q))∂ν(f −1(q) g(q))

− i
∑

μ

Jμf ∗−1(q) g∗(q)∂μ(f −1(q) g(q))

−
∫

d3N R P̂ (q,R) �∗(R) �̂�(R)

× f ∗−1(q) g∗(q) f −1(q) g(q)

}
, (54)

where we introduce

Fμν(q) ≡
∫

d3N R P̂ (q,R)

× ∇̂Q̂μ(R) · ∇̂Q̂ν(R) �∗(R) �(R), (55)

Jμ(q) ≡ i

2

∫
d3N R P̂ (q,R) ∇̂Q̂μ(R)

· [∇̂�∗(R) �(R) − �∗(R) ∇̂�(R)]. (56)

It is straightforward to check that Fμν is positive semidef-
inite by contracting it with an arbitrary vector and using its
definition, which yields the result as the integral of a positive
semidefinite function. Using Eq. (53) and the steady-state
continuity equation for the probability current of �(R), we
can easily check that Jμ itself satisfies∑

μ

∂μ Jμ(q) = 0. (57)

Its definition and this property suggests its role as a collective
current.

Finally, replacing f everywhere by its expression involving
θ (q) and 〈P (q)〉, using integration by parts again, then setting
g = f , we have

E[f,d] =
∫

dnq f ∗(q)

[
−1

2

∑
μν

∂μ Aμν(q) ∂ν + U(q)

− i

2

∑
μ

(∂μVμ(q) + Vμ(q) ∂μ)

]
f (q), (58)
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where we made ∂μ act on all factors to its right. The potentials
entering Eq. (58) are defined as follows. First, the collective
mass term is

Aμν(q) ≡ Fμν(q)

〈P̂ (q)〉 . (59)

This collective-mass term does not explicitly involve the
interaction; it consists of a part of the kinetic energy. This
is expected since a local potential does not couple slices with
different q, the latter being nonzero on different, nonoverlap-
ping manifolds in the many-body coordinate space: a local
operator only contributes to the local collective potential. The
dependence of Aμν on the interaction is thus implicit, due to
dependence on the wave function itself in 〈P̂ (q)〉 and Fμν(q).

To the contrary, the GCM and its collective-Hamiltonian
based approximations typically use, as building blocks, Slater
determinants which are not localized in collective coordinate
space (hence their nonorthogonality and, in the GCM, the
need to remove zero-norm states when solving the Hill-
Wheeler equations). Our collective mass and the one found
in collective-Hamiltonian models may thus have slightly
different meanings.

Second, the collective potential is

U(q)

≡
∑
μν

Fμν(q)

[
1

2

∂μθ (q) ∂νθ (q)

〈P̂ (q)〉 + 1

8

∂μ〈P̂ (q)〉 ∂ν〈P̂ (q)〉
〈P̂ (q)〉3

]

+ 1

4

∑
μν

∂μ

[
Fμν(q)

〈P̂ (q)〉2
∂ν〈P̂ (q)〉

]
− 1

2

∑
μ

Jμ(q) ∂μθ (q)

〈P̂ (q)〉

+ 1

〈P̂ (q)〉
∫

d3N R P̂ (q,R)�∗(R)

[
−1

2
�̂ + Û (R)

]
�(R)

+
∫

d3�r vext(�r) d(q,�r). (60)

If � is an eigenstate of Ĥ , the last two terms of Eq. (60) boil
down to the energy E. In fact, all terms proportional to Fμν and
Jμ entering Eq. (58) cancel each other, as is made obvious by
setting f = g prematurely in Eq. (54), and these expressions
could be simplified to a trivial form. However this particular
separation of the energy is useful in isolating the dynamics
of the system with respect to the chosen coordinates, while
integrating out uninteresting ones. We shall see below, with
an example, that it yields a meaningful physical value for the
collective mass and potential.

This potential contains a piece of the kinetic energy, as
well as all interaction and external-potential terms of the
Hamiltonian (the latter being contained in the last line). Here,
we assumed a local interaction term. A nonlocal one would
simply make the potential itself nonlocal in the collective
space, i.e., U(q,q ′). Such a nonlocal interaction is commonly
found as the result of a renormalization-group (RG) evolution
[46–48] of a starting, local model of the nucleon-nucleon
interaction. This suggests that our collective Hamiltonian is
not renormalization-scale invariant. Since D(q,�r) involves
components of many-body density matrices of the system,

it is sensitive to details of the wave function and should
not be considered an observable in the RG sense, or at
best a scheme-dependent one [49], and the same has to
be deduced for quantities entering Eq. (58). However, the
main purpose of the present formalism is the description of
low-energy collective states and observables which should
not be sensitive to such details. The generalized density, as
the cwf, should thus be largely scale-invariant in practice,
for appropriate choices of the collective coordinates. We are
thus presented with a scale-dependent collective Hamiltonian
with largely scale-independent solutions, indicating that scale
dependence mainly occurs through reshuffling of contributions
to the energy between nonlocality in U and the collective
mass term. In practice, it should be safe to limit ourselves to
parametrizations of a local collective potential.

Finally, the potential multiplying the current operator is

Vμ(q) ≡
∑

ν

Fμν(q)
∂νθ (q)

〈P̂ (q)〉 + Jμ(q)

〈P̂ (q)〉 . (61)

Here, the first term in the definition of V as well as the term
involving Jμ in Eq. (60) are proportional to the derivative
of the phase introduced in Eq. (11) and ensure invariance of
the energy with respect to gauge transformations of f . The
notion that the energy (especially the kinetic energy) should
not depend on the complex phase of the wave function may
be counterintuitive. It is worth reminding here that we are
dealing with a functional of a generalized density, and that the
cwf f , if useful for formulating a theory of collective motion,
has been introduced somewhat artificially. Thinking in terms
of the correlated many-body wave function of the system,
the functional E[D] = E[f,d] yields the lowest energy of all
states having D as their generalized density; the state which
minimizes this energy is unique and we can access no other. For
example, in the case of translational motion examined above,
plane waves with nonzero momentum are excluded from the
theory, as they have the same density, in terms of the CoM
coordinate vector, as the zero-momentum state.

The second term in Eq. (61) involves the current Jμ(q). We
can use the freedom of choosing the phase θ (q) mentioned
above to cancel it with the first term if we can make the phase
satisfy ∑

ν

Fμν(q)∂νθ (q) = −Jμ(q), (62)

which amounts to introducing in the cwf the current which
is present in the underlying many-body wave function.
Cancelling this term is useful to simplify the functional into
a form that is more convenient to later derive a Schrödinger
equation for f ,

E[f,d] =
∫

dnq f ∗(q)

[
−1

2

∑
μν

∂μAμν(q)∂ν + U(q)

]
f (q).

(63)

The phase will then simply come out from the solution to that
equation.

The collective inverse mass Aμν(q) and the collective
potential U(q) depend on the wave function �: they are,
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for each q, functionals of f and d. A collective Schrödinger
equation can be obtained by minimizing E with respect to f ,
with a constraint on the norm, Eq. (19), viz.

δ(E[f,d] − E′||f ||2)

δf ∗

= 0 =
[
−1

2

∑
μν

∂μAμν(q)∂ν + U(q) + Ura(q) − E′
]

f (q),

(64)

where ∂μ acts on all factors to its right, with a rearrangement
potential that appears because of the functional derivation of
A and U ,

Ura(q) ≡
∫

dnq ′f ∗(q ′)

×
[
−1

2

∑
μν

∂ ′
μ

δAμν(q ′)

δ|f |2(q)
∂ ′
ν + δU(q ′)

δ|f |2(q)

]
f (q ′),

(65)

where ∂ ′
μ differentiates with respect to q ′

μ. Note that in
general, a distinction has to be made between E (energy)
and E′ (eigenvalue of the collective Hamiltonian) due to the
rearrangement energy.

The remaining issue is then to optimize the q-dependent
density d(q,�r). This will be dealt with in Sec. V.

IV. EXAMPLE: TRANSLATIONAL MOTION

An illustrative example is useful at this point. Consider the
case, already mentioned above, of a translationally invariant
Hamiltonian, where we use the components of the CoM
coordinate vector �R as collective coordinates: Q1(�r) = x/N ,
Q2(�r) = y/N , Q3(�r) = z/N . As mentioned above, transla-
tional symmetry allows us to write the energy as a functional of
the internal density without further consideration for collective
motion. However, applying the formalism of the previous
section to this case is useful, since all quantities entering the
collective Hamiltonian can be derived analytically.

Using these definitions,

∇̂Q̂μ(R) · ∇̂Q̂ν(R) = δμν

N
, (66)

Fμν(q) = δμν

N
〈P (q)〉, (67)

Aμν(q) = δμν

N
. (68)

The mass of the system entering the kinetic term is thus N
times the mass of the constituent particle itself, as expected.

Assuming vext(�r) = 0 and Û invariant under translations
and Galilei transformations, we can write the Hamiltonian as

Ĥ = T̂cm + T̂int + Û , (69)

T̂cm = − 1

2N

(∑
i

∇̂i

)2

, (70)

and any eigenstate wave function of the system as

�(R) = �cm( �R) �int(�), (71)

where � is a vector of Jacobi coordinates allowing us to
describe internal motion of the particles.

For D( �R,�r) independent of �R, the value of �cm( �R) that
minimizes the c.m. kinetic energy is �cm( �R) = �−1/2. To
access a state with non-vanishing c.m.kinetic energy, we need
to choose a trial f ( �R) such that the c.m.-coordinate density
|f |2( �R) is inhomogeneous. One such choice is

f ( �R) =
√

2

�
sin( �K · �R). (72)

For d, let us set d( �R,�r) = ρint(�r), where ρint is the internal
density of an eigenstate of the internal Hamiltonian T̂int + Û
with eigenvalue Eint. We have

|f ( �R)|2 = 〈P ( �R)〉 = 2

�
sin2( �K · �R), (73)

with the phase

θ ( �R) =
{

0 for 0 � �K · �R − 2mπ < π

π for π � �K · �R − 2mπ < 2π
(74)

for integer m. The wave function minimizing the energy for
this choice of f has �cm( �R) = f ( �R). Note that Jμ, Eq. (57),
is, in this case, the average momentum of the system. This
quantity is zero for this state, thus

Jμ( �R) = 0. (75)

We can derive the collective potential by using the above
and Eqs. (73) and (74) in Eq. (60); after some trigonometry
and much cancellation,

U(q) = +π2K2

2N

∑
m

δ2( �K · �R − mπ ) − K2

2N
+ E. (76)

Here, δ2(x) refers to the pseudodistribution which yields zero
for functions having a node at x = 0, and infinity otherwise
[which is the result obtained by making θ ( �R) vary smoothly
from 0 to π on an interval whose width is then taken to zero].
The expectation value of U is thus∫

dnq f ∗(q)U(q) f (q) = E − K2

2N
= Eint. (77)

In the Schrödinger equation, this term will constrain the cwf
to have nodes at �K · �R = mπ , i.e., the same as our original
choice for f . Since the phase θ ( �R) which introduces this term
is indissociable from the choice of f (the only reasonable phase
choices are ones that make f continuous), the expectation
value of this operator, in fact, vanishes for any trial cwf. It
can thus be dropped from the collective Schrödinger equation.
Similarly, Vμ vanishes except for a similar singularity at the
nodes of the wave function, and the same observation applies.

Finally, Ura is in this case proportional to 1/� and thus
negligible. The collective Schrödinger equation we obtain
thus involves a kinetic term with the mass of the nucleus
and a constant potential equal to the internal energy. The cwf
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f chosen initially is a trivial solution with eigenvalue and
expectation value equal to the total energy of the system.

V. INTRODUCING ORBITALS: KOHN-SHAM SCHEME

In this section I attempt to introduce single-particle orbitals
in the formulation of the previous sections. This introduction
is intended to be “minimal,” i.e., as simple as possible—other
formulations could be envisioned.

Let us start by writing the collective potential of Eq. (63)
as

U[f,d](q) = Ts[ρq] + U ext[ρq] + U ic[f,d](q), (78)

where, for convenience, we define ρq(�r) ≡ d(q,�r) and Ts is
the usual Kohn-Sham kinetic energy functional

Ts[ρq] = min
{φi (q)}→ρq

[
−1

2

∫
d3�r

N∑
i=1

φ∗
i (q; �r) �φi(q; �r)

]
,

(79)

the φi(q,�r) being a set of orthogonal single-particle orbitals.
The notation {φi(q)} → ρq restricts the variational domain to
sets of orbitals satisfying

ρq(�r) = d(q,�r) =
N∑

i=1

φ∗
i (q,�r) φi(q,�r). (80)

Note that we use the unmodified mass of the particle in
the kinetic operator. It is common, in nuclear functionals, to
include a CoM motion correction, either by simply multiplying
the particle mass by (1 − 1/N) or also including, in addition,
the two-body part of the internal kinetic-energy operator
in the energy. Bear in mind that the decomposition (78) and
(79) is merely a choice, which should be judged on its practical
merits. From first-principle arguments, the use of such a CoM
correction in a functional of the internal density is not required
[16,50]. Note that we built our formalism starting from a
many-body ground-state wave function with a vanishing CoM
kinetic energy, and do not need to remove the latter. The Slater
determinant formed by the KS orbitals has a nonvanishing
CoM energy, but it is only a theoretical auxiliary. Moreover,
since its explicit particle-number dependence breaks size
consistency, such a correction is undesirable in applications
to reactions [51] or fission [52,53], hence its omission here.

The term U ext captures the contribution from the external
potential,

U ext[ρq] =
∫

d3�r vext(�r) ρq(�r), (81)

while U ic is the interaction and correlation contribution not
accounted for by the previous terms. In canonical electronic
DFT, interaction and correlation terms in the functional are
further split into Hartree and exchange-correlation terms. We
shall keep the formalism more compact and general with
respect to the form of the interaction by omitting this step.

The density d(q,�r) can be optimized by minimizing the
energy with respect to the orbitals with a normalization

constraint, as well as a constraint on the average value of
the collective coordinates to satisfy Eq. (24),

δ
[
E − ek(q)(qk|qk) − ∑

μ lμ(Qμ|ρq)
]

δφ∗
k (q; �r)

= 0, (82)

lμ ≡ ∂E

∂(Qμ|ρq)
, (83)

which, per Eqs. (63), (78), and (79), yields[− 1
2� + vext(�r) + vs(q; �r) − λμQμ(�r) − εi(q)

]
φi(q; �r) = 0,

(84)

where we have redefined the single-particle energy as
εk(q) ≡ |f (q)|−2 ek(q) and the Legendre multiplier as λμ ≡
|f (q)|−2 lμ.

The auxiliary potential vs(q,�r) is

vs(q; �r) ≡ |f (q)|−2 δE[f,d]

δd(q,�r)
(85)

= |f (q)|−2
∫

dnq ′ f ∗(q ′)

×
[
−1

2
∂ ′
μ

δAμν(q ′)

δd(q,�r)
∂ ′
ν + δU ic(q ′)

δd(q,�r)

]
f (q ′). (86)

This formulation raises the usual problem of noninteracting v
representability [44], i.e., of the existence of a map between
v(q,�r) and d(q,�r) subject to Eq. (84) at each q, which presents
itself in the same way in the present formalism as we use the
KS kinetic-energy functional Ts.

Per the Hohenberg-Kohn theorem applied to the nonin-
teracting system, Eqs. (79) and (84) unambiguously define
a unique potential vs(q,�r) and a unique set of orbitals and
associated energies which, for each value of q, are functionals
of ρq(�r). These orbitals are labeled by an index k which can
be smaller or greater than N . In the following we use i as
an index on the first N (occupied) orbitals, a as an index on
unoccupied (or virtual) orbitals, while k indexes the whole
basis. This in turn allows us to introduce orbital-dependent
terms in the functional. Let us use this possibility by expressing
the collective mass as

Aμν[f,d](q) = AIn
μν[d](q) + Aic

μν[f,d](q). (87)

In the last expression, AIn
μν is the Inglis cranking-formula col-

lective mass [27,54], while Aic
μν is the remaining interaction-

correlation component,

AIn(q) ≡ [B in(q)]−1, (88)

BIn
μν[f,d](q) = 2

∑
ai

(
qi

∣∣v(μ)
q

∣∣qa
)(

qa
∣∣v(ν)

q

∣∣qi
)

[εa(q) − εi(q)]3
, (89)

where

v(μ)
q (�r) ≡ ∂v(q,�r)

∂qμ

, (90)

(
qk

∣∣v(μ)
q

∣∣ql
) =

∫
d3�r φ∗

k (q,�r) v(μ)
q (�r) φl(q,�r). (91)
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Orbital-dependent terms have been extensively used in
quantum-chemistry applications of DFT, first as a way of
replacing nonlocal exchange terms [55,56], see also [57],
then as a tool for introducing explicit correlations in the
functional through perturbation theory [58,59]. Let me refer to
the reviews in Refs. [8,60,61] and simply use a straightforward
generalization of their main result [make all quantities depend
on q and add a factor |f (q)|−2 to the definition of vs] to derive
the contribution vIn(q,�r) of AIn

μν to the auxiliary potential. This
can be obtained by inverting the optimized effective potential
(OEP) equation,

|f (q)|2
∫

d�r ′ χs(q; �r,�r ′) vIn(q; �r ′) = �In(q; �r), (92)

where

�In(q; �r) =
∑

k

{
−

∫
d�r ′

[
φ∗

k (q; �r) Gk(q; �r,�r ′)
δEIn

δφ∗
k (q; �r ′)

+ c.c.

]
+ |φk(q; �r)|2 δEIn

δεk(q)

}
, (93)

and EIn is the cranking contribution to the energy,

EIn[f,d] = −1

2

∫
dnq f ∗(q)

∑
μν

∂μ

(AIn
μν[d](q)∂ν f (q)

)
,

(94)

χs being the static KS response function and Gk the KS Green’s
function,

χs(q; �r,�r ′) = −
∑

k

φ∗
k (q; �r) Gk(q; �r,�r ′) φk(q; �r ′) + c.c.,

(95)

Gk(q; �r,�r ′) =
∑
l �=k

φl(q; �r) φ∗
l (q; �r ′)

εl(q) − εk(q)
. (96)

The functional derivatives of the orbital-dependent energy
with respect to φ∗

k and εk , using t as a shorthand for either, are

δEIn

δt
= 1

2

∫
dnq f ∗(q)

× ∂

[
(BIn)−1(q)

δBIn(q)

δt
(BIn)−1(q) ∂f (q)

]
, (97)

where the derivatives of BIn are given by

δBIn
μν

δφ∗
k (q; �r)

= 2

⎧⎪⎨
⎪⎩

∑
a v

(μ)
q (�r) φa(q; �r)

(qa|v(ν)
q |qk)

[εa (q)−εk (q)]3 (k � N ),

∑
i

(qk|v(μ)
q |qi)

[εk (q)−εi (q)]3 v
(ν)
q (�r) φi(q; �r) (k > N ),

(98)

and

δBIn
μν

δεk(q)
= 6

⎧⎨
⎩

∑
a

(qk|Qμ|qa)(qa|Qν |qk)

[εa (q)−εk (q)]4 (k � N ),

−∑
i

(qi|Qμ|qk)(qk|Qν |qi)

[εk (q)−εi (q)]4 (k > N ),
(99)

This completes the sets of equations needed to solve for
energy-minimizing f (q) and d(q,�r). The solution should
proceed by alternating between Eq. (84) at a set of points
in q space and (65), starting from an initial guess and iterating
to convergence, using standard tools for the self-consistent
solution of Kohn-Sham equations. This is obviously more
involved than standard DFT, owing to the multiplication of
the computational load by the number of q mesh points,
but this problem appears relatively easy to treat with parallel
processing, as only the cwf and fields have to be communicated
between neighboring points, as well as densities, unless one
assumes a lack of dependence of U(q) on densities at q ′ �= q.
The largest data sets, i.e., orbitals, stay local.

In the treatment of Hill-Wheeler or collective Hamiltonian
equations, feedback from collective motion to the single-
particle “mean field” is usually ignored [28]. Above, we have
a recipe for going beyond that approximation, which would be
of interest for the description of rotational bands in collective
nuclei [62,63], as well as the dynamics of fission processes
[64].

If we nevertheless neglect the feedback from collective
motion, the formalism can be put into a more conventional
form. Assuming the A term from the equation for vs(q,�r),
Eq. (87), to be negligible, the latter then only contains a
functional derivative of U . The collective potential U(q)
generally depends on d(q ′,�r) and f (q ′) for all q ′, due to
the coupling between different slices �(q) in the many-body
Schrödinger equation. If we further assume that this coupling
is weak, we can reduce the dependence of U on the density at
q, i.e.,

U(q)[f,d] = U(q)[ρq] = U[ρq] (100)

= Ts[ρq] + Uext[ρq] + Uic[ρq], (101)

where the second equality in Eq. (100) is justified by the fact
that the value of q is encoded in ρq(�r) = d(q,�r), Eq. (24). We
then obtain

vs(q,�r) = δUic

δρq

. (102)

Then, Uic[ρq] plays the role of the usual Skyrme, Gogny, or
relativistic functional, which can be used in the standard way,
with an independent, a posteriori solution of the collective
Schrödinger equation. This form, however, relies on the
assumptions above.

More generally, a practical application of the present theory
requires a parametrization of Uic and Aic

μν . Let me stress
the latter: the cranking formula used above is by no means
assumed correct by itself. It could be replaced by a term de-
rived using adiabatic time-dependent Hartree-Fock (ATDHF)
[37,41,65,66] or the Gaussian overlap approximation to the
GCM (GCM-GOA) [26,38–40]. Even then, such terms rely
entirely on the single-particle orbitals at each position in the
collective space and cannot be expected to correctly reproduce
the physics of the underlying correlated many-body state. The
collective mass Aμν is an integral part of the functional, and,
in the absence of a rigorous ab initio derivation, it is perfectly
reasonable to parametrize it and adjust the parameters to
experimental data.

044305-9



THOMAS LESINSKI PHYSICAL REVIEW C 89, 044305 (2014)

VI. SUMMARY AND OUTLOOK

The energy of a many-body system is expressible as a
functional of a generalized density, which extends the concept
of the local particle density to include a dependence on
coordinates describing collective motion of the particles. The
generalized density can be decomposed as the product of the
square of a cwf and a density parametrized by the collective
coordinates, which is allowed to break spatial symmetries of
the Hamiltonian. By decomposing the kinetic contribution to
the energy, the functional can be written into a form that allows
us to write a Schrödinger equation for the cwf. When the
collective coordinates are chosen to be the components of the
inertia tensor of the system, the collective Hamiltonian takes
the form of a generalized Bohr Hamiltonian. Single-particle
quantum effects can be reintroduced with single-particle
orbitals determined from a single-particle potential deduced
from the parametrizations of the collective mass and potential.
With the assumption of weak coupling between single-particle
degrees of freedom at different points in the collective space,
the functional can be reduced to a form similar to current
nuclear energy density functionals augmented by a collective
Hamiltonian; equations have been derived for going beyond
this scheme and optimizing single-particle and collective
degrees of freedom simultaneously.

Extending the formalism to superfluid systems presents a
significant challenge, and it is likely that a simpler scheme

can be found for this particular case. Derivations have been
carried out ignoring spin and isospin degrees of freedom;
reintroducing these [50], as well as introducing spin and
kinetic densities [67,68], seems to pose no major obstacle.
Developing a time-dependent version of the theory pre-
sented here in the vein of Refs. [69,70] could prove useful
for the treatment of excitations of deformed and highly
collective nuclei, as well as nuclear reactions [71]. Finally,
it would be interesting to derive from first principles, for a
few nuclei, the collective Hamiltonian proposed here. This
is made difficult by the N -body operators involved, but
probably feasible using a many-body method that uses the
3N -dimensional coordinate representation natively, such as
variational or Green’s function Monte Carlo [72,73].
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