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Entanglement of scales as a possible mechanism for decoherence and thermalization
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Despite the fact that a system created in relativistic heavy ion collisions is an isolated quantum system, which
cannot increase its entropy in the course of unitary quantum evolution, hydrodynamical analysis of experimental
data seems to indicate that the matter formed in the collisions is thermalized very quickly. Based on common
consideration of hydrodynamics as an effective theory in the domain of slow- and long-length modes, we discuss
the physical mechanisms responsible for the decoherence and emergence of the hydrodynamic behavior in
such collisions, and demonstrate how such physical mechanisms work in the case of the scalar field model.
We obtain the evolution equation for the Wigner function of a long-wavelength subsystem that describes its
decoherence, isotropization, and approach to thermal equilibrium induced by interaction with short-wavelength
modes. Our analysis supports the idea that decoherence, quantum-to-classical transition, and thermalization in
isolated quantum systems are attributed to the experimental context, and are related to a particular procedure
of decomposition of the whole quantum system into relevant and irrelevant from an observational viewpoint
subsystems.
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I. INTRODUCTION

The unique and very ambitious program on the creation
and study of a small part of the early universe in laboratories is
being carried out at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC). In collisions between
nuclei at these machines a huge number of created particles
forms a rapidly expanding quark-gluon and/or hadron system
within space-time scales 10−14 m and 10−22 s. One of the
most important results obtained in these experiments is that
hydrodynamic models with nearly perfect fluid describe well
the observables in relativistic heavy ion collisions. The best
agreement with data is achieved if very early thermalization
times (�1 fm) of the produced quark-gluon matter are
assumed [1].

In spite of a significant recent progress in the study of early
time dynamics of quark-gluon matter produced in high-energy
heavy ion collisions, thermalization of the matter created
in A + A collisions remains the great and still unresolved
mystery (see, e.g., Ref. [2]). It seems that, at least partially,
this is so because a system created in each nucleus-nucleus
collision can be considered as an isolated quantum system
that does not interact with external environment, and unitary
quantum evolution of an isolated system cannot increase its
entropy, no matter what happens during this evolution (e.g.,
deconfinement, etc.), and no matter how large and complex
the system is.

To avoid the conceptual problems with thermalization of
an isolated quantum system, some approaches utilize classical
approximation for early time dynamics in heavy ion collisions.
We mention here the approaches that are based on classical
picture of on-mass-shell particles: Boltzmann gas of particles
with short-range interactions (see, e.g., Ref. [3]), and plasma
particles with long-range interactions (see, e.g., Ref. [4]). The
more sophisticated approach for a description of early time dy-

namics and equilibration processes in A + A collisions utilizes
the initial state, which follows from the color glass condensate
(CGC) effective field theory (for recent reviews see, e.g.,
Ref. [5] and references therein). This describes degrees of
freedom in the colliding nuclei as highly occupied gluon fields
with small gauge coupling that are produced by the statistical
ensemble of classical color sources on an event-by-event basis.
Such an initial state corresponds to the Glauber coherent state
[6] that minimizes the uncertainty relation. Then, because for
such a state the classical � → 0 limit (see, e.g., Ref. [7]) is
equivalent to the limit when the coupling constant tends to zero
and the field’s momentum and coordinate expectation values
tend to infinity, one utilizes classical Yang-Mills equations
with fluctuating initial conditions as suitable approximation
for the description of early time dynamics in relativistic heavy
ion collisions (see, e.g., Ref. [8] and references therein).

It is still unclear whether or not such an approach can result
in proper early thermalization in A + A collisions. Moreover,
even if the approach, based on the classical picture, will result
in early thermalization, it does not help to understand this
phenomenon in A + A collisions from the first principles.
This is so because a system created in an A + A collision
is inherently quantum,1 and its initial state is, in fact, quantum
superposition of the Glauber coherent states. Only if the
different Glauber coherent states could be distinguished exper-
imentally as separate initial states of colliding nuclei, the initial
condition can be substituted by the corresponding statistical
mixture. If this is not the case, then such a substitution is

1For any fixed �, even if the classical and quantum expectation
values coincide at the moment, they will diverge from each other after
some time, except for the specific case of the Gaussian interaction
(see, e.g., Ref. [9]).
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unjustified. One more shortcoming with such an approach
is that unlike a classical system, where chaotic behavior
can appear due to extreme sensitivity of a complex system
to the initial conditions, in a quantum system the unitarity
of the Schrödinger evolution preserves all scalar products,
and thus all the distances between quantum state vectors
during the time, and no chaotic behavior is possible. Therefore,
even for a quasiclassical initial condition the quasiclassical
approximation can be destroyed relatively quickly for systems
that exhibit classical dynamical (deterministic) chaos. Indeed,
it was demonstrated that this happens after a time that is only
logarithmic in the Plank constant [10] resulting in a noticeable
deviation between classical and quantum expectation values
[11]. Then, loosely speaking, the chaos seen in the approximate
classical dynamics of isolated quantum system is an artifact
of the approximations. Only decoherence caused by the
environment can substantially reduce the discrepancy between
quantum and classical expectation values and restore the
quantum-classical correspondence for a classically chaotic
system [10–12].

Perhaps a hope that the anti-de-Sitter–conformal-field
theory (AdS-CFT) correspondence [13] (for reviews see
Refs. [14,15]) can help to understand thermalization in a closed
quantum system is one of the reasons why this approach,
which attempts to explain the origin of decoherence and
thermalization in A + A collisions, has recently attracted
much attention in the heavy ion community. While AdS-CFT
correspondence does not take place for QCD, it is generally
believed that it provides a correct qualitative picture of QCD
dynamics in the strongly coupled regime.2 The AdS-CFT
correspondence is based on the holographic gauge-string
duality between four-dimensional (4D) quantum field gauge
theory such as N = 4 super Yang-Mills gauge theory (which
is a conformal field theory), and five-dimensional quantum
string theory. Therefore, the AdS-CFT correspondence is also
sometimes called a gauge-string duality. The duality means an
exact equivalence between two theories, i.e., it means that any
calculated quantity can be expressed in terms of a dual partner
theory. In practice, however, calculations in dual 5D quantum
string theory are possible only under some limitations, which
from the QCD viewpoint means that Nc → ∞ and λ → ∞,
where Nc is the number of colors and λ is the QCD coupling
constant. Under such conditions a gauge-string duality is
reduced to a gauge-gravity duality between 4D quantum gauge
theory and 5D classical gravity theory. In this correspondence,
the radial coordinate r of additional spatial direction can be
associated with the renormalization group energy scale (energy
cutoff scale) in the gauge field theory [17], and asymptotically
high values of radius parameter correspond to gauge field
theory with asymptotically high energy cutoff. Therefore, the
AdS-CFT correspondence can be treated as geometrization of
a renormalization group.

The phenomenon of thermalization of 4D quantum field
theory in this approach is then associated with the irreversible

2Note here that the applicability of such a regime for the early stage
dynamics in relativistic heavy ion collisions is questionable, see, e.g.,
Ref. [16].

process of black hole (and corresponding event horizon
with nonzero entropy) formation [15]. Specifically, it was
found that the long-wavelength (smoothed over short-scales)
approximation of metrics induced by a large stationary black
hole corresponds to a thermal state of the gauge quantum
field theory, and the long-wavelength approximation of metrics
induced by a large nearly stationary black hole corresponds to
a nearly perfect hydrodynamical structure of the expectation
value of the energy momentum tensor of gauge quantum fields.
The latter duality is sometimes named as the fluid-gravity
correspondence [18]. Such a fluid-gravity correspondence is
a useful tool to calculate viscosity for strongly interacting
locally equilibrated systems [15]. But the question appears:
does such duality explain the thermalization process in A + A
collisions?

First, note that sometimes, to support idea of black hole
thermalization, one appeals to the well known and well
understood Unruh effect [19] (for review see, e.g., Ref. [20]).
It is noteworthy that the dual description of this effect from the
point of view of an accelerating observer and inertial observer
gives the same result: thermalization of a uniformly accelerated
(in inertial reference system) particle detector [20,21] due to
quantum interactions. However, one needs to remember that
conditions, for which the Unruh effect takes place, mean that
the accelerated detector is an open system that is accelerated
by some external forces, and such a thermalization cannot
be observed for a closed isolated system with an accelerated
subsystem (detector) [22]. This point was missed in recent
attempts to explain thermalization in A + A collisions by
means of the Unruh mechanism [23].

Second, note that AdS-CFT correspondence cannot be
treated as the origin of thermalization and entropy creation in
dual 4D quantum field theory because the latter is an ordinary
quantum field theory in flat space time, and so cannot produce
entropy in the course of reversible and unitary quantum
evolution. Then, based on general principles of quantum theory
one can infer that the fluid-gravity correspondence is valid
for some decomposition of the whole quantum system into
separate subsystems: it is well known that while entropy of the
whole isolated quantum system remains constant under the
time evolution, entanglement entropies of its subsystems can
increase. Indeed, recent studies in time-dependent AdS-CFT
based on a holographic formula of the entanglement entropy
[24] demonstrate that black-hole formation in AdS dual can
be associated with an increase of the entanglement entropy
in CFT dual [25] (for recent reviews see Ref. [26]), but the
latter takes place only after splitting of CFT dual into spatially
separated subsystems with a quantum quench of one of them
at a specific instant of time.

In what follows, we adopt the standpoint that (entangle-
ment) entropy production in an isolated quantum system can
take place only after its decomposition into subsystems, and
that the specific way of separation of the closed system into
subsystems depends on a certain experimental context (i.e., it is
related with relevant observables). Instead of decomposition
of the system into separated-in-space subsystems, we split
the system into long-wavelength modes and short-wavelength
modes subsystems, and treat the long-wavelength modes
subsystem as the relevant one and the short-wavelength modes
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subsystem as the environment. Such a decomposition seems
to be appropriate for the experimental context in A + A
collisions, and is in agreement with common consideration
of hydrodynamics as the effective theory in the domain of
slow- and long-length modes (see, e.g., Ref. [27]). Inasmuch
as the aim of this paper is partly methodological, we will focus
mainly on the general quantitative features of the evolution
of long-wavelength quantities in a simple scalar field theory
model to investigate the physical mechanisms responsible for
the decoherence and emergence of the hydrodynamic behavior
in A + A collisions.

II. DECOHERENCE AND APPROACH TO EQUILIBRIUM
OF THE LONG-WAVELENGTH OBSERVABLES

Let us start with pointing out that the necessary condition for
emergence of hydrodynamic behavior is the decoherence, i.e.,
suppression of interference of some set of variables that allows
one to use local densities to describe a system’s dynamics. It
is well known that an open system can be decohered (i.e., its
state can be approximately diagonalized in some basis) and
can acquire classical properties due to interactions with its
environment containing the many degrees of freedom that are
ignored from an observational point of view (for review see
[28] and references therein). Note that such a decoherence
due to interactions between the system and its environment
is formulated entirely quantum mechanically, and globally
the quantum mechanical superposition remains unchanged,
as required by the unitarity of the evolution of the total wave
function. In contrast with such an environment-induced deco-
herence, in a relativistic nucleus-nucleus collision the system
remains isolated after preparation and until an observation
at a large time tout is performed. However, it is well known
that while decoherence of an isolated system is impossible,
the decoherence of its subsystems is still possible: while
the state of the whole system remains pure, the state of a
subsystem of a composite system can be described as improper
mixture [29] represented by the partial trace of the statistical
operator of the composite system in a pure state (proper
mixture means incomplete knowledge for a pure state, and,
typically, represents a statistical ensemble). The key point here
is quantum entanglement: interacting quantum subsystems
become entangled in the course of unitary evolution of the
system as a whole and, as a result, the quantum states of
subsystems become mixed states. It is noteworthy that such
mixed states generation has nothing to do with the formation
of statistical ensembles when the weights of the states have no
relation to the exact dynamical equations.

Note that because of the quantum nonseparability [29]
a closed system can be resolved into parts (subsystems) in
various ways. Different splittings result in complementary
descriptions of a system, and the state of a whole quantum
system can not be inferred from the states of its parts unlike
the state of a composite classical system, which can always be
reconstructed from the known states of its parts. Decoherence
and, perhaps, thermalization thus arise from the description of
the system by an observer who at the selected measurements
and data analysis has access only to subsystem degrees of
freedom, while residual degrees of freedom are entangled with

the subsystem but remain unobserved. The state of the whole
system, however, remains pure, and its entropy remains zero:
due to the quantum entanglement, the entropy of a whole
quantum system is not equal to the sum of the entropies of
its parts that are defined as the von Neumann entropies of
the corresponding reduced density matrices. In this kind of
process, the equilibrium state of the relevant subsystem is just
a state when its entropy reaches a maximum due to the buildup
of entanglement of the considered system with its environment
induced by the interactions [30].

Then, to explain the success of hydrodynamics in A + A
collisions, one can assume that a system created in a relativistic
A + A collision can be decomposed into the fast short-length
modes that represent irrelevant (i.e., observationally inacces-
sible or ignored) degrees of freedom, and slow long-length
modes that represent relevant (i.e., observationally accessible)
degrees of freedom. The former act as environment and can
ensure decoherence and approach to (local) equilibrium for the
latter [31] (see also Ref. [32]). Such a splitting is conditioned
by the experimental context because of limited region and
accuracy in a measurement of relevant observables (e.g.,
particle momentum spectra) and also because not all possible
observables are measured (e.g., not all N -particle correlations,
quantum interference effects, etc.).

The evolution of the relevant subsystem of closed system is
studied usually by means of utilizing powerful mathematical
methods, e.g., by means of the projection operator technique
(for review see, e.g., Ref. [33]). Note, however, that application
of these methods to nonequilibrium quantum field theory
is usually rather complicated and sometimes ambiguous,
and physics is often hidden by mathematical formalisms.
Therefore, for illustrative purposes, we will utilize here a more
heuristic coarse-graining approach aiming to make clear origin
of decoherence of relevant observables in A + A collisions and
their subsequent evolution towards equilibrium.

Due to the complexity of the problem, we restrict ourselves
to a ϕ4 quantum field model, whose dynamics is determined
by the Lagrangian density

L = 1

2
∂μϕ∂μϕ − λ

4!
ϕ4, (1)

where λ is coupling constant. In the following, we utilize
the Heisenberg representation. Expectation values are defined
as 〈O〉 = Sp(ρ̂O), where ρ̂ denotes the statistical operator
associated with an initial (pure) state of the system.

The expectation value of the energy momentum tensor,
〈Tμν〉, satisfies to conservation equations

∂μ〈Tμν〉 = 0, (2)

which follows from the field evolution equation. Many
studies of the 〈Tμν〉 evolution were based on classical field
approximation of the energy momentum tensor,

〈T μν(x)〉 ≈ T μν[〈ϕ〉] = ∂μ〈ϕ〉∂ν〈ϕ〉

− gμν

[
1

2
(∂α〈ϕ〉)2 − λ

4!
〈ϕ〉4

]
. (3)

It is worth to note here that such an approximation does not
mean that the evolution of 〈Tμν〉 proceeds as in classical field
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theory. This is so because the expectation value of the field,
〈ϕ〉, is governed by the equation

∂μ∂μ〈ϕ〉 = − λ

3!
〈ϕ3〉, (4)

where 〈ϕ3〉 in the right-hand side contains correlations of
quantum fluctuations. Classical evolution for 〈Tμν〉 can be
obtained if 〈ϕ3〉 is approximated by 〈ϕ〉3, which leads to
the reversible classical evolution equation for 〈ϕ〉. It is well
known, however, that classical equations approximate the
underlying microscopic quantum dynamics for the very special
initial coherent (Glauber) state [6] and during a limited time
period only. On the other hand, if instead of the whole
system we consider the relevant subsystem, and associate
the latter with long-wavelength modes (i.e., with momentum
scales k smaller than the some characteristic scale k�), then
utilization of the classical approximation for expectation
values of long-wavelength observables can be justified, and
quantum fluctuations can be accounted for short-length modes
only.3

Let us split the quantum field ϕ at t = t0 into long-
wavelength modes ϕ

t0
L , and short-wavelength modes ϕ

t0
S :

ϕ = ϕ
t0
L + ϕ

t0
S . We assume that the initial long-wavelength

field, ϕ
t0
L , corresponds to a convolution of field opera-

tor ϕ with a window function WV ,
∫

WV = 1, which
makes smoothing of the field over a domain of size
V = 1/k∗3,

ϕ
t0
L (x,t0) =

∫
d3x ′WV (x − x ′)ϕ(x ′,t0). (5)

Also, we split a state of the system into L and S subsystems:
ρ̂L ⊗ ρ̂S , assuming that observables correspond to operators
acting on L states only.

The evolution equation for expectation value of long-length
modes with initial condition defined according to (5) reads

∂μ∂μ

〈
ϕ

t0
L

〉 = −∂μ∂μ

〈
ϕ

t0
S

〉 − λ

3!

〈(
ϕ

t0
L + ϕ

t0
S

)3〉
. (6)

One can see that in the course of evolution the initially smeared
field becomes dependent on short-wavelength modes. This is
a manifestation of quantum entanglement in the Heisenberg
picture. To follow the evolution of the corresponding observ-
ables, one needs to make repeated in time splitting of the
whole quantum system into the corresponding subsystems,
in the Heisenberg picture this means that one needs to make
repeated redefinition of the corresponding observables (this is
reminiscent of the familiar repeated randomness assumption
in the Boltzmann kinetics).

3Note that quantum correlations are suppressed for the long-
wavelength modes because long-wavelength mode operators are,
in fact, smeared operators, and the canonical commutation relation
for the smeared conjugated operators tends to zero if the scale of
averaging tends to infinity (see, e.g., Ref. [34] and references therein).
This allows one to use classical approximation the long-wavelength
modes evolution after decoherence, the latter is necessary but not
sufficient condition for classical approximations.

Then, to calculate observables associated with long-
wavelength modes, one needs to supplement this exact
motion with an operation that prevents the state to de-
viate too much from L. This can be done by divid-
ing the evolution into time intervals, and choosing initial
conditions for each time step with ϕ

ti
L being replaced at

the time ti+1 = ti + δt by the associated ϕ
ti+1
L (x,ti+1) =∫

d3x ′WV (x − x ′)[ϕti
L(x ′,ti+1) + ϕ

ti
S (x ′,ti+1)]. Then for ti+1 <

t < ti+2 = ti+1 + δt ,

∂μ∂μ

〈
ϕ

ti+1
L

〉 = −∂μ∂μ

〈
ϕ

ti+1
S

〉 − λ

3!

〈(
ϕ

ti+1
L + ϕ

ti+1
S

)3〉
, (7)

and we have piecewise continuous description of L-modes
evolution.4 Now, let us neglect in each δt-interval contribution
of long-scale quantum fluctuations and contribution of the
short-wavelength modes into the right-hand side of the
evolution equations. Then we get the chain of equations

∂μ∂μ

〈
ϕ

t0
L

〉 = − λ

3!

〈
ϕ

t0
L

〉3
, t0 < t < t1, (8)

· · ·
∂μ∂μ

〈
ϕ

tn
L

〉 = − λ

3!

〈
ϕ

tn
L

〉3
, tn−1 < t < tn, (9)

which approximates piecewise continuous description of L
modes till some time tn. Note that the projection times set,
{ti}, is not uniquely defined and can vary in some intervals
allowed by dynamics. Therefore, such a piecewise continuous
description means that we have, in fact, a set of different
histories of the L-modes evolution with randomly chosen
projection times and, so, random expectation values of L
modes. Such a set of piecewise continuous evolutions can
be approximated by the continuous one,

∂μ∂μ〈ϕL〉ξ = − λ

3!

(〈ϕL〉3
ξ + ξ

)
, (10)

where ξ accounts for random discontinuity 〈ϕti
L〉(ti+1) 
=

〈ϕti+1
L 〉(ti+1) and, so, is associated with fluctuations of the

expectation value of long-wavelength modes. As we discussed
above, such a discontinuity is caused by the interaction of
long-wavelength modes with the short-wavelength ones, in
particular, by the interaction with the short-scale quantum
fluctuations that typically are more enhanced than the long-
scale ones. Because the information transferred towards the
irrelevant variables is discarded at the beginning of each
time interval, ξ becomes a stochastic noise variable, and
induces a continuous time random walk stochastic dynamics
for 〈ϕL〉ξ . Then, to get true long-wavelength observables
without trembles that are associated with different projection
histories, one needs to average such observables over ξ . Such
an averaging means, in fact, smearing over the time interval
δt for set of projection histories, and is not associated with

4Note that an exact equation of motion for the relevant variables
may be obtained by this procedure if their characteristic time scales
are much larger than the time scales associated with the irrelevant
variables and if the time δt is chosen in between [35].
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statistical ensemble of initial events. The necessary condition
for hydrodynamical approximation to be valid is the allowance
to neglect, after such an averaging, nonconservation of energy
momentum due to interactions with short-wavelength modes,
i.e., to make the assumption that such an interaction results
mostly in the information loss.

Direct calculation of Tμν[〈ϕL〉ξ ] based on evolution equa-
tions for 〈ϕL〉ξ is a rather uneasy task, which can hardly be done
analytically. Therefore, here we proceed in a more heuristic
way and express Tμν[〈ϕL〉ξ ] through the expectation value

of the corresponding Wigner operator (see, e.g., Ref. [36]),
and obtain for the latter a kinetic transport equation. Let us
define the (reduced) Wigner function describing the state of
the long-wavelength modes, NL(x,p), as

NL(x,p) =
∑

ξ

N
ξ
L(x,p), (11)

where

N
ξ
L(x,p) = (2π )−4

∫
d4ve−ipv〈ϕL〉ξ

(
x + 1

2
v

)
〈ϕL〉ξ

(
x − 1

2
v

)
, (12)

and symbol
∑

ξ means that we perform in (11) the average with respect to random ξ fluctuations, as was discussed above.
Then the energy momentum tensor of long-wavelength modes, T L

μν(x), can be defined as averaged over ξ classical
approximation of 〈Tμν〉L:

〈Tμν〉L ≈ T L
μν(x) =

∑
ξ

Tμν[〈ϕL〉ξ ], (13)

where Tμν[〈ϕL〉ξ ] is written as in (3) but with substitution 〈ϕ〉 → 〈ϕL〉ξ . By means of the Wigner function (12) one can rewrite
Tμν[〈ϕL〉ξ ] as [36]

Tμν[〈ϕL〉ξ ] =
∫

d4p

(
pμpν + 1

4
∂xμ∂xν − 1

2
gμν

(
p2 + 1

4
∂ 2
x

))
N

ξ
L(x,p) + λgμν

4!

∫
d4pd4p′Nξ

L(x,p)Nξ
L(x,p′).

(14)

Using (10), we obtain the following time evolution of the Wigner function:

pμ∂μNL(x,p) = i

2(2π )4

∑
ξ

∫
d4ve−ipv

(
ρξ

(
x − v

2

)
〈ϕL〉ξ

(
x + v

2

)
− 〈ϕL〉ξ

(
x − v

2

)
ρξ

(
x + v

2

))
. (15)

Here

ρξ = − λ

3!

(〈ϕL〉3
ξ + ξ

)
. (16)

Aiming to derive the kinetic equation for the Wigner function, let us rewrite the above equation in the form

pμ∂μNL(x,p) = i

2(2π )4

∑
ξ

∫
d4ve−ipv〈ϕL〉ξ

(
x + v

2

)
〈ϕL〉ξ

(
x − v

2

) (
�ξ

(
x − v

2

)
− �ξ

(
x + v

2

))
, (17)

where

�ξ = ρξ

〈ϕL〉ξ . (18)

Then, performing the Tailor expansion of [�ξ (x − v
2 ) −

�ξ (x + v
2 )] in powers of v and integrating over v, we get

pμ∂μNL(x,p) = 1

4

∑
ξ

∂μ�ξ (x)
∂

∂pμ
N

ξ
L(x,p)

+
∑

ξ

ξ (x,p), (19)

where we used (12) and
∑

ξ ξ (x,p) includes all high deriva-
tives terms of the Tailor expansion. Let us make the natural
assumption that averaging over ξ reduces high derivatives

terms and allows one to neglect the last term in Eq. (19).
Then in such an approximation

pμ∂μNL(x,p) = 1

4

∑
ξ

∂μ�ξ (x)
∂

∂pμ
N

ξ
L(x,p), (20)

and N
ξ
L(x,p), as follows from (11), is governed by the equation

pμ∂μN
ξ
L(x,p) = 1

4
∂μ�ξ (x)

∂

∂pμ
N

ξ
L(x,p). (21)

Let us define

δN
ξ
L = N

ξ
L − NL, (22)

δ�ξ = �ξ − �, (23)
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here � = ∑
ξ �ξ . Then, using (22) and (23), Eq. (19) reads

pμ∂μNL(x,p) = 1

4
∂μ�(x)

∂

∂pμ
NL(x,p)

+ 1

4

∑
ξ

[
∂μδ�ξ (x)

∂

∂pμ
δN

ξ
L(x,p)

]
. (24)

Now one needs to calculate the second term in the right-hand
side of the above equation. Subtracting (24) from (21) and
keeping only the lowest terms in δ, one can get

pμ∂μδN
ξ
L(x,p) = 1

4
∂μδ�ξ (x)

∂

∂pμ
NL(x,p)

+ 1

4
∂μ�(x)

∂

∂pμ
δN

ξ
L(x,p), (25)

which can be rewritten as

δN
ξ
L(x,p) = δN

(free)ξ
L (x,p)

+ 1

4

∫
d4yGp(x − y)δ�μ

ξ (y)
∂

∂pμ
NL(y,p)

+ 1

4

∫
d4yGp(x − y)�μ(y)

∂

∂pμ
δN

ξ
L(y,p).

(26)

Here �μ ≡ ∂μ�, δ�
μ
ξ ≡ ∂μδ�ξ , δN

(free)ξ
L (x,p) is the general

solution of the homogeneous equation:

pμ∂μδN
(free)ξ
L (x,p)(x,p) = 0, (27)

and

pμ∂μGp(x) = δ(4)(x), (28)

Gp(x) = p−1
0 �(t)δ(3)[r − (p/p0)t]. (29)

Let us assume that initially δN
ξ
L = 0. Then δN

(free)ξ
L = 0 and

one can see from Eq. (26) that in lowest order in δ

δN
ξ
L(x,p) = 1

4

∫
d4yGp(x − y)δ�μ

ξ (y)
∂

∂pμ
NL(y,p). (30)

In such an approximation (24) reads

pμ∂μNL(x,p) = 1

4
∂μ�(x)

∂

∂pμ
NL(x,p)

+ 1

16

∂

∂pμ

∫
d4yGp(x − y)

×
∑

ξ

[
δ�

μ
ξ (x)δ�ν

ξ (y)
] ∂

∂pν
NL(y,p). (31)

In general, we cannot compute exactly the contributions of
the fluctuations (otherwise we could solve exactly the model):
approximations are necessary. Then, to proceed further we
have to specify the stochastic properties of the random
quantities δ�

μ
ξ (x). We take the simplest ansatz assuming that

the back reaction is negligible∑
ξ

[
δ�

μ
ξ (x)δ�ν

ξ (y)
] = τμν(x,y)δ(tx − ty). (32)

The assumption of a δ function in time difference means that
the autocorrelation time of the fluctuations is small compared
to the time scale of the motion of the averaged fields. The
fluctuations thus appear as uncorrelated on the time scale
of the motion of the averaged fields. This assumes a clear
separation between the short time scale of irrelevant degrees
of freedom and the long time scale of the relevant degrees
of freedom.

Then

pμ∂μNL(x,p) = 1

4
∂μ�(x)

∂

∂pμ
NL(x,p)

+ 1

16
τμν ∂

∂pμ

1

p0

∂

∂pν
NL(x,p), (33)

here τμν ≡ τμν(x,x). As usual, the irreversible transport
equation for relevant subsystem is valid only for finite time
scales where the short-memory approximation (i.e., white
noise approximation) is justified. It is worth to note the
similarity of Eq. (33) with the Fokker-Plank equation, the
latter is often utilized for a description of the approach
to (local) equilibrium. In the utilized approximation, see
Eqs. (9) and (10), we do not account for explicit contribution
of short-wavelength modes, so

∑
ξ ξ = 0 and � = ∑

ξ �ξ =
− λ

3! 〈ϕL〉2. Then the first term in right-hand side of Eq. (33)
is reduced to a familiar Vlasov term, and the second term in
the right-hand side of Eq. (33) is associated with correlators of
fluctuations induced by interactions with short-length modes.
In such an approximation, the above equation cannot describe
thermalization, but it still can describe process of momentum
isotropization and spatiotemporal decoherence of the long-
length modes, which precedes thermal equilibration acting
on a shorter time scale and is a necessary condition for
thermalization and hydrodynamics.

Isotropization of the relevant subsystem can happen, ev-
idently, only because of interactions with irrelevant modes.
In more mathematical terms, it can happen if the diffusion
term, which is associated with correlators of fluctuations, has
appropriate properties. Namely, let us assume that τμν ∼ δμν ,
i.e., the corresponding fluctuations are isotropic. Then, to find
a steady (quasistationary) state, we suppose that the right-hand
side of Eq. (33) is equal to zero:

1

2
∂0�(x)

∂

∂p2
0

NL(x,p) + 1

4

∂

∂p2
0

∂

∂p2
0

τ 00NL(x,p)

+ 1

4p0
∂i�(x)

∂

∂pi
NL(x,p) + 1

16p2
0

∂

∂pi

∂

∂pi
τ iiNL(x,p)

= 0. (34)

Here for convenience we divided the right-hand side of Eq. (33)
on p0. Just to demonstrate that the solution of the above
equation can be associated with the isotropic steady state,
let us find an approximate analytic solution of Eq. (33) for
|p|/|p0|  1. One can easily see that it is

NL(x,p) ∼ exp

[
−2p0

(
p0∂

0�(x)

τ 00
+ 2pi∂

i�(x)

τ ii

)]
. (35)
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Notice, that such a steady state is obtained without account of
energy-momentum dispersion relation. So, it is valid, in fact,
only if mass shell constraint on pμ is not strongly peaked like
the δ function but, instead, is wide enough, having, however,
some limited virtuality.

For an expanding system one can expect that ∂μ� > 0
because � < 0, see (16) and (18). Then, this steady state has
quasilocal equilibrium form with effective temperature, that is
∼1/p0, and effective collective four-velocity, that is ∼ ∂μ�,
and can be related to the so-called prethermalization stage
[37]. Also, one can see that (35) demonstrates spatiotemporal
decoherence of the long-wavelength subsystem. Indeed, the
lengths of coherence are associated with values of the off-
diagonal elements of the corresponding density matrix, ρL(x +
1
2�x,x − 1

2�x) = ∫
d4p exp(ip�x)NL(x,p). The structure

like (35) for NL(x,p) leads typically to finite coherence
lengths. Because we do not fix the dispersion relation, we just
illustrate our conclusion analytically supposing particles on a
zero-mass shell. Then, calculating the density matrix in the rest
frame, it is easy to see that in the time direction nondiagonal
elements of the density matrix will be proportional to e−�t2/λ2

t

with temporal correlation length in this rest frame system to be
λt ∝

√
∂0ρ/τ 00. During this time the long-length state loses

the coherence. In space directions there are also exponential
cuts in nondiagonal elements of the density matrix. So one
can conclude that coherence lengths in this steady state are
finite and are caused by the hydrodynamic-like parameters
and energy-momentum dispersion relation. In a similar way,
thermal wave length λth ∝ 1/

√
mT defines the off-diagonal

elements of the corresponding density matrix and, so, the
spatial coherence lengths of the nonrelativistic Boltzmann
distribution.

One can see that (35) is the isotropic expression in the
locally comoving fluid-like rest frame. It is reasonable to
expect that for such a steady state the energy momentum
tensor (14) develops a sufficient degree of isotropy in the
locally comoving frame. Because approximate isotropy in
the locally comoving frame and decoherence of densities
are the basic premises for applicability of hydrodynamics,
one can conjuncture that the energy momentum tensor of
the long-wavelength modes can, eventually, approach to the
energy momentum tensor of an effective viscous fluid.

III. CONCLUSIONS

In this paper, we discuss the physical mechanisms that
can explain the source of decoherence at the early stage
of matter evolution in relativistic nucleus-nucleus collisions,
and the subsequent approach to hydrodynamical behavior.
Our method, while admittedly heuristic, provides a physical
understanding of the decoherence phenomenon, which was
lacking in the current attempts of description of thermalization
in A + A collisions, and sheds some light on the mechanism of
isotropization. In our opinion, understanding of the dynamical
mechanisms of decoherence and thermalization should create
the necessary prerequisites for unambiguous calculation of
viscous coefficients in A + A collisions, and we hope that our
analysis can be useful for this aim.

Let us sum up our main points. First, it is well known
that decoherence of local densities is a necessary condition
for thermalization, and in an isolated system that is gov-
erned as whole by the unitary quantum dynamics, the only
possibility for decoherence is decomposition of the system
into subsystems. An ambiguity of a splitting procedure is
removed by the requirement that such a splitting must be done
in an observer-dependent way. Taking into account typical
observational conditions, we proposed to split the system
created in a relativistic A + A collision into a long-length
modes subsystem and a short-length modes subsystem, and
consider the former as a relevant subsystem. Because the
long-length modes in the initial stage of a relativistic A + A
collision are highly populated [5], this allows us to consider
evolution of the corresponding expectation value of the
quantum field in the quasiclassical approximation with noise
term. The latter is associated with quantum fluctuations that
are mostly contributed by the irrelevant (from an observational
viewpoint) short-length modes.5 We suppose that such a
stochasticity accounts effectively for quantum entanglement
between different scales. Then, entanglement-driven stochas-
ticity results in irreversibility and decoherence for the effective
coarse-grained dynamics of the large scales.

We demonstrate how such a physical mechanism works
by means of scalar field model.6 We derived an evolution
equation of the Fokker-Planck type for the Wigner function
of the relevant part of the system and demonstrated, after
some simplifying assumptions, that this equation can describe
decoherence and isotropization at prethermalization stage,
which are necessary conditions for eventual thermalization
and hydrodynamics. Notice that this happens as result of inter-
actions with the irrelevant (i.e., observationally inaccessible)
degrees of freedom, and no averaging over the ensemble of
initial conditions is needed for such a quantum thermalization.
The generated nonzero entropy can be understood as the
entanglement entropy of the long-length subsystem of the
system created by a nucleus-nucleus collision, while the
entropy of the whole closed system does not change with time
due to the unitarity of the time evolution.

Our analysis supports the idea that thermalization and
transition to hydrodynamics are contextual, and are related to
a particular procedure of decomposition of the whole quantum
system into subsystems that contain a large enough number
degrees of freedom (evidently, one should not expect a similar
behavior in systems with few degrees of freedom). Because
observables are measured with some degree of precision (and
not all possible observables are measured) in typical experi-
ment, this leaves the room for inaccessible degrees of freedom,
and, so, allows for hydrodynamical approximation. A fluid
dynamics then appears as an effective long-wavelength theory.
One can expect that the utilization of a full unitary quantum
evolution of a closed system with subsequent projection into

5See also Ref. [38] where it was proposed that unobservation of
higher-order correlators may result in effective decoherence and
associated entropy production in quantum field theory.

6One can adjust this analysis for QCD systems utilizing quark-gluon
Wigner functions, see Ref. [39].
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relevant coarse-grained subspace at the measurement will
result in the same predictions for a statistical ensemble of
experimental data as utilization of a relevant coarse-grained
effective theory that follows to instantaneous decomposition
of the whole state into relevant and irrelevant subsystems
(for more discussions see Ref. [40]). On the other hand, a
hydrodynamical description is inappropriate for an observer
who wholly measures the total set of observables for an isolated
quantum system. Such an observer then will have to calculate
the whole quantum evolution of a system of interest to predict
results of such a complete experiment.
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