
PHYSICAL REVIEW C 89, 044302 (2014)

Linear response theory in asymmetric nuclear matter for Skyrme functionals
including spin-orbit and tensor terms

D. Davesne*
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The formalism of linear response theory for a Skyrme functional including spin-orbit and tensor terms is
generalized to the case of infinite nuclear matter with arbitrary isospin asymmetry. Response functions are
obtained by solving an algebraic system of equations, which is explicitly given. Spin-isospin strength functions
are analyzed varying the conditions of density, momentum transfer, asymmetry, and temperature. The presence
of instabilities, including the spinodal one, is studied by means of the static susceptibility.
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I. INTRODUCTION

The energy density functional (EDF) is a tool of choice
for a systematic and quantitative description of properties
of atomic nuclei from drip-line to drip-line [1]. Among the
nonrelativistic EDF those related to the zero-range nonlocal
Skyrme interaction are the most widely used. In its standard
form [2], Skyrme’s pseudopotential contains central, spin-
orbit, and density-dependent terms. Tensor terms, present in
Skyrme’s initial proposal [3], have been included only recently
[4–6], and play a major role in finite nuclei, both for ground
state properties [4] and excited states [7]. The resulting EDF
[8] is written as a linear combination of local densities, whose
coupling constants are optimally determined by minimizing a
multidimensional merit function for a given set of observables
or pseudo-observables [9]. This procedure is not simple and
requires an accurate selection of the observables included in the
fit to guarantee a proper constraint for each coupling constant.

The response of atomic nuclei to different probes is the
most efficient way to obtain information about the structure
and specific manifestations of the effective nucleon-nucleon
interaction in the nuclear medium. Physical insight can be
obtained from INM which, as a homogeneous medium made of
interacting nucleons, is an ideal but very useful system, largely
employed because of its relative simplicity. This model is not
only connected with the inner part of atomic nuclei, but it is
also very useful to describe some phenomena in the interior of
compact stars [10–12]. Most of the investigations of responses
have been based on random phase approximation (RPA) or
linear response (LR) theory [13,14], in which excitations
result from the residual particle-hole (ph) interaction between
particles below and above the Fermi level.
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Working with a Skyrme functional in infinite nuclear
matter (INM) allows one to derive analytic expressions of the
nuclear response function, thus making numerical calculations
much more rapid as compared to those for finite nuclei. In
this respect, several groups have investigated the properties
of infinite systems trying to find additional constraints for
the coupling constants of the functional. A typical example
is the use of Landau inequalities to avoid the appearance
of instabilities in the infinite system at low momentum
[15–17]. The Landau-Migdal approach is only valid in the
so-called long-wavelength limit, thus it is not able to detect
eventual finite-size instabilities that occur at nonzero values of
transferred momentum q [18–20]. The additional constraint
coming from the calculations of the response function in INM
could be thus used to avoid such kind of problems and further
reduce the parameter space one needs to explore during the
optimization procedure [5,9,21].

In the present article, the EDF described in [8] will be
our starting point and it will be used for the determination
of spin-isospin response functions. We have decided to use
the Skyrme EDF instead of the interaction form because in
this way the formalism can be easily generalized to recent
extensions of the functional [22–26]. The RPA response of
symmetric nuclear matter (SNM) has been presented for the
case of the standard Skyrme pseudopotential in [27], and
extended to include spin-orbit [28] and tensor terms [29]. The
formalism has been revised in [30,31] to treat the case of a
more general Skyrme energy density functional (EDF) [8],
both for SNM and pure neutron matter (PNM).

Since neutron excess is a common situation in finite
nuclei and also of current interest in astrophysical context,
a generalization to asymmetric nuclear matter (ANM) is
clearly needed. The RPA response for such a system has
been derived in [32,33] considering only the central part of
a Skyrme interaction. The purpose of this work is to extend
the formalism by including spin-orbit and tensor terms. We
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will show that, analogously to the SNM case, the specific
momentum dependence of the Skyrme EDF leads to an
algebraic system of coupled equations, with however a double
number of equations, from which one can deduce the RPA
response function for the required spin and isospin channel.
We present results for different isospin asymmetry, density and
transferred momentum. Thermal effects on response functions
are also discussed. However, we restrict ourselves to isospin
excitations induced by the operator τ3, the case of charge
exchange processes being left for a future study.

The article is organized as follows. In Sec. II we give
the matrix elements in the spin-isospin space of the residual
interaction between particles and holes (ph) obtained from
a general Skyrme EDF. The basic formalism to obtain the
RPA response function is presented in Sec. III. In Sec. IV we
give and discuss the main results, including the presence of
instabilities. In Sec. V we draw our conclusions. Finally, the
algebraic system of equations and some technical details are
given in the Appendices.

II. THE RESIDUAL PARTICLE-HOLE INTERACTION

In this section, we give explicit expressions for the matrix
elements of the residual particle-hole (ph) interaction, Vph.
Within the context of EDF and LR theory [14], they can be
obtained by performing a second functional derivative of the
total energy as

〈(q1,σ1,τ1),(q3,σ3,τ3)−1|Vph|(q4,σ4,τ4),(q2,σ2,τ2)−1〉

= δ2E

δρ31δρ42
, (1)

where (q,σ,τ ) refer to the momentum and spin and isospin
projections of the corresponding particle or hole, and ρij

stands for the occupation number matrix. Due to momentum
conservation, there are only three independent momenta,
which we choose as those of the holes k1 = q3 and k2 = q2,
and the transferred momentum q, using the standard notation
[27]. Each ph pair must be coupled to well-defined values of
spin S and projection M . Regarding the isospin, it is more
convenient in ANM to work in the proton/neutron formalism.
Dropping momentarily the momenta and spin dependence, we
thus need the matrix elements 〈τ1,τ

−1
3 |Vph|τ4,τ

−1
2 〉, where the

indices τi refer to protons (p) or neutrons (n). Due to charge
conservation, there are six matrix elements, namely

〈p,p−1|Vph|p,p−1〉,〈n,n−1|Vph|n,n−1〉,〈p,p−1|Vph|n,n−1〉,
〈n,n−1|Vph|p,p−1〉〈p,n−1|Vph|n,p−1〉,〈n,p−1|Vph|p,n−1〉.

The latter two matrix elements are only relevant for situations
involving charge exchange reactions. They have been already
discussed in [34], and we will not consider them in the
present article. The former four matrix elements will be written
as 〈τ,τ−1|Vph|τ ′,τ ′−1〉. Actually, as 〈p,p−1|Vph|n,n−1〉 =
〈n,n−1|Vph|p,p−1〉, there are only three independent elements.
To avoid repetition of indices we shall write them as

V
(τSM;τ ′S ′M ′)

ph (k1,k2) = 〈τ,τ,SM|Vph(k1,k2)|τ ′,τ ′S ′M ′〉.
(2)

From now on, we specialize to the Skyrme functional
defined in [8], which includes both spin-orbit and tensor terms.
We can write

V
(τSM;τ ′S ′M ′)

ph (k1,k2) = 1
2δSS ′δMM ′

(
W

(τ,τ ′,S)
1 + W

(τ,τ ′,S)
2 k2

12

)
+ 1

2δSS ′δS1W
(τ,τ ′)
T 1 (−)M (k12)(1)

−M (k12)(1)
M ′

+ 1
2W

(τ,τ ′)
SO

(
δS ′0δS1M(k12)(1)

−M

+ δS ′1δS0M
′(k12)(1)

M ′
)
, (3)

where k12 is the relative hole momentum, and following the
notation of [29], we have introduced the rank-1 tensor

(k12)(1)
μ =

√
4π

3
[k1μY1μ(k̂1) − k2μY1μ(k̂2)]. (4)

The coefficients W
(τ,τ ′,S)
i are combinations of the coupling

constants of the functional, and are given in Appendix A. Some
of them depend on the transferred momentum q and also on
the isoscalar and isovector densities, ρ0 and ρ1, respectively.
From Eq. (3) we observe that, analogously to the symmetric
matter case [29], the tensor term (second line) acts only in the
S = 1 channel, and couples different projections M and M ′,
while the spin-orbit term (last line) couples both spin channels.

III. RESPONSE FUNCTIONS

The method for calculating RPA response functions has
been presented in Refs. [27–29] for SNM. It consists of first
solving the Bethe-Salpeter equation for the RPA ph propagator,
taking advantage of the particular form of the ph interaction in
momentum space, and afterwards averaging the ph propagator
over momenta to get the response function. Some details on the
method have recently been given in [35]. Here we generalize
it for ANM, which will be characterized by the asymmetry
parameter Y = ρ1/ρ0, defined as the quotient between the
isovector and isoscalar densities.

The first required ingredient is the Hartree-Fock (HF)
retarded propagator of a noninteracting ph pair. As charge-
exchange processes are not considered here, the particle and
the hole in the same pair share the same isospin number τ
(either p or n). The HF ph propagator can thus be written as

G
(τ )
HF(k,q,ω) = nτ (k) − nτ (q + k)

ω + ετ (k) − ετ (q + k) + iη
, (5)

where nτ (k) is the Fermi-Dirac occupation number of τ parti-
cles, given by the step function θ (kτ

F − k) at zero temperature,
and ετ (k) is the single-particle energy

ετ (k) = k2

2m∗
τ

+ Uτ , (6)

where Uτ is the mean field, excluding the k2 dependence
contributing to the effective mass m∗

τ , written as

1

2m∗
n

= 1

2mn

+ Cτ
0 ρ + YCτ

1 ρ, (7)

1

2m∗
p

= 1

2mp

+ Cτ
0 ρ − YCτ

1 ρ, (8)
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where Cτ
0,1 are EDF coupling constants. Notice the use of

natural units (� = c = 1), as will be done along this article.
From now on, vector q will define the z axis.

The HF response function is obtained as

χ
(τ )
HF (q,ω) = 2

∫
d3k

(2π )3
G

(τ )
HF(k,q,ω), (9)

where the factor 2 stands for the spin-degeneracy. In the
following we will often deal with momentum averages similar
to the previous one, which will be indicated within brackets:
χ

(τ )
HF (q,ω) = 2〈G(τ )

HF〉.
Notice that the HF propagator is independent of the spin-

channel, and so is the response χ
(τ )
HF (q,ω). The correlated RPA

ph propagator depends however on the ph spin and isospin
quantum numbers. Since we do not consider charge-exchange
processes we can write the Bethe-Salpeter equation as

G(ττ ′SM)(k1,q,ω) = δ(τ,τ ′)G(τ )
HF(k1,q,ω) + G

(τ )
HF(k1,q,ω)

×
∑

(τ ′′,S ′′M ′′)

∫
d3k2

(2π )3
V

(τSM;τ ′′S ′′M ′′)
ph

× (k1,k2)G(τ ′′τ ′S ′′M ′′)(k2,q,ω). (10)

The residual interaction links two ph pairs with quantum
numbers (τSM) and (τ ′S ′M ′), and hole momenta k1 and k2,
respectively. We refer to Ref. [33] for more details about the
adopted notation. The linear response function is obtained as

χ (ττ ′SM)(q,ω) = 2〈G(ττ ′SM)〉. (11)

By inspecting the ph interaction (3), one can see that a
closed system of algebraic equations is obtained by multi-
plying Eq. (10) successively with the functions 1, k2, kY1,0,
k2|Y1,±1|2, and k2|Y1,0|2, and integrating over the momentum
k1. As compared to the SNM case, the number of equations is
doubled because of the isospin indices τ,τ ′. The tensor term
W

(ττ ′)
T 1 is only effective on the S = 1 channel, but it can also

influence the S = 0 channel, due to the mixing between both
spin channels induced by the spin-orbit term WSO. Similarly to
SNM [28,29] this coupling can be absorbed into an effective
coefficient W̃ (ττ ′,S)

1 (cf. Appendix C), so that we deal in practice
with two separate systems for each spin channel.

For fixed values of the spin quantum numbers (S,M)
there are four possible isospin combinations, namely
(nn),(pn),(np),(pp). However, due to isospin properties of
the residual interaction, equations can be actually decoupled
in two subsystems. One of them is for the couple (nn) − (pn)
and it can be written in matrix form as(

Ann Anp

Apn App

) (
Xnn

Xpn

)
=

(
Bn

0

)
, (12)

where the column vector Xττ ′ contains the unknown momen-
tum averages of the RPA propagator, Aττ ′ are square matrices
which depend on the EDF coupling constants and averages
of the HF propagator, and Bτ are column vectors depending
on HF averages. The explicit expressions of these quantities
are given in Appendix B. The other subsystem is for the
couple (pp) − (np), which is obtained from the previous one
by simply replacing n ↔ p. The number of coupled equations

for each subsystem is 6 for the channel S = 0, and 8 for S = 1.
The expressions become cumbersome, preventing us to write
the response function in a compact form as in SNM [29] or
PNM [31]. Instead, it is preferable to numerically solve these
systems in the (q,ω) space. We have nevertheless relied on the
analytical systems to derive some interesting quantities, as for
instance sum rules.

As discussed in [32,33], the relevant spin-isospin responses
are given by the combinations

χ (SM;I=0)(q,ω) = χ (nnSM)(q,ω) + χ (pnSM)(q,ω)

+χ (ppSM)(q,ω) + χ (npSM)(q,ω), (13)

χ (SM;I=1)(q,ω) = χ (nnSM)(q,ω) − χ (pnSM)(q,ω)

+χ (ppSM)(q,ω) − χ (npSM)(q,ω). (14)

Actually, instead of the response functions we deal with the
corresponding strength functions, defined as

S(S,M,I )(q,ω) = − 1

π
Imχ (S,M,I ), (15)

since all physical properties are embedded into it.

IV. RESULTS

To present our results, we have chosen the asymmetry
parameter values Y = 0.21, and 0.5, which roughly correspond
to the isospin asymmetry of 208Pb and the β-equilibrium
condition, respectively. To complete the discussion we will
also show the extreme cases of SNM (Y = 0) and PNM
(Y = 1). Notice that only the spin channels (S,M) are relevant
in the latter case. We have performed calculations at densities
0.16 and 0.08 fm−3. The former value corresponds to the
saturation density of SNM and the bulk density of finite nuclei.
The latter one will give information about the surface of nuclei
or the crust of neutron stars. All the displayed results have been
calculated using the Skyrme interaction T44 [4], as in previous
works on SNM and PNM [29,30].

A. Zero temperature

In Fig. 1, we show the strength functions S(S,M,I )(q,ω)
calculated at density ρ = 0.16 fm−3 for a momentum transfer
q = 0.1 fm−1. The spin channels S = 0,1 are displayed in
panels (a)–(d) and (e)–(h), respectively. As a reference, the HF
strength function—which is independent of the spin-isospin
channel—has also been displayed in panels (a)–(d). It can
be seen that for the intermediate values of the asymmetry
parameters (Y = 0.21 and 0.50) the function SHF is in fact the
superposition of two strengths, one for protons and the other
for neutrons. Each one reflects the different Fermi momenta
and effective masses of protons and neutrons. The residual
ph interaction preserves this two-peaks structure in the RPA
strength, except in channel (S = 0,I = 0), which displays a
single and broad resonance. The collective peak in the (S =
0,I = 1) channel of SNM is shifted to the low-energy region
as Y increases, also reducing its height. Regarding the S = 1
channel, one can see that the collective states existing in both
SNM and PNM is split in two well-separated peaks. Their
location is nearly the same for any value of M and I . The
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FIG. 1. (Color online) Strength functions S(α)(q,ω) for the spin-isospin channels (α) = (S,M,I ) in asymmetric nuclear matter at density
ρ = 0.16 fm−3 and momentum transfer q = 0.1 fm−1, calculated with Skyrme functional T44. (a) and (e) correspond to the asymmetry
parameter Y = 1 (SNM). (b) and (f) to Y = 0.21. (c) and (g) to Y = 0.5. (d) and (h) to Y = 1 (PNM). Only channels (S,M) are relevant in
PNM. The dotted lines in (a)–(d) are the SHF strengths.

tensor interaction manifests in particular as differences in the
M = 0 and 1 strength functions. These differences are more
visible in the isospin I = 1 channel and practically negligible
in the I = 0 one.

Strengths calculated at q = 0.5 and 1.34 fm−1 and the same
density value are plotted in Figs. 2 and 3, respectively. The
two-peaks structure in the S = 1 channel washes out as the
momentum transfer is increased, becoming broader and less
intense. Tensor effects are also magnified as q increases, with
more pronounced differences between the M = 0,1 strengths,
irrespective of the isospin I . It is worth noticing the huge peak
in channel (1,0,0) at low values of ω for all values of Y . As will
be discussed in Sec. IV C, this peak evolves to an instability at
zero energy [30].

Consider now the lower density ρ = 0.08 fm−3. Figures 4
and 5 display the strengths calculated at the same transferred
momenta as Figs. 1 and 3, respectively. A glance to the
employed energy scales suffices to notice that the lowering
of the density induces a global shift of the strength towards

the low-energy region. For the transferred momentum q =
0.1 fm−1 the strengths in the different S = 1 channels are
nearly superimposed. For the asymmetries Y = 0.5 and 1, a
collective state is clearly visible in the channel I = 1, well
separated from the continuum edge. Analogously to Figs. 1
and 3, the strength function spreads as q increases. However,
an increase of the (S = 0,I = 0) strength at low energies is
noticeable. Actually, as we shall discuss in Sec. IV C, this huge
peak is related to the spinodal instability.

As already discussed in Refs. [27,30] a very efficient tool
to check the calculated linear responses is provided by their
energy weighted sum rules. The sum rule of order p is defined
as

M (S,M,I )
p

/
A = − 1

πρ

∫ ∞

0
dω ωp χ (S,M,I )(q,ω), (16)

and can be numerically calculated from this expression.
Alternatively, odd-order sum rules can also be obtained from
appropriate expansions of response functions in power series
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FIG. 2. (Color online) Same as Fig. 1, for q = 0.5 fm−1.
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FIG. 3. (Color online) Same as Fig. 1, for q = 1.34 fm−1.

of the transferred energy [36,37] as

χ (S,M,I )(ω,q)|ω→∞ = 2 ρ

∞∑
p=0

ω−(2p+2)M
(S,M,I )
2p+1 (q)

/
A, (17)

χ (S,M,I )(ω,q)|ω→0 = −2 ρ

∞∑
p=0

ω2pM
(S,M,I )
−(2p−1)(q)

/
A. (18)

The linear and cubic energy-weighted sum rules M1 and M3

can be easily obtained from the first two terms of Eq. (17),
while the inverse energy-weighted sum rule M−1 is the first
term of Eq. (18). We have derived these analytic expressions
using symbolic programs, but the expressions are too long
to be presented here. For M1, we have used the independent
check of double-commutator technique [38] to properly verify
our results. Our aim in comparing numerical and analytical
sum rules is to have a good test about the reliability of our cal-
culations. Besides, this comparison provides an independent
way to localize collective states.

The M−1 sum rule is also interesting by itself because,
apart from a trivial factor, it is the static susceptibility, or

response function at zero energy. It is thus a very efficient tool
to detect the instabilities related to a zero-energy mode, as
already found in the case of SNM and PNM in [30,31]. Such
a mode corresponds to a solution of 1/χS,M,I (ω = 0,q) = 0,
and has an infinite strength. Equivalently, these modes can be
seen as divergencies in the sum rule M−1. As an illustrative
example, in Fig. 6, we present the results for the asymmetry
parameter Y = 0.5. Numerical (16) and analytical (18) sum
rules M−1 have been plotted as a function of q. For the spin S =
0 channel the two curves stay on top of each other showing that
the calculations are reliable. Both curves also coincide for S =
1, except near some particular value of q, where a singularity
appears. This kind of singularity will be discussed in Sec. IV C.

B. Thermal effects

We now consider the effect of temperature in the RPA
response function. We refer the reader to Ref. [39] for a
study about the inclusion of temperature in the many-body
problem. Thermal effects in the RPA strength for SNM have
been discussed in [40,41] in the context of Skyrme interactions.
In practice one has to modify the occupation probability of
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FIG. 4. (Color online) Same as Fig. 1 for ρ = 0.08 fm−3.
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FIG. 5. (Color online) Same as Fig. 4, for q = 0.5 fm−1.

levels as

nτ (k) = {
e(ετ (k)−μτ )/T + 1

}−1
,

where μτ is the chemical potential and ετ (k) is the HF single
particle energy. The generalization to finite temperature of
the Bethe-Salpeter equation (10) and the related algebraic
systems of equations can be easily done. From a technical
viewpoint one has simply to include it in the auxiliary functions
βτ

i=0,8(q,ω,T ) defined in Appendix B.
At temperature T = 0, the system is initially in the ground

state, and the sole possible effect of the external probe is to
excite the system, i.e., ω � 0. However at non-null temperature
the ground state of the system at equilibrium corresponds
to a statistical mixture of states. Using the detailed-balance
theorem, the strength function is properly defined as

S(S,M,I )(q,ω,T ) = − 1

π

Imχ (S,M,I )(q,ω,T )

1 − eω/T
. (19)
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FIG. 6. (Color online) Inverse-energy weighted sum rule M−1 for
spin-isospin channels (S,M,I ) at asymmetry Y = 0.5, as calculated
analytically (solid line) and numerically (dashed line).

In that case, it is possible to transfer energy from the system
to the probe, so that negative values of ω are admissible.

Actually, thermal effects become relevant at values of
temperatures larger than 	3 MeV, and the limit of evaporation
in finite nuclei appears at T ≈ 5–10 MeV [42,43]. As a case
of study we have performed calculations at T = 16 MeV, a
temperature which can be relevant for homogeneous systems
of astrophysical interest. In Fig. 7 are displayed the strength
functions calculated at density ρ = 0.16 fm−3 and asymmetry
parameter Y = 0.5, for two values of the transferred mo-
mentum, namely q = 0.1 fm−1 (a) and 1.34 fm−1 (b). These
responses should be compared to those in panels (c) and (g)
of Figs. 1 and 3, respectively. As a rule, temperature tends to
wash out the structure of the response and spread its strength.
An important part of the strength is shifted to the negative
energy region, and the strength in some channels largely
increases at zero energy. Notice also that each peak at positive
energies has a corresponding “image” at negative energies,
which corresponds to the deexcitation of the heated system.
For this specific value of density, the strength in channels
S = 1,M = 1 develops a huge zero-energy peak. Actually,
it is the precursor of an unphysical instability, as we will
immediately discuss.

C. Instabilities

In the previous subsections we have encountered some
cases were the strength function is hugely peaked at zero
energy. This peak will become a divergence for specific
values of density and momentum transfer. Some of these
instabilities are unphysical, as they are simply reflecting
drawbacks of the employed interaction [18,20]. But at low
values of density, the instabilities are related to the physical
phenomenon of spinodal transition. As mentioned previously,
the inverse-energy-weighted sum rule M−1 is the tool of
choice for the detection of poles of response functions at
zero-transferred energy, and was employed in Refs. [30,31]
to analyze instabilities in SNM and PNM.

Let us consider first the instabilities appearing in the
channel (S,I ) = (0,0) at low values of density. They are related
to the thermodynamic spinodal transition of homogenous
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FIG. 7. (Color online) Strength function S(α)(q,ω,T ) for spin-isospin channels (α) = (S,M,I ) calculated at density ρ = 0.16 fm−3,
temperature T = 16 MeV, and momentum transfer q = 0.1 fm−1 (a) and q = 1.34 fm−1 (b).

matter, where density fluctuations induce a decrease of the
total free energy and are thus amplified until a separation in
two distinct stable phases, liquid and gas, is reached. It has been
shown [44] that the curvature of the free energy contains two
terms: one proportional to q2 coming from density gradient
terms of the energy functional, and another proportional to
1/q2 related to the Coulomb interaction. For small values
of q the energy cost due to Coulomb interaction dominates
and implies a sensitive reduction of the spinodal region for
proton-rich systems. Note that in the case of a neutron star
where a background of electrons is present, the net effect of
the Coulomb interaction in the residual interaction is to reduce
the region of the spinodal as well [44,45].

In Fig. 8, we have plotted the spinodal contours in the
plane (ρp,ρn) of proton/neutron densities for different values
of the transferred momentum q at zero temperature (a) and
T = 10 MeV (b). The homogeneous system is unstable inside
these contours. Since Coulomb interaction has been ignored in
our description, the spinodal region is symmetric with respect
to the line ρp = ρn, and is reduced as q is increased, the
largest possible region being that at q = 0. In general, the

effect of temperature is to suppress fluctuations. This can be
seen on Fig. 8 by comparing the spinodal contours in both
panels for a given value of q. Finally one may wonder about
the influence of the tensor interaction on these instabilities: as
we have mentioned in Sec. III, although the tensor acts directly
only in the S = 1 channel, it can influence also the S = 0
channel, due to the mixing between both spin channels induced
by the spin-orbit term. This coupling has been absorbed into
effective coefficients W̃

(ττ ′,S)
1 defined in Appendix C. We have

found that spin-orbit effects are very small, except at large
values of the transferred momentum, as reflected in the q4

power entering explicitly in W̃
(ττ ′,S)
1 . As the spinodal instability

concerns the S = 0 channel and implies relatively small values
of the transferred momentum, it is very marginally affected by
the tensor interaction, which can be safely neglected to analyze
the spinodal region.

We turn now to the unphysical instabilities, occurring in
the S = 1 channel. They have been analyzed in SNM and
PNM in terms of Landau parameters associated to a specific
Skyrme interaction [16,17,22,46–48]. As these instabilities are
related to a specific interaction, fixing them will be of great
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ρn [fm

-3]

0

0.02

0.04
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FIG. 8. (Color online) We show the spinodal instability (S = 0,M = 0,I = 0) for the T44 Skyrme functional for different values of the
neutron ρn and proton ρp density. (a) at T = 0 and (b) for T = 10 MeV.
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FIG. 9. (Color online) In each panel we represent the critical
density ρc in the different channels S = 1,M = 0,1,I = 0,1 for
several values of the asymmetry parameter Y and at zero temperature.
The horizontal dashed line corresponds to ρ = 0.16 fm−3.

help to establish bounds for the EDF coupling constants. For a
given value of the transferred momentum q we define a critical
density ρc as the value beyond which the homogeneous system
becomes unstable. In Fig. 9 are plotted the values of ρc as a
function of q for S = 1 channels and asymmetry parameters
varying from Y = 0 (SNM) to Y = 1 (PNM) in steps of 0.2.
Actually, for PNM there are only two channels, (S = 1,M),
and the same curve is plotted in panels I = 0 and I = 1.
One can see that for values of q less that ≈1.2–1.4 fm−1, the
critical density is higher than the saturation density of SNM
(in the figure, the horizontal line corresponds to the value
0.16 fm−3). The opposite happens for higher values of the
transferred momentum. As a general trend, we can see that as
a function of Y , the critical densities monotonically varies from
a maximum value in SNM to a minimum value for PNM, with
small variations around q ≈ 2 fm−1. However the decrease
is not linear and might be actually very pronounced as soon
as a small asymmetry is introduced. We should keep in mind
that all the curves are actually obtained from a combination
of response functions in the isospin channels (nn), (np), (pn),
and (pp). Therefore, when a small asymmetry is introduced
some of these response functions may suddenly acquire a
nonzero value and influence a lot the whole combination.
Although the calculations have been done with the single T44
interaction, one can extract a pragmatic criterion: to use the
bounds imposed by both SNM and PNM critical densities
into a fitting procedure in order to get a stable interaction
below such densities for all values of symmetries. We have
also checked that the critical densities are reduced by only a
few percent at temperature T = 16 MeV.

V. SUMMARY AND CONCLUSIONS

In this work we have generalized the formalism presented
in Refs. [27–29] to calculate RPA response functions in
asymmetric nuclear matter for a general Skyrme energy
density functional including spin-orbit and tensor terms. The

responses are obtained by solving closed algebraic systems of
equations, which have been explicitly presented. Analytical
expressions for the energy-weighted sum rules M−1, M1, and
M3 in terms of interaction parameters are easily derived from
them by using an algebraic code. However, since the number
of equations is doubled as compared to the SNM and PNM
cases, the analytical expressions are rather cumbersome and it
is preferable to compute them numerically.

We have investigated the response functions in the different
spin-isospin channels for specific conditions. To illustrate the
general trend concerning the effect of asymmetry we have
chosen four values of the parameter Y . They correspond to the
208Pb nucleus, asymmetric nuclear matter in β equilibrium,
SNM, and PNM. We have chosen two values of the density
characteristic of homogeneous matter at saturation and the
surface of atomic nuclei. All calculations have been done using
the T44 functional as a typical one, and so our conclusions are
not completely general. However, it seems that the behavior
of ANM is not just a simple interpolation between SNM and
PNM even if one has clearly identified how to go from one
limiting case to the other in an analytical way.

We have found that the tensor plays an important role
in the response, leading to the presence of two well-defined
collective states. In particular, as compared to the HF response,
the tensor significantly amplifies the separation between the
two Fermi surfaces. Even small values of asymmetry have a
sensible effect on response functions. This is at variance with
the results of Ref. [33] where it was concluded that varying the
asymmetry parameter produces no spectacular variations in the
response. However, these results were obtained using purely
central forces, while important tensor effects have already
been observed in our previous studies concerning SNM and
PNM. Concerning thermal effects, we have shown that up to
temperatures of 16 MeV, the response function is not sizably
modified.

The static susceptibility is a key quantity to get some
information about instabilities, and we have computed it
through the related inverse energy-weighted sum rule. Our
results concerning the spinodal instability compare favorably
with those of [44]. The general behavior obtained here for the
spinodal region with respect to asymmetry and temperature
reproduce nicely the physical features demonstrated in a very
different context, as is the study of free energy curvature in
fluctuation space [49]. Apart from this physical instability,
we have also put into evidence the unphysical instabilities,
thus generalizing to ANM the findings of [30,31]. However it
is not so simple to define finite-size instabilities and critical
densities. Depending on the channel, the asymmetry induces
an important modification of the location of the poles or a
minor one. Moreover, the lowest pole is not obtained for the
same asymmetry, even if PNM was generally favored. As a
practical rule, the bounds imposed by PNM critical densities
are sufficient as a criterion to get stable interactions within a
standard fitting procedure.
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APPENDIX A: COEFFICIENTS W (τ,τ ′,S)
a

AND EDF PARAMETERS

We give here the complete expressions of the coefficients
W (τ,τ ′,S)

a in terms of the coupling constant of the functional
[8]. We distinguish the cases τ = τ ′ (i.e., both indices equal
to p or n) and τ = −τ ′ (i.e., indices equal to p,n or n,p):

W
(τ,τ,S)
1 = W

(S,0)
1 + W

(S,1)
1 + b(τ )8C

ρ,γ
1 ρ1γργ−1

+W
(0)
T 2 + W

(1)
T 2 , (A1)

W
(τ,−τ,S)
1 = W

(S,0)
1 − W

(S,1)
1 + W

(0)
T 2 − W

(1)
T 2 , (A2)

with b(n) = 1 and b(p) = −1. For the remaining indices
(a = 2,T 1,SO) we have

W (τ,τ,S)
a = W (S,0)

a + W (S,1)
a , (A3)

W (τ,−τ,S)
a = W (S,0)

a − W (S,1)
a . (A4)

The coefficients W (S,T )
a are

1
4W

(0,0)
1 = 2C

ρ0
0 + (2 + γ )(1 + γ )Cργ

0 ρ
γ
0 + γ (γ − 1)

×C
ρ,γ
1 ρ

γ−2
0 ρ2

1 − [
2C

�ρ
0 + 1

2Cτ
0

]
q2, (A5)

1
4W

(0,1)
1 = 2C

ρ0
1 + 2C

ρ,γ
1 ρ

γ
0 − [

2C
�ρ
1 + 1

2Cτ
1

]
q2, (A6)

1
4W

(1,0)
1 = 2C

s,0
0 + 2C

sγ
0 ρ

γ
0 − [

2C�s
0 + 1

2CT
0

]
q2, (A7)

1
4W

(1,1)
1 = 2C

s,0
1 + 2C

sγ
1 ρ

γ
0 − [

2C�s
1 + 1

2CT
1

]
q2, (A8)

1
4W

(0,0)
2 = Cτ

0 , (A9)

1
4W

(0,1)
2 = Cτ

1 , (A10)

1
4W

(1,0)
2 = CT

0 , (A11)

1
4W

(1,1)
2 = CT

1 . (A12)

For vanishing isovector density, they coincide with those
previously given for symmetric nuclear matter [27,29]. The

remaining coefficients are related to the tensor and spin-orbit
components of the interaction

W
(T )
T 1 = 4CF

T , (A13)

W
(T )
T 2 = 8C∇s

T − 2CF
T , (A14)

W
(T )
SO = 4C∇J

T . (A15)

We also define for convenience: CF
± ≡ CF

0 ± CF
1 and

C∇J
± ≡ C∇J

0 ± C∇J
1 .

APPENDIX B: ALGEBRAIC SYSTEM OF EQUATIONS

Before giving the explicit expressions we have to define
some averages of the HF ph propagator

β
(τ )
i (q,ω,T ) =

∫
d3k

(2π )3
G

(τ )
HF(k,q,ω)Fi(k,q), (B1)

where the functions Fi(k,q) are defined as

F0,...,8 = 1,
k · q

q2
,
k2

q2
,

[
k · q

q2

]2

,
(k · q)k2

q4
,
k4

q4
,

[
k · q

q

]3

,

[
k · q

q

]4

,
(k · q)2k2

q4
,

for i = 0 to 8, respectively. The explicit expressions of
these functions can be found in Ref. [33] up to i = 5. The
three remaining functions (for i = 6,7,8) are required by the
inclusion of tensor terms. Its generalization is straightforward
and will not be given here. Obviously, for the extreme values
Y = 0 and Y = 1 one recovers the expressions of the β
functions given in [29]. For finite temperature, only the
imaginary parts are determined explicitly. The real parts are
obtained as usual through a dispersion relation.

We give now the explicit form of the column vectors Xnn,
Xnp, Bn and the matrices Ann, Anp. The blocks App and
Apn are obtained from Ann and Anp by simply exchanging
n ↔ p. These quantities define completely the system (12)
and obtain 〈G(nn)

RPA〉 and 〈G(pn)
RPA〉. To determine 〈G(pp)

RPA〉 and
〈G(np)

RPA〉 one must replace n ↔ p in the previous expressions.

The coefficients W̃
(ττ ′,SM)
1 and α

jτ
i entering the following

expressions are defined in Appendix C.

1. Channel S = 0

Xnn =

⎛
⎜⎜⎝

〈
G

(nn)
RPA

〉
〈
k2G

(nn)
RPA

〉√
4π
3

〈
kY10G

(nn)
RPA

〉
⎞
⎟⎟⎠ , Xpn =

⎛
⎜⎜⎜⎜⎝

〈
G

(pn)
RPA

〉
〈
k2G

(pn)
RPA

〉√
4π
3

〈
kY10G

(pn)
RPA

〉
⎞
⎟⎟⎟⎟⎠ , Bn =

⎛
⎜⎝

β
(n)
0

q2β
(n)
2

qβ
(n)
1

⎞
⎟⎠ , (B2)

Ann =

⎛
⎜⎜⎝

1 − β
(n)
0 W̃

(nn,0)
1 − q2β

(n)
2 W

(nn,0)
2 −β

(n)
0 W

(nn,0)
2 2qβ

(n)
1 W

(nn,0)
2

−q2β
(n)
2 W̃

(nn,0)
1 − q4β

(n)
5 W

(nn,0)
2 1 − q2β

(n)
2 W

(nn,0)
2 2q3β

(n)
4 W

(nn,0)
2

−qβ
(n)
1 W̃

(nn,0)
1 − q3β

(n)
4 W

(nn,0)
2 −qβ

(n)
1 W

(nn,0)
2 1 + 2q2β

(n)
3 W

(nn,0)
2

⎞
⎟⎟⎠ , (B3)
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Anp =

⎛
⎜⎝

−β
(n)
0 W̃

(np,0)
1 − q2β

(n)
2 W

(np,0)
2 −β

(n)
0 W

(np,0)
2 2qβ

(n)
1 W

(np,0)
2

−q2β
(n)
2 W̃

(np,0)
1 − q4β

(n)
5 W

(np,0)
2 −q2β

(n)
2 W

(np,0)
2 2q3β

(n)
4 W

(np,0)
2

−qβ
(n)
1 W̃

(np,0)
1 − q3β

(n)
4 W

(np,0)
2 −qβ

(n)
1 W

(np,0)
2 2q2β

(n)
3 W

(np,0)
2

⎞
⎟⎠ . (B4)

2. Channel S = 1 M = ±1

Xnn =

⎛
⎜⎜⎜⎜⎝

〈
Gnn

RPA

〉〈
k2Gnn

RPA

〉√
4π
3

〈
kY10G

nn
RPA

〉
8π
3

〈
k2|Y11|2Gnn

RPA

〉

⎞
⎟⎟⎟⎟⎠ , Xpn =

⎛
⎜⎜⎜⎜⎝

〈
G

pn
RPA

〉〈
k2G

pn
RPA

〉√
4π
3

〈
kY10G

pn
RPA

〉
8π
3

〈
k2|Y11|2Gpn

RPA

〉

⎞
⎟⎟⎟⎟⎠ , Bn =

⎛
⎜⎜⎜⎜⎝

β
(n)
0

q2β
(n)
2

qβ
(n)
1

q2
(
β

(n)
2 − β

(n)
3

)

⎞
⎟⎟⎟⎟⎠ , (B5)

Ann =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − β
(n)
0 W̃

(nn,11)
1 − q2β

(n)
2 W

(nn,1)
2 −β

(n)
0 W

(nn,1)
2 −β

(n)
1 α1n

3 − β
(n)
0 α0n

3 −CF
+β

(n)
0

−CF
+q2

(
β

(n)
2 − β

(n)
3

) + β
(n)
1 α1n

1

−q2β
(n)
2 W̃

(nn,11)
1 − q4β

(n)
5 W

(nn,1)
2 1 − q2β

(n)
2 W

(nn,1)
2 −q2β

(n)
4 α1n

3 − q2β
(n)
2 α0n

3 −q2CF
+β

(n)
2

−CF
+q4

(
β

(n)
5 − β

(n)
8

) + q2β
(n)
4 α1n

1

−qβ
(n)
1 W̃

(nn,11)
1 − q3β

(n)
4 W

(nn,1)
2 −qβ

(n)
1 W

(nn,1)
2 1 − qβ

(n)
3 α1n

3 − qβ
(n)
1 α0n

3 −qCF
+β

(n)
1

−CF
+q3

(
β

(n)
4 − β

(n)
6

) + qβ
(n)
3 α1n

1

−q2
(
β

(n)
2 − β

(n)
3

)
W̃

(nn,11)
1 −q2

(
β

(n)
2 − β

(n)
3

)
W

(nn,1)
2 −q2

(
β

(n)
4 − β

(n)
6

)
α1n

3 1 − CF
+q2

(
β

(n)
2 − β

(n)
3

)
−CF

+q4
(
β

(n)
5 − 2β

(n)
8 + β

(n)
7

) −q2
(
β

(n)
2 − β

(n)
3

)
α0n

3

− q4
(
β

(n)
5 − β

(n)
8

)
W

(nn,1)
2

+ q2
(
β

(n)
4 − β

(n)
6

)
α1n

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B6)

Anp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β
(n)
0 W̃

(np,11)
1 − q2β

(n)
2 W

(np,1)
2 −β

(n)
0 W

(np,1)
2 −β

(n)
1 α1n

7 − β
(n)
0 α0n

7 −CF
−β

(n)
0

−CF
−q2

(
β

(n)
2 − β

(n)
3

) + β
(n)
1 α1n

5

−q2β
(n)
2 W̃

(np,11)
1 − q4β

(n)
5 W

(np,1)
2 −q2β

(n)
2 W

(np,1)
2 −q2β

(n)
4 α1n

7 − q2β
(n)
2 α0n

7 −q2CF
−β

(n)
2

−CF
+q4

(
β

(n)
5 − β

(n)
8

) + q2β
(n)
4 α1n

5

−qβ
(n)
1 W̃

(np,11)
1 − q3β

(n)
4 W

(np,1)
2 −qβ

(n)
1 W

(np,1)
2 −qβ

(n)
3 α1n

7 − qβ
(n)
1 α0n

7 −qCF
−β

(n)
1

−CF
−q3

(
β

(n)
4 − β

(n)
6

) + qβ
(n)
3 α1n

5

−q2
(
β

(n)
2 − β

(n)
3

)
W̃

(np,11)
1 −q2

(
β

(n)
2 − β

(n)
3

)
W

(np,1)
2 −q2

(
β

(n)
4 − β

(n)
6

)
α1n

7 −CF
−q2

(
β

(n)
2 − β

(n)
3

)
−CF

−q4
(
β

(n)
5 − 2β

(n)
8 + β

(n)
7

) −q2
(
β

(n)
2 − β

(n)
3

)
α0n

7

− q4
(
β

(n)
5 − β

(n)
8

)
W

(np,1)
2

+ q2
(
β

(n)
4 − β

(n)
6

)
α1n

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(B7)

3. Channel S = 1 M = 0

Xnn =

⎛
⎜⎜⎜⎜⎝

〈
G

nn,10
RPA

〉
〈
k2G

nn,10
RPA

〉√
4π
3

〈
kY10G

nn,10
RPA

〉
8π
3

〈
k2|Y10|2Gnn,10

RPA

〉

⎞
⎟⎟⎟⎟⎠ , Xpn =

⎛
⎜⎜⎜⎜⎝

〈
G

pn,10
RPA

〉
〈
k2G

pn,10
RPA

〉√
4π
3

〈
kY10G

pn,10
RPA

〉
8π
3

〈
k2|Y10|2Gpn,10

RPA

〉

⎞
⎟⎟⎟⎟⎠ , Bn =

⎛
⎜⎜⎜⎜⎝

β
(n)
0

q2β
(n)
2

qβ
(n)
1

q2β
(n)
3

⎞
⎟⎟⎟⎟⎠ , (B8)
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Ann =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − β
(n)
0 W̃

(nn,10)
1 − q2β

(n)
2 W

(nn,1)
2 −β

(n)
0 W

(nn,1)
2 −β

(n)
1 α1n

3 − β
(n)
0 α0n

3 −CF
+β

(n)
0

− 2CF
+q2β

(n)
3 + β

(n)
1 α1n

1

−q2β
(n)
2 W̃

(nn,10)
1 − q4β

(n)
5 W

(nn,1)
2 1 − q2β

(n)
2 W

(nn,1)
2 −q2β

(n)
4 α1n

3 − q2β
(n)
2 α0n

3 −q2CF
+β

(n)
2

− 2CF
+q4β

(n)
8 + q2β

(n)
4 α1n

1

−qβ
(n)
1 W̃

(nn,10)
1 − q3β

(n)
4 W

(nn,1)
2 −qβ

(n)
1 W

(nn,1)
2 1 − qβ

(n)
3 α1n

3 − qβ
(n)
1 α0n

3 −qCF
+β

(n)
1

− 2CF
+q3β

(n)
6 + qβ

(n)
3 α1n

1

−q2β
(n)
3 W̃

(nn,10)
1 − q4β

(n)
8 W

(nn,1)
2 −q2β

(n)
3 W

(nn,1)
2 −q2β

(n)
6 α1n

3 − q2β
(n)
3 α0n

3 1/2 − CF
+q2β

(n)
3

− 2CF
+q4β

(n)
7 + q2β

(n)
6 α1n

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B9)

Anp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β
(n)
0 W̃

(np,10)
1 − q2β

(p)
2 W

(np,1)
2 −β

(n)
0 W

(pn,1)
2 −β

(n)
1 α1n

7 − β
(n)
0 α0n

7 −CF
−β

(n)
0

− 2CF
−q2β

(n)
3 + β

(n)
1 α1n

5

−q2β
(n)
2 W̃

(np,10)
1 − q4β

(n)
5 W

(np,1)
2 −q2β

(n)
2 W

(np,1)
2 −q2β

(n)
4 α1n

7 − q2β
(n)
2 α0n

7 −q2CF
−β

(n)
2

− 2CF
−q4β

(n)
8 + q2β

(n)
4 α1n

5

−qβ
(n)
1 W̃

(np,10)
1 − q3β

(n)
4 W

(np,1)
2 −qβ

(n)
1 W

(np,1)
2 −qβ

(n)
3 α1n

7 − qβ
(n)
1 α0n

7 −qCF
−β

(n)
1

− 2CF
−q3β

(n)
6 + qβ

(n)
3 α1n

5

−q2β
(n)
3 W̃

(np,10)
1 − q4β

(n)
8 W

(np,1)
2 −q2β

(n)
3 W

(np,1)
2 −q2β

(n)
6 α1n

7 − q2β
(n)
3 α0n

7 −CF
−q2β

(n)
3

− 2CF
−q4β

(n)
7 + q2β

(n)
6 α1n

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B10)

APPENDIX C: COEFFICIENTS ˜W (τ,τ ′,SM)
i AND α

jτ
i

The matrices of the previous Appendix contain some short-hand notations which are defined in the following, channel by
channel. We remind that coefficients W̃

(τ,τ ′,SM)
i are defined after partly solving the system of equations for the coupling between

spin channels induced by the spin-orbit interaction.

1. Channel S = 0 M = 0

W̃
(ττ ;00)
1 = W

(ττ,0)
1 − 4q4 C∇J

+ C∇J
−

(
β−τ

2 − β−τ
3

)
xτ−τ − [C∇J

+ ]2
(
βτ

2 − βτ
3

)
(1 + x−τ−τ )

(1 + xττ )(1 + x−τ−τ ) − xτ−τ x−ττ

− 4q4 C∇J
+ C∇J

−
(
βτ

2 − βτ
3

)
x−ττ − [C∇J

− ]2
(
β−τ

2 − β−τ
3

)
(1 + x−τ−τ )

(1 + xττ )(1 + x−τ−τ ) − xτ−τ x−ττ

, (C1)

W̃
(τ−τ ;00)
1 = W

(τ−τ,0)
1 − 4q4 [C∇J

+ ]2
(
β−τ

2 − β−τ
3

)
xτ−τ − C∇J

− C∇J
+

(
βτ

2 − βτ
3

)
(1 + x−τ−τ )

(1 + xττ )(1 + x−τ−τ ) − xτ−τ x−ττ

− 4q4 [C∇J
− ]2

(
βτ

2 − βτ
3

)
x−ττ − C∇J

− C∇J
+

(
β−τ

2 − β−τ
3

)
(1 + xττ )

(1 + xττ )(1 + x−τ−τ ) − xτ−τ x−ττ

, (C2)

where

xττ = q2
(
βτ

2 − βτ
3

)(
W

(ττ,1)
2 − CF

+
)
, (C3)

xτ−τ = q2(βτ
2 − βτ

3

)(
W

(τ−τ,1)
2 − CF

−
)
. (C4)

It is worth stressing that the spin-orbit coupling constants, C∇J
± , are associated to the power q4.
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2. Channel S = 1 M = 1

W̃
(ττ,11)
1 = W

(ττ,1)
1 − 2q4Z0C∇J

+
[
zτ−τ,0C∇J

−
(
β−τ

2 − β−τ
3

) − (1 + z−τ−τ,0)C∇J
+

(
βτ

2 − βτ
3

)] − 2q4Z0C∇J
−

[
z−ττ,0C∇J

+
(
βτ

2 − βτ
3

)
− (1 + zττ,0)C∇J

−
(
β−τ

2 − β−τ
3

)] + [CF
+ ]2q4

(
βτ

5 − βτ
7

) + [CF
− ]2q4

(
β−τ

5 − β−τ
7

)
− q2

(
ντ

kτ

− 1

)
[CF

+ (zττ,1B−ττ
+ + zτ−τ,1Bτ−τ

− )] − q2

(
ν−τ

k−τ

− 1

)
[CF

− (z−τ−τ,1Bτ−τ
− + z−ττ,1B−ττ

+ )], (C5)

W̃
(τ−τ,11)
1 = W

(τ−τ,1)
1 − 2q4Z0C∇J

+
[
zτ−τ,0C∇J

+
(
β−τ

2 − β−τ
3

) − (1 + z−τ−τ,0)C∇J
−

(
βτ

2 − βτ
3

)]
− 2q4Z0C∇J

−
[
z−ττ,0C∇J

−
(
βτ

2 − βτ
3

) − (1 + zττ,0)C∇J
+

(
β−τ

2 − β−τ
3

)] + CF
+CF

−q4
[(

βτ
5 − βτ

7

) + (
β−τ

5 − β−τ
7

)]
− q2

(
ντ

kτ

− 1

)
[CF

+ (zττ,1B−ττ
− + zτ−τ,1Bτ−τ

+ )] − q2

(
ν−τ

k−τ

− 1

)
[CF

− (z−τ−τ,1Bτ−τ
+ + z−ττ,1B−ττ

− )], (C6)

α
jτ
i is defined as the coefficient in front βτ

j for the unknown parameter Xi for the first four equations. They read

α1n
1 = 2q2[CF

+B
pn
+ + CF

−B
np
− ], α

1p
1 = 2q2[CF

+B
np
− + CF

−B
pn
+ ],

α1n
3 = 2q(Apn

+ CF
+ + CF

−A
np
− ) − 2qW

(nn,1)
2 , α

1p
3 = 2q(Apn

+ CF
− + CF

+A
np
− ) − 2qW

(pn,1)
2 ,

α0n
3 = q

(
νn

kn

− 1

)
[CF

+ (znn,1A
pn
+ + znp,1A

np
− )] + q

(
νp

kp

− 1

)
[CF

− (zpp,1A
np
− + zpn,1A

pn
+ )]

− 2q3
(
[CF

+ ]2
(
βn

4 − βn
6

) + [CF
− ]2

(
β

p
4 − β

p
6

))
,

α
0p
3 = q

(
νp

kp

− 1

)
[CF

+ (zpp,1A
np
− + zpn,1A

pn
+ )] + q

(
νn

kn

− 1

)
[CF

− (znn,1A
pn
+ + znp,1A

np
− )]

− 2q3CF
+CF

−
[(

βn
4 − βn

6

) + (
β

p
4 − β

p
6

)]
,

α1n
5 = 2q2[CF

+B
pn
− + CF

−B
np
+ ], α

1p
5 = 2q2[CF

+B
np
+ + CF

−B
pn
− ],

α1n
7 = 2q(Anp

+ CF
− + A

pn
− CF

+ ) − 2qW
(np,1)
2 , α

1p
7 = 2q(Anp

+ CF
+ + CF

−A
pn
− ) − 2qW

(pp,1)
2 ,

α0n
7 = q

(
νn

kn

− 1

)
[CF

+ (znn,1A
pn
− + znp,1A

np
+ )] + q

(
νp

kp

− 1

)
[CF

− (zpp,1A
np
+ + zpn,1A

pn
− )]

− 2CF
+CF

−q3
[(

βn
4 − βn

6

) + (
β

p
4 − β

p
6

)]
,

α
0p
7 = q

(
νp

kp

− 1

)
[CF

+ (zpp,1A
np
+ + zpn,1A

pn
− )] + q

(
νn

kn

− 1

)
[CF

− (znn,1A
pn
− + znp,1A

np
+ )]

− 2q3
(
[CF

+ ]2
(
β

p
4 − β

p
6

) + [CF
− ]2

(
βn

4 − βn
6

))
.

In these expressions

zττ ′,S = q2
(
βτ

2 − βτ
3

)
W

ττ ′,S
2 , (C7)

ZS = [(1 + znn,S)(1 + zpp,S) − zpn,Sznp,S]−1, (C8)

Aττ ′
± = q2Z1[(1 + zττ,1)CF

±
(
βτ ′

2 − βτ ′
3

) − CF
∓zτ ′τ,1(βτ

2 − βτ
3

)]
, (C9)

Bττ ′
± = q2Z1

[
(1 + zττ,1)CF

±
(
βτ ′

4 − βτ ′
6

) − CF
∓zτ ′τ,1(βτ

4 − βτ
6

)]
. (C10)

The other four equations for the system can be deduced from the first four by changing isospin indices like n → p together
with the following substitutions:

α1n
1 ←→ α

1p
5 , α1n

3 ←→ α
1p
7 , α0n

3 ←→ α
0p
7 , α1n

5 ←→ α
1p
1 , α1n

7 ←→ α
1p
3 , α0n

7 ←→ α
0p
3 .

3. Channel S = 1 M = 0

W̃
(ττ,10)
1 = W

(ττ,1)
1 − q2CF

+

(
ντ

kτ

− 1

)
[B̄−ττ

+ (zττ,1 + 3sτ
+) + B̄τ−τ

− (zτ−τ,1 + 3sτ
−)] (C11)

− q2CF
−

(
ν−τ

k−τ

− 1

)
[B̄−ττ

+ (z−ττ,1 + 3s−τ
− ) + B̄τ−τ

− (z−τ−τ,1 + 3s−τ
+ )] + 4q4

[
(CF

+ )2
(
βτ

8 − βτ
7

) + (CF
− )2

(
β−τ

8 − β−τ
7

)]
,

(C12)

044302-12



LINEAR RESPONSE THEORY IN ASYMMETRIC NUCLEAR . . . PHYSICAL REVIEW C 89, 044302 (2014)

W̃
(τ−τ,10)
1 = W

(τ−τ,1)
1 − q2CF

+

(
ντ

kτ

− 1

)
[B̄τ−τ

+ (zτ−τ,1 + 3sτ
−) + B̄−ττ

− (zττ,1 + 3sτ
+)] (C13)

−q2CF
−

(
ν−τ

k−τ

− 1

)
[B̄τ−τ

+ (z−τ−τ,1 + 3s−τ
+ ) + B̄−ττ

− (z−ττ,1 + 3s−τ
− )] + 4q4CF

+CF
−
[(

βτ
8 − βτ

7

) + (
β−τ

8 − β−τ
7

)]
.

(C14)

The coefficients α
l,n(p)
i are different for this channel. They read explicitly

α1n
1 = 2q2[CF

+ B̄
pn
+ + CF

− B̄
np
− ], (C15)

α
1p
1 = 2q2[CF

+ B̄
np
− + CF

− B̄
pn
+ ], (C16)

α1n
3 = 2q

[−W
nn,1
2 − 2CF

+ + 2Ā
pn
+ CF

+ + 2Ā
np
− CF

−
]
, (C17)

α
1p
3 = 2q

[−W
pn,1
2 − 2CF

− + 2CF
+Ā

np
− + 2CF

−Ā
pn
+

]
, (C18)

α0n
3 = 2q

(
νn

kn

− 1

)
CF

+ [Āpn
+ (znn,1 + 3sn

+) + Ā
np
− (znp,1 + 3sn

−) − sn
+]

+ 2q

(
νp

kp

− 1

)
CF

− [Ānp
− (zpp,1 + 3s

p
+) + Ā

pn
+ (zpn,1 + 3s

p
−) − s

p
−], (C19)

α
0p
3 = 2q

(
νp

kp

− 1

)
CF

+ [Ānp
− (zpp,1 + 3s

p
+) + Ā

pn
+ (zpn,1 + 3s

p
−) − s

p
−]

+ 2q

(
νn

kn

− 1

)
CF

− [Āpn
+ (znn,1 + 3sn

+) + Ā
np
− (znp,1 + 3sn

−) − sn
+], (C20)

α1n
5 = 2q2[CF

+ B̄
pn
− + CF

− B̄
np
+ ], (C21)

α
1p
5 = 2q2[CF

+ B̄
np
+ + CF

− B̄
pn
− ], (C22)

α1n
7 = 2q

[−W
np,1
2 − 2CF

− + 2CF
+Ā

pn
− + 2CF

−Ā
np
+

]
, (C23)

α
1p
7 = 2q

[−W
pp,1
2 − 2CF

+ + 2Ā
np
+ CF

+ + 2Ā
pn
− CF

−
]
, (C24)

α0n
7 = 2q

(
νn

kn

− 1

)
CF

+
[
Ā

pn
− (znn,1 + 3sn

+) + Ā
np
+ (znp,1 + 3sn

−) − sn
−
]

+ 2q

(
νp

kp

− 1

)
CF

− [Ānp
+ (zpp,1 + 3s

p
+) + Ā

pn
− (zpn,1 + 3s

p
−) − s

p
+], (C25)

α
0p
7 = 2q

(
νp

kp

− 1

)
CF

+ [Ānp
+ (zpp,1 + 3s

p
+) + Ā

pn
− (zpn,1 + 3s

p
−) − s

p
+]

+ 2q

(
νn

kn

− 1

)
CF

− [Āpn
− (znn,1 + 3sn

+) + Ā
np
+ (znp,1 + 3sn

−) − sn
−]. (C26)

The transformation rules to get the last four equations are identical to the ones of channel S = 1,M = 1:

sτ
± = CF

±q2
(
βτ

2 − βτ
3

)
, (C27)

Z′ = [(1 + zpp,1 + 3s
p
+)(1 + znn,1 + 3sn

+) − (znp,1 + 3sn
−)(zpn,1 + 3s

p
−)]−1, (C28)

Āττ ′
± = Z′[(1 + zττ,1 + 3sτ

+)sτ ′
± − (zτ ′τ,1 + 3sτ ′

− )sτ
∓], (C29)

B̄ττ ′
+ = Z′

[(
ντ ′

kτ ′
− 1

)
(1 + zττ,1 + 3sτ

+)sτ ′
+ −

(
ντ

kτ

− 1

)
(zτ ′τ,1 + 3sτ ′

− )sτ
−

]
. (C30)
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