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Effects of δ mesons in relativistic mean field theory
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The effect of δ- and ω-ρ-meson cross couplings on asymmetry nuclear systems are analyzed in the framework
of an effective field theory motivated relativistic mean field formalism. The calculations are done on top of the G2
parameter set, where these contributions are absent. To show the effect of δ meson on the nuclear system, we split
the isospin coupling into two parts: (i) gρ due to ρ meson and (ii) gδ for δ meson. Thus, our investigation is based
on varying the coupling strengths of the δ and ρ mesons to reproduce the binding energies of the nuclei 48Ca and
208Pb. We calculate the root mean square radius, binding energy, single particle energy, density, and spin-orbit
interaction potential for some selected nuclei and evaluate the Lsym and Esym coefficients for nuclear matter as
function of δ- and ω-ρ-meson coupling strengths. As expected, the influence of these effects are negligible for
the symmetric nuclear system, but substantial for the contribution with large isospin asymmetry.
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I. INTRODUCTION

In recent years the effective field theory approach to
quantum hadrodynamic (QHD) has been studied extensively.
The parameter set G2 [1,2], obtained from the effective
field theory motivated Lagrangian (E-RMF) approach, is
very successful in reproducing the nuclear matter properties
including the structure of neutron star as well as of finite
nuclei [3]. This model reproduces well the experimental values
of binding energy, root mean square (rms) radii, and other finite
nuclear properties [4–6]. Similarly, the prediction of nuclear
matter properties including the phase transition as well as the
properties of a compact star are remarkably good [3,7]. The G2
force parameter is the largest force set available, in the
relativistic mean field model. It contains almost all interaction
terms of the nucleon with mesons, self-, and cross coupling of
mesons up to fourth order.

In the effective-field-theory–motivated relativistic mean
field (E-RMF) model of Furnstahl et al. [1,2], the coupling
of the δ meson is not taken into account. Also, the effect
of ρ- and ω-meson cross coupling was neglected. It is soon
realized that the importance of the δ meson [8] and the cross
coupling of ω and ρ mesons [9] cannot be neglected while
studying the nuclear and neutron matter properties. Horowitz
and Piekarewicz [10] studied explicitly the importance of ρ
and ω cross coupling to finite nuclei as well as the properties
of neutron star structures. This coupling also influences the
nuclear matter properties, such as symmetry energy Esym,
slope parameters Lsym, and curvature Ksym of Esym [11]. It
is shown in Ref. [3] that the self- and cross couplings of
the ω meson play an important role to make the nuclear
equation of state (EOS) softer [12–14]. The observation of
Brown [15], and later on by Horowitz and Piekarewicz [10],
makes it clear that the neutron radius of heavy nuclei has a
direct correlation with the EOS of compact star matter. It is
shown that the collection of neutron to proton radius difference
�r = rn − rp using relativistic and nonrelativistic formalisms
shows two different patterns. Unfortunately, the error bar in the
neutron radius makes no difference between these two patterns.
Therefore, the experimental result of JLab [16] is greatly

anticipated. To have a better argument for all this, Horowitz and
Piekarewicz [10] introduced �s and �v couplings to take care
of the skin thickness in 208Pb as well as the crust of a neutron
star. The symmetry energy, and hence the neutron radius, plays
an important role in the construction of asymmetric nuclear
EOS. Although, the new couplings �s and �v take care of the
neutron radius problem, the effective mass splitting between
neutron and proton is not taken care of. This effect cannot be
neglected in a highly neutron-rich dense matter system and
drip-line nuclei. In addition to this mass splitting, the rms
charge radius anomaly of 40Ca and 48Ca may be resolved by
this scalar-isovector δ-meson inclusion to the E-RMF model.

In some of the calculations, although the scalar field in
the isovector channel is not included explicitly, the Fock
term in the currently used relativistic Hartree-Fock and
Hartree-Fock-Bogoliubov calculations contains contributions
to the scalar-isovector channel [17–20]. It is known that
the covariant density functional theory is unable to produce
Gamow-Teller resonance (GTR) and spin-dipole resonance
(STR) properly, where the Fock term is not present. So there
needs to be some further extension in the model, but after
zero-range reduction and the Fierz transformation, one can get
the GTR and STR without taking the Fock term into account.
It shows that zero-range reduction and Fierz transformation
are the alternative to the inclusion of the Fock term and
avoid a complicated numerical procedure. It gives better
results for the spin-isospin channel and Dirac masses [21].
Other contributions in the isoscalar channel are based on
the Hugenholtz–Van Hove theorem [22]. According to this
theorem, nuclear symmetry energy and the neutron-proton
effective k-mass splitting are explicitly related [23]. Our aim
in this paper is to include the scalar-isovector δ meson to the
interaction and to see its effect along with the ρ-ω-meson
couplings in a highly asymmetric system, such as asymmetry
finite nuclei, neutron star, and asymmetric EOS.

The paper is organized as follows. First of all we extended
the E-RMF Lagrangian by including the δ meson and the
ω-ρ cross couplings. The field equations are derived from the
extended Lagrangian for finite nuclei. Then the equations of
state for nuclear matter and neutron star matter are derived.
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The calculated results are discussed in Sec. III. In this section,
we study the effects of the δ meson and ω-ρ cross coupling
on finite nuclei and see the changes in binding energy, radius,
etc. Then, we adopt the calculations for asymmetric nuclear
matter, including the neutron star. In the last section, the
conclusions are drawn.

II. FORMALISM

The bulk properties, such as binding energy and charge
radius, do not isolate the contribution from the isoscalar or
isovector channels. These are estimated by an overall fitting
of the parameters, precisely with the help of the ρ-meson
coupling. That is the reason the modern relativistic Lagrangian
ignores the contribution of the δ and ρ mesons separately,
i.e., once the ρ meson is included, it takes care of the bulk
properties of the nucleus arising from the isovector part and
does not feel the requirement of the δ meson [17–20]. However,
the importance of the δ meson is realized when we study the
properties of the highly asymmetric system, such as drip-line
nuclei and neutron stars [8,24–35]. In particular, at a high
density of a neutron star and heavy ion collisions, the proton
fraction of β-stable matter may increase and the splitting of
the effective mass should affect the transfer properties. Hence,
the isovector-scalar meson is taken into account, while its
individual contribution is small in the NN interaction due

toits heavy mass (∼980 MeV, more than the nucleon mass).
But for the highly asymmetric system, the total contribution
of the δ meson cannot be ignored.

The relativistic treatment of the quantum hadrodynamic
(QHD) models automatically includes the spin-orbit force,
the finite range, and the density dependence of the nuclear
interaction. The relativistic mean field (RMF), or the E-RMF
model, has the advantage that, with the proper relativistic
kinematics and with the meson properties already known or
fixed from the properties of a small number of finite nuclei, it
gives excellent results for binding energies, root-mean-square
(rms) radii, quadrupole and hexadecapole deformations, and
other properties of spherical and deformed nuclei [36–40].
The quality of the results is comparable to that found in
nonrelativistic nuclear structure calculations with effective
Skyrme [41] or Gogny [42] forces.

The theory and equations for finite nuclei and nuclear
matter can be found in Refs. [1,2,43,44] and we shall give
only the outline of the formalism. We start from Ref. [1]
where the field equations are derived from an energy density
functional containing Dirac baryons and classical scalar and
vector mesons. The field equations for mesons and nucleons
are solved by the self-consistent way, which is a very strong
technique in effective field theory. It gives excellent results
for finite and infinite nuclear systems [13,44–48]. The energy
density functional for finite nuclei can be written as [2,43,44]
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where 	, W , R, D, and A are the fields for σ,ω,ρ,δ, and the photon, and gσ , gω, gρ , gδ , and e2

4π
are their coupling constant,

and their masses are mσ , mω, mρ , and mδ , respectively. In the energy functional, the nonlinearity as well as the cross-coupling
up to a maximum of fourth order is taken into account. This is restricted due the condition 1 � field

M
(M = nucleon mass) and

the nonsignificant contribution of the higher order [4]. The higher nonlinear coupling for ρ- and δ-meson fields are not taken
in the energy functional, because the expectation values of the ρ and δ fields are an order of magnitude less than that of the
ω field and they have only marginal contribution to finite nuclei. For example, in calculations of the high-density equation of
state, Müller and Serot [43] find the effects of a quartic ρ meson coupling (R4) to be appreciable only in stars made of pure
neutron matter. A surface contribution −α3	 (∇R)2/(2g2

ρM) is tested in Ref. [49] and it is found to have absolutely negligible
effects. We should note, nevertheless, that very recently it has been shown that couplings of the type 	2R2 and W 2R2 are
useful to modify the neutron radius in heavy nuclei while making very small changes to the proton radius and the binding
energy [10].

The Dirac equation corresponding to the energy density equation (1) becomes
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The mean field equations for 	, W , R, D, and A are given by
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where the baryon, scalar, isovector, proton, and tensor densities
are
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with ρs3 = ρsp − ρsn, ρsp and ρsn are scalar densities for
the proton and neutron, respectively. The scalar density ρs

is expressed as the sum of the proton (p) and neutron (n)
densities ρs = 〈ψψ〉 = ρsp + ρsn, which are given by
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ki is the nucleon’s Fermi momentum and M∗
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proton and neutron effective masses, respectively, and can be
written as
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Thus, the δ field splits the nucleon effective masses. The baryon
density is given by
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where γ is spin or isospin multiplicity (γ = 4 for symmetric
nuclear matter and γ = 2 for pure neutron matter). The proton
and neutron Fermi momentum will also split, while they have
to fulfill the following condition:
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Because of the uniformity of the nuclear system for infinite
nuclear matter all of the gradients of the fields in Eqs. (3)–(7)
vanish and only the κ3, κ4, η1, η2, and ζ0 nonlinear couplings
remain. Due to the fact that the solution of symmetric
nuclear matter in a mean field depends on the ratios g2
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s

and g2
v/m2

v [50], we have seven unknown parameters. By
imposing the values of the saturation density, total energy,
incompressibility modulus, and effective mass, we still have
three free parameters (the value of g2
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bulk symmetry energy coefficient J ). The energy density and
pressure of nuclear matter are given by
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where E∗
i (k) =

√
k2 + M∗

i
2 (i = p,n). In the context of

density functional theory, it is possible to parametrize the
exchange and correlation effects through local potentials
(Kohn-Sham potentials), as long as those contributions are
small enough [51]. The Hartree values are the ones that control
the dynamics in the relativistic Dirac-Brückner-Hartree-Fock
(DBHF) calculations. Therefore, the local meson fields in the
RMF formalism can be interpreted as Kohn-Sham potentials
and, in this sense, Eqs. (2)–(7) include effects beyond the
Hartree approach through the nonlinear couplings [1,2,44].

III. RESULTS AND DISCUSSIONS

Our calculated results are shown in Figs. 1–10 and Table I
for both finite nuclei and infinite nuclear matter systems. The
effect of the δ meson and the crossed coupling constant �v of
the ω-ρ fields on some selected nuclei, such as 48Ca and 208Pb,
are demonstrated in Figs. 1–4 and the nuclear matter outcomes
are displayed in rest of the figures and Table I. In one of our
recent publications [11], the explicit dependence of �v(ω − ρ)
on nuclear matter properties is shown and it is found that it has
a significant implication on various physical properties, such
as the mass and radius of a neutron star and Esym asymmetry
energy and its slope parameter Lsym for infinite nuclear matter
at high densities. Here, only the influence of �v on finite nuclei
and that of gδ on both finite and infinite nuclear systems are
studied.

A. Selection of gδ , gρ , and �v

The G2 set is a phenomenological parametrization. All the
parameters in this set are adjusted to reproduce some specific
experimental data. Therefore, each of the coupling constant
contains physics and it is difficult to disentangle the influence
of the various physical properties on these parameters. Apart
from this, all the parameters depend on the underlying fitting
strategy. Thus we cannot just add one more parameter like gδ

to study its effect keeping all the other parameters of G2 fixed.
This is because the physics described by this gδ might already
be included in the other parameters and leading towards a

FIG. 1. (Color online) Binding energy (BE), root mean square
radius, and first (1sn,p) and last (1f n, 2sp) occupied orbits for 48Ca
using various (gρ , gδ , �v) combinations of Table I.

FIG. 2. (Color online) Same as Fig. 1 for 208Pb.

double counting. Since both gδ and gρ depend on the isospin
symmetry, we expect that some parts of the effects of gδ might
be taken into account in the parameter gρ at the time of the
fitting of the G2 set. Fortunately, in this particular case of gδ ,
we expect a connection between the parameters gδ and gρ as
both of them carry isospin. In such a situation, there are two
possible solutions to this problem: (i) the dependence on both
gδ and gρ independently, in this case, modify the parameter
gρ to fit an experimental data which is linked to both gρ and
gδ for each new given value of gδ , such as the binding energy
or (ii) get a completely new parameter set as it is done for
G2 including the δ meson as a degree of freedom from the
beginning, i.e., start from ab initio calculations as done in [52].

Here, we study the effect of gδ on finite and infinite nuclear
matter systems adopting the first approach. The combination
of gδ and gρ are chosen in such a way that for a given value
of gδ , the combined values of gδ and gρ on top of G2 (with
changed gρ) reproduce the physical observable of a particular

FIG. 3. The neutron and proton density with radial coordinate
r(fm) at different combinations of (gρ , gδ) in (a) and with �v in
(c). The variation of spin-orbit potential for proton and neutron are
shown in (b) and (d) by keeping the same gδ and �v as (a) and (c),
respectively.
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FIG. 4. Same as Fig. 3 for 208Pb.

experimental measure. In this case, we have taken the binding
energies of 48Ca and 208Pb as the experimental data. These
values change from their original prediction of G2 with the
addition of a given gδ . To bring back the G2 binding energies
of 48Ca and 208Pb, we modified the gρ coupling. This is due
to the isospin coupling being linked with both gδ and gρ . In
this way, we get various combinations of (gρ , gδ) for different
given value of gδ . The combination of gρ and gδ are listed in
Table I which are used in the calculations for both finite nuclei
and infinite nuclear matter. It is to be noted that while setting
the gδ-gρ combination, the �v is taken as zero. On the other
hand, �v changes on top of the pure G2 parameter set to see
the influence of �v for finite nuclei, as the binding energy and
proton radius rp are almost insensitive to �v [53].

B. Finite nuclei

In this section, we analyzed the effects of the δ meson
and �v couplings in finite nuclei. For this, we calculate the

FIG. 5. (Color online) Variation of nucleonic effective masses,
binding energy per particle (BE/A) and pressure density as a function
of gδ on the saturation density of the G2 parameter set for nuclear
matter.

FIG. 6. (Color online) Energy per particle and pressure density
with respect to baryon density at various combinations of gδ from
Table I.

binding energy (BE), root mean square neutron (rn), proton
(rp), charge (rch), and matter radius (rrms), and energy of first-
and last-filled orbitals of 48Ca and 208Pb with various gδ and
�v . The finite size of the nucleon is taken into account for the
charge radius using the relation rch =

√
r2
p + 0.64. The results

are shown in Figs. 1 and 2.
When we analyze the effect of gδ , we keep �v = 0 and

vice versa. In Fig. 1(a), we have shown the binding energy
difference �BE of 48Ca between the two solutions obtained
with (gρ,gδ = 0) and (gρ,gδ), i.e.,

�BE = BE(gρ,gδ = 0) − BE(gρ,gδ). (22)

Here BE(gρ,gδ = 0) is the binding energy at gδ = 0 in the
adjusted combination of (gρ,gδ) and BE(gρ,gδ) is the binding
energy with nonzero gρ and gδ combined which reproduce the
same binding of pure G2. Thus, the contribution of the δ meson
to the binding energy is obtained from this �BE. Similarly,
the effect of the δ meson in the radius of finite nuclei is seen

FIG. 7. (Color online) Symmetry energy Esym (MeV) of symmet-
ric nuclear matter with respect to density by taking different value of
gδ sets. The heavy ion collision (HIC) experimental data [63] (shaded
region) and nonrelativistic Skyrme GSkII [64] and Skxs20 [65]
predictions are also given. �v = 0.0 is taken.
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FIG. 8. (Color online) Constraints on Esym with its first deriva-
tive, Lsym, at saturation density for symmetric nuclear matter. The
experimental results of HIC [63], PDR [70,71], and IAS [72] are
given. The theoretical prediction of the finite range droplet model
(FRDM) and Skyrme parametrization are also given [73], SHF [59].

from

�r = r(gρ,gδ = 0) − r(gρ,gδ), (23)

where r(gρ,gδ = 0) is the radius at gδ = 0 in the adjusted
(gρ,gδ) and r(gρ,gδ) is the G2 radius after reshuffling the gρ

and gδ combination. The �r with corresponding gδ for 48Ca
is shown in Fig. 1(b). We have adopted the same scheme to
estimate the effect of the δ meson on the first and last occupied
levels, which are shown in Fig. 1(c). It is given as

�ε = ε(gρ,gδ = 0) − ε(gρ,gδ), (24)

where ε(gρ,gδ = 0) is the single-particle energy at (gρ gδ = 0)
combination, gρ is not the same as the G2 set and ε(gρ,gδ) is
the energy of the occupied level with different values of gρ

and gδ sets.
The effects of �v coupling on 48Ca properties such as

binding energy, radius, and single-particle energy of the first
and last occupied levels are shown in the second column

FIG. 9. (Color online) Symmetry energy Esym (MeV), slope co-
efficients Lsym (MeV), and Ksym (MeV) at different sets of gρ and gδ

as given in Table I with �v = 0.0.

FIG. 10. (Color online) The mass and radius of a neutron star at
different values of gδ . (a) M/M� with neutron star density (gm/cm3),
(b) M/M� with neutron star radius (km).

of Fig. 1. Here, we have taken gδ = 0. Following the same
procedure of gδ to evaluate �BE, �r , and �ε, we estimate the
contributions of �v on the physical quantities. The variation
of binding energy (�BE) with �v can be written as

�BE = BE(G2) − BE(G2 + �v), (25)

where BE(G2) is the binding energy with pure G2 set and
BE(G2 + �v) is for G2 with additional ω-ρ cross coupling.
The changes in the radius with �v is given by

�r = r(G2) − r(G2 + �v), (26)

where r(G2) is the radius of 48Ca with pure G2 and r(G2 +
�v) with additional �v on top of pure G2. This results are
shown in Fig. 1(e). The effect of �v on the first- and last-filled
single-particle levels are given in Fig. 1(f) using

�ε = ε(G2) − ε(G2 + �v), (27)

where ε(G2) is the single-particle energy of the first and last
occupied levels of 48Ca with original G2 and ε(G2 + �v) at
various �v values on top of the G2 parameter set. Similar to
48Ca, we have repeated the calculations for 208Pb in Fig. 2 to

TABLE I. The symmetry energy Esym (MeV), slope coefficient
Lsym (MeV), and Ksym (MeV) at different sets of (gρ , gδ).

(gρ , gδ) Esym Lsym Ksym

(0.755, 0.0) 36.48 100.91 −7.57
(0.763, 0.1) 36.08 100.11 −4.25
(0.7875, 0.2) 34.94 97.88 5.68
(0.827, 0.3) 33.05 94.21 22.21
(0.879, 0.4) 30.38 89.01 45.37
(0.9423, 0.5) 26.99 82.45 75.10
(1.0142, 0.6) 22.84 74.40 111.45
(1.0937, 0.7) 17.98 65.02 154.36
(1.179, 0.8) 12.39 54.24 203.85
(1.2691, 0.9) 6.09 42.10 259.91
(1.3634, 1.0) −0.89 28.71 322.51
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study the effect of gδ and �v . We have followed exactly the
same method as that of 48Ca and calculated the variation in
binding energy, radii, and single-particle levels. We obtained
almost similar results to those of Fig. 1.

From the figures (Figs. 1 and 2), it is evident that the
binding energy, radii, and single particle levels εn,p affected
drastically with gδ contrary to the effect of �v . A careful
inspection shows a slight decrease of rn with the increase of
�v consistent with the analysis of [53]. Again, it is found that
the binding energy increases with an increase of the coupling
strength up to gδ ∼ 1.1 and no convergence solution available
beyond this value. Similar to the gδ limit, there is a limit for
�v ∼ 0.16 also, beyond which no solution exists. From the
anatomy of gδ on rn and rp (or �r), we find their opposite
trend in size. That means the value of rn decreases and rp

increases with gδ for both 48Ca and 208Pb. This interesting
result may help us to settle the charge radius anomaly of 40Ca
and 48Ca.

In Figs. 1(c) and 1(f), we have shown the change in single-
particle energy �εn,p of the first (1sn,p) and last (1f n and 2sp)
filled orbitals for 48Ca as a function of gδ and �v , respectively.
The effect of �v is marginal, i.e., almost negligible on εn,p

orbitals which is given in Fig. 1(f). However, this is significant
with the increasing value of gδ . We also get a similar trend for
208Pb, which is shown in Fig. 2(c). In both the representative
cases, we notice orbital shifting only for the last-filled levels
(for gδ � 1.0, not shown in the figure).

The change in nucleon density �ρ distribution (proton ρp

and neutron ρn) and spin orbit interaction potential �Uso for
finite nuclei are shown in Figs. 3 and 4. The calculations are
done with one set of (gρ , gδ) for checking the effect of gδ in
finite nuclei, and shown in Figs. 3(a) and 3(b) for 48Ca. Here,
we have taken gδ = 1.0 and corresponding modified gρ =
1.3634 for calculating the �ρ [ρ(gρ = 1.3634,gδ = 0) −
ρ(gρ = 1.3634,gδ = 1.0)] and �Uso[Uso(gρ = 1.3634,gδ =
0) − Uso(gρ = 1.3634,gδ = 1.0)]. To see the effectiveness of
�v on the nucleon distribution and spin orbit interaction
potential, we have estimated the �ρ[ρ(G2) − ρ(G2 + �v =
0.16)] and �Uso[Uso(G2) − Uso(G2 + �v = 0.16)] for both
neutron and proton, respectively. The results are shown in
Figs. 3(c) and 3(d). Similarly, we have given these observables
for 208Pb in Fig. 4. It is clear from this analysis that the
coupling strengths of the δ meson and the isoscalar-vector
and isovector-vector cross couplings are quite influential
for the density and spin-orbit interaction. This effect is
mostly confined to the central and intermediate region of the
nucleus.

C. Nuclear matter

In this section, we calculate nuclear matter properties, such
as energy and pressure densities, symmetry energy, radius
and mass of the neutron star using ω-ρ and δ couplings on
top of the G2 parametrization. As mentioned earlier, the ω-ρ
cross coupling plays a vital role for nuclear matter systems,
a detailed account is available in Ref. [11]. The main aim of
this section is to take the δ meson as an additional degree of
freedom in our calculations and elaborate on the effect of the
nuclear matter system within the G2 parameter set. In a highly

asymmetric system, such as the neutron star and supernova
explosion, the contribution of the δ meson is important. This
is because of the high asymmetry due to the isospin as
well as the difference in neutron and proton masses. Here,
in the calculations, the β equilibrium and charge neutrality
conditions are not considered. We only vary the neutron and
proton components with an asymmetry parameter α, defined
as α = ρn−ρp

ρn+ρp
. The splitting in nucleon masses is evident from

Eqs. (16) and (17) due to the inclusion of the isovector scalar
δ meson. For α = 0.0, the nuclear matter system is purely
symmetrical and for other nonzero values of α, the system
gets more and more asymmetric. For α = 1.0, it is a case
of pure neutron matter. In Fig. 5(a), the effective masses of
the proton and neutron are given as a function of gδ . As we
have mentioned, the δ meson is responsible for the splitting of
effective masses [Eqs. (16) and (17)], this splitting increases
continuously with coupling strength gδ . In Fig. 5, the splitting
is shown for a few representative cases at α = 0.0, 0.75, and
1.0. The solid line is for α = 0.0 and α = 0.75, 1.0 are shown
by dotted and dashed lines, respectively. From the figure, it is
clear that the effective mass is unaffected by symmetric matter.
The proton effective mass M∗

p is above the reference line with
α = 0 and the neutron effective mass always lies below it. The
effect of gδ on the binding energy per nucleon is shown in
Fig. 5(b) and pressure density in Fig. 5(c). One can easily see
the effect of the δ-meson interaction on the energy and pressure
density of the nuclear system. The energy and pressure density
show opposite trends to each other with the increase of gδ .

D. Energy and pressure density

We analyze the binding energy per nucleon and pressure
density including the contribution of the δ meson in the
G2 Lagrangian as a function of density. As was mentioned
earlier, the addition of the δ meson is due to its importance on
asymmetric nuclear matter as well as to make a fully fledged
E-RMF model. This is tested by calculating the observables at
different values of the δ-meson coupling strength gδ . In Fig. 6,
we show the calculated BE/A and P for pure neutron matter
(α = 1.0) with baryonic density for different combinations
of gρ and gδ values, which is shown in the first column in
Table I.

It is seen from Fig. 6(a) that the binding increases with gδ in
the lower density region and in the higher density region, the
binding energy curve for finite gδ crosses the curve of gδ = 0.0.
The EOS with the δ meson is stiffer than the one with a pure G2
set at higher density. As a result, one will get a heavier mass for
the neutron star, which agrees with the present experimental
finding [54]. For a comparison of the data at lower density
(dilute system, 0 < ρ/ρ0 < 0.16), the zoomed version of the
region is shown as an inset Fig. 6(c) inside Fig. 6(a). From
the zoomed inset portion, it is clearly seen that the curves
with various gδ at α = 1.0 (pure neutron matter) deviate from
other theoretical predictions, such as Baldo-Maieron [55],
DBHF [56], Friedman [57], auxiliary-field diffusion Monte
Carlo (AFDMC) [58], and Skyrme interaction [59]. This is
an inherited problem from the RMF or E-RMF formalisms,
which needs more theoretical attention. Similarly, the pressure
density for different sets of (gρ , gδ) are given in Fig. 6(b). At
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high density we can easily see that the curve becomes stiffer
with the coupling strength gδ . The experimental constraint of
the equation of state obtained from heavy ion flow data for
both stiff and soft EOS is also displayed for comparison in the
region 2 < ρ/ρ0 < 4.6 [60]. Our results match with the stiff
EOS data of Ref. [60].

E. Symmetry energy

The symmetric energy Esym is important in infinite nuclear
matter and finite nuclei, because of isospin dependence in the
interaction. The isospin asymmetry arises due to the difference
in densities and masses of the neutron and proton, respectively.
The density type of isospin asymmetry is taken care of by the ρ
meson (isovector-vector meson) and mass asymmetry by the δ
meson (isovector-scalar meson). The expression of symmetry
energy Esym is a combined expression of ρ and δ mesons,
which is defined as [4,8,61,62]

Esym(ρ) = Ekin
sym(ρ) + Eρ

sym(ρ) + Eδ
sym(ρ), (28)

with

Ekin
sym(ρ) = k2

F

6E∗
F

; Eρ
sym(ρ) = g2

ρρ

8m∗2
ρ

(29)

and

Eδ
sym(ρ) = −1

2
ρ

g2
δ

m2
δ

(
M∗

EF

)2

uδ

(
ρ,M∗) . (30)

The last function uδ is from the discreteness of the Fermi
momentum. This momentum is quite large in the nuclear
matter system and can be treated as a continuum and
continuous system. The function uδ is defined as

uδ(ρ,M∗) = 1

1 + 3 g2
δ

m2
δ

(
ρs

M∗ − ρ

EF

)
. (31)

In the limit of the continuum, the function uδ ≈ 1. The whole
symmetry energy (Ekin

sym + E
pot
sym) arises from ρ and δ mesons

and is given as

Esym(ρ) = k2
F

6E∗
F

+ g2
ρρ

8m∗2
ρ

− 1

2
ρ

g2
δ

m2
δ

(
M∗

EF

)2

uδ(ρ,M∗),

(32)

where the effective energy E∗
F =

√
(k2

F + M∗2), kF is the
Fermi momentum. The effective mass of the ρ meson is
modified, because of the cross coupling of ρ-ω and is given by

m∗2
ρ =

(
1 + ηρ

	

M

)
m2

ρ + 2g2
ρ(�vW

2). (33)

The cross coupling of isoscalar-isovector mesons (�v) mod-
ified the density dependence of Esym without affecting the
saturation properties of the symmetric nuclear matter (SNM).
This is explained explicitly in Ref. [11] so there is no need for
special attention here. In the E-RMF model with a pure G2 set,
the symmetric nuclear matter saturates at ρ0 = 0.153 fm−3,
BE/A = 16.07 MeV, compressibility K0 = 215 MeV, and
symmetry energy of Esym = 36.42 MeV [1,2].

In the numerical calculation, the coefficient of symmetry
energy Esym is obtained by the energy difference of symmetric
and pure neutron matter at saturation and it is defined by
Eq. (32) for a quantitative description at various densities.
Our results for Esym are shown in Fig. 7 with experimental
heavy ion collision (HIC) data [63] and other theoretical
predictions of the nonrelativistic Skyrme-Hartree-Fock model.
The calculation is done for symmetric nuclear matter with
different values of gδ , which are compared with two selective
force parameter sets GSkII [64] and Skxs20 [65]. For more
discussion one can see Ref. [59], where 240 different Skyrme
parametrizations are used. Here in our calculation, as usual
�v = 0 to see the effect of δ-meson coupling on Esym. In
this figure, the shaded region represents the HIC data [63]
within the 0.3 < ρ/ρ0 < 1.0 region and the square and circle
symbols represent the SHF results for GSkII and Skxs20,
respectively. Analyzing Fig. 7, the Esym of G2 matches with the
shaded region in the low density region, however as the density
increases, the value of Esym moves away. Again, the symmetry
energy becomes softer by increasing the value of coupling
strength gδ . For a higher value of gδ , again the curve moves
far from the empirical shaded area. In this way, we can fix
the limiting constraint on the coupling strength of the δ meson
and nucleon. This constraint may help to improve the G2 + gδ

parameter set for both finite and infinite nuclear systems. It is
important to note that the EOS and also the symmetry energy
are calculated in Ref. [62]. Analyzing the results of the EOS
with the DD-ME2 and DD-MEδ parametrizations, we find
that DD-ME2 overestimates the data, while DD-MEδ matches
well. On the other hand the symmetry energy with these sets
coincides up to 2ρ0 of the nuclear matter density. From this
result, we cannot isolate the contribution of the δ meson on
Esym or EOS, because the goal of the two parametrizations is
to reproduce the data. However, in our present case, our aim is
to entangle the contribution of the δ meson with and without
gδ coupling keeping all other parameters intact.

The symmetry energy of a nuclear system is a function of
baryonic density ρ, hence it can be expanded in a Taylor series
around the saturation density ρ0 as Eq. (32):

Esym(ρ) = E0 + LsymY + 1
2KsymY2 + O[Y3], (34)

where E0 = Esym(ρ = ρ0), Y = ρ−ρ0

3ρ0
, and the coefficients

Lsym and Ksym are defined as

Lsym = 3ρ

(
∂Esym

∂ρ

)
ρ=ρ0

, Ksym = 9ρ2

(
∂2Esym

∂ρ2

)
ρ=ρ0

.

Here Lsym is the slope parameter defined as the slope
of Esym at saturation. The quantity Ksym represents the
curvature of Esym with respect to density. A large number
of investigations have been made to fix the value of Esym,
Lsym, and Ksym [11,59,63,66–69]. In Fig. 8, we have given
the symmetry energy with its first derivative at saturation
density with different values of coupling strength starting from
gδ = 0.0–0.6. The variations of Esym, Lsym, and Ksym with
gδ are listed in Table I. The variation in symmetry energy
takes place from 36.48 to −0.89 MeV, Lsym from 100.91 to
28.71 MeV, and Ksym from −7.57 to 322.51 MeV at saturation
density corresponding to 0.0 � gδ � 1.0. The pure G2 set
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(0.755, 0.0) is not sufficient to predict this constraint on Esym

and Lsym. It is suggested to introduce the δ meson as an
extra degree of freedom into the model to bring the data
within the prediction of experimental and other theoretical
constraints. From this investigation, one can see that the
permissible values of Esym, Lsym, and Ksym are not obtained
by all the combinations of gρ and gδ . Thus, it is needed to
choose a suitable set of gρ and gδ for a proper parametrization
both for finite nuclei and infinite nuclear matter. The above
tabulated results are also depicted in Fig. 9 to get a graphical
representation of Esym, Lsym, and Ksym. All the three quantities
vary substantially with gδ as shown in the figure. The slope
parameter Lsym and symmetry energy Esym decreases with gδ

to an exponential increase of Ksym.

F. Neutron star

In this section, we study the effect of the δ meson on the
mass and radius of a neutron star. Recently, an experimental
observation predicted the constraint on the mass of a neutron
star and its radius [54]. This observation suggests that the
theoretical models should predict the star mass and radius as
M � (1.97 ± 0.04)M� and 11 < R(km) < 15. Keeping this
point in mind, we calculate the mass and radius of a neutron
star and analyze their variation with gδ .

In the interior part of a neutron star, the neutron chemical
potential exceeds the combined mass of the proton and
electron. Therefore, asymmetric matter with an admixture of
electrons rather than pure neutron matter, is the more likely
composition of matter in neutron star interiors. The concen-
trations of neutrons, protons, and electrons can be determined
from the condition of β equilibrium n ↔ p + e + ν̄ and from
charge neutrality, assuming that neutrinos are not degenerate.
Here n, p, e, ν are have the usual meaning as neutron,
proton, electron, and neutrino. In the momentum conservation
condition νn = νp + νe, np = ne, where νn = μn − W + 1

2R

and νp = μp − W − 1
2R, where μn =

√
(k2

f n + M∗2
n) and

μp =
√

(k2
fp + M∗2

p) are the chemical potentials, and kf n and
kfp are the Fermi momentum for the neutron and proton,
respectively. Imposing these conditions, in the expressions
of E and P [Eqs. (20)–(21)], we evaluate E and P as a
function of density. To calculate the star structure, we use
the Tolman-Oppenheimer-Volkoff (TOV) equations for the
structure of a relativistic spherical and static star composed of a
perfect fluid derived from Einstein’s equations [74], where the
pressure and energy densities obtained from Eqs. (20) and (21)
are the inputs. The TOV equation is given by [74]

dP
dr

= −G

r

[E + P][M + 4πr3P]

(r − 2GM)
, (35)

dM

dr
= 4πr2E, (36)

with G as the gravitational constant and M(r) as the enclosed
gravitational mass. We have used c = 1. Given the P and E ,
these equations can be integrated from the origin as an initial
value problem for a given choice of central energy density,
(εc). The value of r(=R), where the pressure vanishes defines
the surface of the star.

The results of mass and radius with various δ-meson
coupling strength gδ is shown in Fig. 10. In the left panel,
the neutron star mass with density (gm/cm3) is given, where
we can see the effect of the newly introduced extra degree of
freedom δ meson into the system. On the right side of the
figure, M/M� is depicted with respect to radius (km), where
M is the mass of the star and M� is the solar mass. Here,
we used the different set of gρ and gδ coupling constants for
calculating the star properties. From this observation, we can
say that the δ meson is important not only for the asymmetric
system normal density, but also is substantially effective in
the high density system. If we compare these results with the
previous results [11], i.e., with the effects of the cross coupling
of ω-ρ on the mass and radius of a neutron star, the effects are
opposite to each other. That means the star masses decreases
with �v , whereas it increases with gδ . Thus a finer tuning in
the mass and radius of a neutron star is possible by a suitable
adjustment on the gδ value in the extended parametrization
of G2 + �v + gδ to keep the star properties within the recent
experimental observations [54].

IV. SUMMARY AND CONCLUSIONS

In summary, we discussed the effects of cross coupling of
ω-ρ mesons in finite nuclei on top of the pure G2 parameter set.
The variations of binding energy, rms radii, and energy levels
of protons and neutrons are analyzed with increasing values
of �v . The change in neutron distribution radius rn with �v is
found to be substantial compared to the less effectiveness of
the binding energy and proton distribution radius for the two
representative nuclei 48Ca and 208Pb. Thus, to fix the neutron
distribution radius depending on the outcome of the PREX
experimental [16] result, the inclusion of the �v coupling
strength is crucial. This also helps the need of nuclear equation
of states as is discussed widely by various authors [10,11].
In the second part of our analysis, for the sensitivity of the
δ-meson coupling, we have fixed the binding energies of 48Ca
and 208Pb and reshuffled the coupling constants gρ and gδ .
With these obtained combinations (gρ , gδ), we evaluated the
root mean square radius, binding energy, single particle energy,
density, and spin-orbit interaction potential for 48Ca and 208Pb.

We find a substantial contribution comes from the δ-meson
coupling, both in finite and infinite nuclear matter, and very
different in nature, which may be helpful to fix various
experimental constraints. For example, with the help of gδ ,
it is possible to modify the binding energy, charge radius, and
flipping of the orbits in asymmetric finite nuclei. The nuclear
equation of state can be made stiffer with the inclusion of
δ-meson coupling. On the other hand, softening of symmetry
energy is also possible with the help of this extra degree of
freedom. In a compact system, it is possible to fix the limiting
values of gδ and �v by testing the effect of available constraints
on symmetry energy and its first derivative with respect to the
matter density. This coupling may be useful to fix the mass and
radius of a neutron star in light of the recent observation [54].
Thus, we suggest the importance of the inclusion of gδ coupling
in the E-RMF Lagrangian, where, generally, it is ignored in
the modern relativistic interaction.
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and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012).
[60] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592

(2002).
[61] T. Matsui, Nucl. Phys. A 370, 365 (1981).
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A. Trzcińska, Phys. Rev. C 76, 034305 (2007).

[66] C. Xu, B.-A. Li, and L.-W. Chen, Phys. Rev. C 82, 054607
(2010).

044001-10

http://dx.doi.org/10.1016/0375-9474(95)00488-2
http://dx.doi.org/10.1016/0375-9474(95)00488-2
http://dx.doi.org/10.1016/0375-9474(95)00488-2
http://dx.doi.org/10.1016/0375-9474(95)00488-2
http://dx.doi.org/10.1016/S0375-9474(96)00472-1
http://dx.doi.org/10.1016/S0375-9474(96)00472-1
http://dx.doi.org/10.1016/S0375-9474(96)00472-1
http://dx.doi.org/10.1016/S0375-9474(96)00472-1
http://dx.doi.org/10.1016/j.physletb.2004.09.026
http://dx.doi.org/10.1016/j.physletb.2004.09.026
http://dx.doi.org/10.1016/j.physletb.2004.09.026
http://dx.doi.org/10.1016/j.physletb.2004.09.026
http://dx.doi.org/10.1103/PhysRevC.63.044321
http://dx.doi.org/10.1103/PhysRevC.63.044321
http://dx.doi.org/10.1103/PhysRevC.63.044321
http://dx.doi.org/10.1103/PhysRevC.63.044321
http://dx.doi.org/10.1103/PhysRevC.63.024314
http://dx.doi.org/10.1103/PhysRevC.63.024314
http://dx.doi.org/10.1103/PhysRevC.63.024314
http://dx.doi.org/10.1103/PhysRevC.63.024314
http://dx.doi.org/10.1103/PhysRevC.69.044315
http://dx.doi.org/10.1103/PhysRevC.69.044315
http://dx.doi.org/10.1103/PhysRevC.69.044315
http://dx.doi.org/10.1103/PhysRevC.69.044315
http://dx.doi.org/10.1103/PhysRevC.75.035808
http://dx.doi.org/10.1103/PhysRevC.75.035808
http://dx.doi.org/10.1103/PhysRevC.75.035808
http://dx.doi.org/10.1103/PhysRevC.75.035808
http://dx.doi.org/10.1016/S0370-2693(97)00306-7
http://dx.doi.org/10.1016/S0370-2693(97)00306-7
http://dx.doi.org/10.1016/S0370-2693(97)00306-7
http://dx.doi.org/10.1016/S0370-2693(97)00306-7
http://dx.doi.org/10.1103/PhysRevC.68.054318
http://dx.doi.org/10.1103/PhysRevC.68.054318
http://dx.doi.org/10.1103/PhysRevC.68.054318
http://dx.doi.org/10.1103/PhysRevC.68.054318
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1088/0954-3899/40/8/085104
http://dx.doi.org/10.1088/0954-3899/40/8/085104
http://dx.doi.org/10.1088/0954-3899/40/8/085104
http://dx.doi.org/10.1088/0954-3899/40/8/085104
http://dx.doi.org/10.1016/0375-9474(91)90439-D
http://dx.doi.org/10.1016/0375-9474(91)90439-D
http://dx.doi.org/10.1016/0375-9474(91)90439-D
http://dx.doi.org/10.1016/0375-9474(91)90439-D
http://dx.doi.org/10.1007/BF01294948
http://dx.doi.org/10.1007/BF01294948
http://dx.doi.org/10.1007/BF01294948
http://dx.doi.org/10.1007/BF01294948
http://dx.doi.org/10.1016/0375-9474(92)90032-F
http://dx.doi.org/10.1016/0375-9474(92)90032-F
http://dx.doi.org/10.1016/0375-9474(92)90032-F
http://dx.doi.org/10.1016/0375-9474(92)90032-F
http://dx.doi.org/10.1016/0375-9474(94)90923-7
http://dx.doi.org/10.1016/0375-9474(94)90923-7
http://dx.doi.org/10.1016/0375-9474(94)90923-7
http://dx.doi.org/10.1016/0375-9474(94)90923-7
http://dx.doi.org/10.1103/PhysRevLett.85.5296
http://dx.doi.org/10.1103/PhysRevLett.85.5296
http://dx.doi.org/10.1103/PhysRevLett.85.5296
http://dx.doi.org/10.1103/PhysRevLett.85.5296
http://dx.doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/10.1016/j.physletb.2006.07.064
http://dx.doi.org/10.1016/j.physletb.2006.07.064
http://dx.doi.org/10.1016/j.physletb.2006.07.064
http://dx.doi.org/10.1016/j.physletb.2006.07.064
http://dx.doi.org/10.1103/PhysRevC.76.034314
http://dx.doi.org/10.1103/PhysRevC.76.034314
http://dx.doi.org/10.1103/PhysRevC.76.034314
http://dx.doi.org/10.1103/PhysRevC.76.034314
http://dx.doi.org/10.1209/0295-5075/82/12001
http://dx.doi.org/10.1209/0295-5075/82/12001
http://dx.doi.org/10.1209/0295-5075/82/12001
http://dx.doi.org/10.1209/0295-5075/82/12001
http://dx.doi.org/10.1103/PhysRevC.81.024308
http://dx.doi.org/10.1103/PhysRevC.81.024308
http://dx.doi.org/10.1103/PhysRevC.81.024308
http://dx.doi.org/10.1103/PhysRevC.81.024308
http://dx.doi.org/10.1103/PhysRevC.86.021302
http://dx.doi.org/10.1103/PhysRevC.86.021302
http://dx.doi.org/10.1103/PhysRevC.86.021302
http://dx.doi.org/10.1103/PhysRevC.86.021302
http://dx.doi.org/10.1016/S0031-8914(58)95281-9
http://dx.doi.org/10.1016/S0031-8914(58)95281-9
http://dx.doi.org/10.1016/S0031-8914(58)95281-9
http://dx.doi.org/10.1016/S0031-8914(58)95281-9
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1016/0375-9474(95)00393-2
http://dx.doi.org/10.1016/0375-9474(95)00393-2
http://dx.doi.org/10.1016/0375-9474(95)00393-2
http://dx.doi.org/10.1016/0375-9474(95)00393-2
http://dx.doi.org/10.1142/S0218301398000130
http://dx.doi.org/10.1142/S0218301398000130
http://dx.doi.org/10.1142/S0218301398000130
http://dx.doi.org/10.1142/S0218301398000130
http://dx.doi.org/10.1103/PhysRevC.65.045201
http://dx.doi.org/10.1103/PhysRevC.65.045201
http://dx.doi.org/10.1103/PhysRevC.65.045201
http://dx.doi.org/10.1103/PhysRevC.65.045201
http://dx.doi.org/10.1103/PhysRevC.67.015203
http://dx.doi.org/10.1103/PhysRevC.67.015203
http://dx.doi.org/10.1103/PhysRevC.67.015203
http://dx.doi.org/10.1103/PhysRevC.67.015203
http://dx.doi.org/10.1103/PhysRevC.70.015203
http://dx.doi.org/10.1103/PhysRevC.70.015203
http://dx.doi.org/10.1103/PhysRevC.70.015203
http://dx.doi.org/10.1103/PhysRevC.70.015203
http://dx.doi.org/10.1016/j.nuclphysa.2003.12.001
http://dx.doi.org/10.1016/j.nuclphysa.2003.12.001
http://dx.doi.org/10.1016/j.nuclphysa.2003.12.001
http://dx.doi.org/10.1016/j.nuclphysa.2003.12.001
http://dx.doi.org/10.1016/j.physrep.2004.12.004
http://dx.doi.org/10.1016/j.physrep.2004.12.004
http://dx.doi.org/10.1016/j.physrep.2004.12.004
http://dx.doi.org/10.1016/j.physrep.2004.12.004
http://dx.doi.org/10.1142/S0218301308010805
http://dx.doi.org/10.1142/S0218301308010805
http://dx.doi.org/10.1142/S0218301308010805
http://dx.doi.org/10.1142/S0218301308010805
http://dx.doi.org/10.1103/PhysRevC.80.045808
http://dx.doi.org/10.1103/PhysRevC.80.045808
http://dx.doi.org/10.1103/PhysRevC.80.045808
http://dx.doi.org/10.1103/PhysRevC.80.045808
http://dx.doi.org/10.1103/PhysRevC.80.025806
http://dx.doi.org/10.1103/PhysRevC.80.025806
http://dx.doi.org/10.1103/PhysRevC.80.025806
http://dx.doi.org/10.1103/PhysRevC.80.025806
http://dx.doi.org/10.1088/1674-4527/10/12/006
http://dx.doi.org/10.1088/1674-4527/10/12/006
http://dx.doi.org/10.1088/1674-4527/10/12/006
http://dx.doi.org/10.1088/1674-4527/10/12/006
http://dx.doi.org/10.1103/PhysRevC.44.2552
http://dx.doi.org/10.1103/PhysRevC.44.2552
http://dx.doi.org/10.1103/PhysRevC.44.2552
http://dx.doi.org/10.1103/PhysRevC.44.2552
http://dx.doi.org/10.1016/0003-4916(90)90330-Q
http://dx.doi.org/10.1016/0003-4916(90)90330-Q
http://dx.doi.org/10.1016/0003-4916(90)90330-Q
http://dx.doi.org/10.1016/0003-4916(90)90330-Q
http://dx.doi.org/10.1103/PhysRevC.38.390
http://dx.doi.org/10.1103/PhysRevC.38.390
http://dx.doi.org/10.1103/PhysRevC.38.390
http://dx.doi.org/10.1103/PhysRevC.38.390
http://dx.doi.org/10.1016/0370-2693(93)91561-Z
http://dx.doi.org/10.1016/0370-2693(93)91561-Z
http://dx.doi.org/10.1016/0370-2693(93)91561-Z
http://dx.doi.org/10.1016/0370-2693(93)91561-Z
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1142/S0218301397000299
http://dx.doi.org/10.1142/S0218301397000299
http://dx.doi.org/10.1142/S0218301397000299
http://dx.doi.org/10.1142/S0218301397000299
http://dx.doi.org/10.1088/0034-4885/52/4/002
http://dx.doi.org/10.1088/0034-4885/52/4/002
http://dx.doi.org/10.1088/0034-4885/52/4/002
http://dx.doi.org/10.1088/0034-4885/52/4/002
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/S0375-9474(99)00106-2
http://dx.doi.org/10.1016/S0375-9474(99)00106-2
http://dx.doi.org/10.1016/S0375-9474(99)00106-2
http://dx.doi.org/10.1016/S0375-9474(99)00106-2
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevC.64.034314
http://dx.doi.org/10.1103/PhysRevC.64.034314
http://dx.doi.org/10.1103/PhysRevC.64.034314
http://dx.doi.org/10.1103/PhysRevC.64.034314
http://dx.doi.org/10.1088/0954-3899/37/7/075107
http://dx.doi.org/10.1088/0954-3899/37/7/075107
http://dx.doi.org/10.1088/0954-3899/37/7/075107
http://dx.doi.org/10.1088/0954-3899/37/7/075107
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1103/PhysRevC.77.015801
http://dx.doi.org/10.1103/PhysRevC.77.015801
http://dx.doi.org/10.1103/PhysRevC.77.015801
http://dx.doi.org/10.1103/PhysRevC.77.015801
http://dx.doi.org/10.1103/PhysRevC.77.054309
http://dx.doi.org/10.1103/PhysRevC.77.054309
http://dx.doi.org/10.1103/PhysRevC.77.054309
http://dx.doi.org/10.1103/PhysRevC.77.054309
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1103/PhysRevLett.101.132501
http://dx.doi.org/10.1103/PhysRevLett.101.132501
http://dx.doi.org/10.1103/PhysRevLett.101.132501
http://dx.doi.org/10.1103/PhysRevLett.101.132501
http://dx.doi.org/10.1103/PhysRevC.85.035201
http://dx.doi.org/10.1103/PhysRevC.85.035201
http://dx.doi.org/10.1103/PhysRevC.85.035201
http://dx.doi.org/10.1103/PhysRevC.85.035201
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1016/0375-9474(81)90103-2
http://dx.doi.org/10.1016/0375-9474(81)90103-2
http://dx.doi.org/10.1016/0375-9474(81)90103-2
http://dx.doi.org/10.1016/0375-9474(81)90103-2
http://dx.doi.org/10.1103/PhysRevC.84.054309
http://dx.doi.org/10.1103/PhysRevC.84.054309
http://dx.doi.org/10.1103/PhysRevC.84.054309
http://dx.doi.org/10.1103/PhysRevC.84.054309
http://dx.doi.org/10.1103/PhysRevC.86.015803
http://dx.doi.org/10.1103/PhysRevC.86.015803
http://dx.doi.org/10.1103/PhysRevC.86.015803
http://dx.doi.org/10.1103/PhysRevC.86.015803
http://dx.doi.org/10.1103/PhysRevC.73.034319
http://dx.doi.org/10.1103/PhysRevC.73.034319
http://dx.doi.org/10.1103/PhysRevC.73.034319
http://dx.doi.org/10.1103/PhysRevC.73.034319
http://dx.doi.org/10.1103/PhysRevC.76.034305
http://dx.doi.org/10.1103/PhysRevC.76.034305
http://dx.doi.org/10.1103/PhysRevC.76.034305
http://dx.doi.org/10.1103/PhysRevC.76.034305
http://dx.doi.org/10.1103/PhysRevC.82.054607
http://dx.doi.org/10.1103/PhysRevC.82.054607
http://dx.doi.org/10.1103/PhysRevC.82.054607
http://dx.doi.org/10.1103/PhysRevC.82.054607


EFFECTS OF δ MESONS IN RELATIVISTIC . . . PHYSICAL REVIEW C 89, 044001 (2014)

[67] W. G. Newton, M. Gearheart, and B.-A. Li, arXiv:1110.4043.
[68] A. W. Steiner and S. Gandolfi, Phys. Rev. Lett. 108, 081102

(2012).
[69] F. J. Fattoyev, W. G. Newton, J. Xu, and B.-A. Li, Phys. Rev. C

86, 025804 (2012).
[70] A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R)

(2007).
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