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Anomalous viscosity of the quark-gluon plasma
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The shear viscosity of the quark-gluon plasma is predicted to be lower than the collisional viscosity for weak
coupling. The estimated ratio of the shear viscosity to entropy density is rather close to the ratio calculated
by N = 4 super Yang–Mills theory for strong coupling, which indicates that the quark-gluon plasma might be
strongly coupled. However, in the presence of momentum anisotropy, the Weibel instability can arise and drive
the turbulent transport. Shear viscosity can be lowered by enhanced collisionality due to turbulence, but the
decorrelation time and its relation to underlying dynamics and color-magnetic fields have not been calculated
self-consistently. In this paper, we use resonance broadening theory for strong turbulence to calculate the
anomalous viscosity of the quark-gluon plasma for nonequilibrium. For saturated Weibel instability, we estimate
the scalings of the decorrelation rate and viscosity and compare these with collisional transport. This calculation
yields an explicit connection between the underlying momentum-space anisotropy and the viscosity anomaly.
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I. INTRODUCTION

At sufficiently high temperature, transport in quark-gluon
plasma can be described by weakly coupled theories. Given
that typical particles have momentum ∼T , there are sev-
eral important kinetic scales, in terms of weak coupling
g � 1 [1]. First, static color-electric fields are screened
at the Debye length ∼1/(gT ). Second, (unlike traditional
electromagnetic plasmas) static color-magnetic fields are con-
fined at nonperturbative scales ∼1/(g2T ). Finally, dynamics
is governed by particle collisions at macroscopic scales
∼1/(g4T ) where hydrodynamics can be applied. Transport
in quark-gluon plasma has been studied primarily based on
macroscopic hydrodynamics. However, there are mesoscopic
scales, 1/T � (distance) � 1/(g2T ), where collective effects
can be important and a magnetohydrodynamic description can
be applied, as in electromagnetic plasmas.

Transport coefficients have been calculated using the
linearized Boltzmann equation [2,3]. Taking into account
two-particle collisions, the ratio of the shear viscosity to
entropy density is

ηC

s
∼ 1

g4 ln(1/g)
. (1.1)

On the other hand, experimental data can be described by
hydrodynamic simulations with an anomalously low viscosity.
Comparing elliptic flow data with simulations, the shear
viscosity of the quark-gluon plasma is deduced to be (see
a review [4])

η

s
∼ 1 ↔ 5

4π
. (1.2)

Much thought has been devoted to the fact that the shear
viscosity as deduced from data is much lower than the
collisional viscosity Eq. (1.1) when the coupling constant
is small enough. Equation (1.2) is rather close to the ratio
predicted using N = 4 super Yang–Mills theory for strong
coupling, η/s = 1/4π [5,6]. One way to resolve the problem
of why η < ηC is indicated is to assume that the quark-gluon

plasma is strongly coupled. Alternatively, instability effects
have been suggested as a means for enhanced collisionality
which can reduce η [7,8]. We will discuss this scenario in this
work.

When anisotropic momentum distributions occur, the
Weibel1 instability can arise at soft momentum ∼gT . The
Weibel instability of the quark-gluon plasma has been studied
by transport theory, and, equivalently, in hard thermal loop
dynamics [10–12]. There have been numerical simulations
and analytic studies of thermalization and cascade [13–21].
In electromagnetic plasmas, Weibel-excited random fields co-
herently scatter particles and so reduce the rate of momentum
transport [22,23]. Similarly, turbulent color-magnetic fields
might affect transport properties of the quark-gluon plasma. In
that case, viscosity is not obtained solely by particle collisions,
but instability effects must be also accounted for.

Viscosity measures stress per velocity gradient. Since
the stress tensor is ∼T 4 and the collision frequency is
∼g4T ln(1/g) for soft momentum transfer, the collisional
viscosity is ηC ∼ T 3/[g4 ln(1/g)], as in Eq. (1.1). In the
presence of instability-driven fluctuations, we must take a
possibly enhanced decorrelation frequency (due to interaction
between particles and turbulent fields) into account when
computing the transport. Although it depends on which
mechanism (collisions or instabilities) is dominant for the
relevant kinetic regime, the effective viscosity is roughly
determined by

η ∼ (Stress)

(Collision Frequency) + (Decorrelation Frequency)
.

(1.3)

In high-temperature non-Abelian plasmas, instability arises
at momentum �gT . So, we guess that the decorrelation

1The Weibel instability arises in presence of momentum space
anisotropy or temperature gradient [9]. It is cumulative effects of
counter streams and develops current filamentation.
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frequency is �gT . Since the decorrelation frequency can be
higher than the collision frequency, it follows that instability
and momentum space scattering might lower the viscosity of
the quark-gluon plasma [7,8].

The actual quark-gluon plasma produced in relativistic
heavy-ion collisions is a complicated dynamic system. Cal-
culating the viscosity requires us to understand the fluctuation
dynamics and transport properties of the plasma in each stage.
However, to investigate instability effects on viscosity, we con-
sider a rather simple case in this work. According to numerical
simulations, there is no significant difference between Abelian
plasmas and non-Abelian plasmas in 1 + 1 dimensions: in-
stability grows exponentially [14,16,18]. Such Abelianization
disappears in 3 + 1 dimensions, where instability growth is
subexponential. To estimate the lower bound of the anomalous
viscosity, we assume an Abelian regime in 1 + 1 dimensions
which can be used to determine the maximum intensity of
plasma instabilities and transport. In Sec. II, we briefly review
the linear instability. We focus on the turbulent Weibel state
for soft momentum k ∼ gT . In Sec. III, we analyze nonlinear
particle-wave interaction using resonance-broadening theory
for strong turbulence. For the saturated Weibel instability,
we obtain the relation between the decorrelation frequency
and turbulent color-magnetic fields. Following Refs. [24,25]
in electromagnetic plasmas, we calculate the decorrelation
frequency and the anomalous viscosity of the quark-gluon
plasma for nonequilibrium. Finally, we summarize our results
in Sec. IV.

II. LINEAR INSTABILITY

In this section, we briefly review the linear analysis for
the Weibel instability. We assume an Abelian regime by
linearizing the equations of motion in the gauge field. In the
next section, we consider nonlinear particle-wave interaction
due to resonance broadening for strong turbulence.

We linearize the distribution of hard particles as2

f = 〈f 〉 + δf, (2.1)

where 〈f 〉 is color neutral and anisotropic in momentum p, and
δf is colored fluctuations. At mesoscopic scales, the kinetic
equation of particles is the Vlasov equation

vμ∂μδf a + g(Ea + v × Ba) · ∂〈f 〉
∂ p

= 0, (2.2)

where vμ = pμ/E p. Color-electromagnetic fields obey the
non-Abelian Maxwell equation

∂νF
μν,a = Jμ,a = g

∫
d3 p

(2π )3
vμδf a. (2.3)

In Fourier space, the linear solution of the Vlasov
equation is

δf a(ω,k) = −
g(Ea + v × Ba) · ∂〈f 〉

∂ p

−iω + iv · k + ε
, (2.4)

2For plasmas consisting of gluons, f = 2Ncfg , where fg is the
distribution function of gluons per helicity and color. δf = δf aT a ,
where δf a and generators T a are in the adjoint representation.

where ε is positive and infinitesimal. By plugging the solution
to the non-Abelian Maxwell equation, we have

ikνF
μν,a = −g2

∫
d3 p

(2π )3

vμ(Ea + v × Ba) · ∂〈f 〉
∂ p

−iω + iv · k + ε
. (2.5)

This can be written as

εμνAa
ν = 0, (2.6)

where we defined a tensor

εμν ≡ (−ω2 + k2)gμν − kμkν + 	μν, (2.7)

with the self-energy

	μν = g2
∫

d3 p
(2π )3

∂〈f 〉
∂pi

[
−vμgiν + vμvνki

−ω + v · k − iε

]
.

(2.8)

In the temporal gauge A0 = 0, we have εijEj = 0, and the
linear dispersion relation is

det εij = 0. (2.9)

Depending on the sign of Im ω, we have exponentially growing
or damping solutions ω(k). If there is an exponentially growing
solution with Im ω > 0, the quark-gluon plasma has instability
that can drive turbulence.

III. NONLINEAR PARTICLE-WAVE INTERACTION

In this section, we consider nonlinear particle-wave inter-
action due to resonance broadening. Resonance broadening
theory is well defined for traditional electromagnetic plasmas
(see Appendix A) and amounts to calculating phase space eddy
diffusivity and its effects on particle trajectories.3 We can
apply resonance broadening theory to the relativistic quark-
gluon plasma in momentum space. For strong turbulence, the
linear dispersion relation can be extended to the nonlinear
regime with a simple correction in the self-energy. For the
Weibel instability at saturation, we calculate the diffusion
coefficient (which is related to color-magnetic fields), the
particle-wave decorrelation time, and the anomalous viscosity.
The momentum-space diffusion coefficient is determined by
the saturation condition. This sets an effective root-mean-
square turbulence intensity. This approach is made in the spirit
of Prandtl’s theory of pipe flow turbulence than of the familiar
Kolmogorov cascade.

A. Resonance broadening

The distribution function is written as

f = 〈f 〉 + fω,k + f̃ , (3.1)

where 〈f 〉 is the average over space, fω,k is the coherent part
with respect to color-electromagnetic fields, and f̃ represents

3These enter the linear response which determines the instability.
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fluctuations due to noise.4 Taking the average over space,
the mean-field Vlasov equation becomes (see, for example,
Ref. [26])

∂

∂t
〈f 〉 + g

〈
(Ea + v × Ba) · ∂f a

ω,k

∂ p

〉
= 0, (3.2)

where we used the fact that f does not diverge at infinity5 and
〈Ea〉 = 〈Ba〉 = 0.

Similar to the linear solution Eq. (2.4), the coherent
response f a

ω,k has a peak ∼1/(ω − v · k) corresponding
to the resonance where particle velocity is equal to the
phase velocity of color-electromagnetic waves. In presence
of nonlinear interaction between particles and waves, the
former are scattered by the ensemble of wave fields. As
a result, the peak of the resonance is broadened (see, for
example, Ref. [27]). To explain resonance broadening, we
consider test particle dynamics in one dimension. In the
linear order, the particle trajectory is assumed to be unper-
turbed, since nonlinear particle-wave interaction scatters the
trajectory from the unperturbed one by δx. So, the coherent
response is

f a
ω,k = −

∫ ∞

0
dt ei(ωt−kx)+ik δxg

(
Ea

ω,k + v × Ba
ω,k

) · ∂〈f 〉
∂ p

.

(3.3)

By plugging this response to the quasilinear equation Eq. (3.2),
we obtain a diffusion equation [22,23](

∂

∂t
− ∂

∂ p
· D( p) · ∂

∂ p

)
〈f 〉 = 0, (3.4)

where the diffusion tensor is given by the Lorentz force-force
correlator with Fa

ω,k = g(Ea
ω,k + v × Ba

ω,k),

D( p) =
∫ ∞

0
dt ei(ωt−kx)+ik δx

〈
Fa

ω,k Fa
ω,k

〉
. (3.5)

Since color-electromagnetic fields are turbulent, particles
perform a random walk in momentum space. This diffusion
scatters particles from their unperturbed trajectories, weakens
the response, and eventually saturates the instability.

The scatter of a trajectory can be calculated by taking the
average over the probability density function (pdf). We assume
that δp has a Gaussian pdf

pdf [δp] = 1√
πDt

e− (δp)2

Dt . (3.6)

4f̃ is ignored in the quasilinear order.
5For spatially homogeneous 〈f 〉,〈

∂f

∂x

〉
= lim

L→∞
1

L

∫ L/2

−L/2
dx

∂f

∂x

= lim
L→∞

1

L

[
f

(
x = L

2

)
− f

(
x = −L

2

)]
= 0.

In Sec. III D, the v · ∂
∂x term will be revived in calculating the

viscosity.

v ⋅ k

f ω
,k

ω

∼ 1/ tc

FIG. 1. (Color online) The coherent response fω,k has a reso-
nance at ω = v · k. Due to nonlinear particle-wave interaction, the
resonance peak of a delta function δ(ω − v · k) is broadened with a
width proportional to the decorrelation rate 1/tc.

Performing the Gaussian integral, we have

〈ei(ωt−kx)+ikδx〉pdf =
∫

d (δp)√
πDt

e− (δp)2

Dt ei(ωt−kx)+ik
∫

dt (δv)

� e
i(ω−vk)t− k2Dt3

4Ē2
p , (3.7)

where we approximated
∫

dt (δv) � t (δp)/E p
6 and replaced

E p by the averaged Ē p ≡ (
∫

d3 p E p〈f 〉)/(
∫

d3 p 〈f 〉). From
the coefficient of the t3 term, we define the particle-wave
decorrelation time tc:

(
1

tc

)3

≡ k2D

4Ē2
p
. (3.8)

Here, tc is the time scale it takes the wave ensemble to scatter a
particle by wavelength ∼1/k from its unperturbed trajectory.

The principal effect of nonlinear particle-wave interaction is
to broaden the resonance peak of a delta function to a resonance
with a width proportional to the decorrelation rate 1/tc. Thus,
we can use the Lorentzian approximation for strong turbulence
as an approximation (see Fig. 1):

∫ ∞

0
dt ei(ω−v·k)t−t3/t3

c � i

ω − v · k + i/tc
. (3.9)

In this regard, within resonance broadening theory for strong
turbulence, the self-energy Eq. (2.8) acquires a nonlinear
correction which amounts to the replacement ω → ω + i/tc.

6Since v = p/E p, δv = (δp)/E p − p (δE p)/E2
p, where we ignore

δE p with a diffusive pdf of Eq. (3.6). Assuming a similar Gaussian
pdf of δE p, we obtain a consistent t3 factor of resonance broadening.
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B. Diffusion coefficient

In the absence of static color-electromagnetic fields, the
diffusion tensor due to color-magnetic excitations is7 [28]

D =
∑
ω,k

(
gv × δBa

ω,k

) i

ω − v · k + i/tc

(
gv × δBa

ω,k

)
,

(3.10)

where we used the Lorentzian approximation Eq. (3.9). For
most unstable modes, the wave vector is along the direction of
anisotropy and color-magnetic excitations is perpendicular to
the direction8

k = k ẑ and δBa
ω,k = δBa

ω,k ŷ. (3.11)

Since the Weibel instability is purely growing, we set ω = iγ ,
where γ is the growth rate. Then the diffusion coefficient is

D =
∑
ω,k

g2v2
x

∣∣δBa
ω,k

∣∣2 1

γ + 1/tc + ivzk
. (3.12)

We now consider how large color-magnetic excitations can
grow. When the Weibel instability saturates, color-magnetic
excitations stop growing (γ = 0). So, we have

D =
∑
ω,k

g2v2
x

∣∣δBa
ω,k

∣∣2 1/tc

(1/tc)2 + (vzk)2
, (3.13)

where the imaginary part vanished because it is an odd function
of k. It can be simplified for “strong turbulence” where the
particle-wave decorrelation time tc is so short compared to the
time scale ∼1/(v · k) that the condition (1/tc)2 � (vzk)2 is
satisfied. Ignoring (vzk)2 in the denominator, we obtain

D �
∑
ω,k

g2v2
T

∣∣δBa
ω,k

∣∣2 1

1/tc
, (3.14)

where we replaced v2
x by the thermal velocity v2

T .9 With the
definition of the decorrelation time Eq. (3.8), we determine
the relation between the decorrelation time and the intensity
of color-magnetic excitations at saturation; namely,(

1

tc

)4

� k2

4Ē2
p

∑
ω′,k′

g2v2
T

∣∣δBa
ω′,k′

∣∣2
. (3.15)

Here, tc gives the time scale for scattering of a particle, that is,
the trajectory mixing time.

C. Decorrelation time

The particle-wave decorrelation time can be determined
from the nonlinear dispersion relation. As discussed below

7In this work, we consider nonlinear particle-wave interaction for
saturated Weibel instability. So, ω and k in the summation satisfy the
linear dispersion relation.

8Color-electric excitations are δEa
ω,k = δEa

ω,k x̂. Since color-electric
fields are related to color-magnetic fields by the non-Abelian Maxwell
equation, we consider only color-magnetic fields.

9The thermal velocity squared v2
T ∼ 1 is a typical velocity squared

of particles in the quark-gluon plasma.

Eq. (3.9), the self-energy has a nonlinear correction due to the
resonance broadening,

	
ij
NL = g2

∫
d3 p

(2π )3

∂〈f 〉
∂pl

[
−viglj + vivj kl

−ω + v · k − i/tc

]
.

(3.16)

Following Ref. [29], given an isotropic distribution 〈f ( p2)〉iso,
we make an anisotropic distribution by the rescaling of the ẑ
direction:

〈f 〉 = 〈
f

(
p2 + ξp2

z

)〉
iso . (3.17)

Here, ξ > −1 is the anisotropy parameter: −1 < ξ < 0 cor-
responds to a stretch and ξ > 0 corresponds to a squeeze in
the ẑ direction. By a change of variables to p̃ ≡ p

√
1 + ξv2

z ,
Eq. (3.16) can be calculated as

	
ij
NL = m2

D

∫
d�

4π

vi(
1 + ξv2

z

)2

×
[
vj + ξvzẑ

j + (ξ + 1)vjvzk

ω − vzk + i/tc

]
, (3.18)

where

m2
D = − g2

2π2

∫ ∞

0
dp p2 d〈f 〉iso

dp
. (3.19)

In the case of Eq. (3.11), the dispersion relation is

−ω2 + k2 + 	xx
NL = 0. (3.20)

For strong turbulence, when the Weibel instability saturates,
the self-energy term is

	xx
NL

� m2
D

4

[
1

ξ
+ (ξ − 1)

ξ

arctan
√

ξ√
ξ

]

− m2
Dt2

c k2

4

[
−3(ξ + 1)

ξ 2
+ (ξ + 1)(ξ + 3)

ξ 2

arctan
√

ξ√
ξ

]
.

(3.21)

From Eq. (3.20), we determine the decorrelation time

t2
c �

k2 + m2
D

4

[
1
ξ

+ (ξ−1)
ξ

arctan
√

ξ√
ξ

]
m2

D

4

[− 3(ξ+1)
ξ 2 + (ξ+1)(ξ+3)

ξ 2
arctan

√
ξ√

ξ

]
k2

(3.22)

for strong turbulence, where functions of ξ in the square
brackets are positive. Since the decorrelation time is taken
to be short for strong turbulence, it must satisfy

1

t2
c k2

�
m2

D

4

[− 3(ξ+1)
ξ 2 + (ξ+1)(ξ+3)

ξ 2
arctan

√
ξ√

ξ

]
k2 + m2

D

4

[
1
ξ

+ (ξ−1)
ξ

arctan
√

ξ√
ξ

] � v2
z , (3.23)

which gives the validity regime for the anisotropy parameter
ξ (see Fig. 2). As anisotropy grows, the decorrelation time
decreases until ξ ∗

k > 0 for the wave vector k. Noting v2
z � 1, ξ

around ξ ∗
k most likely satisfies the strong-turbulence condition.

For low k, this regime corresponds to an extreme squeeze in
the momentum ẑ direction of an initially isotropic distribution.
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FIG. 2. (Color online) As anisotropy grows, the decorrelation
time decreases until ξ ∗

k > 0 for the wave vector k. For strong
turbulence, the anisotropic parameter must be in the regime where
1/(t2

c k2) � v2
z . Since v2

z � 1, ξ ≈ ξ ∗
k most likely satisfies the

condition. For low k, this regime corresponds to an extreme squeeze
in the momentum ẑ direction of an initially isotropic distribution.

This might apply to the early stage of relativistic heavy-ion
collisions.

At soft momentum k ∼ gT , the scale of the decorrelation
time Eq. (3.22) is

tc ∼ 1

k
. (3.24)

By using Eqs. (3.15) and (3.22), we determine the saturation
level of color-magnetic excitations:

1

4Ē2
p

∑
ω,k

g2v2
T

∣∣δBa
ω,k

∣∣2

�
⎡
⎣ m2

D

4

[− 3(ξ+1)
ξ 2 + (ξ+1)(ξ+3)

ξ 2
arctan

√
ξ√

ξ

]
k2 + m2

D

4

[
1
ξ

+ (ξ−1)
ξ

arctan
√

ξ√
ξ

]
⎤
⎦

2

k2 (3.25)

for strong turbulence. Thus, the scale of the saturated color-
magnetic field is10

δBω,k ∼ kE p

g
. (3.26)

D. Anomalous viscosity

In this section, we follow the strategy in Ref. [25] to
calculate the anomalous viscosity. This is a somewhat artificial
way to obtain viscosity, but it allows us to estimate its basic
scalings. We assume 〈f 〉 is spatially inhomogeneous. For
simplicity, we make vx depend on x by the replacement

vx → vx − p̃2

p2
u(x), (3.27)

10This scale corresponds to when the covariant derivative [D = ∂ −
igA ∼ i(p − gA)] cannot be treated perturbatively, A ∼ E p

g
[14,18].

where p̃2 = p2(1 + ξv2
z ) and u(x) is the mean flow.11 Then

we take a second moment (2p2
x − p2

y − p2
z ) of the diffusion

equation Eq. (3.4). The corresponding energy-momentum
tensor is

2T xx − T yy − T zz

=
∫

d3 p
(2π )3

2p2
x − p2

y − p2
z

E p
〈f 〉,

= 1

(2π )3

∫
d�

2v2
x − v2

y − v2
z(

1 + ξv2
z

)2

∫ ∞

0
dp p3〈f 〉iso. (3.28)

From the coefficient of the velocity gradient in the correspond-
ing tensor, we determine the viscosity

ηA = 2T xx − T yy − T zz

−4 ∂u
∂x

. (3.29)

In the case of Eq. (3.11), the diffusion equation is(
∂

∂t
+ v · ∂

∂x

)
〈f 〉�

∑
ω,k

g2v2
T

∣∣δBa
ω,k

∣∣2 1

1/tc

∂2〈f 〉
∂p2

z

, (3.30)

where we used the diffusion coefficient Eq. (3.14) for strong
turbulence. For inhomogeneous 〈f 〉, we revived the v · ∂

∂x term

v · ∂〈f 〉
∂x

� −v2
T p̃

d〈f 〉
dp̃

∂u

∂x
, (3.31)

where we replaced v2
x by v2

T . Taking a moment (2p2
x − p2

y −
p2

z ), the left-hand side (LHS) in Eq. (3.30) becomes

(LHS) = ∂

∂t
(2T xx − T yy − T zz)

+ v2
T

(2π )3

∫
d�

2v2
x − v2

y − v2
z(

1 + ξv2
z

)2

×
[
−

∫ ∞

0
dp p4 d〈f 〉iso

dp

]
∂u

∂x
. (3.32)

The right-hand side (RHS) is approximated as follows: First,
we take a derivative

∂2〈f 〉
∂p2

z

= (ξ + 1)2p2
z

p̃2

d2〈f 〉
dp̃2

+ (ξ + 1)

p̃

d〈f 〉
dp̃

− (ξ + 1)2p2
z

p̃3

d〈f 〉
dp̃

, (3.33)

where only the second term contributes to the viscosity.
Second, we take a moment (2p2

x − p2
y − p2

z ):

(RHS) = (ξ + 1)
∑
ω,k

g2v2
T

∣∣δBa
ω,k

∣∣2 1

1/tc

×
∫

d3 p
(2π )3

2p2
x − p2

y − p2
z

E p

1

p̃

d〈f 〉
dp̃

. (3.34)

11We work in the local rest frame, u(x) = 0.
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Finally, we compare with Eq. (3.28) for (2T xx − T yy − T zz) to write

(RHS) = −(ξ + 1)
∑
ω,k

g2v2
T

∣∣δBa
ω,k

∣∣2 1

1/tc

[−∫ ∞
0 dp p2 d〈f 〉iso

dp

]
[ ∫ ∞

0 dp p3〈f 〉iso
] (2T xx − T yy − T zz). (3.35)

For static state where ∂
∂t

(2T xx − T yy − T zz) = 0, we equate Eq. (3.32) to Eq. (3.35) to determine the anomalous viscosity

ηA �
1

2(4π)2

[
ξ+3

ξ (ξ+1)2 + (ξ−3)
ξ (ξ+1)

arctan
√

ξ√
ξ

][−∫ ∞
0 dp p4 d〈f 〉iso

dp

][ ∫ ∞
0 dp p3〈f 〉iso

]
∑

ω,k g2
∣∣δBa

ω,k

∣∣2 1
1/tc

[−∫ ∞
0 dp p2 d〈f 〉iso

dp

] , (3.36)

where the function of ξ in the square brackets is positive for ξ ≈ ξ ∗
k in Fig. 2. As excited color-magnetic-field intensity increases

due to instability growth, the anomalous viscosity decreases because the effective collision frequency increases. Since we
determined the saturation level of color-magnetic fields Eq. (3.15) and the decorrelation time Eq. (3.22), the anomalous viscosity
is given by

ηA � v2
T

2(8π )2

[
ξ + 3

ξ (ξ + 1)2
+ (ξ − 3)

ξ (ξ + 1)

arctan
√

ξ√
ξ

]⎡
⎣ k2 + m2

D

4

[
1
ξ

+ (ξ−1)
ξ

arctan
√

ξ√
ξ

]
m2

D

4

[− 3(ξ+1)
ξ 2 + (ξ+1)(ξ+3)

ξ 2
arctan

√
ξ√

ξ

]
⎤
⎦

3/2

×
[−∫ ∞

0 dp p4 d〈f 〉iso

dp

][ ∫ ∞
0 dp p3〈f 〉iso

]
[−∫ ∞

0 dp p2 d〈f 〉iso

dp

]
Ē2

p|k| (3.37)

for strong turbulence. We expect that this gives the lower
bound of the anomalous viscosity in presence of the maximum
intensity of the Weibel instability.

Similar to the thermal velocity in nonrelativistic electro-
magnetic plasmas, we define the “thermal momentum” as

p2
T ≡

∫
d3 p

(2π )3

p2
x

E p
〈f 〉

= 1

8π2

[
1

ξ
+ (ξ − 1)

ξ

arctan
√

ξ√
ξ

] ∫ ∞

0
dp p3〈f 〉iso,

(3.38)

where the function of ξ in the square brackets is positive. Then,
by using Eq. (3.24) for soft momentum k ∼ gT , the scaling
trend of the anomalous viscosity is12

ηA ∼ p2
T

1/tc
, (3.39)

where tc at saturation is given by Eq. (3.22). This corresponds
to Eq. (A18), in that viscosity is roughly the ratio of the
thermal velocity squared to the decorrelation frequency in
electromagnetic plasmas. We note that 1/tc sets the effective
collision frequency.

IV. SUMMARY AND DISCUSSIONS

In this work, we used resonance-broadening theory for
strong turbulence, (1/tc)2 � (v · k)2, to analyze nonlinear
particle-wave interaction in the quark-gluon plasma. To de-
termine the maximum intensity of plasma instabilities and
transport, we assumed an Abelian regime in 1 + 1 dimensions.

12The anisotropy parameter ξ is a constant in this work.

With the wave vector along the anisotropy axis, the saturation
level of color-magnetic excitations is

k2
∑
ω′,k′

∣∣δBa
ω′,k′

∣∣2 � 4Ē2
p

g2v2
T

(
1

tc

)4

, (4.1)

where ω′ and k′ in the summation satisfy the linear dispersion
relation, and tc gives the time scale for scattering of a particle.
For saturated Weibel instability, we calculated the particle-
wave decorrelation time and the anomalous viscosity

t2
c �

k2 + m2
D

4

[
1
ξ

+ (ξ−1)
ξ

arctan
√

ξ√
ξ

]
m2

D

4

[− 3(ξ+1)
ξ 2 + (ξ+1)(ξ+3)

ξ 2
arctan

√
ξ√

ξ

]
k2

, (4.2)

ηA � v2
T

2(8π )2

[
ξ + 3

ξ (ξ + 1)2
+ (ξ − 3)

ξ (ξ + 1)

arctan
√

ξ√
ξ

]

×
⎡
⎣ k2 + m2

D

4

[
1
ξ

+ (ξ−1)
ξ

arctan
√

ξ√
ξ

]
m2

D

4

[− 3(ξ+1)
ξ 2 + (ξ+1)(ξ+3)

ξ 2
arctan

√
ξ√

ξ

]
⎤
⎦

3/2

×
[−∫ ∞

0 dp p4 d〈f 〉iso

dp

][ ∫ ∞
0 dp p3〈f 〉iso

]
[−∫ ∞

0 dp p2 d〈f 〉iso

dp

]
Ē2

p|k| . (4.3)

Here, the anisotropy parameter is ξ ≈ ξ ∗
k in Fig. 2, which

corresponds to an extreme squeeze in the momentum ẑ
direction of an initially isotropic distribution. We expect that
Eq. (4.3) gives the lower bound of the anomalous viscosity in
presence of the maximum intensity of the Weibel instability.
At soft momentum k ∼ gT , the typical scales of the color-
magnetic fields, the decorrelation time, and the anomalous
viscosity are, respectively,

δB ∼ T 2, tc ∼ 1

gT
, and ηA ∼ T 3

g
. (4.4)
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We note that the scale of the anomalous viscosity at k ∼ gT
is much lower than the leading-order collisional viscosity
ηC ∼ T 3/g4.

As discussed in the introduction and Eq. (3.39), the effective
viscosity is given by stress per effective collision frequency, so

η ∼ p2
T

1/tcoll + 1/tc
, (4.5)

where 1/tcoll is the collision frequency and 1/tc is the
decorrelation frequency. Although it depends on the relevant
kinetic regime, the scale of the decorrelation frequency 1/tc at
k ∼ gT is much higher than the collision frequency 1/tcoll ∼
g4T . As compared to the collisional viscosity ηC ∼ T 3/g4,
the effective viscosity thus can be lowered to η ∼ T 3/g
due to enhanced collisionality by nonlinear particle-wave
interaction. This indicates that instability effects can be
dominant in certain stages of quark-gluon plasma transport.

We focused on strong turbulence to consider nonlinear
and stochastic particle-wave interaction due to resonance
broadening. In addition to particle-wave interactions, there
are other nonlinear effects (including wave-wave interactions)
which might be important in non-Abelian plasmas. Numerical
simulations indicate that gluon self-interactions might control
the saturation of the Weibel instability in 3 + 1 dimensions
[16,18]. However, there are limitations to simulations and their
interpretation. Therefore, analytic study of nonlinear theory is
essential to extract information from the simulations and to
understand thermalization of the quark-gluon plasma. We hope
to discuss a systematic nonlinear analysis on the quark-gluon
plasma instabilities in future presentations.
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APPENDIX: ELECTROMAGNETIC PLASMAS

In this appendix, we discuss the Weibel instability in
traditional electromagnetic plasmas by using resonance-
broadening theory [24,25]. We consider plasmas consisting
of electrons, ignoring motions of heavier ions. The analysis
parallels that of Sec. III except

(i) The coupling constant g (or plasmon mass mD/
√

3) is
replaced by the electric charge e (or plasma frequency
ωp =

√
4πne2/m, where n is the number density and

m is the mass of electrons).
(ii) The phase space is velocity v space instead of momen-

tum p space.

Transport can be described by a diffusion equation [22,23](
∂

∂t
− ∂

∂v
· D(v) · ∂

∂v

)
〈f 〉 = 0, (A1)

where the diffusion tensor is given by the Lorentz force-force
correlator with F = e(E + v × B)/m. Assuming δv has a

Gaussian probability density function

pdf [δv] = 1√
πDt

e− (δv)2

Dt , (A2)

the pdf average with change of a trajectory is

〈ei(ωt−kx)+ikδx〉pdf =
∫

d(δv)√
πDt

e− (δv)2

Dt ei(ωt−kx)+ik
∫

dt(δv)

� ei(ω−vk)t− k2Dt3

4 . (A3)

The particle-wave decorrelation time is defined as(
1

tc

)3

≡ k2D

4
. (A4)

By the Lorentzian approximation Eq. (3.9) for strong turbu-
lence, the diffusion coefficient due to magnetic excitations is

D =
∑
ω,k

(
e

m
v × δBω,k

)
i

ω − v · k + i/tc

(
e

m
v × δBω,k

)
.

(A5)

For simplicity, we consider one-dimensional propagation of
plasmas; Eq. (3.11). When the Weibel instability saturates,
the diffusion coefficient is

D �
∑
ω,k

ω2
p

4πnm
v2

T |δBω,k|2 1

1/tc
, (A6)

where we replaced v2
x by v2

T . Using Eq. (A4), the saturation
level of magnetic excitations is(

1

tc

)4

� k2

4

∑
ω′,k′

ω2
p

4πnm
v2

T |δBω′,k′ |2. (A7)

In resonance-broadening theory, the nonlinear dispersion
relation is given by

ω2 + ω2
p

∫
d3v

[
vx

∂〈f 〉
∂vx

+ kv2
x

ω − vzk + i/tc

∂〈f 〉
∂vz

]
= k2.

(A8)

With an anisotropy parameter ξ > −1, electrons obey the
Maxwellian distribution

〈f 〉 =
√

ξ + 1

(
√

2πvT )3
e
− v2+ξv2

z

2v2
T , (A9)

where vT is the thermal velocity.13At saturation, the particle-
wave decorrelation time is

t2
c � 1

v2
T

(
1

k2
+ 1

ω2
p

)
(A10)

for strong turbulence. Since we used the strong-turbulence
approximation, (1/tc)2 � (vzk)2, it must satisfy

1

k2/ω2
p + 1

� v2
z

v2
T

. (A11)

13We normalized the distribution,
∫

d3v〈f 〉 = 1. The thermal
velocity is the averaged velocity,

∫
d3v v2

x〈f 〉 = v2
T .

034905-7



JUHEE HONG AND P. H. DIAMOND PHYSICAL REVIEW C 89, 034905 (2014)

Noting v2
z � v2

T , this condition is valid for k2 � ω2
p. Using

Eq. (A7), the saturation level of magnetic excitations is

1

16πnm

∑
ω,k

|δBω,k|2 � ω2
pv2

T k2(
k2 + ω2

p

)2 (A12)

for strong turbulence.
To calculate the anomalous viscosity, we assume that the

Maxwellian distribution depends on space by the replacement
vx → vx − u(x). The diffusion equation is(

∂

∂t
+ v · ∂

∂x

)
〈f 〉 �

∑
ω,k

ω2
p

4πnm
v2

T |δBω,k|2 1

1/tc

∂2〈f 〉
∂v2

z

,

(A13)

where we revived the v · ∂
∂x term for inhomogeneous 〈f 〉.

Taking a second moment (2v2
x − v2

y − v2
z ) on both sides, we

obtain

∂

∂t

(
2T xx

EM − T
yy
EM − T zz

EM

) + nmv2
T ξ

(ξ + 1)

∂u

∂x

� −(ξ + 1)
∑
ω,k

ω2
p

4πnm
|δBω,k|2

× 1

1/tc

(
2T xx

EM − T
yy
EM − T zz

EM

)
, (A14)

where the corresponding stress tensor is

2T xx
EM − T

yy
EM − T zz

EM = nm

∫
d3v

(
2v2

x − v2
y − v2

z

)〈f 〉.
(A15)

For static state where ∂
∂t

(2T xx
EM − T

yy
EM − T zz

EM ) = 0, the
anomalous viscosity is determined as

ηA �
nmv2

T ξ

4(ξ+1)2∑
ω,k

ω2
p

4πnm
|δBω,k|2 1

1/tc

. (A16)

As magnetic field intensity increases, the anomalous viscosity
decreases. Since the saturation level of magnetic fields and the
decorrelation time are determined by Eqs. (A7) and (A10), we
have

ηA � nmvT ξk2

16(ξ + 1)2

(
1

k2
+ 1

ω2
p

)3/2

(A17)

for strong turbulence. For k2 � ω2
p, the scaling trend of the

anomalous viscosity is given by

ηA ∼ v2
T

1/tc
, (A18)

where we used vT k ∼ 1/tc.
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