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Determining fundamental properties of matter created in ultrarelativistic heavy-ion collisions
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Posterior distributions for physical parameters describing relativistic heavy-ion collisions, such as the viscosity
of the quark-gluon plasma, are extracted through a comparison of hydrodynamic-based transport models to
experimental results from 100A GeV + 100A GeV Au + Au collisions at the Relativistic Heavy Ion Collider.
By simultaneously varying six parameters and by evaluating several classes of observables, we are able to
explore the complex intertwined dependencies of observables on model parameters. The methods provide a full
multidimensional posterior distribution for the model output, including a range of acceptable values for each
parameter, and reveal correlations between them. The breadth of observables and the number of parameters
considered here go beyond previous studies in this field. The statistical tools, which are based upon Gaussian
process emulators, are tested in detail and should be extendable to larger data sets and a higher number of
parameters.
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I. INTRODUCTION

Relativistic heavy-ion collisions provide the means to
study both the novel properties of the quark-gluon plasma
and the fascinating nature of how it is created and evolves.
Unfortunately, experimental procedure is confined to measure-
ments of the asymptotic momenta of the particles comprising
the collision’s debris. Addressing the fundamental questions
concerning the properties of superhadronic matter and the col-
lision’s evolution inherently depends on large-scale multistage
transport models. Such models have improved significantly
in recent years and now typically combine viscous hydro-
dynamic treatments for the evolution of the semithermalized
quark-gluon plasma (∼1–7 fm/c) and microscopic hadronic
simulations to describe the dissolution and breakup of the
produced hadrons (∼7–20 fm/c). For the first fm/c of the
collision, when the system is too far from equilibrium for
even a viscous hydrodynamic treatment, quantitative modeling
carries large uncertainties. If the profile and flow of the
matter being fed into the hydrodynamic treatment could be
determined phenomenologically, it would be invaluable in
understanding how QCD saturation phenomena affect the
initial energy deposition and thermalization.

The data sets from the Relativistic Heavy Ion Collider
(RHIC) and from the heavy-ion program at the Large Hadron
Collider (LHC) are immense. The heterogenous nature of
the data, along with the strong interdependence of disparate
observables with respect to basic model parameters, makes any
interpretation of the data challenging. The phenomenology of
heavy-ion collisions has progressed despite these difficulties,
primarily by identifying the principal connections between
model parameters and observables. For example, it is well
understood that the shear viscosity of the quark-gluon plasma

strongly affects the observed anisotropic flow coefficients. In
an early analysis [1], the viscosity was adjusted until one
found a satisfactory fit with the anisotropic flow coefficient
v2. The shortcoming of such an approach is that several other
unknown parameters, such as the spatial anisotropy of the
initial state [2], also affect v2. In turn, each of these parameters
also affects numerous other observables. Similar approaches
with more advanced models [3–11] have considered the
variation of several parameters and also the effects of such
parameters on spectra. However, owing to the numerical costs
of running the models, these approaches have been unable
to consider the simultaneous variation of more than two or
three parameters, or to consider a wider range of experimental
observables. These limitations compromise both the rigor and
completeness of the effort. A more rigorous and complete
approach would be to perform a Markov-chain Monte Carlo
(MCMC) exploration of parameter space. MCMC calculations
involve performing weighted random walks through parameter
space and producing a sampling of parameters weighted by
the statistical likelihood. Such approaches involve running the
model at hundreds of thousands, or even millions, of points in
parameter space. For each point, the entire model would need
to be run with sufficient statistics to compare to data. This
would be untenable for models that require on the order of 1 d
of CPU time to perform a calculation for a single point.

Other fields of science face similar challenges. A notable
case is the extraction of cosmological parameters from obser-
vations of fluctuations of the cosmic microwave background
[12,13]. Here the parameters are some of the most fundamental
in nature, such as the densities of dark matter and of dark
energy. To overcome the limitations of running the model a
large number of times, a surrogate model (aka an emulator)
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was developed to stand in for the true computer code. Rather
than rerunning the full cosmological evolution model during
the exploration of the parameter space, one runs the full
model at only ∼100–200 points in parameter space, carefully
chosen to best fill the overall space. A surrogate model was
constructed that effectively interpolated from the finite set
of observations of the full model. The emulator was then
substituted for the full model for the MCMC exploration
of parameter space. Similar ideas have been applied to the
field of galaxy formation [14]. Here we report first results
for a large-scale surrogate-model-based statistical analysis of
heavy-ion collision data. A small-scale application of these
ideas was discussed in Ref. [15].

For this first effort, only a small subset of possible data
is considered, that coming from 100A GeV +100A GeV
Au + Au collisions at RHIC. Spectra for pions, kaons, and
protons are considered, along with the elliptic flow observable
v2 measured for pions and femtoscopic source radii from
two-pion correlations. The motivation for first considering soft
observables is twofold. First, they are the most sensitive to
the model parameters related to the bulk properties of matter,
and, second, the dependencies are highly intertwined. During
the last 2 yr, the data set for relativistic heavy-ion collisions
has greatly expanded with the beam-energy scan at RHIC,
and with the inaugural heavy-ion run at the LHC. The set is
rapidly growing as data is analyzed from Cu + Au and from
U + U runs at RHIC. Ultimately, one may wish to incorporate
other observables, such as dilepton emission, higher flow
moments, species-dependent flow, or long-range correlations,
once the theoretical treatments become more standardized
and robust. The methods described here should scale well
with increasingly large data sets and incorporating additional
observables into the analysis should be tractable.

On the theory side, numerous parameters factor into models
of heavy-ion collisions. Several of these parameters are needed
to describe the initial energy density and flow profiles that
comprise the initial state of the hydrodynamic evolution.
Other parameters describe the bulk properties of superhadronic
matter, such as the equation of state and viscosities. Still other
parameters could describe out-of-equilibrium behavior such as
chemical abundances of various quark species. Because this is
the first application of emulators for describing heterogenous
data in this field, only a half dozen parameters are considered
for this study. Four of the parameters describe the initial
state for the hydrodynamic module, and two describe the
shear viscosity and its energy dependence above the transition
temperature. The equation of state from lattice calculations
[16,17] is assumed to be correct. In a future study, that too
will be parametrized to learn to what extent the equation of
state is constrained experimentally. Hadronization is assumed
to produce a chemically equilibrated hadronic gas when the
temperature reaches 170 MeV. In the future, this assumption
will also be relaxed and the away-from-equilibrium properties
of these hadrons will be parametrized. Additionally, one should
expect a non-negligible bulk viscosity in the transition region
[18,19]. However, owing to some numerical instabilities with
handling bulk viscosity, it is set to zero for this study. An
advantage of surrogate model techniques is that they scale well
with an increasing number of parameters, and the efficiency of

the methods is not greatly diminished if several parameters
have only marginal impact. We expect these methods to
continue to work even if we triple the number of parameters.

Details of the model and data used for the analysis are
provided in the next two sections. The theory of the model
emulator is described in Sec. IV, with a test of the emulator
against a mock data set in the subsequent section. Results from
an analysis of the real data set are given in Sec. VII, while a
summary and outlook comprise the final section.

II. MODELING THE EVOLUTION AT RHIC

For this study, four elements are involved in the modeling:

(i) First is the prethermal, or stopping stage. Rather than
dynamically solving for the evolution during this stage,
we apply a parametrized description of the stress-
energy tensor describing the state of the collision at a
time of τ0 = 0.8 fm/c. Although sophisticated models
of the initial state do exist, e.g., Refs. [20–24], the large
uncertainties and the lack of theoretical consensus
dissuades one from picking any individual model.

(ii) The hydrodynamic stage lasts from 0.8 fm/c until
the system falls below a hadronization temperature
of 170 MeV. Viscous hydrodynamics is justified for
a strongly interacting system that is not too far from
equilibrium and is especially convenient for a system
undergoing a transition in degrees of freedom, because
the equations can be applicable even when there are
no well-defined quasiparticles.

(iii) Once the density has fallen to the point that the evo-
lution can be modeled as binary collisions of hadrons,
we switch to a microscopic hadronic simulation, or
cascade. The cascade is able to account for the loss
of equilibrium between species, e.g., the protons and
pions moving with different average velocities or
having different kinetic temperatures. The cascade
also handles disassociation seamlessly.

(iv) Final-state particles are correlated at small relative
momentum owing to interactions in the asymptotic
state. Assuming that interactions with third bodies
are randomizing, one can calculate two-particle cor-
relations given the source function, which describes
the distribution of relative distances between two
particles of similar velocities. Taking the source
function from the information about last collisions in
the cascade and convoluting with the square of the
known outgoing relative two-particle wave functions,
we calculate correlations, and from the correlations
we calculate effective Gaussian source radii which can
be compared to those extracted from experimentally
measured correlations functions.

A. Parametrizing the initial state

Rather than applying one of the competing models for the
initial state, a parametrized form is used for the initial energy-
density and flow profiles. Three parameters describe the initial
energy-density profile and one describes the flow profile. The
first is a weight, fwn, between a wounded-nucleon profile and
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a saturation-based profile,

ε(x,y) = fwnεwn(x,y) + (1 − fwn)εsat(x,y). (1)

The wounded-nucleon profile [25] and the saturation profiles
are based on Glauber thickness functions which describe the
projected areal densities of the incoming nuclei in a plane
perpendicular to the beam axis,

TA,B(x,y) =
∫

dz ρA,B(x,y,z), (2)

where ρA,B are the baryon densities of the two nuclei given
the impact parameters. The thickness functions have units of
baryons per fm2, and the energy densities have the form

εwn(x,y) = (dE/dy)ppσnn

2σsat.
TA(x,y) {1 − exp[−TB(x,y)σsat]}

+ (dE/dy)ppσnn

2σsat.
TB(x,y)

×{1 − exp[−TA(x,y)σsat]}, (3)

εsat(x,y) = (dE/dy)ppσnn

σsat.
Tmin(x,y)

×{1 − exp[−Tmax(x,y)σsat]}, (4)

Tmin ≡ 2TATB

TA + TB

, Tmax ≡ (TA + TB)/2.

Here the energy densities are per transverse area and per
longitudinal rapidity; i.e., one would divide by the initial time
τ0 to get energy per fm3. The three parameters are fwn, the
saturation cross section σsat, and the normalization (dE/dy)pp.
When two identical columns of nuclei collide, TA = TB , which
leads to εwn = εsat. The quantity σnn is not an adjustable
parameter; it is the known inelastic nucleon-nucleon cross
section of 42 mb.

In the diffuse limit, where TA,TB → 0, the energy density
becomes (dE/dy)ppTATBσnn, which is known as the binary
collision limit. If one considers two diffuse nuclei colliding
randomly over a large area S, one finds the average energy per
area in either expression to be

〈dE/dη〉 = σnn(dE/dy)pp

S

∫
dxdy TA(x,y)

×
∫

dx ′dy ′TB(x ′,y ′)

= ABσnn(dE/dy)pp

S
. (5)

The parameter (dE/dy)pp is the energy per unit rapidity
of a pp collision. Although that number is measured in the
asymptotic limit, it might be different at the time hydrodynam-
ics is initialized, τ0 = 0.8 fm/c. Because the model requires
the energy density at τ0, the initial energy per unit rapidity
becomes an extra parameter that is adjusted from 0.85 to 1.2
times the energy per rapidity of a pp collision of Ref. [26].

The parameter σsat controls the scale for changing the
behavior of εsat from the binary collision limit, where ε ∼
TATB to the saturated limit when ε ∼ Tmin. The change
occurs for Tmax ≈ 1/σsat. The parameter σsat also changes the

wounded-nucleon scaling form from that of binary collisions
to the saturated limit, where it is proportional to TA + TB .

The wounded-nucleon and saturation expressions differ
when Ta 	= Tb. For the case where σsatTa 
 1 and σsatTb � 1,

lim
σsatTa
1
σsatTb�1

εwn = (dE/dy)ppσnn

σsat
Ta/2,

(6)

lim
σsatTa
1
σsatTb�1

εsat = (dE/dy)ppσnn

σsat
2Tb.

For a single nucleon, σsatTb � 1, colliding onto a thick
target, σsatTa 
 1, the energy density in the wounded-nucleon
expression continues to scale proportionally to Ta . For exam-
ple, colliding a single nucleon onto a target with σsatTa = 106

would give nearly 1000 times the multiplicity for a collision
with σsatTa = 1000. In contrast, the saturation formula would
give roughly the same energy density for both instances. It was
shown in Ref. [2] that differences such as these significantly
affect the initial elliptic anisotropy, and therefore significantly
affect the measured elliptic flow. This can be understood by
considering the collision of two equal-mass nuclei with an
impact parameter in the x direction. Along the x = 0 line,
both the wounded-nucleon and saturation expressions give the
same energy density. However, if one goes outward so that
x becomes sufficiently large that one is at the edge of one
nucleus, while being near the center of the other nucleus, the
wounded-nucleon formula gives a significantly higher energy
density. This gives a relatively lower elliptic anisotropy for the
wounded-nucleon model and results in lower elliptic flow for
the wounded-nucleon form than for the saturation form.

Figure 1 shows how the parameters σsat and fwn affect
the transverse energy-density profile. The profiles can be
summarized by three numbers: the net integrated energy
density at the initial time, dE/dη, the rms size of the region,
Rrms, and the spatial eccentricity E . The initial integrated
energy density is defined by

dE/dη ≡ τ

∫
dxdy ε(x,y,τ0). (7)

The transverse size is described by

R2
rms ≡ 1

dE/dη
τ

∫
dxdy ε(x,y,τ0)(x2 + y2), (8)

and the spatial eccentricity is

E ≡
∫

dxdy ε(x,y,τ0)(y2 − x2)∫
dxdy ε(x,y,τ0)(y2 + x2)

. (9)

Profiles were created for several impact parameters using a
default distribution, choosing fwn = 1/2 and σsat = 40 mb. To
explore the sensitivity to fwn, profiles were then calculated by
changing fwn to both zero and unity. Returning to the default
value of fwn, profiles were also calculated for three additional
values of σsat: 20, 30, and 40 mb. The changes of dE/dη,Rrms

and E are displayed in Fig. 1.
The top panel of Fig. 1 illustrates how dE/dη changes as

σsat and fwn vary by displaying the ratio of the net energy
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FIG. 1. (Color online) Panel (a) displays initial integrated energy
densities defined by Eq. (7) for several profiles as a function of
collision centrality relative to the default profile, which was calculated
using σmax = 40 mb and fwn = 1/2. Percentage centrality is defined
as the percentage of events with impact parameters smaller than
those used for the specific calculation; i.e., zero centrality refers to
a perfectly central event. The heavy black line represents the default
profile, and is unity by definition. The net energy is shown for three
additional values of σsat (red dashed lines with circles), σsat = 20 mb,
30 mb, and 50 mb. The initial energy is higher for lower values of
σsat owing to the reduction in screening. The net energy also has
a modest dependence on fwn, as can be seen for the calculations
with fwn = 0 and fwn = 1 (blue dotted lines with squares). As
shown in panel (b), the root-mean transverse radius changes only
slightly throughout the parameter space. Lowering the saturation
cross section, σsat, more greatly enhances the energy density in the
center of the collision region. This then lowers Rrms. The size is also
a few percent larger for the wounded-nucleon form, fwn = 1. Panel
(c) displays the spatial eccentricity of the initial energy distribution
as defined in Eq. (9). The eccentricity is nearly independent of σsat,
as the three calculations with different values of σsat (red dashed lines
with circles) are almost indistinguishable from the default calculation
(heavy black line). The eccentricity does significantly depend on fwn.
The saturation parametrization, fwn = 0, leads to higher eccentricities
than the wounded-nucleon parametrization, fwn = 1.

to the energy for the default values of σsat and fwn. The net
energy is strongly sensitive to σsat and modestly sensitive to
fwn. The dependence on σsat modestly diminishes for less
central collisions. Varying the parameter (dE/dy)pp would
result in ratios that would be independent of centrality, much
like the lines for fixed values of σsat. Combined with the
fact that the eccentricity is nearly insensitive to σsat, this
implies that the overall normalization parameter, (dE/dy)pp,
and σsat are nearly redundant. If we were to perform this
analysis for peripheral collisions the two parameters should
become distinguishable, but the overall approach becomes
questionable at that point. The sensitivity of the transverse
energy to fwn is modest, but not negligible. The centrality
dependence of the experimentally measured multiplicity might
well drive the determination of fwn. As seen in the middle panel
of Fig. 1, transverse size changes only a few percent from the
default value. Smaller saturation cross sections increase the
energy density by a larger factor in the center of the collision
region than on the edge, which lowers Rrms. The saturation
form also results in a lower transverse size relative to the
wounded-nucleon form. As shown in the bottom panel of
Fig. 1, eccentricities are significantly higher for the saturation
form, fwn = 0, than for fwn = 1, the wounded-nucleon form.
Eccentricities were remarkably insensitive to σsat.

The fourth varied parameter describes the initial transverse
flow, i.e., the collective flow at τ0 = 0.8 fm/x. Initial flow
has been found to significantly affect femtoscopic source sizes
[27] and elliptic flow [28]. In Refs. [29,30] it was shown that
one can express the transverse flow as

T0i

T00
= −∂iT00

2T00
τ, (10)

given four conditions: (a) a traceless stress-energy tensor,
(b) lowest order in τ , (c) Bjorken boost-invariance, (d)
anisotropy of the stress-energy tensor being independent of
x and y. The power of the parametrization is that in the
high-energy limit one expects each of these conditions to be
reasonably met. However, at finite energy and for higher orders
in τ , Eq. (10) can only serve as a guide to set a scale for the
initial flow and cannot be trusted to better than a factor of two.
For that reason, the initial flow is parametrized as a constant
Fflow multiplied by the amount given in Eq. (10) for T0i/T00.
The fraction Fflow was varied from 0.25 to 1.25.

For this first study, the initial energy-density profiles are
calculated from the average areal densities of the incoming
nuclei and are smooth, as if many events from the same impact
parameter were averaged together. This is known to be fairly
unrealistic, and the shortcoming will be addressed in the future.

B. Hydrodynamic module

Viscous hydrodynamics in an environment where there are
no net conserved charges is based on local energy momentum
conservation plus two assumptions. First, it is assumed that in
the rest frame of the stress-energy tensor the effective pressure
equals the equilibrated pressure,

Txx + Tyy + Tzz

3
= P (ε); (11)
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i.e., the bulk viscosity is assumed to be zero. Second, it is
assumed that the remainder of the stress-energy tensor is
sufficiently close to its Navier-Stokes value that its evolution
can be described with Israel-Stewart equations of motion,
which in the frame of the fluid becomes

πij ≡ Tij − 1

3
δij (Txx + Tyy + Tzz),

d

dt

πij

σ (ε)
= − 1

σ (ε)τIS

(
πij − π

(NS)
ij

)
, (12)

πNS
ij = −η

(
∂ivj + ∂jvi − 2

3
δij∇ · v

)
.

The Israel-Stewart relaxation time was set to, τIS = 3η/sT .
The factor of three was chosen for being midway between the
expectations for AdS/CFT theory [31] and that of a Boltzmann
gas of massless particles. For AdS/CFT, the factor would be
replaced with 4(1 − ln 2) ≈ 1.23, whereas for an ideal gas of
massless particles one expects a factor of five. This can be seen
from Kubo relations,

η = 1

T

∫
d3r

∫ ∞

0
dt 〈Txy(0,0)Txy(r,t)〉, (13)

= τIS

T

∫
d3r〈Txy(0,0)Txy(r,t)〉,

= τIS

T

∫
d3p

1

(2π )3

p2
xp

2
y

p2
e−p/T

= sT τIS

5
. (14)

Here the first step comes from assuming that the correlations
die exponentially, which is the basic assumption of Israel-
Stewart hydrodynamics, and the second step is based on the
equal-time correlations coming only from a particle being
correlated with itself, which is assumed in a Boltzmann picture.
The final step simply involves performing the angular integrals
and comparing the answer to the corresponding integral for
sT = ε + P . If results are shown to be sensitive to τIS, it should
be treated as a free parameter. The quantity σ (ε) in Eq. (12) is
set to keep entropy always rising [32–34], σ 2(ε) = ηsT /τIS.

Once these conditions are met, applying the local conser-
vation of energy and momentum,

∂μT μν = 0, (15)

determines the evolution of the stress-energy tensor.
At high energy density the first assumption, that∑
i Tii = 3P (ε), can be met even if the system is far from

chemical or kinetic equilibrium. For a gas of weakly interacting
massless particles, or even for a region dominated by weakly
interacting classical fields, the condition is met regardless of
the configuration of either the particles or the fields. Once the
fireball cools down near the transition region, and conformal
invariance is lost, this assumption becomes questionable.
The second assumption may be poorly met during the first
1–2 fm/c. However, the impact of changing the anisotropy of
the stress-energy tensor at early times tends to be rather small
[29].

The hydrodynamic module used here is built on an
assumption of longitudinal boost invariance which allows the

calculations to become effectively two-dimensional before
solving Israel-Stewart equations of motion. This approach
has been applied by numerous research groups [35–39]. The
reduction of the dimensionality is justified to better than
the 5% level [40]. The equation of state, P (ε), comes from
lattice calculations of Wuppertal-Budapest group [16] for
temperatures above the hadronization temperature and use
a hadron-gas equation of state at lower temperatures. The
equation of state for temperatures just above the hadronization
temperature is slightly modified from the lattice values to
match the hadron-gas value at the hadronization threshold.

For temperatures above 170 MeV/c, the viscosity to
entropy density ratio was described with two parameters,

η

s
= η

s

∣∣∣∣
Tc

+ α ln

(
T

Tc

)
, (16)

where Tc is assumed to be 170 MeV. The first parameter, η/s|Tc
,

describes the viscosity just above the hadronization threshold,
while the second parameter, α, describes the temperature
dependence. This parametrization is not particularly well
motivated, but by varying the parameter α one can gain
some insight into how sensitive results are to temperature
dependence.

The hydrodynamic/cascade interface temperature was set at
a temperature of 170 MeV. Calculations were also performed
for a hadronization temperature of 155 MeV, but those cal-
culations consistently overpredicted the flow or, equivalently,
underpredicted the number of hadrons for a given amount of
transverse energy. It is the authors’ intention to perform a
detailed study of the sensitivity to the equation of state and
the details of hadronization in a separate paper. A summary of
model parameters is provided in Table I.

C. Hadronic cascade

The hydrodynamic module was run until all elements
cooled below 170 MeV. During the hydrodynamic evolution,
the properties of the 170-MeV hypersurface were recorded.
This included the position and flow velocity at the boundaries,
and the anisotropy of the stress-energy tensor. Hadrons were
generated with a Monte Carlo procedure ensuring that all
elements of the stress-energy tensor were continuous across the
hypersurface. The method [41] assumes that all species have a
single time relaxation scale independent of their momentum.
Other approaches have considered the effect of adding a
momentum or species dependence to the relaxation time [36],
but because this study considers only particles with low to
moderate pt , and because the particles interact a few more
times in the cascade module, the details of the algorithmic
choice are not expected to matter, as long as the stress-energy
tensor is continuous across the boundary.

A list of particles as produced in the interface was then fed
into the cascade on an event-by-event basis. For these studies,
4000 cascade events were produced for each impact parameter.
The cascade code was inspired by the physics of the hadronic
module of URQMD [42], but was significantly rewritten to
improve speed and is labeled B3D [43]. Hadrons were assumed
to collide through resonances with Breit-Wigner forms, plus a
simple s-wave elastic cross section of 10 mb. The s-wave cross
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TABLE I. Summary of model parameters. Six model parameters were varied. The first four describe the initial state being fed into the
hydrodynamic module, and the last two describe the viscosity and its energy dependence.

Parameter Description Range

(dE/dy)pp The initial energy per rapidity in the diffuse limit compared to measured value in pp collision 0.85–1.2

σsat This controls how saturation sets in as a function of areal density of the
target or projectile. In the wounded-nucleon model it is assumed to be
the free nucleon-nucleon cross section of 42 mb. 30–50 mb

fwn Determines the relative weight of the wounded-nucleon
and saturation formulas for the initial energy density described in Eqs. (3) and (4) 0–1

Fflow Describes the strength of the initial flow as a fraction of the amount described in Eq. (10) 0.25–1.25

η/s|Tc Viscosity-to-entropy density ratio for T = 170 MeV 0–0.5

α Temperature dependence of η/s for temperatures above 170 MeV/c, i.e., η/s = η/s|Tc + α ln(T/Tc) 0–5

section was chosen independent of momentum and particle
species. The resonances from the particle data book [44] with
masses less than 2.2 GeV/c2 were all included. On average,
particles collided roughly twice after being generated from
the hydrodynamic interface. Pions had fewer collisions on
average, while protons had more. The collisions in the cascade
mainly affected the spectra and v2 of protons. There are
numerous ways to improve the cascade, such as more realistic
cross sections, consistent time delays in scattering processes,
mean-field effects, and Bose effects for pions. However, given
the rather modest impact of the cascade at high energy, it is
not expected that the observables would change significantly.

The B3D code runs approximately two orders of magnitude
faster than URQMD for the calculations used here. This is
mainly attributable to two improvements: better handling of the
linked lists used to track collisions and adding cyclic bound-
ary conditions so that boost-invariance could be efficiently
incorporated. The majority of the numerical expense of the
calculations came from the cascade, and improving the speed
allowed a greater number of points in parameter space to be
explored.

The cascade ran until all collisions ceased. For each
outgoing particle, the momentum, particle ID, and the space-
time coordinates of the last interaction were recorded. Because
the reaction plane is known, it is straightforward to calculate
the azimuthal anisotropy factor v2 = 〈cos 2φ〉. Spectra are
efficiently calculated given that the cyclic boundary conditions
make it possible to use all the particles when calculating the
spectra at zero rapidity.

D. Femtoscopic correlations

Two-particle correlations at small relative momentum
provide femtoscopic information about the phase space dis-
tributions. This information is expressed through the Koonin
formula [45,46],

C[K = (p1 + p2)/2,k = (p1 − p2)/2]

=
∫

d3rS(K,r) |φk(r)|2 , (17)

S(K,r) ≡
∫

d3r1d
3r2f (K,r1)f (K,r2)δ[r − (r1 − r2)]∫

d3r1d3r2f (K,r1)f (K,r2)
.

Here φq(r) is the outgoing two-particle wave function, f (p,r)
is the phase-space density in the asymptotic state, and the
time-integrated relative-distance distribution S(K,r) describes
the chance that two particles with the same asymptotic
momentum K would be separated by r should they not
interact. Correlations provide the means to determine the
coordinate-space information of S(K,r) from the measured
correlations, C(K,k). Through a fitting procedure, one can
infer source radii which fit the shape of S(K,r) with
Gaussian radii, i.e., S(K,r) ∼ exp{−x2/2R2

out − y2/2R2
side −

z2/2R2
long}, where the “outward” direction is transverse to the

beam and parallel to K, the “longitudinal” direction is along
the beam axis and the “sideward” direction is perpendicular
to the other two. The source function S(K,r) depends on both
spatial and temporal aspects of the emission. For instance, if
the source is small but long-lived, the outgoing phase space
cloud for pions with momentum K will be elongated along
the direction of K owing to some pions being emitted long
before others. This would lead to the extracted radius Rout

being much larger than Rside. In contrast, the two radii tend to
be quite similar if the expansion is highly explosive.

The source radii are typically extracted by experimental
collaborations through fitting their measured correlations to
expectations from Gaussian sources. The description of such
analyses can be found in Ref. [46]. For the model calculations
correlation functions were calculated by first sampling S(K,r)
then combining pairs of pions with similar momentum. Pions
were divided into bins of 20 MeV/c width in transverse
momentum and in 15◦ bins in azimuthal angle before pairing.
Utilizing boost invariance, all the pions could be longitudinally
boosted to a frame where the rapidity was zero. The space-time
points at which particles had their last interaction had been
recorded along with their asymptotic momentum during the
running of the B3D module. This allowed a list of r = r1 − r2

to be constructed for each momentum bin. Correlation func-
tions for each momentum bin were calculated by assuming a
simplified wave function, |φq(r)|2 = 1 + cos(2k · r). Gaussian
source radii were then found by searching for radii that
best reproduce the three-dimensional correlation functions
calculated by the model. A fourth parameter, usually referred
to as λ, was also varied to describe the fraction of particles that
are correlated, because a good fraction of pairs are uncorrelated
because one of the particles may have resulted from a decay,
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or even have been misidentified. Thus, rather than matching
experimental and theoretical correlation functions, Gaussian
radii were compared. The calculation of correlation functions
and fitting was performed with the code base in CORAL [47].

III. REDUCTION OF EXPERIMENTAL DATA FOR
STATISTICAL ANALYSIS

The heavy-ion data sets from RHIC and from the Pb + Pb
experiments at the LHC represent some of the largest scientific
data sets in existence. A principal motivation of this work
is to develop a statistical analysis that can be extended to
large heterogenous data sets. This would include data taken
at multiple beam energies, with different target-projectile
combinations and with different detectors. The recent beam-
energy scan at RHIC and the inauguration of the LHC
have increased the available data by more than an order
of magnitude as compared to the Au + Au collisions at
100A GeV beams measured at RHIC. Additionally, analyzed
measurements of Cu + Cu, Cu + Au, and U + U from RHIC
will soon be available. The data set from the one beam
energy contains petabytes of information. For this first study,
we confine our analysis to this one data set, Au + Au at
100A GeV + 100A GeV. We further confine the analysis to a
subset of soft-physics observables: spectra, elliptic anisotropy,
and femtoscopic correlations. Only midrapidity observables
were considered. These are the observables most connected
to the bulk dynamics and to the bulk properties of matter,
and are often referred to as “soft physics.” Several classes
of observables are being ignored, e.g., jet quenching, long-
range fluctuations and correlations, dilepton and direct-photon
measurements, and heavy flavor. These observables are often
labeled “rare probes” and their interpretation largely factorizes
out of the analysis of the soft observables being considered
here. For instance, although jet quenching depends on the
energy density and bulk properties of the quark-gluon plasma,
the soft-physics observables being considered here are not
significantly affected by the mechanism for jet production.
Further, the theory and phenomenology governing these other
classes of observables often carry large uncertainties, not only
in additional unknown parameters, but also in that they carry
questions concerning the choice of approach. Given the way
that the physics from these other classes of analyses factorize
from the soft physics, as well as the lack of theoretical
consensus, the prudent course of action is to determine the bulk
dynamics of the system using the soft-physics observables.
Once the evolution of the system is determined, with quantified
uncertainties, one would have a validated basis from which to
calculate other classes of observables, such as rare probes.

Within the set of soft-physics observables, this first analysis
is restricted to a subset of the overall data. For spectra,
we consider only pions, kaons, and protons. It would be
straightforward to consider strange baryon spectra, but owing
to large systematic and statistical errors, they are unlikely to
greatly affect the answer at the current time. Additionally,
because theoretical treatments away from midrapidity remain
in an immature stage, our analysis concerns only midrapidity
observables. For angular anisotropies, we consider only v2 and

ignore higher order anisotropies for n > 2,

vn ≡ 〈cos(nφ)〉, (18)

where φ is the angle of a particle relative to the reaction
plane. Recent analyses of vn>2 suggest that the observables
may even be more sensitive to the viscosity than v2 [48–50].
However, theoretical questions remain about how to initiate
the event-by-event fluctuations which drive these higher-order
harmonics. This analysis only considers v2 for pions. Although
v2 is measured for kaons and protons, to compare to data,
theoretical treatments would have to run for tens of thousands
of events for each impact parameter to get sufficient statistics
for kaons and protons. This analysis used 4000 events per
impact parameter. Finally, the femtoscopic analysis is confined
to same-sign pions. Source sizes extracted from other analyses
carry significantly more uncertainty. RHIC data is recorded
according to centrality bins, e.g., top 5%, top 10%, 10%–
20% . . . . Bins are typically assigned according to some
measure of overall multiplicity. For instance, the 20%–30% bin
corresponds to those events with multiplicities that are lower
than the top 20% of events and higher than the lower 70% of
events. The choice of bins varies between observables and
between collaborations. Because hydrodynamic treatments,
especially the use of smooth initial conditions, becomes more
questionable at low centrality, we decided to neglect the more
peripheral collisions. Even though hydrodynamic models have
been successful in fitting data for centralities up to 50%
[7], we have chosen to ignore centralities greater than 30%.
For future analyses that include initial-state fluctuations, less
central collisions should be included, especially because they
might provide more sensitivity to the initial flow. This analysis
was thus confined to two bins, 0%–5% and 20%–30%, owing
to the expectation that if those two bins were matched, any
intermediate bin would also be matched. This reduced the
numerical cost of performing the simulations.

It is our hope to extend future analyses to include more data.
This would include data from the RHIC beam-energy scan,
from the LHC, and from the Cu + Cu, Cu + Au, and U + U
collisions at RHIC. Data from the LHC are straightforward
to incorporate because the same theoretical models can be
used once one has added energy-dependence to the initial-
state parametrization. The Cu + Au and U + U data require
significantly rethinking the parametrization of the initial state,
especially for uranium owing to large nuclear deformation.
Extending the analysis to include data from the beam-energy
scan would require significant changes to the model used
here. At lower energies, one can no longer assume Bjorken
boost invariance and can no longer ignore the baryon excess.
Although our present hydrodynamic code can work in three
dimensions, significant theoretical work is required to develop
a parametrization for the three-dimensional initial state at
arbitrary beam energies.

A. Initial distillation of observables

Experimental collaborations have spent tremendous effort
reducing the huge RHIC data set to a finite number of
published plots representing useful summaries of several
classes of observables. For example, the PHENIX and STAR
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collaborations have produced plots of proton spectra for
several centrality classes. Each plot might have a few dozen
points. It is infeasible for an emulator to reproduce each of
these data points. Instead, each observable was reduced to a few
representative quantities. For a given species and centrality,
spectra were reduced to two numbers. The first number is
the yield, or integrated spectra, within a finite pt (transverse
momentum) range. The ranges were set so that they ignored
the high pt tail, which is strongly affected by jets and is outside
the scope of the model. The second number would be the mean
pt within that range. The choice to use mean pt was motivated
by a principal component analysis (PCA, described in next
section) on the data points within a spectra divided by the
yield. This showed that 99% of the variability of the spectra
could be captured by two numbers.

To illustrate the degree to which the yield and mean pt

encapsulate the information carried by the spectra, calculations
were selected from the initial 729 calculations that had
the same mean transverse momentum within the acceptance
window. In Fig. 2 the number of pions per unit transverse
momentum are shown after being scaled by the net number
of pions in the acceptance window, (1/N )dN/dpt . With
this scaling one can compare the shapes independent of the
yields. In the top panel, spectral shapes are shown for 30
randomly chosen calculations, while in the bottom panel
only those calculations with 573 < 〈pt 〉 < 575 MeV/c were
used. These 74 runs should yield identical spectral shapes
if 〈pt 〉 carries the entire information carried by the spectral
shapes. Also shown are 30 proton spectral shapes from
random calculations in the top panel, and 44 calculations
where the mean transverse momentum of the protons was
1150 < 〈pt 〉 < 1152 MeV/c. These calculations show that
little, if any, additional information remains in the spectral
shapes once one knows the mean pt .

For the elliptic flow, the experimental information consists
of plots of v2 as a function of pt . A PCA analysis showed
that the pt -weighted value for v2 effectively captured all the
information within the set of model runs. The observable is
defined by

〈〈v2〉〉 =
∑

i v2,i〈pt 〉i∑
i〈pt 〉i , (19)

where the subscript i refers to the transverse momentum bins
in the STAR data, and 〈pt 〉i is the average pt of particles within
that bin. This choice of binning reduces the degree to which
two curves with the same v2 vs pt curves would differ if they
had different spectra.

Femtoscopic information came from the STAR Collabora-
tion, which analyzed the Gaussian radii (Rout, Rside, and Rlong)
as a function of transverse momentum. Simply averaging
each radius over the several pt bins was found to effectively
encapsulate nearly all the variation of the femtoscopic radii
throughout the model runs.

In this manner the various experimental results were
reduced to those listed in Table II. Each observable was
also assigned an uncertainty. This uncertainty represented the
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FIG. 2. (Color online) The probability density for creating either
pions (squares) or proton (circles) of transverse momentum pt

divided by the respective yields, i.e., spectral shapes, carries all the
information in spectra outside what is described by yields. Spectral
shapes for pions from 30 randomly chosen full model runs of the 729
performed runs used to sample the prior distribution are displayed
in the top panel. This demonstrates the variability of the spectral
shapes throughout the parameter space. In the bottom panel, 74
runs were chosen that had mean pion transverse momenta 573 <

〈pt 〉 < 575 MeV/c. The fact that these calculations produce nearly
indistinguishable spectral shapes shows that the mean transverse
momenta encapsulates nearly all the variability in the spectral shapes
over the prior parameter space. The same was done for proton spectra,
with proton spectra from 30 randomly chosen model runs shown in
the top panel, and results from 44 runs whose mean proton transverse
momentum was 1150 < 〈pt 〉 < 1152 MeV/c shown in the bottom
panel.

accuracy within which a theoretically determined value from
a model run could be meaningfully compared to the corre-
sponding experimental measurement. Of all the observables
in Table II only v2 has significant statistical error. The v2

observable is also known to be significantly affected by known
shortcomings in the model, such as the lack of event-by-event
fluctuations. By averaging over many events with the same
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TABLE II. Observables used to compare models to data.

Observable pt weighting Centrality (%) Collaboration Uncertainty (%) Reduced uncertainty

v2,π+π− Average over 11 pt bins from 160 MeV/c to 1 GeV/c 20–30 STAR1 [52] 12 6%
Rout Average over 4 pt bins from 150–500 MeV/c 0–5 STAR [53] 6 3%
Rside Average over 4 pt bins from 150–500 MeV/c 0–5 STAR [53] 6 3%
Rlong Average over 4 pt bins from 150–500 MeV/c 0–5 STAR [53] 6 3%
Rout Average over 4 pt bins from 150–500 MeV/c 20–30 STAR [53] 6 3%
Rside Average over 4 pt bins from 150–500 MeV/c 20–30 STAR [53] 6 3%
Rlong Average over 4 pt bins from 150–500 MeV/c 20–30 STAR [53] 6 3%
〈pt 〉π+π− 200 MeV/c < pt < 1.0 GeV/c 0–5 PHENIX [54] 6 3%
〈pt 〉K+K− 400 MeV/c < pt < 1.3 GeV/c 0–5 PHENIX [54] 6 3%
〈pt 〉pp̄ 600 MeV/c < pt < 1.6 GeV/c 0–5 PHENIX [54] 6 3%
〈pt 〉π+π− 200 MeV/c < pt < 1.0 GeV/c 20–30 PHENIX [54] 6 3%
〈pt 〉K+K− 400 MeV/c < pt < 1.3 GeV/c 20–30 PHENIX [54] 6 3%
〈pt 〉pp̄ 600 MeV/c < pt < 1.6 GeV/c 20–30 PHENIX [54] 6 3%
π+π− yield 200 MeV/c < pt < 1.0 GeV/c 0–5 PHENIX [54] 6 3%
π+π− yield 200 MeV/c < pt < 1.0 GeV/c 20–30 PHENIX [54] 6 3%

aTo account for nonflow correlations, the value of v2 was reduced by 10% from the value reported in Ref. [52].

impact parameter, one can generate smooth initial conditions,
which avoid the lumpy energy-density profiles caused by the
finite number of colliding nucleons. The smooth conditions
allow one to run only a single hydrodynamic evolution for the
smoothed profile rather than running for many lumpy profiles.
Finally, there are numerous schemes by which experimental-
ists determine v2, which differ at the level of 5%–10%. To
reduce nonflow correlations at the two- or three-body level, v2

can be extracted from correlations of higher order [51]. For
nonidentified particles, this has led to estimates of v2 that are
lower by approximately 10% [52]. Because we are considering
the v2 of identified particles, and because the experimental
four-particle-cumulant analysis has not been completed for
identified particles, we compare our model to the two-particle
result reduced by 10%. Furthermore, because the elliptic flows
for the most central collisions are dominated by fluctuations of
the initial conditions, and because fluctuations also play a more
important role for semiperipheral collisions, v2 is only used for
the 20%–30% centrality bin. Given the lack of fluctuations, it is
rather difficult to choose a scheme for model data comparison.
For theses reasons, v2 is assigned a larger percentage error than
other observables for this study. For future analyses, especially
those that include fluctuations, significant thought needs to
be invested in determining a reasonable level of uncertainty
for v2.

B. Principal component analysis of reduced observables

One could create model emulators for each of the observ-
ables listed in Table II. However, one can further distill the
data to a handful of principal components representing their
most discriminating linear combinations. This serves to further
reduce the complexity of the emulator. Let yexp,i and σi be
data points and uncertainties for the i = 1 through N data
points listed in Table II. One then considers the corresponding
quantities from the model run m, ym,i , where m runs from 1 to
the number of full model runs M . A useful first step is to scale

the quantities by their net uncertainty,

ỹexp,i = yexp,i − 〈yi〉
σi

,

ỹm,i = ym,i − 〈yi〉
σi

, (20)

〈yi〉 = 1

M

M∑
m=1

ym,i .

The net uncertainties, σi , are operationally defined as the
uncertainty involved in comparing a model value to an
experimental measurement. The measurements considered in
this paper are mainly limited by systematic uncertainties
rather than those from finite statistics, and we assume that
uncertainties are described by a normal distribution,

L(x) ∼ exp

{
−

∑
i

[
y

(exp)
i − y

(mod)
i (x)

]2

2σ 2
i

}
, (21)

where y(exp) and y(mod) are the experimentally measured and
model values, respectively. Even if the model parameters
are exact, the models also have limited accuracy owing
to shortcomings in the physics. Thus, the net uncertainty
encapsulates both theoretical and experimental uncertainties;
i.e., they can be considered to describe the inability of the
model not only to describe the physics of the collision, but
to also account for the inadequacy of the model to describe
uncertainties in the experimental measurement and analysis.

The net uncertainties are listed in the last two columns of
Table II. As described in the previous paragraph, systematic
uncertainties for the models are insufficiently understood. For
that reason, the calculation was repeated with two choices
for the uncertainty, a more pessimistic choice and a more
optimistic choice with half the values. If only experimental
uncertainties were considered, uncertainties would likely be
stated at a few percent for most observables, and the more
optimistic set of uncertainties would be more reasonable. The
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one exception would be the femtoscopic radii, where stated
uncertainties are close to the pessimistic set. For instance, in
STAR’s femtoscopic data the outward and sideward data do
not appear to approach one another at low pt , where they differ
by ∼5%. A more detailed analysis of experimental issues such
as resolution might help clarify this issue.

Determining systematic uncertainties is usually difficult.
For experimental systematic uncertainty, the accuracy of the
apparatus and the analysis procedure define the uncertainty.
In some cases, accuracy can be understood by comparing
the apparatus measurement to a known reference signal,
and if there is a random element to that signal, e.g., the
electronic amplifications fluctuate in a known manner, one
can confidently state the systematic uncertainty. For large
experiments with complex analyses, the systematic uncertainty
relies on expert judgment. For example, the efficiency of a
particle physics detector can be estimated with detailed Monte
Carlo simulations. However, the simulation relies on numerous
approximate treatments of the detector and of the response of
the detector to various inputs. Often the calibration procedures
differ greatly from the environment in which the experiment is
run. The reliance on expert judgment is never fully satisfactory,
even after involving discussions of numerous collaborators.

For complex simulations, theoretical systematic uncertainty
is also unavoidable. Whether the problem involves simulations
of heavy-ion collisions or the cosmology of the early universe,
the physics is always approximate at some level. As stated
above, the net uncertainty is currently determined by the con-
fidence with which one trusts theoretical models to reproduce
reality, even if given the most correct choice of parameters.
To confidently assign these uncertainties, one must make an
inventory of main missing physics ingredients and assess the
degree to which such shortcomings of the model might affect
the result. For instance, smooth initial conditions are known to
affect elliptic flow at the 5%–10% level. Other shortcomings
are related to the choice of hadronization scheme (perfectly
thermal), a crude final-state correction to pion spectra to
account for Bose effects, the lack of baryon annihilation and
regeneration, the lack of bulk viscosity, possible mean-field
effects in the hadronic stage, uncertainty of the equation
of state, and possible changes to the initial conditions. In
most of these cases, assessing the associated uncertainties
involves running an improved model with the effects. At
this point, the improved model should replace the one used
in this study and, if possible, uncertainties of the treatments
should be parametrized and the parameters should be varied.
As an example, the current model ignores the nonthermalized
perturbative QCD component which affects spectra at high
pt . One could add a component to the spectra that scales as
1/p4

t with a parametrized magnitude constrained by studies
of spectra at high pt . As another example, uncertainties
in how hadronization proceeds could be incorporated by
assigning fugacities based on quark numbers of various hadron
species. One might easily increase the number of theoretical
parameters from the half dozen considered here to one or
two dozen. Because the range of these additional parameters
is constrained by prior knowledge, the uncertainty to the
spectra deriving from the uncertainty of this component can
be represented by the width of the prior distribution of this

parameter. This uncertainty could then be neglected when
assigning a “systematic theoretical” uncertainty to the mean
transverse momentum. This same approach can also be applied
to some experimental uncertainties. For instance, the detector
efficiency could be a parameter, which would then reduce
the amount of systematic experimental uncertainty one would
assign to the final measured yields. Such parameters are
often referred to as “nuisance” parameters, though parameters
considered to be nuisances by some scientists might be
considered to be extremely interesting to others.

Once the modeling is better understood, one can go beyond
the rather ad hoc assignment of uncertainties considered here.
At that point the experimental uncertainties should dominate.
Accurately representing such uncertainties would require
conversation with the experimental community. The principal
goal of this paper is to investigate the feasibility of a
large-scale statistical analysis on RHIC data, and significant
improvement is needed in the modeling and in the assessment
of uncertainties before the results can be considered robust and
rigorous. Nonetheless, the analysis is an improvement in the
state of the art, and by considering two sets of uncertainties
one is able to assess the potential of the method and understand
the degree to which the various parameters are constrained or
might be constrained once uncertainties are better understood.

To proceed with the PCA, one first calculates the sample
covariance of the model values among the M model runs,

Sij = 1

M

M∑
m=1

ỹm,i ỹm,j . (22)

The N eigenvalues of S are λi , and the normalized eigenvectors
are ε̂i,j . One can then consider new variables, zm,i which
are linear combinations of the original ỹm,i along the various
directions defined by the eigenvectors,

zm,i =
∑

j

ε̂i,j ỹm,j . (23)

With this procedure, the model values, ỹm,i , are rotated into a
basis where the values zm,i have a diagonalized variance over
the model runs,

1

M

M∑
m=1

zm,izm,j = λiδij . (24)

The values zm,i are known as principal components. Because
the values ỹ were scaled by the uncertainties, the components
ỹi have uncertainties of unity, and after rotation the values
zi also have uncertainties of unity. Because the variance
of z within the model runs is diagonal, one can state that
those components for which λi � 1 can be ignored because
they do not assist in discriminating parameters. Further, the
discriminating power is often dominated by the first few
principal components, i.e., those with the largest λi .

To further justify our selection of principal components, we
show a plot of the normalized cumulative variance explained
by the largest r components in Fig. 3, i.e.,

F (r) =
∑r

i=1 λi∑N
i=1 λi

, (25)
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FIG. 3. (Color online) The variance resolving power F (r) of the
principal components, only the first few components are needed to
explain almost all of the observed variance.

where we have sorted the eigenvalues into descending order.
Examination of this figure clearly shows that the first three
principal components are sufficient to explain almost all of the
variability of the model throughout the parameter space.

Once the principal components, zi , have been determined,
one can invert the transformations to find yi in terms of the
zi . The components which do not contribute strongly to the
total variance can be set to zero and the resulting yis will not
be appreciably affected. In this particular case these are the
components with λ � 1. Thus, the statistical analysis need
only emulate those components with λi � 1.

Given the 15 observables outlined in Table II, one could
construct an emulator for each observable. However, a PCA
analysis of the 15 intermediate observables shows that not

more than three of the principal components vary appreciably
throughout the model runs. For these three components,
the corresponding fluctuations, 〈δz2

i 〉 were of order unity or
greater, while the remaining components fluctuated signifi-
cantly less than unity. Thus, instead of tuning 15 emulators,
only six principal components were considered (even though
only three were truly needed). It is instructive to list the values
of λi and the decomposition of the main components. This is
shown in Table III. The eigenvalues λi represent the resolving
power of the various principal components.

To gain an understanding of the degree to which the
parameter space is constrained by each measurement of zi ,
one can consider the simple case where observables depend
linearly on the parameters and where the prior distribution of
parameters, xα , is described by a Gaussian distribution with
unit variance, 〈xαxβ〉 = δαβ . In that case, the gradient of each
principal component,

(∇zj )α ≡ ∂zj

∂xα

, (26)

forms a set of orthogonal vectors because the covariance
〈zizj 〉 = λiδij is diagonal,

〈zizj 〉 = (∇zi)α(∇zj )β〈xαxβ〉 = ∇zi · ∇zj = λiδij . (27)

Thus, if each component of z depends linearly on x, each
principal component constrains a separate direction in param-
eter space. One can then understand the resolving power by
considering the simple case with one principal component and
one parameter. Given a measurement z(exp) and assuming that
the prior has unit variance and that z depends linearly with x,

P (x) ∼ e−x2/2 exp{−(mx − z(exp))
2/2}, (28)

TABLE III. The first six principal components. Because the variables were initially scaled by their uncertainties, the eigenvalues, λi , describe
the resolving power of the components. Only the first ∼4 components are significant, i.e., λ � 1. The table also provides the decomposition of
the principal components in terms of the 15 observables.

Observable\λi 18.36 7.87 0.93 0.21 0.04 0.012

cent0to5_PHENIX_spectraPION_YIELD 0.43202 0.52170 0.21636 0.56290 0.06883 0.35417
cent0to5_PHENIX_spectraPION_MEANPT 0.10117 0.02647 0.37032 −0.08869 0.09235 −0.24640
cent0to5_PHENIX_spectraKAON_MEANPT 0.10770 0.03291 0.37755 −0.07459 0.06328 −0.26766
cent0to5_PHENIX_spectraPPBAR_MEANPT 0.04925 0.02192 0.16751 −0.02131 −0.05466 −0.19039
cent0to5_STAR_ROUT_PION −0.01942 0.06908 −0.31734 −0.02968 0.72626 0.12886
cent0to5_STAR_RSIDE_PION 0.09148 0.09321 0.07972 0.05565 0.11943 −0.07137
cent0to5_STAR_RLONG_PION 0.08413 0.09520 −0.13599 0.37546 0.08521 −0.50343
cent20to30_PHENIX_spectraPION_YIELD 0.43743 0.49869 −0.32721 −0.56043 −0.26805 −0.01286
cent20to30_PHENIX_spectraPION_MEANPT 0.07549 0.03028 0.33981 −0.23142 0.28313 −0.06472
cent20to30_PHENIX_spectraKAON_MEANPT 0.08266 0.03721 0.34043 −0.23645 0.27941 −0.06785
cent20to30_PHENIX_spectraPPBAR_MEANPT 0.03791 0.02697 0.14297 −0.11517 0.03747 −0.09339
cent20to30_STAR_V2_PION_PTWEIGHT −0.74299 0.65843 0.08846 −0.03607 −0.01531 −0.06192
cent20to30_STAR_ROUT_PION 0.02955 0.03296 −0.30420 −0.06375 0.43249 −0.09820
cent20to30_STAR_RSIDE_PION 0.08368 0.09367 −0.01379 −0.21381 0.08021 −0.06598
cent20to30_STAR_RLONG_PION 0.08974 0.08905 −0.24592 0.19088 −0.07458 −0.62873
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where dz/dx is the slope m, and from Eq. (27) m2 = λ.
Completing the squares in the argument of the exponential,

P (x) ∼ e−(λ+1)(x−μ)2/2, (29)

where μ is the posterior mean for x. This shows that if the
response is purely linear, each principal component reduces
the width of the posterior relative to the prior by a factor
1/

√
1 + λi .

The first principal component in Table III carries the
bulk of the resolving power. Because λ1 = 18.36, the linear
considerations above suggest that a measurement of the first
principal component should constrain the original parameter
space by a factor of roughly 1/

√
19.36. The second and third

principal components also significantly narrow the parameter
space. As a crude estimate based on the assumptions surround-
ing Eq. (29), the six-dimensional parameter space should be
constrained by the product of 1/

√
(λi + 1) for each principal

component. This would suggest that this analysis might
ultimately constrain the posterior distribution to approximately
5% of the original six-dimensional parameter space at the “1σ”
level. This estimate of the resolving power is based on a picture
where z varies linearly with x and that the prior distribution is
Gaussian, but nonetheless provides a useful estimate for how
our analysis might ultimately constrain the parameter space.

The first and second components dominantly consist of
measures of the multiplicity and of the v2 observable. This
is not surprising. It shows that the most important aspect of
fitting data is to fit the multiplicity and elliptic flow. The third
component has a large mixture of 〈pt 〉 and interferometric
observables. Thus, before performing the parameter space
exploration, one expects that those parameters driving the
multiplicity and elliptic flow will be the most significantly
constrained.

IV. THEORY OF MODEL EMULATORS

Determining the posterior distribution of parameters can be
stated within the context of Bayes theorem,

P (x|O) = P (O|x)P (x)

P (O)
. (30)

Here our goal is to determine the probability, P (x|O),
of the parameters x being correct given the observations O.
The probability of the observations O being observed given
the parameters x is P (O|x), and is determined by running the
model with parameters x and comparing the model output to
observations. If one assumes the uncertainties are of a Gaussian
nature, the conditional probability has a simple form,

P (O|x) ∼ exp

{∑
i

[Oi,exp − Oi,mod(x)]2

2σ 2
i

}
, (31)

where the experimental observation is Oi,exp, and the model
prediction is Oi,mod(x). Of course, one can choose dif-
ferent forms for P (O|x) depending on the circumstance.
The Bayesian prior, P (x), describes the probability of the
parameter x in the absence of any information from the
observables. Examples of a prior distribution might be a

uniform distribution within a given range or a normal dis-
tribution. The denominator, P (O), is the probability of the
experimental measurement without having compared to the
model and, given that the observation is known, can be treated
as a constant. Markov-chain Monte Carlo procedures provide
a list of points in parameter space weighted proportional to
the likelihood, L(x) = P (x|O), i.e., the posterior distribution.
Because determining this distribution requires only the relative
likelihoods of points, the denominator, P (O), is irrelevant
because it does not depend on x. Further, for the calculations
in this study we assume uniform priors, P (x) is a constant
within a given range. With this choice P (O|x) and P (x|O)
are effectively interchangeable.

The analysis here uses a Metropolis algorithm to produce
the posterior distribution and is a random walk in parameter
space where each step is accepted or rejected according to the
relative likelihood [55]. If the relative likelihood is higher, the
step is accepted, whereas if it is lower the step is accepted
with a probability of the relative likelihoods. According to
the ergodic theorem, this produces a “time” average of the
distribution consistent with the likelihood. By ignoring the
first section of the MCMC trace, referred to as the “burn in,”
and by using a sufficiently large number of random steps, the
sampling of points provides the means to not just determine
the average of any parameter value as taken from the posterior,
but can also find correlations between parameters, and should
even identify likelihood distributions with multiple maxima.
The method was tested by repeating with different starting
points and by visualizing the progress of the trace.

Developing an understanding of a six-dimensional param-
eter space requires hundreds of thousands of MCMC steps.
Each step requires calculating the likelihood, which in turn
requires running the full model. Running a complex code
for each sampled point in parameter space is impractical.
An alternative strategy has been to develop model emulators.
Emulators effectively interpolate from an initial sampling of
runs through the space. One may need hundreds or thousands
of full model runs to tune, or train, an emulator. If one can
afford to run the model for hundreds of times, and if the
emulation is accurate, model emulators can be extremely
effective. Models that have a smooth, or even monotonic,
dependence on parameters are especially good candidates
for emulation because fewer sampling points are required to
provide a good base for interpolation.

We construct a Gaussian process emulator [56–59], which
acts as a statistical model of our computer model. An emulator
is constructed by conditioning a prior Gaussian process on
a finite set of observations of model output, taken at points
dispersed throughout the parameter space. Once the emulator
is trained it can rapidly give predictions for both model outputs
and an attendant measure of uncertainty about these outputs at
any point in the parameter space. This is a probability distribu-
tion for the model output at all points in parameter space and is
by far the most useful feature of Gaussian process emulators.
The most common interpolation schemes, such as interpolating
polynomials, produce an estimate of the model output at a
given location in the parameter space with no indication as
to the extent that this value should be trusted. Furthermore,
numerical implementations of Gaussian process emulators are
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FIG. 4. (Color online) (Left) Unconditioned draws from a Gaus-
sian process GP(0, 1) with a mean of zero and constant unit variance.
(Right) Draws from the same process after conditioning on seven
training points (black circles). The gray band in both panels is a
pointwise 95% confidence interval. Note how the uncertainty in the
right panel grows when away from the training points. Refer to text
for further details.

computationally efficient (producing output in fractions of a
second, whereas the full model might require many minutes,
hours, or days), making it feasible to predict vast numbers of
model outputs in a short period of time. This ability opens
new doors for the analysis of computer codes which would
otherwise require unacceptable amounts of time [60,61].

We construct an emulator for a model by conditioning a
Gaussian process prior (see Fig. 4) on the training data [62–64].
A Gaussian process is a stochastic process with the property
that any finite set of samples drawn at different points of its
domain will have a multivariate-normal (MVN) distribution.
Samples drawn from a stochastic process will be functions
indexed by a continuous variable (such as a position or time),
as opposed to a collection of values as generated by, e.g., a
normally distributed random variable. A Gaussian process is
completely specified in terms of a mean and covariance, both
of which can be functions of the indexing variable x. The
covariance, c(x1,x2), might be any positive-definite function
of x1 and x2. An example of unconditioned draws is shown
in the left panel of Fig. 4 for the case where the covariance
depends only on x1 − x2 and is a power-exponential covariance
function with unit length. The draws are smooth functions over
the domain space, and if enough samples are drawn from the
process, the average of the resulting curves at each point would
converge to zero.

A predictive distribution for the value of a computer model
at new points in the design space can be obtained by condition-
ing this process on a set of training points obtained from run-
ning the model. Conditioning forces samples drawn from the
process to always pass through the training points. The result-
ing curves interpolate the training data, as shown in the right-
hand panel of Fig. 4. Repeated draws from the conditioned
posterior distribution would, on average, follow the underlying
curve with some variation, shown by the gray confidence
regions. These confidence bubbles grow away from the training
points, where the interpolation is least certain, and contract to
zero at the training points where the interpolation is absolutely
certain. The posterior distribution can be evaluated to give a

mean and variance at any point in the parameter space. We may
interpret the mean of the emulator as the predicted value at a
point, the variance at this point gives an indication of how close
the mean can be expected to be to the true value of the model.

To construct an emulator we need to fully specify our
Gaussian process (GP) by choosing a prior mean and a form
for the covariance function. The model parameter space is
taken to be p dimensional. We model the prior mean by
linear regression with some basis of functions h(x). In this
analysis we use the trivial basis h(x) = {1}. We specify
a power-exponential form for the covariance function with
power α � 2 to ensure smoothness of the GP draws (α has to
be in Refs. [1,2] to ensure positive definiteness),

c(xi ,xj ) = θ0 exp

(
−

p∑
k=1

{
xk

i − xk
j

θk

}α)
+ δij θN ,

(32)
α ∈ [1,2].

Here θ0 is the overall variance, the θk set characteristic length
scales in each dimension in the parameter space, and θN is a
small term, usually called a nugget, added to ensure numerical
convergence or to model some measurement error in the code
output. The shape of the covariance function sets how the
correlations between pairs of outputs vary as the distance
between them in the parameter space increases. The scales in
the covariance function θk are estimated from the data using
maximum likelihood methods [64], in Fig. 5 we demonstrate
their influence on an artificial data set. The linear regression
model handles large-scale trends of the model under study, and
the GP covariance structure captures the residual variations.

Given a set of n design points D = {x1, . . . ,xn} in a p-
dimensional parameter space and a set of n training values
representing the model output at the design locations Y =
{y1, . . . ,yn}, the posterior distribution defining our emulator is

P(x,θ ) ∼ GP[m̂(x,θ ),�̂(x,θ )], (33)

for conditional mean m̂ and covariance �̂:

m̂(x) = h(x)T β̂ + kT (x)C−1(Y − Hβ̂),

�̂(xi ,xj ) = c(xi ,xj ) − kT (xi)C−1k(xj ) + �(xi,xj ), (34)

Cij = c(xi ,xj ),

�(xi,xj ) = [h(xi )
T − kT (xi )C−1H]T (HT C−1H)−1

× [h(x j )
T − kT (x j )C−1H], (35)

k(x)T = [c(x1,x), . . . ,c(xn,x)],

where m̂(x) is the posterior mean at x, �̂(xi ,xj ) is the posterior
covariance between points xi and xj , C is the n × n covariance
matrix of the design D, β̂ are the maximum-likelihood
estimated regression coefficients, h is the basis of regression
functions, and H is the matrix of these functions evaluated at
the training points.

The elements of the vector k(x) are the covariance of an
output at x and each element of the training set. It is through
this vector k(x) that the emulator “feels out” how correlated
an output at x is with the training set and thus how similar the
emulated mean should be to the training values at those points.
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FIG. 5. (Color online) Demonstration of emulator behavior as a function of correlation length, θ1. In all panels, the solid blue line shows
the mean of the emulator and the solid gray region is a 95% confidence interval around this region. (Left) Fitting with a value of θ1 that is too
small (undersmoothing). (Right) Oversmoothing by using a value of θ1 that is too large. (Middle) Smoothing with a value of θ1 = 0.68 that
was obtained by a maximum likelihood estimation method.

Note that the quantities defined in Eq. (34) depend implicitly
upon the choice of correlation length scales θ = {θ0,θ

k,θN }
which determine the shape of the covariance function.

The expression for the mean in Eq. (34) can be decomposed
into a contribution from the prior, the linear regression model
h(x)T β̂ plus a contribution applied to the residuals determined
by the covariance structure kT (x)C−1(Y − Hβ̂). Similarly, the
covariance can be decomposed into a contribution from the
prior, the covariance function c(xi ,xj ) plus corrections arising
from the prior covariance structure and the covariance of the
new location x through k(x). These terms weight the points
xi ,xj more highly the closer they are to the training points
through k. The � term gives the corrections to the covariance
arising from the regression model.

In our study, we run the full code at N = 729 (chosen
because 36 = 729) points from the parameter space. A Latin
hypercube design is used to generate the training locations
in the parameter space. This is an efficient sparse design for
high dimensional parameter spaces that is “space filling” in the
sense that all its lower-dimensional projections are distributed
as evenly as possible [65–67].

The output from the model code is multivariate. Although
fully multivariate emulator formulations do exist, they are
challenging to implement. Instead we follow the now some-
what standard procedure of creating emulators for some
decomposition of the code output; see, e.g., Refs. [60,68].
In this case we apply a principal components decomposition
to the model output and build emulators for each significant
component as detailed above.

V. TESTING THE EMULATOR

The goal of this section is to investigate the reliability
and accuracy of the GP emulator described in the previous
section. Tuning the GP emulator involves choosing the

hyperparameters described in Eq. (32). The success of the
tuning was determined by comparing emulated data to model
predictions from 32 runs performed at points in parameter
space not used to tune the model. These 32 points in parameter
space were chosen randomly from the six-dimensional space.

The first attempt at finding optimized hyperparameters used
the same methods of Refs. [14,64]. However, that approach
was not robust, and often led to inaccurate emulators. A
more accurate result ensued by simply setting the hyper-radii,
the θ i values in Eq. (32), equal to half the range for each
parameter xi in the model space. The exponent α was set
to 1.5 and the nugget �0 was set to zero. Changing the
hyper-radii by factors of two, or adjusting the exponent
anywhere between 1.0 and 2.0 had little effect. For perspective,
competing interpolating schemes were constructed, one based
on a quadratic fit and a second based on a linear fit where
neighboring points were more heavily weighted in the fits.
Each of these schemes was slightly less accurate than the
GP emulator with the hyper-parameters chosen as described
above. However, all these procedures performed better than the
GP emulator using maximum-likelihood-estimation (MLE)
hyper-parameters as described in Refs. [14,64]. This failure
to find good hyperparameters may come from the numerical
challenges of the MLE optimization process given the large
number of training points.

The GP emulator explicitly reproduces zi(x) whenever
x approaches one of the training points, xn,n = 1, . . . ,729.
To test the emulator, points had to be chosen away from
the training points, and 32 additional full model runs were
performed at random points throughout the parameter space.
The emulator error can be summarized as

EE(x) ≡
r∑

i=1

[
z

(emu)
i (x) − z

(mod)
i (x)

]2
, (36)
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FIG. 6. (Color online) The emulator error, EE, is shown for the
32 test runs. If the EEs per principal component were of the order of
the experimental and model uncertainties, the values of EE would be
near six. The errors above are significantly smaller.

where z
(emu)
i (x) is the conditional mean from the ith emulator

as given by Eq. (34) and r is the total number of observation
principal components retained. A plot of this for the withheld
data points is displayed in Fig. 6 for the 32 test runs. By
construction, EE(xn) is zero for the 729 training runs. The fact
that the net errors were less than unity, even after summing
over six principal components, shows that the emulator did
an outstanding job of reproducing the data. Furthermore, the
emulator error is of the order of the statistical error of the
model (which mainly comes from the calculation of v2, which
suggests that in this case further improving the emulator would
not significantly improve the final result.

The GP emulator was remarkably accurate, with the net
error summed over all principal components being of order
unity for only one of the 32 points and much better for the other
points. Two other emulator schemes were also investigated.
The first was a quadratic fit weighted by the likelihood
for each point. A second one was a linear fit, with the fit
parameters chosen depending on the location in parameter
space, and weighted more heavily with nearby points. All
three of these methods provided accuracies similar to depicted
in Fig. 6, and all three led to nearly identical posterior
distributions. The success of these emulators over a wide
range of schemes and parameters is probably attributable to the
smooth and monotonic response of the model to parameters.
At high center-of-mass energies, the physical system is highly
explosive. Within the range of parameters considered the
explosiveness is modified, but the behavior never changes
qualitatively, and one expects a monotonic response to the
parameters. This might not be as true at lower energies.

It was seen that the estimate of the errors of the emulation
as defined in Eq. (34) often significantly underestimated the
accuracy of the emulator as tested in Fig. 6. The net error
tended to be less than a half unit, even though it was summed
over multiple degrees of freedom. Because the error associated
with the accuracy of the emulator was so small, the emulator

error was incorporated into the calculation of the likelihood in
a simplified manner. The uncertainty inherent to the data and
models for a specific principal component was unity owing
to the choice in how to scale the zi values. By adding in the
emulator error, the total uncertainty should be σ 2 = 1 + σ 2

e for
each component. The likelihood used by the MCMC is then

L(x) ∝ exp

{
−1

2

∑
i

[
z

(emu)
i (x) − z

(exp)
i

]2

1 + σ 2
e

}
. (37)

For our MCMC calculations, σe was set to 0.1 according to an
estimate of the error per degree of freedom from Fig. 6. This
increased the width of the posterior region of parameter space
by only a few percent.

VI. MCMC RESULTS

As shown in the previous section, the emulator accurately
reproduces the log likelihood. For the MCMC search the GP
emulator was run sampling many millions of points in parame-
ter space. The trace provides an ergodic sample of the allowed
regions in parameter space, i.e., the posterior distribution. The
MCMC procedure applied here is a Metropolis algorithm.
First, the parameter space was scaled and translated so that
it was centered around zero, and that the flat prior had unit
variance; i.e., it varied from −√

3 to +√
3. First, a random

point was chosen in the six-dimensional parameter space x1,
from which one takes a random step to x2 = x1 + δx. The
random steps δx were chosen according to a six-dimensional
Gaussian with the step size in each dimension being 0.1. The
likelihoods were calculated for each point. If the likelihood
L(x2) was higher than L(x1), the step was accepted, and if
the likelihood was smaller, the step was accepted with the
probability of the ratios of the two likelihoods. After the
100 000-step burn-in phase, the trace was stored by writing
every tenth point. The resulting distribution is proportional to
the likelihood [55] and represents an ergodic sampling of the
posterior distribution for a uniform prior. The trace finished
when 106 points were written to disk. The procedure was
repeated several times from different starting points to ensure
the robustness of the trace. Visualization of the trace also
appeared to show that the length of the search was sufficient.
The ease with which the MCMC mapped out the posterior is
probably explained by the lack of complex topology of the
posterior distribution; i.e., we never found multiple maxima in
the likelihoods as the dependence of the principal components
with respect to the parameters appeared monotonic.

To evaluate the success of the emulation, 20 points were
randomly chosen from the MCMC trace and were then
evaluated with the full model. The observables used for the
original analysis were then plotted for each of the 20 points
in parameter space. Another 20 points were chosen randomly
from the original parameter space; i.e., they are consistent
with the flat prior distribution. Again, the observables were
calculated with the full model for each of these points in
parameter space. One expects the observables for each of
the 20 points representing the MCMC trace to reasonably
well match the experimental data, while the points chosen
randomly from the prior distribution should lead to a wider
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FIG. 7. (Color online) (Left column) Pion, kaon, and proton spectra from 20 model calculations where parameters are randomly chosen
from the prior distribution. Model calculations are blue lines, and experimental data from PHENIX are shown as red (green) circles for positive
(negative) charges. Results are shown for both 5% most central and for the 20%–30% centrality bin. Owing to lack of some chemical reactions,
normalizations for kaons and pions in the model were scaled by factors of 0.85 and 0.6, respectively. (Right column) Same as left panels but
with 20 model calculations where parameters were chosen randomly from posterior distribution as sampled by MCMC trace.

range of observables, some of which should be inconsistent
with the data.

Comparisons of the spectra from the model runs charac-
terizing the prior and posterior distributions are shown in
Fig. 7. Parameters from the posterior distributions lead to
far superior fits, for both the yields and for the shape of the
spectra. From the figure, one can see that the spectra for heavier
particles provide more discriminating power. This comes from
the greater sensitivity to collective flow, and emphasizes the
importance of having reliable measurements of proton spectra.
At RHIC, STAR’s proton spectra [26] are warmer than those
of PHENIX [54], and their estimate of the mean pt for protons
is 7% higher. Whereas PHENIX shows the mean pt of protons
staying steady or perhaps slightly falling with increasing
centrality, STAR’s analysis shows a rising mean pt . If the
mean pt were indeed higher than what PHENIX reports, the
extracted parameters should change; e.g., the initial collective
flow might come out higher.

Figure 8 shows v2 as a function of pt for identified pions
as calculated from the same representative points in parameter

space for both the prior and posterior distributions as were used
for the spectra. The MCMC is clearly successful in identifying
points in parameter space that when run through the full model
matched the experimental measurement of v2. Further, given
that the systematic uncertainty of specifying the pt averaged
v2 was assumed to be 12%, the spread of v2 vs pt plots appears
to be consistent with expectations.

Although the overall trend of the source radii were matched
by the model, a consistent discrepancy between the data
and model calculations using parameters from the posterior
distribution is evident. At low pt , the sideward source sizes is
overpredicted by approximately 10%, which is about double
the expected systematic error. The longitudinal source sizes are
consistently overpredicted by the model. A ∼5% overpredic-
tion was expected given the lack of longitudinal acceleration
inherent to the assumption of boost invariance used in the
calculations [40]. Additionally, the finite longitudinal size
might also lead to an additional few percent decrease in the
longitudinal radii. Other aspects of the approximation, such
as in how the ππ Coulomb interaction was treated or in the
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FIG. 8. (Color online) (a) For 20 points in parameter space
randomly chosen from the prior distribution, v2 for pions is plotted
as a function of pt for full model runs. Blue lines represent model
calculations, whereas red squares are experimental data. (b) Same as
(a), except 20 points are randomly taken from posterior distribution
as sampled by the MCMC trace. (c) Results taken from calculations
using parameters chosen from the posterior where the calculations
had uncertainties reduced by a factor of 2.

approximation of independent emission used in the Koonin
formula, may have affected the answer at the level of a few
percent. Finally, the procedure of extracting Gaussian radii
from correlation functions can affect the answer. Because the

FIG. 9. (Color online) Femtoscopic radii are shown for calcula-
tions from the prior distribution (a)–(d) and from the posterior (e)–(h)
calculations. Red circles and blue squares refer to experimentally
extracted source radii from 0%–5% and 20%–30% centrality, respec-
tively. The red and blue lines show the corresponding theoretical
calculations. The posterior calculations well reproduce the sideward
and outward radii except at low pt . The longitudinal radii from the
calculations are consistently larger than the experimental ones.

actual correlations are not Gaussian, the fitted radii can depend
on how various parts of the correlation function are weighted
in the fit [69]. The calculations could be improved by using
the same binnings and cuts as was used for the data; e.g.,
correlations at very small momenta are cut off experimentally
owing to two-track resolution issues.

From analyticity, one expects that the Rout and Rside sizes
should approach one another as pt → 0. As can be seen in
the top panel of Fig. 9, this does not appear to be holding
true in the data. Either the lower range of pt (200 MeV/c) is
not sufficiently small, or an acceptance/efficiency effect in the
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FIG. 10. (Color online) The distribution of acceptable values for each of the six model parameters are shown along the diagonal. The
off-diagonal plots display the correlation between all pairs of observables. Four of the six parameters refer to the initial state and the last two
describe the shear viscosity. This calculation was based on the more pessimistic assumption of uncertainties in Table II.

detector is affecting the result. This issue should be resolved if
femtoscopic analyses are to be applied with confidence near a
5% level. However, because the femtoscopic observables carry
a relatively small weight of the strongest principal components,
as seen in Table III, resolving this puzzle is not expected to sig-
nificantly change the extracted model parameters. From past
experience, source radii are known to be sensitive to the equa-
tion of state, and for studies that vary the equation of state, one
expects femtoscopic observables to play a more critical role.

From the MCMC traces, the distribution of the various
parameters and the correlations between pairs of parameters

are shown for the GP emulator in Fig. 10. The plots along
the diagonal display the range of acceptable values for
individual parameters, integrated over all values of the other
five parameters. Although over 90% of the six-dimensional
parameter space is eliminated at the 1σ level, the individual
parameters are rarely constrained to less than half their initial
range when other parameters are allowed to vary.

The first four parameters (“energy norm.,” “σsat,”
“W.N./Sat. frac.,” and “Init. Flow”) define the initial state
of the hydrodynamic treatment. The first parameter, energy
norm., sets the constant of proportionality between the product

034917-18



DETERMINING FUNDAMENTAL PROPERTIES OF MATTER . . . PHYSICAL REVIEW C 89, 034917 (2014)

of the areal densities of the incoming nuclei and the initial
energy density used to initiate the hydrodynamic treatment. In
the limit of low areal densities this should be consistent with
pp collisions. Thus, the range of the prior distribution was
quite small, and the statistical analysis did little to further
constrain it. The parameter σsat is defined in Eq. (3) and
parametrizes the saturation of the energy density with multiple
collisions. The preferred value appears rather close to the
value of 42 mb typically used in the wounded-nucleon model,
though there is a fairly wide range of accepted values. The
parameter W.N./Sat. frac. refers to fwn in Eq. (1) and sets
the weights between the wounded-nucleon and the saturation
parametrizations. This shows a preference for the wounded-
nucleon prescription which gives a smaller initial anisotropy
than the saturation parametrization. The final initial-condition
parametrization, Init. Flow, sets the initial transverse flow set
in the hydrodynamic calculation. The parameter sets the initial
flow as a fraction of the amount described by Eq. (10), which
should be expected in the limit of high energy. The MCMC
trace points to a rather small fraction of this flow, though like
all of the initial-condition parameters, the range of possible
values is fairly broad.

The last two parameters define the viscosity. The viscosity
at T = 170 MeV is referred to as “η/s” in Fig. 10, and the
temperature dependence is labeled by “T dep. of η/s”, and
refers to the parameter α in Eq. (16). Both are significantly
constrained as a fraction of the original parameter space. The
range of η/s is consistent with similar, but less complete,
searches through parameter space using similar models [3,4].
In Ref. [39], the authors found little sensitivity to the viscosity
at higher temperatures, but considered a smaller variation of
the viscosity with temperature than was considered here.

Figure 10 also displays cross-correlations from the MCMC
traces. Several parameters are strongly correlated. For in-
stance, energy norm. and σsat are strongly correlated in that
one can have less saturation of the cross section if the
energy normalization is turned down. There is also a strong
correlation between “Init. Flow” and “W.N./Sat. frac.” One
can compensate for less initial flow if the saturation formula is
more heavily used than the wounded-nucleon formula. Again,
this is expected because the wounded-nucleon parametrization
leads to less spatial anisotropy and a somewhat more diffuse
initial state.

The inferred viscosity is clearly correlated with the
weighting between the wounded nucleon and saturation
parametrizations, as expected from the arguments in Ref. [2].
The two viscous parameters are also correlated with one
another as expected. One can compensate for a very low
viscosity at T = 170 MeV by having the viscosity rise quickly
with temperature. Figure 11 shows the viscosity-to-entropy
ratio as a function of temperature corresponding to the
20 random samples from both the prior and the posterior
distributions. Higher values of the temperature dependence
α are increasingly unlikely for higher values of η/s|Tc

.
The width of the distributions in Fig. 10 are influenced by

the choice of uncertainties. As discussed in the next section,
this choice is currently dominated by our lack of knowledge
of how strongly missing components in the physics might
affect the observables. Future study may greatly reduce these
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FIG. 11. (Color online) Twenty random points in parameter
space were taken from the prior (top panel) and posterior (two bottom
panels) distributions. The temperature dependence of the viscosity to
entropy ratios is clearly constrained by the statistical comparison with
data, though the posterior distribution still covers a large variation.

systematic theory uncertainties or at least better quantify them.
For now, we use the rather ad hoc choices. To understand the
degree to which these choices affect the posterior distribution,
the statistical analysis was repeated with all uncertainties
reduced by a factor of two and are shown in Fig. 12. The
widths of the posterior distributions do not necessarily reduce
by a factor of two, because some of the widths are the result
of projecting narrow distributions in higher dimension onto
the one-or-two-dimensional plots in Fig. 12. Even though the
widths of the projected posterior distribution do not reduce by
a factor of two, the narrowing is significant and suggests that
a detailed analysis of model uncertainties would be helpful.

VII. SUMMARY AND OUTLOOK

Two principal conclusions can be taken from this study.
First, the data from relativistic heavy-ion collisions are
well suited to a multidimensional analysis featuring model
emulators. The response of the data to model parameters
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FIG. 12. (Color online) The same as in Fig. 10, except that the more optimistic set of uncertainties from Table II were used in the analysis.
By halving the uncertainties the widths of the distributions are noticeably narrower, but not by a factor of two.

appears sufficiently smooth to warrant simple interpolation of
a few principal components. Only a half dozen parameters
were varied in this study, and only a limited number of
observables were considered. Nonetheless, the procedure
should readily scale to larger numbers of parameters and
larger data sets. The successes of the emulator in reproducing
model output and of the MCMC procedure in identifying likely
regions in parameter space provide hope that the field can
produce quantitative statements concerning the bulk properties
and dynamics of the matter formed in heavy-ion collisions.
The second conclusion centers on the extracted parameters.

Although the ranges are subject to change given expected
improvements in both data and modeling, the ranges of
parameters and correlations shown in Fig. 10 are remarkably
close to expectations from less rigorous searches.

The statistical procedures applied here represent a signif-
icant improvement to the state-of-the-art for comparisons of
data and models in the field of relativistic heavy-ion physics.
Previously, parameters were varied either individually, or in
small groups. Figure 6 demonstrates the success of using
emulators for this problem. Most importantly, the emula-
tor techniques should scale well with increased data and
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increased number of parameters. Ultimately, the number of
simultaneously varied parameters might increase to around
20, with the expectation that many, or perhaps most, of these
parameters will not be significantly constrained by the data.
Adding parameters to which the model is insensitive does not
increase the need for additional runs, as long as the parameters
are varied in such a way that those parameters that are
important are well sampled. It is expected that the additional
parameters would decrease the efficiency with which the
critical parameters are sampled, but that the additional number
of model runs would not make the problem intractable.
Adding more data should, hopefully, increase the number
of principal components extracted from the model runs by
providing additional discriminating power. Once the model
calculations have been performed, the numerical cost of the
statistical analysis performed here was negligible, and adding
more principal components should not cause any problems.
Thus, the results of this study are promising, and encourage
extending the scope to much larger data sets and more realistic
models.

Although the models used here represented the current
state of the art, several improvements are necessary before
firm quantitative conclusions can be extracted. The following
improvements require significant development, but are all
tractable:

(i) A flexible equation of state. For this study, the equation
of state was fixed. There is some uncertainty involved
with lattice calculations that should be accounted for
with a variable equation of state. Additionally, it is
of interest to address whether the equation of state is
constrained by experiment alone, i.e., without relying
on lattice calculations.

(ii) The bulk viscosity was set to zero here. Near Tc,
the system undergoes a rapid change in microscopic
structure, and the system may lose equilibrium. As the
system returns to equilibrium, entropy is generated. If
the departure from equilibrium is small, the effect can
be accounted for by adding a bulk viscosity [18,19]. If
the departure is large, other approaches are possible,
such as dynamically solving for the mean fields [70].

(iii) The initial chemical composition of the hadronic phase
was set by the assumption of chemical equilibrium
when the system reached a temperature of 170 MeV.
The chemical evolution can be improved by incorpo-
rating more inelastic processes like baryon-antibaryon
annihilation [71,72]. Further, the assumption of perfect
equilibrium at a fixed temperature should be relaxed
by parametrizing nonequilibrium effects.

(iv) Although collisions produce many thousands of parti-
cles, the initial collision involves only on the order of
100 nucleons. The finite number of original scattering
centers leads to lumpy initial conditions, unlike the
smooth initial conditions used here. If the model used
here were improved to incorporate initial fluctuations,
v2 would be more realistically modeled, and it would
make it possible to consider fluctuations of the flow
encoded in higher harmonics, i.e., v3,v4 . . .. Addition-
ally, experiments analyze elliptic flow with several

methods that also vary at the 10% level. Because
the methods also differ owing to finite numbers of
particles, once the fluctuating initial conditions are
better understood, a decision needs to be made as
to which method of experimentally determining v2

is most appropriate for comparison with models [24].
(v) Although the model used here can incorporate three-

dimensional flow, for this study the calculations were
performed with the Bjorken ansatz. This approxi-
mation is reasonable for collisions at 200A GeV or
higher [40], but full three-dimensional calculations
are needed for lower energy, or for observables
away from midrapidity. Using low-energy or non-
midrapidity data will also necessitate a more complex
parametrization of the initial state.

(vi) During the hadronic phase, pionic phase space be-
comes highly filled at low pt . This affects spectra at
the 10% level, which is neither crucial nor negligible.
Hadronic cascades can incorporate such effects by
adding (1 + f ) phase space enhancements to scatter-
ings. This increases the numerical cost of the modeling
at the factor-of-two level.

Most of the improvements listed above would be accompa-
nied by an increase in the number of parameters. For example,
varying the equation of state will involve the addition of a few
parameters. Because the bulk viscosity is not well determined
by lattice calculations, both it and its temperature dependence
require parametrization. Nonequilibrium chemistry can be
parametrized by adding fugacities for the initial state. Initial
conditions away from midrapidity, or for collisions at lower
energy, could necessitate a half dozen new parameters. At
lower energy, the dependence of the equation of state on
baryon number is unknown and requires parametrization. The
initial conditions at the LHC require additional parameters to
encapsulate the beam-energy dependence of the initial density
and flow profiles. The lumpiness of the initial state involves
setting a transverse size of the fluctuations. It is easy to imagine
future analyses involving on the order of 20 parameters or
more.

Once the uncertainties of the models are better understood,
or at least parametrized, the experimental uncertainties should
dominate the expression of the uncertainties. At this point
the statement of uncertainties should be revisited. Instead
of the rather ad hoc choices used here, the uncertainty of
each observable needs to be expressed, a process that will
require collaboration with the experimental community. Even
if the uncertainties used to calculate the likelihood are purely
experimental, the theoretical uncertainties encapsulated by
variable parameters might still provide the dominant source
of the width of the final likelihood distributions. For example,
the width of the η/s distribution might turn out to be largely
determined by the correlation of the η/s parameter with an
additional poorly constrained model parameter.

This study has also largely ignored the question of which
observables are mostly affected by a given parameter, or the
similar question of which observable, or linear combination
of observables, are most responsible for constraining a given
parameter. Given that some observables are more constrained
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by the variability within the model space than by the actual
comparison to data and that some of the dependencies are
nonlinear, robust criteria need to be developed to address these
questions. This will be the focus of future studies.

The amount of available data for analyses such as these has
swelled in the past few years. The beam-energy scan at RHIC
will provide all the observables analyzed here at a half dozen
more energies. Additionally, Cu + Cu, Cu + Au, and U + U
collisions have been measured at RHIC. Additionally, results
from Pb + Pb collisions at the LHC have now been analyzed
and published. Finally, higher flow harmonics, v2, . . . ,vn, have
also become available.

Expanding the scope of the analysis to a larger range of
beam energies and to include initial state fluctuations could
increase the numerical cost of the calculations by two orders
of magnitude. In the present study, one processing core could
perform a full model run for one point in parameter space
in approximately 1 d. This would increase to being on the
order of several weeks, or 1 month, if the beam-energy scan,
LHC data, and initial-state fluctuations were included. If the

number of points sampled in parameter space were increased
to a few thousand to better account for the larger number
of parameters, the project would remain tractable, but would
clearly require significant allocation of resources. The success
and scalability of the methods presented here suggest that
such an effort could transform heavy-ion physics into a more
rigorously quantitative science.
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