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Electric and magnetic response of hot QCD matter
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We study the electric conductivity as well as the magnetic response of hot QCD matter at various temperatures T

and chemical potentials μq within the off-shell parton–hadron–string dynamics transport approach for interacting
partonic systems in a finite box with periodic boundary conditions. The response of the strongly interacting system
in equilibrium to an external electric field defines the electric conductivity σ0, whereas the response to a moderate
external magnetic field defines the induced diamagnetic moment μL (T ,μq ) as well as the spin susceptibility
χS(T ,μq ). We find a sizable temperature dependence of the dimensionless ratio σ0/T well in line with calculations
in a relaxation time approach for Tc < T < 2.5Tc as well as an increase of σ0 with μ2

q/T 2. Furthermore, the
frequency dependence of the electric conductivity σ (�) shows a simple functional form well in line with results
from the dynamical quasiparticle model. The spin susceptibility χS(T ,μq ) is found to increase with temperature
T and to rise ∼μ2

q/T 2 too. The actual values for the magnetic response of the QGP in the temperature range
below 250 MeV show that the QGP should respond diamagnetically in actual ultrarelativistic heavy-ion collisions
since the maximal magnetic fields created in these collisions are smaller than Bc(T ), which defines a boundary
between diamagnetism and paramagnetism.
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I. INTRODUCTION

The phase diagram of strongly interacting hadronic/
partonic matter has been a subject of primary interest in
the physics community for decades. At vanishing (or low)
chemical potentials, lattice QCD (lQCD) calculations have
provided reliable results on the equation of state [1,2] and
given a glance at the transport properties, in particular, in
the partonic phase. On the other hand, high-energy heavy-ion
reactions are studied experimentally and theoretically to obtain
information about the properties of nuclear matter under the
extreme conditions of high baryon density and/or temperature.
Ultrarelativistic heavy-ion collisions at the Relativistic Heavy-
Ion Collider (RHIC) and the Large Hadron Collider (LHC)
at CERN have produced a new state of matter, strongly
interacting quark-gluon plasma, for a couple of fm/c at
volumes up to a few 103 fm3 in central reactions. The produced
QGP shows features of a strongly interacting fluid unlike a
weakly interacting parton gas [3] as had been expected from
perturbative QCD. Large values of the observed azimuthal
asymmetry of charged particles in momentum space [4–8],
i.e., the elliptic flow v2, could quantitatively be well described
by ideal hydrodynamics up to transverse momenta of the
order of 1.5 GeV/c [9–14]. Recent studies of “QCD matter”
in equilibrium—using lQCD calculations [15,16] or partonic
transport models in a finite box with periodic boundary
conditions [17,18]—have demonstrated that the ratio of the
shear viscosity to the entropy density η/s should have a
minimum close to the critical temperature Tc, similar to
atomic and molecular systems [19]. On the other hand, the
ratio of the bulk viscosity to the entropy density ζ/s should
have a maximum close to Tc [18] or might even diverge at
Tc [20–24]. Indeed, the minimum of η/s at Tc ≈ 160 MeV
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is close to the lower bound of a perfect fluid with η/s =
1/(4π ) [25] for infinitely coupled supersymmetric Yang-Mills
gauge theory (based on the AdS/CFT duality conjecture). This
suggests the “hot QCD matter” to be the “most perfect fluid”
[26–28]. On the empirical side, relativistic viscous hydrody-
namic calculations (using the Israel-Stewart framework) also
require a very small η/s, 0.08–0.24, in order to reproduce the
RHIC elliptic flow v2 data [29–32]; these phenomenological
findings thus are in accord with the theoretical studies of η/s
in Refs. [18,33,34].

Whereas the shear and bulk viscosities of hot QCD matter
at finite temperature T presently are roughly known, the
electric conductivity σ0 is a further macroscopic quantity of
interest [35,36] since it controls the electromagnetic emissivity
of the plasma. First results of lattice calculations on the
electromagnetic correlator have provided results that varied
by more than an order of magnitude [37–41]. Further-
more, the conductivity dependence on the temperature T (at
T > Tc) is widely unknown too. The electric conductivity σ0 is
also important for the creation of electromagnetic fields in ul-
trarelativistic nucleus-nucleus collisions from partonic degrees
of freedom, since σ0 specifies the imaginary part of the elec-
tromagnetic (retarded) propagator and leads to an exponential
decay of the propagator in time, ∼exp(−σ0(t − t ′)/(�c)) [42].

Apart from the electric conductivity, the magnetic response
of the QGP (or strong vacuum) to external magnetic fields B
has also been of current interest from the experimental point of
view [43–48] as well as from lQCD [49–52]. Strong magnetic
fields are created in peripheral relativistic nucleus-nucleus
collisions by the charges of the spectator protons during the
passage time of the nuclei [48,53,54], and at the top RHIC
energy of

√
sNN = 200 GeV magnetic fields of order eB ≈

5m2
π can be reached. This has led to the suggestion of a charge

separation effect due to the chiral magnetic effect in these
reactions [43–48]. On the other hand, lQCD has been focusing
on the magnetic catalysis of the chiral 〈qq̄〉 condensate at
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very strong B fields and low temperatures and the inverse
magnetic catalysis of the chiral condensate at temperatures
close to the critical temperature, indicating a decrease in Tc for
high magnetic fields. Note, however, that these studies involve
time-independent magnetic fields that are significantly higher
than those achieved in peripheral nucleus-nucleus collisions
for very short times where an equilibrated QGP might not
have been established. Nevertheless, a sufficient knowledge of
the electric and magnetic response of the QGP (in equilibrium)
to external electromagnetic fields is mandatory to explore the
possible generation of the chiral magnetic effect in predomi-
nantly peripheral heavy-ion reactions [43–48] and to determine
the photon production from the QGP in heavy-ion collisions
at different centralities and bombarding energies [55–57].

In this work we extend our previous studies on the electric
conductivity σ0(T ) [58,59] for “infinite parton matter” also
to finite quark chemical potential μq employing the parton–
hadron–string dynamics (PHSD) transport approach [60],
which is based on generalized transport equations derived
from the off-shell Kadanoff-Baym equations [61,62] for
Green’s functions in phase-space representation (beyond the
quasiparticle approximation). This approach describes the full
evolution of a relativistic heavy-ion collision from the initial
hard scatterings and string formation through the dynamical
deconfinement phase transition to strongly interacting quark-
gluon plasma as well as hadronization and the subsequent
interactions in the expanding hadronic phase. In the hadronic
sector PHSD is equivalent to the hadron–string dynamics
transport approach [63–66]—a covariant extension of the
Boltzmann-Uehling-Uhlenbeck) approach [67]—that has been
used for the description of pA and AA collisions from
lower Schwerionen-Synchrotron to RHIC energies in the
past. On the other hand, the partonic dynamics in PHSD is
based on the dynamical quasiparticle model (DQPM) [68–70],
which describes QCD properties in terms of single-particle
Green’s functions (in the sense of a two-particle irreducible
approach) and reproduces lQCD results—- including the par-
tonic equation of state—in thermodynamic equilibrium. For
further details on the PHSD off-shell transport approach and
hadronization, we refer the reader to Refs. [17,60,71], and [72].

The layout of our study is as follows: In Sec. II we con-
centrate on calculating the electric conductivity for “infinite”
QCD matter also at finite quark chemical potential μq and
provide simple parametrizations for the dependence of σ0 on
μq . Furthermore, we calculate the frequency dependence σ (�)
for periodic external fields and compare the results with those
from the DQPM. In Sec. III we compute the diamagnetic
and paramagnetic contributions to the magnetization M of
the plasma as a function of the temperature T and μq and
compare the results to the experimental situation at the RHIC.
A summary and discussion of results is presented in Sec. IV.

II. ELECTRIC CONDUCTIVITY

We briefly recall the setup of our studies within PHSD.
The “infinite” hadronic or QCD matter is simulated within a
cubic box with periodic boundary conditions at various values
for the energy density (or temperature) and the quark chemical
potential μq . The size of the box is fixed to V = 93 fm3 as in the

previous investigations [17,18,58]. The initialization is done
by populating the box with light (u,d) and strange (s) quarks,
antiquarks, and gluons slightly out of equilibrium. The system
approaches kinetic and chemical equilibrium during its time
evolution within PHSD. For more details on the simulation of
equilibrated partonic systems using PHSD in the box at finite
temperature T and quark chemical potential μq , we refer the
reader to Ref. [17].

We recall that PHSD is an off-shell transport approach
that propagates quasiparticles with broad spectral functions.
Numerically, the continuous spectral distribution in the mass
of a particle (given by its spectral function) is probed by a
large number of test particles with (evolving) masses Mj (t).
In order to include the effects from an external electric field
E or magnetic field B, the propagation of each charged test
particle j is performed with the additional Lorentz force in the
equation of motion,

d

dt
pj = qj e

(
E + pj

Ej
× B

)
, (1)

where qj denotes the fractional charge of the test particle
(±1/3, ± 2/3), and Ej its energy. We recall that the external
electric field will lead to an acceleration of positively and
negatively charged particles in opposite directions, while the
particle scatterings/interactions will damp this acceleration
and eventually lead to an equilibrium current (cf. Fig. 1 in
Ref. [58]). The electric current density jz(t) (for an external
electric field in the z direction) is calculated by

jz(t) = 1

V N

N∑
k=1

Nk(t)∑
j=1

eqj

p
j
z (t)

Mj (t)
, (2)

where Mj (t) is the mass of the test particle j at time t . The
summation in (2) is carried out over N ensemble members,

FIG. 1. (Color online) Dimensionless ratio of electric conductiv-
ity to temperature σ0/T , (3), as a function of the scaled temperature
T/Tc for μq = 0 in comparison with recent lattice QCD results.
Triangles, quenched QCD results in the continuum limit with Wilson-
Clover fermions and renormalized vector currents [37]; star, quenched
SU(2) lattice gauge theory [40]; lightly filled (yellow) circles, QCD
with two dynamical flavors of Wilson-Clover fermions [41]. PHSD
results (filled black circles) are the same as in Ref. [58].
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k = 1 . . . N , while Nk(t) denotes the time-dependent number
of “physical” (u,d,s) quarks and antiquarks that varies with
time t due to the processes q + q̄ ↔ g ↔ q ′ + q̄ ′ in a single
member of the ensemble (run). The number of runs N is
typically taken as a few hundred, which gives a current
jz(t) practically independent of the number of ensemble
members N . We recall that (without external fields) each
run of the ensemble is a microcanonical simulation of the
dynamics as inherent in the PHSD transport approach, which
strictly conserves the total four-momentum as well as all
discrete conservation laws (e.g., net fermion number for each
flavor) [17]. A note of caution must be given since, due to the
external field, we deal with an open system with increasing
energy density (temperature) in time. Therefore we employ
sufficiently small external fields eEz such that the energy
increase during the computation time (in each run) stays
below 2% and the increase in temperature below 1 MeV.

A. Constant electric fields

We find that for constant electric fields up to eEz =
50 MeV/fm a stable electric current jeq emerges that is
∼Ez (cf. Ref. [58]). Accordingly, we obtain the conductivity
σ0(T ,μq) from the ratio of the stationary current density jeq

and the electric field strength as

σ0(T ,μq)

T
= jeq(T ,μq)

EzT
. (3)

The results for the dimensionless ratio, (3), at μq = 0 (from
Ref. [58]) are displayed in Fig. 1 as a function of the scaled
temperature T/Tc in comparison to more recent lQCD results
from Refs. [37,40,41] and suggest a minimum at the ratio
σ0(T ,μq = 0)/T close to the critical temperature Tc, followed
by an approximate linear rise up to 2Tc (cf. Ref. [58]). The most
recent lQCD results [37,40,41] are roughly compatible with the
PHSD calculations. Moreover, the lattice data from Ref. [73]
give support for the linearity of σ0/T at a temperature above Tc.

We now focus on the explicit dependence of σ0(T ,μq)/T
as a function of the chemical potential μq , which is shown in
Fig. 2 for a fixed temperature T = 200 MeV. The numerical
result can be fitted with a quadratic correction (solid line in
Fig. 2),

σ0(T ,μq)

T
= σ0(T ,μq = 0)

T

(
1 + a(T )μ2

q

)
, (4)

with a(T ) ≈ 11.6 GeV−2 for T = 0.2 GeV. This result comes
about as follows: We recall that the electric conductivity of
gases, liquids, and solid states is described in the relaxation
time approach by the Drude formula

σ0 = e2neτ

m∗
e

, (5)

where ne denotes the density of nonlocalized charges, τ is the
relaxation time of the charge carriers in the medium, and m∗

e is
their effective mass. This expression can be directly computed
for partonic degrees of freedom within the DQPM, which
was used to match in PHSD the quasiparticle properties to
lQCD results in equilibrium for the equation of state as well as
various correlators [68–70]. We note that the electromagnetic

FIG. 2. (Color online) Electric conductivity over temperature
σ0/T as a function of the chemical potential μq for T = 200 MeV
from PHSD calculations (filled black circles). Error bars indicate the
statistical uncertainty for the ratio, (3), in calculations for different
external field strengths eEz up to 50 MeV/fm.

correlator from lQCD calculations [37] appears to match rather
well the back-to-back dilepton rate from PHSD at T = 1.45Tc

(cf. Fig. 2 in Ref. [74]), which suggests that the results of
our calculations for σ0—for vanishing invariant mass—should
also be close to the lQCD extrapolations from [37].

In the DQPM, the relaxation time for quarks/antiquarks is
given by τ = 1/	q(T ,μq), where 	q(T ,μq) is the width of the
quasiparticle spectral function (cf. [68] and [71]). Furthermore,
the spectral distribution for the mass of the quasiparticle has
a finite pole mass Mq(T ,μq) that is also fixed in the DQPM,
as well as a density of (u,ū,d,d̄,s,s̄) quarks/antiquarks as a
function of temperature and chemical potential (cf. Refs. [68]
and [71]). Thus, we obtain for the dimensionless ratio, (3), the
expression [58]

σ0(T ,μq)

T
≈ 2

9

e2nq+q̄(T ,μq)

Mq(T ,μq)	q(T ,μq)T
, (6)

where nq+q̄(T ,μq) denotes the total density of quarks and
antiquarks and the prefactor 2/9 reflects the flavor averaged
fractional quark charge squared (

∑
f q2

f )/3. As found in
our previous study [58] the DQPM results match well with
the explicit PHSD calculations in the box for μq = 0 since
PHSD in equilibrium is a suitable transport realization of the
DQPM [17].

In the DQPM we have 	q(T ,μq) ≈ 	q(T ,μq = 0) and
Mq(T ,μq) ≈ Mq(T ,μq = 0) for μq � 100 MeV, however,

nq+q̄(T ,μq) ≈ nq+q̄(T ,μq = 0)
(
1 + a(T )μ2

q

)
, (7)

with the same coefficient a(T ) as in Eq. (4). This is demon-
strated explicitly in Fig. 3, where the actual DQPM results
for the quark + antiquark density (filled black circles) are
compared to the fit, (7) (solid line).

The temperature dependence of the expansion coefficient
a(T ) is found to be ∼1/T 2 such that the ratio σ0/T can be
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FIG. 3. (Color online) Quark + antiquark density from the
DQPM (filled black circles) as a function of the quark chemical
potential μq for T = 200 MeV. The solid (red) line displays the
fit, (7), to the DQPM results.

approximated by

σ0(T ,μq)

T
≈ σ0(T ,μq = 0)

T

(
1 + cσ0

μ2
q

T 2

)
. (8)

In Fig. 4 we display the coefficient cσ0 in the temperature
range 170 MeV � T � 250 MeV giving cσ0 ≈ 0.46 as the
best fit. This completes our study of the stationary electric
conductivity σ0.

B. Periodic electric fields

We now extend our study to external periodic fields of
frequency �:

Ez(t) = E0
z sin(�t). (9)

In this case the electric current density jz(t) does not achieve
a constant equilibrium value and also oscillates with the
frequency �. Figure 5 shows the time dependence of the
current jz(t) from PHSD for different frequencies as a function

FIG. 4. (Color online) Expansion factor cσ0 in (8) as a function of
temperature T for μq � 100 MeV. The solid line shows the average
value in the interval 170 MeV < T < 250 MeV.

FIG. 5. (Color online) Time-dependent electric current density
jz(t) for � = 0.32 c/fm (solid black line) and � = 0.94 c/fm
[dash-dotted (blue) line] normalized to the equilibrium amplitude for
temperature T = 190 MeV and eE0

z = 0.005 GeV2 ≈ 25 MeV/fm.
The dotted (red) line shows the time dependence of the external
electric field Ez(t).

of �t , with their amplitudes normalized to 1 in comparison
with the external electric field Ez(t) [dotted (red) line]. The
current jz(t) is seen to be shifted in phase compared to the
electric field; the phase shift δ increases with the frequency �
up to π/2. The currents in Fig. 5 can be well described by

jz(t) = A(�)jeq sin(�t − δ(�)). (10)

We find that the amplitude A(�) decreases with the frequency
� since the current has less time to build up and to follow
the external field. This behavior is in line with the complex
conductivity σ (�) for oscillating fields,

σ (�) = σ0

1 − i�/	q

= σ0

1 + �2/	2
q

+ i
σ0�/	q

1 + �2/	2
q

, (11)

where 	q is the quasiparticle width of the charged particles
(quarks and antiquarks). We have computed the current jz(t)
for T = 190 MeV and eE0

z = 0.005 GeV2 ≈ 25 MeV/fm
in the frequency range 0.02 c/fm < � < 25 c/fm. Figure 6
shows the phase shift δ = arctan(�/	q), and Fig. 7 the

amplitude A(�) = 1/
√

1 + �2/	2
q (filled black circles). The

PHSD results can be easily followed up within the DQPM
results [shown by the solid (red) lines], which again provide
a good description of the microscopic calculations. Since the
complex conductivity σ (�) depends only on the width 	q

and the stationary conductivity σ0, in (11) its actual values
for different temperatures T and finite chemical potential
μq follow directly from our previous results in this section.
Note that for actual electric fields in peripheral Au + Au
collisions at the top RHIC energy we have � ≈ 22 c/fm such
that the electric conductivity σ (�) is suppressed relative to its
equilibrium value by more than a factor of 100.

III. MAGNETIC RESPONSE

In order to explore the magnetic response of the partonic
system within PHSD we assume the magnetic field to be
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FIG. 6. (Color online) Phase shift δ over π as a function of the
frequency � from the PHSD calculations (filled black circles) for
T = 190 MeV. The solid (red) line shows the phase shift as expected
from the DQPM using (11).

sufficiently small such that terms ∼B2 can be neglected (see
below). Note that this limit does not hold for the strong
fields eB(∼0.1–1 GeV2 ≈ 0.5–5 GeV/fm) in actual lQCD
studies [50–52]. Using

(σD)2 = D2 − qeσ · B, D2 = (p − qeA)2 = p2 − qeL · B,

(12)

with the Pauli matrices σ , the kinetic momentum p, and the
angular momentum L, the Dirac equation can be rewritten
for two-component quark and antiquark spinors leading to the
Hamiltonian

HDirac =
√

p2 + m2 − qe(L + σ ) · B

≈ E − qe

2E
(L + σ ) · B = E − qe

2E
(L + 2S) · B,

(13)

FIG. 7. (Color online) Amplitude A(�) as a function of the
frequency � from the PHSD calculations (filled black circles) for
T = 190 MeV. The solid (red) line shows the expected amplitude
within the DQPM.

with E =
√

p2 + m2. In the case of low energies E → p2

2m
+ m

this leads to the well-known expression for the nonrelativistic
Pauli equation:

HPauli = p2

2m
− qe

2m
(L + σ ) · B. (14)

The change in the energy of the system in the presence of
an external magnetic field B is determined by the magnetic
moment μ,

μ = μL + μS = qe

2E
(L + 2S), (15)

which has a contribution from the angular momentum L
of a particle and from the spin S = σ/2. In the following
we investigate both terms separately since they provide
contributions to the magnetic moment of opposite sign. In
analogy to Sec. II we are dealing with an open system but the
increase in the total energy stays below 1%.

A. Diamagnetic contribution

The induced angular momentum L emerges from the
Lorentz force, (1), on a charged particle due to an external
field B,

FL = qe

E
(p × B), (16)

and induces a magnetic moment opposite to the direction of the
B field since the charged particle spirals around the magnetic
field at frequency ω = qeB

E
= p⊥

ER
, where p⊥ is the momentum

component of the particle perpendicular to the direction of the
magnetic field and R is the radius of the spiral. We obtain
alternatively for the angular momentum

L = Rqe

|FL|E (p(p · B) − Bp2), (17)

where p(p · B) is the projection of the momentum in the
direction of the magnetic field eB . Inserting the expression
for the radius R we get

L = −p3
⊥

|FL|E sign(q)eB. (18)

Assuming the magnetic field to be oriented in the y direction
and employing the Lorentz force |FL| = |qeB|

E
p⊥, we end up

with

Ly = −p2
⊥

qeB
. (19)

This gives the induced magnetic moment

μL = −p2
⊥

2BE
. (20)

Since the Lorentz force changes only the direction of p, and
not its magnitude |p|, the particle energy E is conserved too.
As a consequence, the energy contribution in Hamiltonian (13)
is independent of the magnetic field strength:

�Emag,L = −μLB = −−p2
⊥

2BE
B = p2

⊥
2E

. (21)
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We note that the diamagnetic contribution cannot be seen in
approaches that calculate the magnetization by differentiation
of the thermodynamic potential (e.g., free energy F) with
respect to the magnetic field B. In principle, the angular
momentum L has to be quantized. However, the actual values
for L (in units of �) are �1 for “low” field strengths since
|L| ∼ 1/(eB) such that quantum corrections are subleading in
our case.

B. Paramagnetic contribution

The quark and antiquark spins provide a paramagnetic
contribution since the spin precession around the direction
of the magnetic field B in thermal equilibrium gives a
positive magnetic moment μS because the energy becomes
reduced according to Eq. (13). The spin degrees of freedom is
introduced in PHSD in line with the generalized test-particle
ansatz [62] for the Wightman function,

iG<(X,P,S) = 1

N

N∑
k=1

Nk(t)∑
i=1

δ(3)(X − Xi(t))

× δ(3)(P − Pi(t))δ(P0 − εi(t))δ
(2)(S − Si(t)),

(22)

where X and P stand for the space-time and four-momentum
coordinates, respectively, while S denotes the spin degrees
of freedom. In (22) the number of ensemble members (runs)
is denoted N , whereas Nk is the number of partons in the
run k = 1 . . . N that describe the “physical” particles in each
microcanonical simulation. The spin degrees of freedom has
to be treated in line with quantum mechanics according to the
interaction Hamiltonian, (13); i.e.,

ĤS = − qe

2E
σ · B. (23)

The spin-wave function for a spin-1/2 fermion is taken as a
two-component spinor,

|χ〉 =
∣∣∣∣↑↓

〉
, (24)

with 〈↑|↑〉 denoting the probability of spin in the z direction
(parallel to the magnetic field), while 〈↓|↓〉 stands for the prob-
ability of an antiparallel orientation. We assume the spin-wave
function to be normalized; i.e., 〈χ |χ〉 = 〈↑|↑〉 + 〈↓|↓〉 = 1.
The projection on the coordinate axis i is provided by

Si = 1
2 〈χ |σi |χ〉. (25)

The time evolution of the spin projections according to
Hamiltonian (23) can be worked out in a straightforward way
using

|χ (t)〉 = Û (t,t0)|χ (t0)〉 = e−iĤS (t−t0)|χ (t0)〉, (26)

with

Û (t,t0) = 12 cos
( qe

2E
B(t − t0)

)

+ i
σ · B
B

sin

(
qe

2E
B(t − t0)

)
, (27)

and Eq. (25). The resulting equations of motion lead to a
precession of the spin of a quark/antiquark at frequency ω =
qeB/E, which changes only if the energy of particle E changes
in a collision or in the inelastic reaction q + q̄ → g → q ′ + q̄ ′.
Since we are using effective interactions, which should be
considered an approximation to the resummed interactions,
we cannot determine the actual spin of the parton degrees of
freedom. For this reason we neglect the spin of the gluons
and treat the quark spin statistically. In order to describe an
equilibration of the spin degrees of freedom we introduce a
spin flip in one-third of the elastic collisions, as motivated by
nuclear physics, which favors final spin states parallel to the
B field. In order to simplify the (time-expensive) calculations
we introduce the constraint (in equilibrium)

n↑P↑,↓ = n↓P↓,↑ ⇐⇒ P↑,↓
P↓,↑

= n↓
n↑

= exp(−(E↓ − E↑)/T ) = exp

(
−qeB

ET

)
,

(28)

which is introduced explicitly in the transition matrix element
squared. Accordingly, in (28) P denotes the probability of
a spin flip and n the occupation probability of a given spin
orientation. In practice, the probabilities P are taken as

P↓,↑ = 1, P↑,↓ = exp

(
−qeB

ET

)
(29)

and lead to the proper equilibrium distribution when neglecting
the q + q̄ ↔ g channels. Including these channels, we find
numerically deviations from the equilibrium distribution by up
to 10% since the gluon channels reduce the spin orientation in
the direction of the B field, i.e., induce a “diamagnetic effect.”
The actual values of the probabilities, (29), are not important
for the present study. As long as they fulfill Eq. (28) the
equilibrium distribution changes only slightly within statistical
error bars. The same holds for the number of collisions with
spin flips. Their values are only important for the time scales
of the spin equilibration, which, however, we do not address.

The magnetization M is defined by the spin density of the
system as

M = 〈μS〉
V

≈ χSe
2B, (30)

which in the case of small magnetic fields eB—as in the
present study—is proportional to the strength of the B field,
thus defining a magnetic susceptibility χS by

χS = 〈μS〉
e2BV

. (31)

C. Numerical results

In order to explore the range of external magnetic fields
eB we can handle reliably within the PHSD calculations for
partonic systems, we show in Fig. 8 the energy contribution to
the magnetic field, (21), as a function of eB for a temperature
T = 190 MeV. In fact, the calculations for the energy shift
due to the magnetic field eB give constant results for
eB < 50 MeV/fm—when discarding the spin degrees of
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FIG. 8. (Color online) Energy shift due to the magnetic field
�Emag,L = −μLB in the PHSD calculation (filled black circles) as a
function of the field strength eB for a temperature of T = 190 MeV
at μq = 0. The solid (red) line reflects a constant for small/moderate
field strengths.

freedom—while for stronger fields more significant deviations
emerge, up to ∼10% for eB 200 MeV/fm. Accordingly, we
restrict ourselves to eB � 50 MeV/fm (≈0.01 GeV2) in the
following.

The temperature dependence of �Emag,L from the PHSD
calculation is shown in Fig. 9 by filled black circles and can
be well fitted in the interval 170 MeV � T � 250 MeV by

�Emag,L(T ) = 0.3 · (T − 96)2.82 [MeV], (32)

where the temperature T is given in units of MeV. The diamag-
netic contribution to the magnetization from the Lorentz force
on the quarks and antiquarks then can be readily extracted by
dividing �Emag,L(T ) by the strength of the magnetic field.

As the next step we compute the magnetic susceptibility χS

in the PHSD calculations according to Eq. (31) for different
field strengths eB at μq = 0. We have found the necessary

FIG. 9. (Color online) Energy shift due to the magnetic field
�Emag,L = −μLB in the PHSD calculation as a function of the
temperature T for μq = 0. Numerical uncertainties are smaller than
the size of the circles. The solid (red) line shows the fit, (32).

FIG. 10. (Color online) Magnetic susceptibility χS , (31), from
PHSD as a function of the external magnetic field eB for a temperature
T = 190 MeV at vanishing quark chemical potential μq = 0.

energy for a spin flip to be very low in comparison to
the total energy of the quarks (<1%) and therefore have
discarded it in our actual simulations. The results for the
susceptibility χS are displayed in Fig. 10 for T = 190 MeV
and (within numerical accuracy) show a constant value even
up to eB = 200 MeV/fm. In this case the numerical accuracy
increases with the field strength since the spin-flip probabilities
in Eq. (29) differ more significantly for larger magnetic fields.
Nevertheless, we have a stable numerical “window” eB from
25 to 50 MeV/fm where the diamagnetic and paramagnetic
contributions to the magnetic moment can be calculated with
sufficient accuracy. Note that the energy shift due to the
paramagnetic contribution is given by

�Emag,S = −χSV (eB)2 (33)

and decreases quadratically with the field strength.
The temperature dependence of the magnetic susceptibility

χS(T ) from PHSD is displayed in Fig. 11 by the filled black
circles and can be fitted as

χS(T ) = 0.017 − 2.39

T
, (34)

with T given in MeV (in the interval 170 MeV � T �
250 MeV).

The total energy shift due to both interactions with the
magnetic field is given by

�E(T ,B) = �Emag,L(T ) − χS(T )V (eB)2 (35)

and decreases with B2 at a constant temperature T . At a
“critical” field Bc(T ) the energy shift changes sign; i.e., for

Bc(T ) =
√

�Emag,L

e2χSV
(36)

the magnetization changes from diamagnetic to paramagnetic
with increasing magnitude of the field B.

This quantity has a minimum (within PHSD) close to
the critical temperature Tc ≈ 158 MeV (cf. Fig. 12) with a
minimum eBc,min ≈ 0.4 GeV2 (solid black line; extrapolated
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FIG. 11. (Color online) Temperature dependence of the magnetic
susceptibility χS(T )T from PHSD (filled black circles) in comparison
to the fit, (34), for μq = 0. Numerical uncertainties are indicated by
the error bars.

by the dashed line according to the fits performed). For
comparison we also show the limiting results when assuming
all quark/antiquark spins to be oriented in B direction. This
lower, thin (blue) solid line is slightly lower because the
coupling to the gluons (in PHSD) reduces the paramagnetic
contribution to the magnetization (diamagnetic gluon effect).
In the QGP phase the “critical” field Bc rises with temperature
and separates the diamagnetic response (below) from the
paramagnetic response (above) of the QGP. Note that the
maximal field strength in peripheral Au + Au collisions at
the top RHIC energy

√
sNN = 200 GeV was found to be

∼0.09 GeV2 [53] (solid black horizontal line)—during the

FIG. 12. (Color online) “Critical” magnetic field, (36), as a func-
tion of the temperature T for μq = 0 from PHSD calculations (solid
black line). Dashed extensions are based on the extrapolated fits
and not explicitly controlled by PHSD calculations. The lower, thin
solid (blue) line results when assuming all quark/antiquark spins to be
oriented in the B direction. The solid black horizontal line displays the
maximum value for the magnetic field strength as found in Ref. [53]
at the top RHIC energy.

FIG. 13. (Color online) Energy shift �Emag,L(T ,μq ) as a func-
tion of μq from PHSD (filled black circles) in comparison to the
fit, (37), in μq [solid (red) line] for T = 200 MeV.

passage time of the nuclei—which is significantly lower than
the critical field in Fig. 12. Accordingly, the response of the
QGP in actual heavy-ion experiments should be diamagnetic.
However, for the much higher field strength explored in lQCD
calculations [50–52] for temperatures close to Tc the response
should be paramagnetic.

D. Finite quark chemical potential

As in the case of the electric conductivity σ0(T ,μq) we can
also compute the magnetic response at finite quark chemical
potential μq in PHSD. In analogy to Fig. 2 we find essentially
a quadratic dependence on μq as demonstrated in Fig. 13
for �Emag,L(μq) at T = 200 MeV. This dependence is also
obtained for the magnetic susceptibility χS(T ,μq) (not shown
explicitly), although with larger numerical error bars.

FIG. 14. (Color online) The coefficient cL in Eq. (37) for
�Emag,L in the case of finite μq � 100 MeV as a function of
temperature T .
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Again, we find the temperature dependence of the coeffi-
cient to be ∼1/T 2 such that we get the approximations

�Emag,L(T ,μq) ≈ �Emag,L(T ,μq = 0)

(
1 + cL

μ2
q

T 2

)
,

χS(T ,μq) ≈ χS(T ,μq = 0)

(
1 + cS

μ2
q

T 2

)
. (37)

As an example we show the coefficient cL(T ) in Fig. 14
for temperatures from 190 to 250 MeV. In this temperature
interval the expansion coefficient may be well approximated
by cL = 0.57. Similar statements (with less accuracy) hold
for the magnetic susceptibility in (37), which gives cS = 0.49.
The scaling, (37), can be traced back again to the scaling of
the quark + antiquark density nq+q̄ (T ,μq) in the DQPM.

IV. SUMMARY

In conclusion, we have evaluated the electric conductivity
σ0(T ,μq) of the QGP as a function of the temperature T
and quark chemical potential μq by employing the PHSD
off-shell transport model in a finite box for the simulation
of dynamical partonic systems in equilibrium. The PHSD
approach in the partonic sector is based on the lQCD equation
of state from [1]; accordingly, it describes the QGP entropy
density s(T ), the energy density ε(T ), and the pressure p(T )
from lQCD [17,60,71] very well. Studies of the QCD matter
within PHSD have previously given reasonable results also for
the shear and bulk viscosities η and ζ versus T [18] and related
transport coefficients [59].

In extension of our previous study in Ref. [58], we have
found that the electric conductivity shows a simple scaling
with μ2

q/T 2 [cf. Eq. (8)] which essentially can be traced back
to the variation of the quark + antiquark density nq+q̄ of
the system in the DQPM. We recall that PHSD calculations
in a fixed box in equilibrium give practically the same
results for the equation of state of QCD matter and transport
coefficients as the DQPM [17,18]. In analogy with the ratio
of shear viscosity to entropy density η/s we find a clear
minimum of the dimensionless ratio σ0/T in the vicinity of
the critical temperature Tc with values close to more recent

lQCD calculations [37,40,41]. This prediction as well as the
explicit dependence on μq should be controlled by related
QCD studies on the lattice. The frequency dependence of the
complex electric conductivity σ (�) is found to be well in line
with the simple results from the DQPM, (11), too.

Furthermore, we have explored the response of the par-
tonic system to a moderate external magnetic field eB �
0.1 GeV/fm and studied separately the diamagnetic response
from the Lorentz force, (1), and the paramagnetic response
due to the interaction of the quark spin with the magnetic
field in Eq. (13). Within the temperature range investigated
(170 MeV < T < 250 MeV) the magnetic moment due to
the Lorentz force rises with temperature T but drops with
1/B, providing a constant energy shift due to a coupling to
the magnetic field �Emag,L(μq) > 0. The coupling of the
spin to the B field gives a paramagnetic contribution which
can well be characterized by the magnetic susceptibility
χS(T ,μq). Its contribution to the energy shift of the system
is negative and increases with B2. Accordingly, there is a
“critical” magnetic field Bc(T ) for which the response of the
system changes from diamagnetic to paramagnetic. The actual
values for Bc(T ) (cf. Fig. 12) demonstrate that the response
of the QGP in ultrarelativistic heavy-ion collisions should be
diamagnetic since the maximal magnetic fields created in these
collisions are smaller than Bc(T ). As in the case of the electric
conductivity the dependence of the energy shift �Emag,L(μq)
as well as the magnetic susceptibility χS(T ,μq) shows a
very similar scaling correction ∼μ2

q/T 2 with a coefficient of
order 0.5. We close by noting that in the hadronic phase for
temperatures below Tc and μq = 0 the system dominantly
consists of pseudoscalar mesons that have no spin and,
accordingly, a low (or vanishing) paramagnetic contribution
to the magnetization M when restricted to the first order in the
magnetic field. On the other hand, the charged hadrons see the
Lorentz force, (1), and build up a diamagnetic contribution.
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S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabó,
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J. High Energy Phys. 04 (2013) 130.

[52] G. S. Bali, F. Bruckmann, G. Endrodi, and A. Schäfer,
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